1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28 
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56 
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59 
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63 
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76 
77 #define PERF_MAGIC	__perf_magic2
78 
79 const char perf_version_string[] = PERF_VERSION;
80 
81 struct perf_file_attr {
82 	struct perf_event_attr	attr;
83 	struct perf_file_section	ids;
84 };
85 
perf_header__set_feat(struct perf_header * header,int feat)86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88 	__set_bit(feat, header->adds_features);
89 }
90 
perf_header__clear_feat(struct perf_header * header,int feat)91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93 	__clear_bit(feat, header->adds_features);
94 }
95 
perf_header__has_feat(const struct perf_header * header,int feat)96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98 	return test_bit(feat, header->adds_features);
99 }
100 
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103 	ssize_t ret = writen(ff->fd, buf, size);
104 
105 	if (ret != (ssize_t)size)
106 		return ret < 0 ? (int)ret : -1;
107 	return 0;
108 }
109 
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112 	/* struct perf_event_header::size is u16 */
113 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 	size_t new_size = ff->size;
115 	void *addr;
116 
117 	if (size + ff->offset > max_size)
118 		return -E2BIG;
119 
120 	while (size > (new_size - ff->offset))
121 		new_size <<= 1;
122 	new_size = min(max_size, new_size);
123 
124 	if (ff->size < new_size) {
125 		addr = realloc(ff->buf, new_size);
126 		if (!addr)
127 			return -ENOMEM;
128 		ff->buf = addr;
129 		ff->size = new_size;
130 	}
131 
132 	memcpy(ff->buf + ff->offset, buf, size);
133 	ff->offset += size;
134 
135 	return 0;
136 }
137 
138 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141 	if (!ff->buf)
142 		return __do_write_fd(ff, buf, size);
143 	return __do_write_buf(ff, buf, size);
144 }
145 
146 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149 	u64 *p = (u64 *) set;
150 	int i, ret;
151 
152 	ret = do_write(ff, &size, sizeof(size));
153 	if (ret < 0)
154 		return ret;
155 
156 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 		ret = do_write(ff, p + i, sizeof(*p));
158 		if (ret < 0)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)166 int write_padded(struct feat_fd *ff, const void *bf,
167 		 size_t count, size_t count_aligned)
168 {
169 	static const char zero_buf[NAME_ALIGN];
170 	int err = do_write(ff, bf, count);
171 
172 	if (!err)
173 		err = do_write(ff, zero_buf, count_aligned - count);
174 
175 	return err;
176 }
177 
178 #define string_size(str)						\
179 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180 
181 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184 	u32 len, olen;
185 	int ret;
186 
187 	olen = strlen(str) + 1;
188 	len = PERF_ALIGN(olen, NAME_ALIGN);
189 
190 	/* write len, incl. \0 */
191 	ret = do_write(ff, &len, sizeof(len));
192 	if (ret < 0)
193 		return ret;
194 
195 	return write_padded(ff, str, olen, len);
196 }
197 
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 	ssize_t ret = readn(ff->fd, addr, size);
201 
202 	if (ret != size)
203 		return ret < 0 ? (int)ret : -1;
204 	return 0;
205 }
206 
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209 	if (size > (ssize_t)ff->size - ff->offset)
210 		return -1;
211 
212 	memcpy(addr, ff->buf + ff->offset, size);
213 	ff->offset += size;
214 
215 	return 0;
216 
217 }
218 
__do_read(struct feat_fd * ff,void * addr,ssize_t size)219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221 	if (!ff->buf)
222 		return __do_read_fd(ff, addr, size);
223 	return __do_read_buf(ff, addr, size);
224 }
225 
do_read_u32(struct feat_fd * ff,u32 * addr)226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228 	int ret;
229 
230 	ret = __do_read(ff, addr, sizeof(*addr));
231 	if (ret)
232 		return ret;
233 
234 	if (ff->ph->needs_swap)
235 		*addr = bswap_32(*addr);
236 	return 0;
237 }
238 
do_read_u64(struct feat_fd * ff,u64 * addr)239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241 	int ret;
242 
243 	ret = __do_read(ff, addr, sizeof(*addr));
244 	if (ret)
245 		return ret;
246 
247 	if (ff->ph->needs_swap)
248 		*addr = bswap_64(*addr);
249 	return 0;
250 }
251 
do_read_string(struct feat_fd * ff)252 static char *do_read_string(struct feat_fd *ff)
253 {
254 	u32 len;
255 	char *buf;
256 
257 	if (do_read_u32(ff, &len))
258 		return NULL;
259 
260 	buf = malloc(len);
261 	if (!buf)
262 		return NULL;
263 
264 	if (!__do_read(ff, buf, len)) {
265 		/*
266 		 * strings are padded by zeroes
267 		 * thus the actual strlen of buf
268 		 * may be less than len
269 		 */
270 		return buf;
271 	}
272 
273 	free(buf);
274 	return NULL;
275 }
276 
277 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280 	unsigned long *set;
281 	u64 size, *p;
282 	int i, ret;
283 
284 	ret = do_read_u64(ff, &size);
285 	if (ret)
286 		return ret;
287 
288 	set = bitmap_zalloc(size);
289 	if (!set)
290 		return -ENOMEM;
291 
292 	p = (u64 *) set;
293 
294 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 		ret = do_read_u64(ff, p + i);
296 		if (ret < 0) {
297 			free(set);
298 			return ret;
299 		}
300 	}
301 
302 	*pset  = set;
303 	*psize = size;
304 	return 0;
305 }
306 
307 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)308 static int write_tracing_data(struct feat_fd *ff,
309 			      struct evlist *evlist)
310 {
311 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 		return -1;
313 
314 	return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317 
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)318 static int write_build_id(struct feat_fd *ff,
319 			  struct evlist *evlist __maybe_unused)
320 {
321 	struct perf_session *session;
322 	int err;
323 
324 	session = container_of(ff->ph, struct perf_session, header);
325 
326 	if (!perf_session__read_build_ids(session, true))
327 		return -1;
328 
329 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 		return -1;
331 
332 	err = perf_session__write_buildid_table(session, ff);
333 	if (err < 0) {
334 		pr_debug("failed to write buildid table\n");
335 		return err;
336 	}
337 	perf_session__cache_build_ids(session);
338 
339 	return 0;
340 }
341 
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_hostname(struct feat_fd *ff,
343 			  struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.nodename);
353 }
354 
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_osrelease(struct feat_fd *ff,
356 			   struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.release);
366 }
367 
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_arch(struct feat_fd *ff,
369 		      struct evlist *evlist __maybe_unused)
370 {
371 	struct utsname uts;
372 	int ret;
373 
374 	ret = uname(&uts);
375 	if (ret < 0)
376 		return -1;
377 
378 	return do_write_string(ff, uts.machine);
379 }
380 
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381 static int write_version(struct feat_fd *ff,
382 			 struct evlist *evlist __maybe_unused)
383 {
384 	return do_write_string(ff, perf_version_string);
385 }
386 
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 	FILE *file;
390 	char *buf = NULL;
391 	char *s, *p;
392 	const char *search = cpuinfo_proc;
393 	size_t len = 0;
394 	int ret = -1;
395 
396 	if (!search)
397 		return -1;
398 
399 	file = fopen("/proc/cpuinfo", "r");
400 	if (!file)
401 		return -1;
402 
403 	while (getline(&buf, &len, file) > 0) {
404 		ret = strncmp(buf, search, strlen(search));
405 		if (!ret)
406 			break;
407 	}
408 
409 	if (ret) {
410 		ret = -1;
411 		goto done;
412 	}
413 
414 	s = buf;
415 
416 	p = strchr(buf, ':');
417 	if (p && *(p+1) == ' ' && *(p+2))
418 		s = p + 2;
419 	p = strchr(s, '\n');
420 	if (p)
421 		*p = '\0';
422 
423 	/* squash extra space characters (branding string) */
424 	p = s;
425 	while (*p) {
426 		if (isspace(*p)) {
427 			char *r = p + 1;
428 			char *q = skip_spaces(r);
429 			*p = ' ';
430 			if (q != (p+1))
431 				while ((*r++ = *q++));
432 		}
433 		p++;
434 	}
435 	ret = do_write_string(ff, s);
436 done:
437 	free(buf);
438 	fclose(file);
439 	return ret;
440 }
441 
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442 static int write_cpudesc(struct feat_fd *ff,
443 		       struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC	{ "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC	{ "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC	{ "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC	{ "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC	{ "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC	{ "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC	{ "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC	{ "Model Name", }
461 #else
462 #define CPUINFO_PROC	{ "model name", }
463 #endif
464 	const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466 	unsigned int i;
467 
468 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 		int ret;
470 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 		if (ret >= 0)
472 			return ret;
473 	}
474 	return -1;
475 }
476 
477 
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478 static int write_nrcpus(struct feat_fd *ff,
479 			struct evlist *evlist __maybe_unused)
480 {
481 	long nr;
482 	u32 nrc, nra;
483 	int ret;
484 
485 	nrc = cpu__max_present_cpu().cpu;
486 
487 	nr = sysconf(_SC_NPROCESSORS_ONLN);
488 	if (nr < 0)
489 		return -1;
490 
491 	nra = (u32)(nr & UINT_MAX);
492 
493 	ret = do_write(ff, &nrc, sizeof(nrc));
494 	if (ret < 0)
495 		return ret;
496 
497 	return do_write(ff, &nra, sizeof(nra));
498 }
499 
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500 static int write_event_desc(struct feat_fd *ff,
501 			    struct evlist *evlist)
502 {
503 	struct evsel *evsel;
504 	u32 nre, nri, sz;
505 	int ret;
506 
507 	nre = evlist->core.nr_entries;
508 
509 	/*
510 	 * write number of events
511 	 */
512 	ret = do_write(ff, &nre, sizeof(nre));
513 	if (ret < 0)
514 		return ret;
515 
516 	/*
517 	 * size of perf_event_attr struct
518 	 */
519 	sz = (u32)sizeof(evsel->core.attr);
520 	ret = do_write(ff, &sz, sizeof(sz));
521 	if (ret < 0)
522 		return ret;
523 
524 	evlist__for_each_entry(evlist, evsel) {
525 		ret = do_write(ff, &evsel->core.attr, sz);
526 		if (ret < 0)
527 			return ret;
528 		/*
529 		 * write number of unique id per event
530 		 * there is one id per instance of an event
531 		 *
532 		 * copy into an nri to be independent of the
533 		 * type of ids,
534 		 */
535 		nri = evsel->core.ids;
536 		ret = do_write(ff, &nri, sizeof(nri));
537 		if (ret < 0)
538 			return ret;
539 
540 		/*
541 		 * write event string as passed on cmdline
542 		 */
543 		ret = do_write_string(ff, evsel__name(evsel));
544 		if (ret < 0)
545 			return ret;
546 		/*
547 		 * write unique ids for this event
548 		 */
549 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 		if (ret < 0)
551 			return ret;
552 	}
553 	return 0;
554 }
555 
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556 static int write_cmdline(struct feat_fd *ff,
557 			 struct evlist *evlist __maybe_unused)
558 {
559 	char pbuf[MAXPATHLEN], *buf;
560 	int i, ret, n;
561 
562 	/* actual path to perf binary */
563 	buf = perf_exe(pbuf, MAXPATHLEN);
564 
565 	/* account for binary path */
566 	n = perf_env.nr_cmdline + 1;
567 
568 	ret = do_write(ff, &n, sizeof(n));
569 	if (ret < 0)
570 		return ret;
571 
572 	ret = do_write_string(ff, buf);
573 	if (ret < 0)
574 		return ret;
575 
576 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578 		if (ret < 0)
579 			return ret;
580 	}
581 	return 0;
582 }
583 
584 
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)585 static int write_cpu_topology(struct feat_fd *ff,
586 			      struct evlist *evlist __maybe_unused)
587 {
588 	struct cpu_topology *tp;
589 	u32 i;
590 	int ret, j;
591 
592 	tp = cpu_topology__new();
593 	if (!tp)
594 		return -1;
595 
596 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597 	if (ret < 0)
598 		goto done;
599 
600 	for (i = 0; i < tp->package_cpus_lists; i++) {
601 		ret = do_write_string(ff, tp->package_cpus_list[i]);
602 		if (ret < 0)
603 			goto done;
604 	}
605 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606 	if (ret < 0)
607 		goto done;
608 
609 	for (i = 0; i < tp->core_cpus_lists; i++) {
610 		ret = do_write_string(ff, tp->core_cpus_list[i]);
611 		if (ret < 0)
612 			break;
613 	}
614 
615 	ret = perf_env__read_cpu_topology_map(&perf_env);
616 	if (ret < 0)
617 		goto done;
618 
619 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620 		ret = do_write(ff, &perf_env.cpu[j].core_id,
621 			       sizeof(perf_env.cpu[j].core_id));
622 		if (ret < 0)
623 			return ret;
624 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
625 			       sizeof(perf_env.cpu[j].socket_id));
626 		if (ret < 0)
627 			return ret;
628 	}
629 
630 	if (!tp->die_cpus_lists)
631 		goto done;
632 
633 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634 	if (ret < 0)
635 		goto done;
636 
637 	for (i = 0; i < tp->die_cpus_lists; i++) {
638 		ret = do_write_string(ff, tp->die_cpus_list[i]);
639 		if (ret < 0)
640 			goto done;
641 	}
642 
643 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644 		ret = do_write(ff, &perf_env.cpu[j].die_id,
645 			       sizeof(perf_env.cpu[j].die_id));
646 		if (ret < 0)
647 			return ret;
648 	}
649 
650 done:
651 	cpu_topology__delete(tp);
652 	return ret;
653 }
654 
655 
656 
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)657 static int write_total_mem(struct feat_fd *ff,
658 			   struct evlist *evlist __maybe_unused)
659 {
660 	char *buf = NULL;
661 	FILE *fp;
662 	size_t len = 0;
663 	int ret = -1, n;
664 	uint64_t mem;
665 
666 	fp = fopen("/proc/meminfo", "r");
667 	if (!fp)
668 		return -1;
669 
670 	while (getline(&buf, &len, fp) > 0) {
671 		ret = strncmp(buf, "MemTotal:", 9);
672 		if (!ret)
673 			break;
674 	}
675 	if (!ret) {
676 		n = sscanf(buf, "%*s %"PRIu64, &mem);
677 		if (n == 1)
678 			ret = do_write(ff, &mem, sizeof(mem));
679 	} else
680 		ret = -1;
681 	free(buf);
682 	fclose(fp);
683 	return ret;
684 }
685 
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)686 static int write_numa_topology(struct feat_fd *ff,
687 			       struct evlist *evlist __maybe_unused)
688 {
689 	struct numa_topology *tp;
690 	int ret = -1;
691 	u32 i;
692 
693 	tp = numa_topology__new();
694 	if (!tp)
695 		return -ENOMEM;
696 
697 	ret = do_write(ff, &tp->nr, sizeof(u32));
698 	if (ret < 0)
699 		goto err;
700 
701 	for (i = 0; i < tp->nr; i++) {
702 		struct numa_topology_node *n = &tp->nodes[i];
703 
704 		ret = do_write(ff, &n->node, sizeof(u32));
705 		if (ret < 0)
706 			goto err;
707 
708 		ret = do_write(ff, &n->mem_total, sizeof(u64));
709 		if (ret)
710 			goto err;
711 
712 		ret = do_write(ff, &n->mem_free, sizeof(u64));
713 		if (ret)
714 			goto err;
715 
716 		ret = do_write_string(ff, n->cpus);
717 		if (ret < 0)
718 			goto err;
719 	}
720 
721 	ret = 0;
722 
723 err:
724 	numa_topology__delete(tp);
725 	return ret;
726 }
727 
728 /*
729  * File format:
730  *
731  * struct pmu_mappings {
732  *	u32	pmu_num;
733  *	struct pmu_map {
734  *		u32	type;
735  *		char	name[];
736  *	}[pmu_num];
737  * };
738  */
739 
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)740 static int write_pmu_mappings(struct feat_fd *ff,
741 			      struct evlist *evlist __maybe_unused)
742 {
743 	struct perf_pmu *pmu = NULL;
744 	u32 pmu_num = 0;
745 	int ret;
746 
747 	/*
748 	 * Do a first pass to count number of pmu to avoid lseek so this
749 	 * works in pipe mode as well.
750 	 */
751 	while ((pmu = perf_pmus__scan(pmu)))
752 		pmu_num++;
753 
754 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 	if (ret < 0)
756 		return ret;
757 
758 	while ((pmu = perf_pmus__scan(pmu))) {
759 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 		if (ret < 0)
761 			return ret;
762 
763 		ret = do_write_string(ff, pmu->name);
764 		if (ret < 0)
765 			return ret;
766 	}
767 
768 	return 0;
769 }
770 
771 /*
772  * File format:
773  *
774  * struct group_descs {
775  *	u32	nr_groups;
776  *	struct group_desc {
777  *		char	name[];
778  *		u32	leader_idx;
779  *		u32	nr_members;
780  *	}[nr_groups];
781  * };
782  */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)783 static int write_group_desc(struct feat_fd *ff,
784 			    struct evlist *evlist)
785 {
786 	u32 nr_groups = evlist__nr_groups(evlist);
787 	struct evsel *evsel;
788 	int ret;
789 
790 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 	if (ret < 0)
792 		return ret;
793 
794 	evlist__for_each_entry(evlist, evsel) {
795 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796 			const char *name = evsel->group_name ?: "{anon_group}";
797 			u32 leader_idx = evsel->core.idx;
798 			u32 nr_members = evsel->core.nr_members;
799 
800 			ret = do_write_string(ff, name);
801 			if (ret < 0)
802 				return ret;
803 
804 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 			if (ret < 0)
806 				return ret;
807 
808 			ret = do_write(ff, &nr_members, sizeof(nr_members));
809 			if (ret < 0)
810 				return ret;
811 		}
812 	}
813 	return 0;
814 }
815 
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824 	return NULL;
825 }
826 
827 /* Return zero when the cpuid from the mapfile.csv matches the
828  * cpuid string generated on this platform.
829  * Otherwise return non-zero.
830  */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833 	regex_t re;
834 	regmatch_t pmatch[1];
835 	int match;
836 
837 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838 		/* Warn unable to generate match particular string. */
839 		pr_info("Invalid regular expression %s\n", mapcpuid);
840 		return 1;
841 	}
842 
843 	match = !regexec(&re, cpuid, 1, pmatch, 0);
844 	regfree(&re);
845 	if (match) {
846 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847 
848 		/* Verify the entire string matched. */
849 		if (match_len == strlen(cpuid))
850 			return 0;
851 	}
852 	return 1;
853 }
854 
855 /*
856  * default get_cpuid(): nothing gets recorded
857  * actual implementation must be in arch/$(SRCARCH)/util/header.c
858  */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861 	return ENOSYS; /* Not implemented */
862 }
863 
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)864 static int write_cpuid(struct feat_fd *ff,
865 		       struct evlist *evlist __maybe_unused)
866 {
867 	char buffer[64];
868 	int ret;
869 
870 	ret = get_cpuid(buffer, sizeof(buffer));
871 	if (ret)
872 		return -1;
873 
874 	return do_write_string(ff, buffer);
875 }
876 
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878 			      struct evlist *evlist __maybe_unused)
879 {
880 	return 0;
881 }
882 
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)883 static int write_auxtrace(struct feat_fd *ff,
884 			  struct evlist *evlist __maybe_unused)
885 {
886 	struct perf_session *session;
887 	int err;
888 
889 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890 		return -1;
891 
892 	session = container_of(ff->ph, struct perf_session, header);
893 
894 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895 	if (err < 0)
896 		pr_err("Failed to write auxtrace index\n");
897 	return err;
898 }
899 
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)900 static int write_clockid(struct feat_fd *ff,
901 			 struct evlist *evlist __maybe_unused)
902 {
903 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904 			sizeof(ff->ph->env.clock.clockid_res_ns));
905 }
906 
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)907 static int write_clock_data(struct feat_fd *ff,
908 			    struct evlist *evlist __maybe_unused)
909 {
910 	u64 *data64;
911 	u32 data32;
912 	int ret;
913 
914 	/* version */
915 	data32 = 1;
916 
917 	ret = do_write(ff, &data32, sizeof(data32));
918 	if (ret < 0)
919 		return ret;
920 
921 	/* clockid */
922 	data32 = ff->ph->env.clock.clockid;
923 
924 	ret = do_write(ff, &data32, sizeof(data32));
925 	if (ret < 0)
926 		return ret;
927 
928 	/* TOD ref time */
929 	data64 = &ff->ph->env.clock.tod_ns;
930 
931 	ret = do_write(ff, data64, sizeof(*data64));
932 	if (ret < 0)
933 		return ret;
934 
935 	/* clockid ref time */
936 	data64 = &ff->ph->env.clock.clockid_ns;
937 
938 	return do_write(ff, data64, sizeof(*data64));
939 }
940 
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)941 static int write_hybrid_topology(struct feat_fd *ff,
942 				 struct evlist *evlist __maybe_unused)
943 {
944 	struct hybrid_topology *tp;
945 	int ret;
946 	u32 i;
947 
948 	tp = hybrid_topology__new();
949 	if (!tp)
950 		return -ENOENT;
951 
952 	ret = do_write(ff, &tp->nr, sizeof(u32));
953 	if (ret < 0)
954 		goto err;
955 
956 	for (i = 0; i < tp->nr; i++) {
957 		struct hybrid_topology_node *n = &tp->nodes[i];
958 
959 		ret = do_write_string(ff, n->pmu_name);
960 		if (ret < 0)
961 			goto err;
962 
963 		ret = do_write_string(ff, n->cpus);
964 		if (ret < 0)
965 			goto err;
966 	}
967 
968 	ret = 0;
969 
970 err:
971 	hybrid_topology__delete(tp);
972 	return ret;
973 }
974 
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)975 static int write_dir_format(struct feat_fd *ff,
976 			    struct evlist *evlist __maybe_unused)
977 {
978 	struct perf_session *session;
979 	struct perf_data *data;
980 
981 	session = container_of(ff->ph, struct perf_session, header);
982 	data = session->data;
983 
984 	if (WARN_ON(!perf_data__is_dir(data)))
985 		return -1;
986 
987 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988 }
989 
990 /*
991  * Check whether a CPU is online
992  *
993  * Returns:
994  *     1 -> if CPU is online
995  *     0 -> if CPU is offline
996  *    -1 -> error case
997  */
is_cpu_online(unsigned int cpu)998 int is_cpu_online(unsigned int cpu)
999 {
1000 	char *str;
1001 	size_t strlen;
1002 	char buf[256];
1003 	int status = -1;
1004 	struct stat statbuf;
1005 
1006 	snprintf(buf, sizeof(buf),
1007 		"/sys/devices/system/cpu/cpu%d", cpu);
1008 	if (stat(buf, &statbuf) != 0)
1009 		return 0;
1010 
1011 	/*
1012 	 * Check if /sys/devices/system/cpu/cpux/online file
1013 	 * exists. Some cases cpu0 won't have online file since
1014 	 * it is not expected to be turned off generally.
1015 	 * In kernels without CONFIG_HOTPLUG_CPU, this
1016 	 * file won't exist
1017 	 */
1018 	snprintf(buf, sizeof(buf),
1019 		"/sys/devices/system/cpu/cpu%d/online", cpu);
1020 	if (stat(buf, &statbuf) != 0)
1021 		return 1;
1022 
1023 	/*
1024 	 * Read online file using sysfs__read_str.
1025 	 * If read or open fails, return -1.
1026 	 * If read succeeds, return value from file
1027 	 * which gets stored in "str"
1028 	 */
1029 	snprintf(buf, sizeof(buf),
1030 		"devices/system/cpu/cpu%d/online", cpu);
1031 
1032 	if (sysfs__read_str(buf, &str, &strlen) < 0)
1033 		return status;
1034 
1035 	status = atoi(str);
1036 
1037 	free(str);
1038 	return status;
1039 }
1040 
1041 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1042 static int write_bpf_prog_info(struct feat_fd *ff,
1043 			       struct evlist *evlist __maybe_unused)
1044 {
1045 	struct perf_env *env = &ff->ph->env;
1046 	struct rb_root *root;
1047 	struct rb_node *next;
1048 	int ret;
1049 
1050 	down_read(&env->bpf_progs.lock);
1051 
1052 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053 		       sizeof(env->bpf_progs.infos_cnt));
1054 	if (ret < 0)
1055 		goto out;
1056 
1057 	root = &env->bpf_progs.infos;
1058 	next = rb_first(root);
1059 	while (next) {
1060 		struct bpf_prog_info_node *node;
1061 		size_t len;
1062 
1063 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064 		next = rb_next(&node->rb_node);
1065 		len = sizeof(struct perf_bpil) +
1066 			node->info_linear->data_len;
1067 
1068 		/* before writing to file, translate address to offset */
1069 		bpil_addr_to_offs(node->info_linear);
1070 		ret = do_write(ff, node->info_linear, len);
1071 		/*
1072 		 * translate back to address even when do_write() fails,
1073 		 * so that this function never changes the data.
1074 		 */
1075 		bpil_offs_to_addr(node->info_linear);
1076 		if (ret < 0)
1077 			goto out;
1078 	}
1079 out:
1080 	up_read(&env->bpf_progs.lock);
1081 	return ret;
1082 }
1083 
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1084 static int write_bpf_btf(struct feat_fd *ff,
1085 			 struct evlist *evlist __maybe_unused)
1086 {
1087 	struct perf_env *env = &ff->ph->env;
1088 	struct rb_root *root;
1089 	struct rb_node *next;
1090 	int ret;
1091 
1092 	down_read(&env->bpf_progs.lock);
1093 
1094 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095 		       sizeof(env->bpf_progs.btfs_cnt));
1096 
1097 	if (ret < 0)
1098 		goto out;
1099 
1100 	root = &env->bpf_progs.btfs;
1101 	next = rb_first(root);
1102 	while (next) {
1103 		struct btf_node *node;
1104 
1105 		node = rb_entry(next, struct btf_node, rb_node);
1106 		next = rb_next(&node->rb_node);
1107 		ret = do_write(ff, &node->id,
1108 			       sizeof(u32) * 2 + node->data_size);
1109 		if (ret < 0)
1110 			goto out;
1111 	}
1112 out:
1113 	up_read(&env->bpf_progs.lock);
1114 	return ret;
1115 }
1116 #endif // HAVE_LIBBPF_SUPPORT
1117 
cpu_cache_level__sort(const void * a,const void * b)1118 static int cpu_cache_level__sort(const void *a, const void *b)
1119 {
1120 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122 
1123 	return cache_a->level - cache_b->level;
1124 }
1125 
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127 {
1128 	if (a->level != b->level)
1129 		return false;
1130 
1131 	if (a->line_size != b->line_size)
1132 		return false;
1133 
1134 	if (a->sets != b->sets)
1135 		return false;
1136 
1137 	if (a->ways != b->ways)
1138 		return false;
1139 
1140 	if (strcmp(a->type, b->type))
1141 		return false;
1142 
1143 	if (strcmp(a->size, b->size))
1144 		return false;
1145 
1146 	if (strcmp(a->map, b->map))
1147 		return false;
1148 
1149 	return true;
1150 }
1151 
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153 {
1154 	char path[PATH_MAX], file[PATH_MAX];
1155 	struct stat st;
1156 	size_t len;
1157 
1158 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160 
1161 	if (stat(file, &st))
1162 		return 1;
1163 
1164 	scnprintf(file, PATH_MAX, "%s/level", path);
1165 	if (sysfs__read_int(file, (int *) &cache->level))
1166 		return -1;
1167 
1168 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169 	if (sysfs__read_int(file, (int *) &cache->line_size))
1170 		return -1;
1171 
1172 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173 	if (sysfs__read_int(file, (int *) &cache->sets))
1174 		return -1;
1175 
1176 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177 	if (sysfs__read_int(file, (int *) &cache->ways))
1178 		return -1;
1179 
1180 	scnprintf(file, PATH_MAX, "%s/type", path);
1181 	if (sysfs__read_str(file, &cache->type, &len))
1182 		return -1;
1183 
1184 	cache->type[len] = 0;
1185 	cache->type = strim(cache->type);
1186 
1187 	scnprintf(file, PATH_MAX, "%s/size", path);
1188 	if (sysfs__read_str(file, &cache->size, &len)) {
1189 		zfree(&cache->type);
1190 		return -1;
1191 	}
1192 
1193 	cache->size[len] = 0;
1194 	cache->size = strim(cache->size);
1195 
1196 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197 	if (sysfs__read_str(file, &cache->map, &len)) {
1198 		zfree(&cache->size);
1199 		zfree(&cache->type);
1200 		return -1;
1201 	}
1202 
1203 	cache->map[len] = 0;
1204 	cache->map = strim(cache->map);
1205 	return 0;
1206 }
1207 
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209 {
1210 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211 }
1212 
1213 /*
1214  * Build caches levels for a particular CPU from the data in
1215  * /sys/devices/system/cpu/cpu<cpu>/cache/
1216  * The cache level data is stored in caches[] from index at
1217  * *cntp.
1218  */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220 {
1221 	u16 level;
1222 
1223 	for (level = 0; level < MAX_CACHE_LVL; level++) {
1224 		struct cpu_cache_level c;
1225 		int err;
1226 		u32 i;
1227 
1228 		err = cpu_cache_level__read(&c, cpu, level);
1229 		if (err < 0)
1230 			return err;
1231 
1232 		if (err == 1)
1233 			break;
1234 
1235 		for (i = 0; i < *cntp; i++) {
1236 			if (cpu_cache_level__cmp(&c, &caches[i]))
1237 				break;
1238 		}
1239 
1240 		if (i == *cntp) {
1241 			caches[*cntp] = c;
1242 			*cntp = *cntp + 1;
1243 		} else
1244 			cpu_cache_level__free(&c);
1245 	}
1246 
1247 	return 0;
1248 }
1249 
build_caches(struct cpu_cache_level caches[],u32 * cntp)1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251 {
1252 	u32 nr, cpu, cnt = 0;
1253 
1254 	nr = cpu__max_cpu().cpu;
1255 
1256 	for (cpu = 0; cpu < nr; cpu++) {
1257 		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258 
1259 		if (ret)
1260 			return ret;
1261 	}
1262 	*cntp = cnt;
1263 	return 0;
1264 }
1265 
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1266 static int write_cache(struct feat_fd *ff,
1267 		       struct evlist *evlist __maybe_unused)
1268 {
1269 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270 	struct cpu_cache_level caches[max_caches];
1271 	u32 cnt = 0, i, version = 1;
1272 	int ret;
1273 
1274 	ret = build_caches(caches, &cnt);
1275 	if (ret)
1276 		goto out;
1277 
1278 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279 
1280 	ret = do_write(ff, &version, sizeof(u32));
1281 	if (ret < 0)
1282 		goto out;
1283 
1284 	ret = do_write(ff, &cnt, sizeof(u32));
1285 	if (ret < 0)
1286 		goto out;
1287 
1288 	for (i = 0; i < cnt; i++) {
1289 		struct cpu_cache_level *c = &caches[i];
1290 
1291 		#define _W(v)					\
1292 			ret = do_write(ff, &c->v, sizeof(u32));	\
1293 			if (ret < 0)				\
1294 				goto out;
1295 
1296 		_W(level)
1297 		_W(line_size)
1298 		_W(sets)
1299 		_W(ways)
1300 		#undef _W
1301 
1302 		#define _W(v)						\
1303 			ret = do_write_string(ff, (const char *) c->v);	\
1304 			if (ret < 0)					\
1305 				goto out;
1306 
1307 		_W(type)
1308 		_W(size)
1309 		_W(map)
1310 		#undef _W
1311 	}
1312 
1313 out:
1314 	for (i = 0; i < cnt; i++)
1315 		cpu_cache_level__free(&caches[i]);
1316 	return ret;
1317 }
1318 
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1319 static int write_stat(struct feat_fd *ff __maybe_unused,
1320 		      struct evlist *evlist __maybe_unused)
1321 {
1322 	return 0;
1323 }
1324 
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1325 static int write_sample_time(struct feat_fd *ff,
1326 			     struct evlist *evlist)
1327 {
1328 	int ret;
1329 
1330 	ret = do_write(ff, &evlist->first_sample_time,
1331 		       sizeof(evlist->first_sample_time));
1332 	if (ret < 0)
1333 		return ret;
1334 
1335 	return do_write(ff, &evlist->last_sample_time,
1336 			sizeof(evlist->last_sample_time));
1337 }
1338 
1339 
memory_node__read(struct memory_node * n,unsigned long idx)1340 static int memory_node__read(struct memory_node *n, unsigned long idx)
1341 {
1342 	unsigned int phys, size = 0;
1343 	char path[PATH_MAX];
1344 	struct dirent *ent;
1345 	DIR *dir;
1346 
1347 #define for_each_memory(mem, dir)					\
1348 	while ((ent = readdir(dir)))					\
1349 		if (strcmp(ent->d_name, ".") &&				\
1350 		    strcmp(ent->d_name, "..") &&			\
1351 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1352 
1353 	scnprintf(path, PATH_MAX,
1354 		  "%s/devices/system/node/node%lu",
1355 		  sysfs__mountpoint(), idx);
1356 
1357 	dir = opendir(path);
1358 	if (!dir) {
1359 		pr_warning("failed: can't open memory sysfs data\n");
1360 		return -1;
1361 	}
1362 
1363 	for_each_memory(phys, dir) {
1364 		size = max(phys, size);
1365 	}
1366 
1367 	size++;
1368 
1369 	n->set = bitmap_zalloc(size);
1370 	if (!n->set) {
1371 		closedir(dir);
1372 		return -ENOMEM;
1373 	}
1374 
1375 	n->node = idx;
1376 	n->size = size;
1377 
1378 	rewinddir(dir);
1379 
1380 	for_each_memory(phys, dir) {
1381 		__set_bit(phys, n->set);
1382 	}
1383 
1384 	closedir(dir);
1385 	return 0;
1386 }
1387 
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389 {
1390 	for (u64 i = 0; i < cnt; i++)
1391 		bitmap_free(nodesp[i].set);
1392 
1393 	free(nodesp);
1394 }
1395 
memory_node__sort(const void * a,const void * b)1396 static int memory_node__sort(const void *a, const void *b)
1397 {
1398 	const struct memory_node *na = a;
1399 	const struct memory_node *nb = b;
1400 
1401 	return na->node - nb->node;
1402 }
1403 
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405 {
1406 	char path[PATH_MAX];
1407 	struct dirent *ent;
1408 	DIR *dir;
1409 	int ret = 0;
1410 	size_t cnt = 0, size = 0;
1411 	struct memory_node *nodes = NULL;
1412 
1413 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414 		  sysfs__mountpoint());
1415 
1416 	dir = opendir(path);
1417 	if (!dir) {
1418 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419 			  __func__, path);
1420 		return -1;
1421 	}
1422 
1423 	while (!ret && (ent = readdir(dir))) {
1424 		unsigned int idx;
1425 		int r;
1426 
1427 		if (!strcmp(ent->d_name, ".") ||
1428 		    !strcmp(ent->d_name, ".."))
1429 			continue;
1430 
1431 		r = sscanf(ent->d_name, "node%u", &idx);
1432 		if (r != 1)
1433 			continue;
1434 
1435 		if (cnt >= size) {
1436 			struct memory_node *new_nodes =
1437 				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438 
1439 			if (!new_nodes) {
1440 				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441 				ret = -ENOMEM;
1442 				goto out;
1443 			}
1444 			nodes = new_nodes;
1445 			size += 4;
1446 		}
1447 		ret = memory_node__read(&nodes[cnt++], idx);
1448 	}
1449 out:
1450 	closedir(dir);
1451 	if (!ret) {
1452 		*cntp = cnt;
1453 		*nodesp = nodes;
1454 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1455 	} else
1456 		memory_node__delete_nodes(nodes, cnt);
1457 
1458 	return ret;
1459 }
1460 
1461 /*
1462  * The MEM_TOPOLOGY holds physical memory map for every
1463  * node in system. The format of data is as follows:
1464  *
1465  *  0 - version          | for future changes
1466  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1467  * 16 - count            | number of nodes
1468  *
1469  * For each node we store map of physical indexes for
1470  * each node:
1471  *
1472  * 32 - node id          | node index
1473  * 40 - size             | size of bitmap
1474  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1475  */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1476 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1477 			      struct evlist *evlist __maybe_unused)
1478 {
1479 	struct memory_node *nodes = NULL;
1480 	u64 bsize, version = 1, i, nr = 0;
1481 	int ret;
1482 
1483 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1484 			      (unsigned long long *) &bsize);
1485 	if (ret)
1486 		return ret;
1487 
1488 	ret = build_mem_topology(&nodes, &nr);
1489 	if (ret)
1490 		return ret;
1491 
1492 	ret = do_write(ff, &version, sizeof(version));
1493 	if (ret < 0)
1494 		goto out;
1495 
1496 	ret = do_write(ff, &bsize, sizeof(bsize));
1497 	if (ret < 0)
1498 		goto out;
1499 
1500 	ret = do_write(ff, &nr, sizeof(nr));
1501 	if (ret < 0)
1502 		goto out;
1503 
1504 	for (i = 0; i < nr; i++) {
1505 		struct memory_node *n = &nodes[i];
1506 
1507 		#define _W(v)						\
1508 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1509 			if (ret < 0)					\
1510 				goto out;
1511 
1512 		_W(node)
1513 		_W(size)
1514 
1515 		#undef _W
1516 
1517 		ret = do_write_bitmap(ff, n->set, n->size);
1518 		if (ret < 0)
1519 			goto out;
1520 	}
1521 
1522 out:
1523 	memory_node__delete_nodes(nodes, nr);
1524 	return ret;
1525 }
1526 
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1527 static int write_compressed(struct feat_fd *ff __maybe_unused,
1528 			    struct evlist *evlist __maybe_unused)
1529 {
1530 	int ret;
1531 
1532 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1533 	if (ret)
1534 		return ret;
1535 
1536 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1537 	if (ret)
1538 		return ret;
1539 
1540 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1541 	if (ret)
1542 		return ret;
1543 
1544 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1545 	if (ret)
1546 		return ret;
1547 
1548 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1549 }
1550 
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1551 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1552 			    bool write_pmu)
1553 {
1554 	struct perf_pmu_caps *caps = NULL;
1555 	int ret;
1556 
1557 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1558 	if (ret < 0)
1559 		return ret;
1560 
1561 	list_for_each_entry(caps, &pmu->caps, list) {
1562 		ret = do_write_string(ff, caps->name);
1563 		if (ret < 0)
1564 			return ret;
1565 
1566 		ret = do_write_string(ff, caps->value);
1567 		if (ret < 0)
1568 			return ret;
1569 	}
1570 
1571 	if (write_pmu) {
1572 		ret = do_write_string(ff, pmu->name);
1573 		if (ret < 0)
1574 			return ret;
1575 	}
1576 
1577 	return ret;
1578 }
1579 
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1580 static int write_cpu_pmu_caps(struct feat_fd *ff,
1581 			      struct evlist *evlist __maybe_unused)
1582 {
1583 	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1584 	int ret;
1585 
1586 	if (!cpu_pmu)
1587 		return -ENOENT;
1588 
1589 	ret = perf_pmu__caps_parse(cpu_pmu);
1590 	if (ret < 0)
1591 		return ret;
1592 
1593 	return __write_pmu_caps(ff, cpu_pmu, false);
1594 }
1595 
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1596 static int write_pmu_caps(struct feat_fd *ff,
1597 			  struct evlist *evlist __maybe_unused)
1598 {
1599 	struct perf_pmu *pmu = NULL;
1600 	int nr_pmu = 0;
1601 	int ret;
1602 
1603 	while ((pmu = perf_pmus__scan(pmu))) {
1604 		if (!strcmp(pmu->name, "cpu")) {
1605 			/*
1606 			 * The "cpu" PMU is special and covered by
1607 			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1608 			 * counted/written here for ARM, s390 and Intel hybrid.
1609 			 */
1610 			continue;
1611 		}
1612 		if (perf_pmu__caps_parse(pmu) <= 0)
1613 			continue;
1614 		nr_pmu++;
1615 	}
1616 
1617 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1618 	if (ret < 0)
1619 		return ret;
1620 
1621 	if (!nr_pmu)
1622 		return 0;
1623 
1624 	/*
1625 	 * Note older perf tools assume core PMUs come first, this is a property
1626 	 * of perf_pmus__scan.
1627 	 */
1628 	pmu = NULL;
1629 	while ((pmu = perf_pmus__scan(pmu))) {
1630 		if (!strcmp(pmu->name, "cpu")) {
1631 			/* Skip as above. */
1632 			continue;
1633 		}
1634 		if (perf_pmu__caps_parse(pmu) <= 0)
1635 			continue;
1636 		ret = __write_pmu_caps(ff, pmu, true);
1637 		if (ret < 0)
1638 			return ret;
1639 	}
1640 	return 0;
1641 }
1642 
print_hostname(struct feat_fd * ff,FILE * fp)1643 static void print_hostname(struct feat_fd *ff, FILE *fp)
1644 {
1645 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1646 }
1647 
print_osrelease(struct feat_fd * ff,FILE * fp)1648 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1649 {
1650 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1651 }
1652 
print_arch(struct feat_fd * ff,FILE * fp)1653 static void print_arch(struct feat_fd *ff, FILE *fp)
1654 {
1655 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1656 }
1657 
print_cpudesc(struct feat_fd * ff,FILE * fp)1658 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1659 {
1660 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1661 }
1662 
print_nrcpus(struct feat_fd * ff,FILE * fp)1663 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1664 {
1665 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1666 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1667 }
1668 
print_version(struct feat_fd * ff,FILE * fp)1669 static void print_version(struct feat_fd *ff, FILE *fp)
1670 {
1671 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1672 }
1673 
print_cmdline(struct feat_fd * ff,FILE * fp)1674 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1675 {
1676 	int nr, i;
1677 
1678 	nr = ff->ph->env.nr_cmdline;
1679 
1680 	fprintf(fp, "# cmdline : ");
1681 
1682 	for (i = 0; i < nr; i++) {
1683 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1684 		if (!argv_i) {
1685 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1686 		} else {
1687 			char *mem = argv_i;
1688 			do {
1689 				char *quote = strchr(argv_i, '\'');
1690 				if (!quote)
1691 					break;
1692 				*quote++ = '\0';
1693 				fprintf(fp, "%s\\\'", argv_i);
1694 				argv_i = quote;
1695 			} while (1);
1696 			fprintf(fp, "%s ", argv_i);
1697 			free(mem);
1698 		}
1699 	}
1700 	fputc('\n', fp);
1701 }
1702 
print_cpu_topology(struct feat_fd * ff,FILE * fp)1703 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1704 {
1705 	struct perf_header *ph = ff->ph;
1706 	int cpu_nr = ph->env.nr_cpus_avail;
1707 	int nr, i;
1708 	char *str;
1709 
1710 	nr = ph->env.nr_sibling_cores;
1711 	str = ph->env.sibling_cores;
1712 
1713 	for (i = 0; i < nr; i++) {
1714 		fprintf(fp, "# sibling sockets : %s\n", str);
1715 		str += strlen(str) + 1;
1716 	}
1717 
1718 	if (ph->env.nr_sibling_dies) {
1719 		nr = ph->env.nr_sibling_dies;
1720 		str = ph->env.sibling_dies;
1721 
1722 		for (i = 0; i < nr; i++) {
1723 			fprintf(fp, "# sibling dies    : %s\n", str);
1724 			str += strlen(str) + 1;
1725 		}
1726 	}
1727 
1728 	nr = ph->env.nr_sibling_threads;
1729 	str = ph->env.sibling_threads;
1730 
1731 	for (i = 0; i < nr; i++) {
1732 		fprintf(fp, "# sibling threads : %s\n", str);
1733 		str += strlen(str) + 1;
1734 	}
1735 
1736 	if (ph->env.nr_sibling_dies) {
1737 		if (ph->env.cpu != NULL) {
1738 			for (i = 0; i < cpu_nr; i++)
1739 				fprintf(fp, "# CPU %d: Core ID %d, "
1740 					    "Die ID %d, Socket ID %d\n",
1741 					    i, ph->env.cpu[i].core_id,
1742 					    ph->env.cpu[i].die_id,
1743 					    ph->env.cpu[i].socket_id);
1744 		} else
1745 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1746 				    "information is not available\n");
1747 	} else {
1748 		if (ph->env.cpu != NULL) {
1749 			for (i = 0; i < cpu_nr; i++)
1750 				fprintf(fp, "# CPU %d: Core ID %d, "
1751 					    "Socket ID %d\n",
1752 					    i, ph->env.cpu[i].core_id,
1753 					    ph->env.cpu[i].socket_id);
1754 		} else
1755 			fprintf(fp, "# Core ID and Socket ID "
1756 				    "information is not available\n");
1757 	}
1758 }
1759 
print_clockid(struct feat_fd * ff,FILE * fp)1760 static void print_clockid(struct feat_fd *ff, FILE *fp)
1761 {
1762 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1763 		ff->ph->env.clock.clockid_res_ns * 1000);
1764 }
1765 
print_clock_data(struct feat_fd * ff,FILE * fp)1766 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1767 {
1768 	struct timespec clockid_ns;
1769 	char tstr[64], date[64];
1770 	struct timeval tod_ns;
1771 	clockid_t clockid;
1772 	struct tm ltime;
1773 	u64 ref;
1774 
1775 	if (!ff->ph->env.clock.enabled) {
1776 		fprintf(fp, "# reference time disabled\n");
1777 		return;
1778 	}
1779 
1780 	/* Compute TOD time. */
1781 	ref = ff->ph->env.clock.tod_ns;
1782 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1783 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1784 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1785 
1786 	/* Compute clockid time. */
1787 	ref = ff->ph->env.clock.clockid_ns;
1788 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1789 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1790 	clockid_ns.tv_nsec = ref;
1791 
1792 	clockid = ff->ph->env.clock.clockid;
1793 
1794 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1795 		snprintf(tstr, sizeof(tstr), "<error>");
1796 	else {
1797 		strftime(date, sizeof(date), "%F %T", &ltime);
1798 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1799 			  date, (int) tod_ns.tv_usec);
1800 	}
1801 
1802 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1803 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1804 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1805 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1806 		    clockid_name(clockid));
1807 }
1808 
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1809 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1810 {
1811 	int i;
1812 	struct hybrid_node *n;
1813 
1814 	fprintf(fp, "# hybrid cpu system:\n");
1815 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1816 		n = &ff->ph->env.hybrid_nodes[i];
1817 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1818 	}
1819 }
1820 
print_dir_format(struct feat_fd * ff,FILE * fp)1821 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1822 {
1823 	struct perf_session *session;
1824 	struct perf_data *data;
1825 
1826 	session = container_of(ff->ph, struct perf_session, header);
1827 	data = session->data;
1828 
1829 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1830 }
1831 
1832 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1833 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1834 {
1835 	struct perf_env *env = &ff->ph->env;
1836 	struct rb_root *root;
1837 	struct rb_node *next;
1838 
1839 	down_read(&env->bpf_progs.lock);
1840 
1841 	root = &env->bpf_progs.infos;
1842 	next = rb_first(root);
1843 
1844 	while (next) {
1845 		struct bpf_prog_info_node *node;
1846 
1847 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1848 		next = rb_next(&node->rb_node);
1849 
1850 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1851 					       env, fp);
1852 	}
1853 
1854 	up_read(&env->bpf_progs.lock);
1855 }
1856 
print_bpf_btf(struct feat_fd * ff,FILE * fp)1857 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1858 {
1859 	struct perf_env *env = &ff->ph->env;
1860 	struct rb_root *root;
1861 	struct rb_node *next;
1862 
1863 	down_read(&env->bpf_progs.lock);
1864 
1865 	root = &env->bpf_progs.btfs;
1866 	next = rb_first(root);
1867 
1868 	while (next) {
1869 		struct btf_node *node;
1870 
1871 		node = rb_entry(next, struct btf_node, rb_node);
1872 		next = rb_next(&node->rb_node);
1873 		fprintf(fp, "# btf info of id %u\n", node->id);
1874 	}
1875 
1876 	up_read(&env->bpf_progs.lock);
1877 }
1878 #endif // HAVE_LIBBPF_SUPPORT
1879 
free_event_desc(struct evsel * events)1880 static void free_event_desc(struct evsel *events)
1881 {
1882 	struct evsel *evsel;
1883 
1884 	if (!events)
1885 		return;
1886 
1887 	for (evsel = events; evsel->core.attr.size; evsel++) {
1888 		zfree(&evsel->name);
1889 		zfree(&evsel->core.id);
1890 	}
1891 
1892 	free(events);
1893 }
1894 
perf_attr_check(struct perf_event_attr * attr)1895 static bool perf_attr_check(struct perf_event_attr *attr)
1896 {
1897 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1898 		pr_warning("Reserved bits are set unexpectedly. "
1899 			   "Please update perf tool.\n");
1900 		return false;
1901 	}
1902 
1903 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1904 		pr_warning("Unknown sample type (0x%llx) is detected. "
1905 			   "Please update perf tool.\n",
1906 			   attr->sample_type);
1907 		return false;
1908 	}
1909 
1910 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1911 		pr_warning("Unknown read format (0x%llx) is detected. "
1912 			   "Please update perf tool.\n",
1913 			   attr->read_format);
1914 		return false;
1915 	}
1916 
1917 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1918 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1919 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1920 			   "Please update perf tool.\n",
1921 			   attr->branch_sample_type);
1922 
1923 		return false;
1924 	}
1925 
1926 	return true;
1927 }
1928 
read_event_desc(struct feat_fd * ff)1929 static struct evsel *read_event_desc(struct feat_fd *ff)
1930 {
1931 	struct evsel *evsel, *events = NULL;
1932 	u64 *id;
1933 	void *buf = NULL;
1934 	u32 nre, sz, nr, i, j;
1935 	size_t msz;
1936 
1937 	/* number of events */
1938 	if (do_read_u32(ff, &nre))
1939 		goto error;
1940 
1941 	if (do_read_u32(ff, &sz))
1942 		goto error;
1943 
1944 	/* buffer to hold on file attr struct */
1945 	buf = malloc(sz);
1946 	if (!buf)
1947 		goto error;
1948 
1949 	/* the last event terminates with evsel->core.attr.size == 0: */
1950 	events = calloc(nre + 1, sizeof(*events));
1951 	if (!events)
1952 		goto error;
1953 
1954 	msz = sizeof(evsel->core.attr);
1955 	if (sz < msz)
1956 		msz = sz;
1957 
1958 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1959 		evsel->core.idx = i;
1960 
1961 		/*
1962 		 * must read entire on-file attr struct to
1963 		 * sync up with layout.
1964 		 */
1965 		if (__do_read(ff, buf, sz))
1966 			goto error;
1967 
1968 		if (ff->ph->needs_swap)
1969 			perf_event__attr_swap(buf);
1970 
1971 		memcpy(&evsel->core.attr, buf, msz);
1972 
1973 		if (!perf_attr_check(&evsel->core.attr))
1974 			goto error;
1975 
1976 		if (do_read_u32(ff, &nr))
1977 			goto error;
1978 
1979 		if (ff->ph->needs_swap)
1980 			evsel->needs_swap = true;
1981 
1982 		evsel->name = do_read_string(ff);
1983 		if (!evsel->name)
1984 			goto error;
1985 
1986 		if (!nr)
1987 			continue;
1988 
1989 		id = calloc(nr, sizeof(*id));
1990 		if (!id)
1991 			goto error;
1992 		evsel->core.ids = nr;
1993 		evsel->core.id = id;
1994 
1995 		for (j = 0 ; j < nr; j++) {
1996 			if (do_read_u64(ff, id))
1997 				goto error;
1998 			id++;
1999 		}
2000 	}
2001 out:
2002 	free(buf);
2003 	return events;
2004 error:
2005 	free_event_desc(events);
2006 	events = NULL;
2007 	goto out;
2008 }
2009 
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)2010 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2011 				void *priv __maybe_unused)
2012 {
2013 	return fprintf(fp, ", %s = %s", name, val);
2014 }
2015 
print_event_desc(struct feat_fd * ff,FILE * fp)2016 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2017 {
2018 	struct evsel *evsel, *events;
2019 	u32 j;
2020 	u64 *id;
2021 
2022 	if (ff->events)
2023 		events = ff->events;
2024 	else
2025 		events = read_event_desc(ff);
2026 
2027 	if (!events) {
2028 		fprintf(fp, "# event desc: not available or unable to read\n");
2029 		return;
2030 	}
2031 
2032 	for (evsel = events; evsel->core.attr.size; evsel++) {
2033 		fprintf(fp, "# event : name = %s, ", evsel->name);
2034 
2035 		if (evsel->core.ids) {
2036 			fprintf(fp, ", id = {");
2037 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2038 				if (j)
2039 					fputc(',', fp);
2040 				fprintf(fp, " %"PRIu64, *id);
2041 			}
2042 			fprintf(fp, " }");
2043 		}
2044 
2045 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2046 
2047 		fputc('\n', fp);
2048 	}
2049 
2050 	free_event_desc(events);
2051 	ff->events = NULL;
2052 }
2053 
print_total_mem(struct feat_fd * ff,FILE * fp)2054 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2055 {
2056 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2057 }
2058 
print_numa_topology(struct feat_fd * ff,FILE * fp)2059 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2060 {
2061 	int i;
2062 	struct numa_node *n;
2063 
2064 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2065 		n = &ff->ph->env.numa_nodes[i];
2066 
2067 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2068 			    " free = %"PRIu64" kB\n",
2069 			n->node, n->mem_total, n->mem_free);
2070 
2071 		fprintf(fp, "# node%u cpu list : ", n->node);
2072 		cpu_map__fprintf(n->map, fp);
2073 	}
2074 }
2075 
print_cpuid(struct feat_fd * ff,FILE * fp)2076 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2077 {
2078 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2079 }
2080 
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2081 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2082 {
2083 	fprintf(fp, "# contains samples with branch stack\n");
2084 }
2085 
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2086 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2087 {
2088 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2089 }
2090 
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2091 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2092 {
2093 	fprintf(fp, "# contains stat data\n");
2094 }
2095 
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2096 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2097 {
2098 	int i;
2099 
2100 	fprintf(fp, "# CPU cache info:\n");
2101 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2102 		fprintf(fp, "#  ");
2103 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2104 	}
2105 }
2106 
print_compressed(struct feat_fd * ff,FILE * fp)2107 static void print_compressed(struct feat_fd *ff, FILE *fp)
2108 {
2109 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2110 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2111 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2112 }
2113 
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2114 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2115 {
2116 	const char *delimiter = "";
2117 	int i;
2118 
2119 	if (!nr_caps) {
2120 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2121 		return;
2122 	}
2123 
2124 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2125 	for (i = 0; i < nr_caps; i++) {
2126 		fprintf(fp, "%s%s", delimiter, caps[i]);
2127 		delimiter = ", ";
2128 	}
2129 
2130 	fprintf(fp, "\n");
2131 }
2132 
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2133 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2134 {
2135 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2136 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2137 }
2138 
print_pmu_caps(struct feat_fd * ff,FILE * fp)2139 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2140 {
2141 	struct pmu_caps *pmu_caps;
2142 
2143 	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2144 		pmu_caps = &ff->ph->env.pmu_caps[i];
2145 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2146 				 pmu_caps->pmu_name);
2147 	}
2148 }
2149 
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2150 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2151 {
2152 	const char *delimiter = "# pmu mappings: ";
2153 	char *str, *tmp;
2154 	u32 pmu_num;
2155 	u32 type;
2156 
2157 	pmu_num = ff->ph->env.nr_pmu_mappings;
2158 	if (!pmu_num) {
2159 		fprintf(fp, "# pmu mappings: not available\n");
2160 		return;
2161 	}
2162 
2163 	str = ff->ph->env.pmu_mappings;
2164 
2165 	while (pmu_num) {
2166 		type = strtoul(str, &tmp, 0);
2167 		if (*tmp != ':')
2168 			goto error;
2169 
2170 		str = tmp + 1;
2171 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2172 
2173 		delimiter = ", ";
2174 		str += strlen(str) + 1;
2175 		pmu_num--;
2176 	}
2177 
2178 	fprintf(fp, "\n");
2179 
2180 	if (!pmu_num)
2181 		return;
2182 error:
2183 	fprintf(fp, "# pmu mappings: unable to read\n");
2184 }
2185 
print_group_desc(struct feat_fd * ff,FILE * fp)2186 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2187 {
2188 	struct perf_session *session;
2189 	struct evsel *evsel;
2190 	u32 nr = 0;
2191 
2192 	session = container_of(ff->ph, struct perf_session, header);
2193 
2194 	evlist__for_each_entry(session->evlist, evsel) {
2195 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2196 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2197 
2198 			nr = evsel->core.nr_members - 1;
2199 		} else if (nr) {
2200 			fprintf(fp, ",%s", evsel__name(evsel));
2201 
2202 			if (--nr == 0)
2203 				fprintf(fp, "}\n");
2204 		}
2205 	}
2206 }
2207 
print_sample_time(struct feat_fd * ff,FILE * fp)2208 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2209 {
2210 	struct perf_session *session;
2211 	char time_buf[32];
2212 	double d;
2213 
2214 	session = container_of(ff->ph, struct perf_session, header);
2215 
2216 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2217 				  time_buf, sizeof(time_buf));
2218 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2219 
2220 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2221 				  time_buf, sizeof(time_buf));
2222 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2223 
2224 	d = (double)(session->evlist->last_sample_time -
2225 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2226 
2227 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2228 }
2229 
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2230 static void memory_node__fprintf(struct memory_node *n,
2231 				 unsigned long long bsize, FILE *fp)
2232 {
2233 	char buf_map[100], buf_size[50];
2234 	unsigned long long size;
2235 
2236 	size = bsize * bitmap_weight(n->set, n->size);
2237 	unit_number__scnprintf(buf_size, 50, size);
2238 
2239 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2240 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2241 }
2242 
print_mem_topology(struct feat_fd * ff,FILE * fp)2243 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2244 {
2245 	struct memory_node *nodes;
2246 	int i, nr;
2247 
2248 	nodes = ff->ph->env.memory_nodes;
2249 	nr    = ff->ph->env.nr_memory_nodes;
2250 
2251 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2252 		nr, ff->ph->env.memory_bsize);
2253 
2254 	for (i = 0; i < nr; i++) {
2255 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2256 	}
2257 }
2258 
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2259 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2260 				    char *filename,
2261 				    struct perf_session *session)
2262 {
2263 	int err = -1;
2264 	struct machine *machine;
2265 	u16 cpumode;
2266 	struct dso *dso;
2267 	enum dso_space_type dso_space;
2268 
2269 	machine = perf_session__findnew_machine(session, bev->pid);
2270 	if (!machine)
2271 		goto out;
2272 
2273 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2274 
2275 	switch (cpumode) {
2276 	case PERF_RECORD_MISC_KERNEL:
2277 		dso_space = DSO_SPACE__KERNEL;
2278 		break;
2279 	case PERF_RECORD_MISC_GUEST_KERNEL:
2280 		dso_space = DSO_SPACE__KERNEL_GUEST;
2281 		break;
2282 	case PERF_RECORD_MISC_USER:
2283 	case PERF_RECORD_MISC_GUEST_USER:
2284 		dso_space = DSO_SPACE__USER;
2285 		break;
2286 	default:
2287 		goto out;
2288 	}
2289 
2290 	dso = machine__findnew_dso(machine, filename);
2291 	if (dso != NULL) {
2292 		char sbuild_id[SBUILD_ID_SIZE];
2293 		struct build_id bid;
2294 		size_t size = BUILD_ID_SIZE;
2295 
2296 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2297 			size = bev->size;
2298 
2299 		build_id__init(&bid, bev->data, size);
2300 		dso__set_build_id(dso, &bid);
2301 		dso->header_build_id = 1;
2302 
2303 		if (dso_space != DSO_SPACE__USER) {
2304 			struct kmod_path m = { .name = NULL, };
2305 
2306 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2307 				dso__set_module_info(dso, &m, machine);
2308 
2309 			dso->kernel = dso_space;
2310 			free(m.name);
2311 		}
2312 
2313 		build_id__sprintf(&dso->bid, sbuild_id);
2314 		pr_debug("build id event received for %s: %s [%zu]\n",
2315 			 dso->long_name, sbuild_id, size);
2316 		dso__put(dso);
2317 	}
2318 
2319 	err = 0;
2320 out:
2321 	return err;
2322 }
2323 
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2324 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2325 						 int input, u64 offset, u64 size)
2326 {
2327 	struct perf_session *session = container_of(header, struct perf_session, header);
2328 	struct {
2329 		struct perf_event_header   header;
2330 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2331 		char			   filename[0];
2332 	} old_bev;
2333 	struct perf_record_header_build_id bev;
2334 	char filename[PATH_MAX];
2335 	u64 limit = offset + size;
2336 
2337 	while (offset < limit) {
2338 		ssize_t len;
2339 
2340 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2341 			return -1;
2342 
2343 		if (header->needs_swap)
2344 			perf_event_header__bswap(&old_bev.header);
2345 
2346 		len = old_bev.header.size - sizeof(old_bev);
2347 		if (readn(input, filename, len) != len)
2348 			return -1;
2349 
2350 		bev.header = old_bev.header;
2351 
2352 		/*
2353 		 * As the pid is the missing value, we need to fill
2354 		 * it properly. The header.misc value give us nice hint.
2355 		 */
2356 		bev.pid	= HOST_KERNEL_ID;
2357 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2358 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2359 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2360 
2361 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2362 		__event_process_build_id(&bev, filename, session);
2363 
2364 		offset += bev.header.size;
2365 	}
2366 
2367 	return 0;
2368 }
2369 
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2370 static int perf_header__read_build_ids(struct perf_header *header,
2371 				       int input, u64 offset, u64 size)
2372 {
2373 	struct perf_session *session = container_of(header, struct perf_session, header);
2374 	struct perf_record_header_build_id bev;
2375 	char filename[PATH_MAX];
2376 	u64 limit = offset + size, orig_offset = offset;
2377 	int err = -1;
2378 
2379 	while (offset < limit) {
2380 		ssize_t len;
2381 
2382 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2383 			goto out;
2384 
2385 		if (header->needs_swap)
2386 			perf_event_header__bswap(&bev.header);
2387 
2388 		len = bev.header.size - sizeof(bev);
2389 		if (readn(input, filename, len) != len)
2390 			goto out;
2391 		/*
2392 		 * The a1645ce1 changeset:
2393 		 *
2394 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2395 		 *
2396 		 * Added a field to struct perf_record_header_build_id that broke the file
2397 		 * format.
2398 		 *
2399 		 * Since the kernel build-id is the first entry, process the
2400 		 * table using the old format if the well known
2401 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2402 		 * first 4 characters chopped off (where the pid_t sits).
2403 		 */
2404 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2405 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2406 				return -1;
2407 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2408 		}
2409 
2410 		__event_process_build_id(&bev, filename, session);
2411 
2412 		offset += bev.header.size;
2413 	}
2414 	err = 0;
2415 out:
2416 	return err;
2417 }
2418 
2419 /* Macro for features that simply need to read and store a string. */
2420 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2421 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2422 {\
2423 	free(ff->ph->env.__feat_env);		     \
2424 	ff->ph->env.__feat_env = do_read_string(ff); \
2425 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2426 }
2427 
2428 FEAT_PROCESS_STR_FUN(hostname, hostname);
2429 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2430 FEAT_PROCESS_STR_FUN(version, version);
2431 FEAT_PROCESS_STR_FUN(arch, arch);
2432 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2433 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2434 
2435 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2436 static int process_tracing_data(struct feat_fd *ff, void *data)
2437 {
2438 	ssize_t ret = trace_report(ff->fd, data, false);
2439 
2440 	return ret < 0 ? -1 : 0;
2441 }
2442 #endif
2443 
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2444 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2445 {
2446 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2447 		pr_debug("Failed to read buildids, continuing...\n");
2448 	return 0;
2449 }
2450 
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2451 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2452 {
2453 	int ret;
2454 	u32 nr_cpus_avail, nr_cpus_online;
2455 
2456 	ret = do_read_u32(ff, &nr_cpus_avail);
2457 	if (ret)
2458 		return ret;
2459 
2460 	ret = do_read_u32(ff, &nr_cpus_online);
2461 	if (ret)
2462 		return ret;
2463 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2464 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2465 	return 0;
2466 }
2467 
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2468 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2469 {
2470 	u64 total_mem;
2471 	int ret;
2472 
2473 	ret = do_read_u64(ff, &total_mem);
2474 	if (ret)
2475 		return -1;
2476 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2477 	return 0;
2478 }
2479 
evlist__find_by_index(struct evlist * evlist,int idx)2480 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2481 {
2482 	struct evsel *evsel;
2483 
2484 	evlist__for_each_entry(evlist, evsel) {
2485 		if (evsel->core.idx == idx)
2486 			return evsel;
2487 	}
2488 
2489 	return NULL;
2490 }
2491 
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2492 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2493 {
2494 	struct evsel *evsel;
2495 
2496 	if (!event->name)
2497 		return;
2498 
2499 	evsel = evlist__find_by_index(evlist, event->core.idx);
2500 	if (!evsel)
2501 		return;
2502 
2503 	if (evsel->name)
2504 		return;
2505 
2506 	evsel->name = strdup(event->name);
2507 }
2508 
2509 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2510 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2511 {
2512 	struct perf_session *session;
2513 	struct evsel *evsel, *events = read_event_desc(ff);
2514 
2515 	if (!events)
2516 		return 0;
2517 
2518 	session = container_of(ff->ph, struct perf_session, header);
2519 
2520 	if (session->data->is_pipe) {
2521 		/* Save events for reading later by print_event_desc,
2522 		 * since they can't be read again in pipe mode. */
2523 		ff->events = events;
2524 	}
2525 
2526 	for (evsel = events; evsel->core.attr.size; evsel++)
2527 		evlist__set_event_name(session->evlist, evsel);
2528 
2529 	if (!session->data->is_pipe)
2530 		free_event_desc(events);
2531 
2532 	return 0;
2533 }
2534 
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2535 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2536 {
2537 	char *str, *cmdline = NULL, **argv = NULL;
2538 	u32 nr, i, len = 0;
2539 
2540 	if (do_read_u32(ff, &nr))
2541 		return -1;
2542 
2543 	ff->ph->env.nr_cmdline = nr;
2544 
2545 	cmdline = zalloc(ff->size + nr + 1);
2546 	if (!cmdline)
2547 		return -1;
2548 
2549 	argv = zalloc(sizeof(char *) * (nr + 1));
2550 	if (!argv)
2551 		goto error;
2552 
2553 	for (i = 0; i < nr; i++) {
2554 		str = do_read_string(ff);
2555 		if (!str)
2556 			goto error;
2557 
2558 		argv[i] = cmdline + len;
2559 		memcpy(argv[i], str, strlen(str) + 1);
2560 		len += strlen(str) + 1;
2561 		free(str);
2562 	}
2563 	ff->ph->env.cmdline = cmdline;
2564 	ff->ph->env.cmdline_argv = (const char **) argv;
2565 	return 0;
2566 
2567 error:
2568 	free(argv);
2569 	free(cmdline);
2570 	return -1;
2571 }
2572 
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2573 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2574 {
2575 	u32 nr, i;
2576 	char *str;
2577 	struct strbuf sb;
2578 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2579 	u64 size = 0;
2580 	struct perf_header *ph = ff->ph;
2581 	bool do_core_id_test = true;
2582 
2583 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2584 	if (!ph->env.cpu)
2585 		return -1;
2586 
2587 	if (do_read_u32(ff, &nr))
2588 		goto free_cpu;
2589 
2590 	ph->env.nr_sibling_cores = nr;
2591 	size += sizeof(u32);
2592 	if (strbuf_init(&sb, 128) < 0)
2593 		goto free_cpu;
2594 
2595 	for (i = 0; i < nr; i++) {
2596 		str = do_read_string(ff);
2597 		if (!str)
2598 			goto error;
2599 
2600 		/* include a NULL character at the end */
2601 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2602 			goto error;
2603 		size += string_size(str);
2604 		free(str);
2605 	}
2606 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2607 
2608 	if (do_read_u32(ff, &nr))
2609 		return -1;
2610 
2611 	ph->env.nr_sibling_threads = nr;
2612 	size += sizeof(u32);
2613 
2614 	for (i = 0; i < nr; i++) {
2615 		str = do_read_string(ff);
2616 		if (!str)
2617 			goto error;
2618 
2619 		/* include a NULL character at the end */
2620 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2621 			goto error;
2622 		size += string_size(str);
2623 		free(str);
2624 	}
2625 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2626 
2627 	/*
2628 	 * The header may be from old perf,
2629 	 * which doesn't include core id and socket id information.
2630 	 */
2631 	if (ff->size <= size) {
2632 		zfree(&ph->env.cpu);
2633 		return 0;
2634 	}
2635 
2636 	/* On s390 the socket_id number is not related to the numbers of cpus.
2637 	 * The socket_id number might be higher than the numbers of cpus.
2638 	 * This depends on the configuration.
2639 	 * AArch64 is the same.
2640 	 */
2641 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2642 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2643 		do_core_id_test = false;
2644 
2645 	for (i = 0; i < (u32)cpu_nr; i++) {
2646 		if (do_read_u32(ff, &nr))
2647 			goto free_cpu;
2648 
2649 		ph->env.cpu[i].core_id = nr;
2650 		size += sizeof(u32);
2651 
2652 		if (do_read_u32(ff, &nr))
2653 			goto free_cpu;
2654 
2655 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2656 			pr_debug("socket_id number is too big."
2657 				 "You may need to upgrade the perf tool.\n");
2658 			goto free_cpu;
2659 		}
2660 
2661 		ph->env.cpu[i].socket_id = nr;
2662 		size += sizeof(u32);
2663 	}
2664 
2665 	/*
2666 	 * The header may be from old perf,
2667 	 * which doesn't include die information.
2668 	 */
2669 	if (ff->size <= size)
2670 		return 0;
2671 
2672 	if (do_read_u32(ff, &nr))
2673 		return -1;
2674 
2675 	ph->env.nr_sibling_dies = nr;
2676 	size += sizeof(u32);
2677 
2678 	for (i = 0; i < nr; i++) {
2679 		str = do_read_string(ff);
2680 		if (!str)
2681 			goto error;
2682 
2683 		/* include a NULL character at the end */
2684 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2685 			goto error;
2686 		size += string_size(str);
2687 		free(str);
2688 	}
2689 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2690 
2691 	for (i = 0; i < (u32)cpu_nr; i++) {
2692 		if (do_read_u32(ff, &nr))
2693 			goto free_cpu;
2694 
2695 		ph->env.cpu[i].die_id = nr;
2696 	}
2697 
2698 	return 0;
2699 
2700 error:
2701 	strbuf_release(&sb);
2702 free_cpu:
2703 	zfree(&ph->env.cpu);
2704 	return -1;
2705 }
2706 
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2707 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2708 {
2709 	struct numa_node *nodes, *n;
2710 	u32 nr, i;
2711 	char *str;
2712 
2713 	/* nr nodes */
2714 	if (do_read_u32(ff, &nr))
2715 		return -1;
2716 
2717 	nodes = zalloc(sizeof(*nodes) * nr);
2718 	if (!nodes)
2719 		return -ENOMEM;
2720 
2721 	for (i = 0; i < nr; i++) {
2722 		n = &nodes[i];
2723 
2724 		/* node number */
2725 		if (do_read_u32(ff, &n->node))
2726 			goto error;
2727 
2728 		if (do_read_u64(ff, &n->mem_total))
2729 			goto error;
2730 
2731 		if (do_read_u64(ff, &n->mem_free))
2732 			goto error;
2733 
2734 		str = do_read_string(ff);
2735 		if (!str)
2736 			goto error;
2737 
2738 		n->map = perf_cpu_map__new(str);
2739 		if (!n->map)
2740 			goto error;
2741 
2742 		free(str);
2743 	}
2744 	ff->ph->env.nr_numa_nodes = nr;
2745 	ff->ph->env.numa_nodes = nodes;
2746 	return 0;
2747 
2748 error:
2749 	free(nodes);
2750 	return -1;
2751 }
2752 
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2753 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2754 {
2755 	char *name;
2756 	u32 pmu_num;
2757 	u32 type;
2758 	struct strbuf sb;
2759 
2760 	if (do_read_u32(ff, &pmu_num))
2761 		return -1;
2762 
2763 	if (!pmu_num) {
2764 		pr_debug("pmu mappings not available\n");
2765 		return 0;
2766 	}
2767 
2768 	ff->ph->env.nr_pmu_mappings = pmu_num;
2769 	if (strbuf_init(&sb, 128) < 0)
2770 		return -1;
2771 
2772 	while (pmu_num) {
2773 		if (do_read_u32(ff, &type))
2774 			goto error;
2775 
2776 		name = do_read_string(ff);
2777 		if (!name)
2778 			goto error;
2779 
2780 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2781 			goto error;
2782 		/* include a NULL character at the end */
2783 		if (strbuf_add(&sb, "", 1) < 0)
2784 			goto error;
2785 
2786 		if (!strcmp(name, "msr"))
2787 			ff->ph->env.msr_pmu_type = type;
2788 
2789 		free(name);
2790 		pmu_num--;
2791 	}
2792 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2793 	return 0;
2794 
2795 error:
2796 	strbuf_release(&sb);
2797 	return -1;
2798 }
2799 
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2800 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2801 {
2802 	size_t ret = -1;
2803 	u32 i, nr, nr_groups;
2804 	struct perf_session *session;
2805 	struct evsel *evsel, *leader = NULL;
2806 	struct group_desc {
2807 		char *name;
2808 		u32 leader_idx;
2809 		u32 nr_members;
2810 	} *desc;
2811 
2812 	if (do_read_u32(ff, &nr_groups))
2813 		return -1;
2814 
2815 	ff->ph->env.nr_groups = nr_groups;
2816 	if (!nr_groups) {
2817 		pr_debug("group desc not available\n");
2818 		return 0;
2819 	}
2820 
2821 	desc = calloc(nr_groups, sizeof(*desc));
2822 	if (!desc)
2823 		return -1;
2824 
2825 	for (i = 0; i < nr_groups; i++) {
2826 		desc[i].name = do_read_string(ff);
2827 		if (!desc[i].name)
2828 			goto out_free;
2829 
2830 		if (do_read_u32(ff, &desc[i].leader_idx))
2831 			goto out_free;
2832 
2833 		if (do_read_u32(ff, &desc[i].nr_members))
2834 			goto out_free;
2835 	}
2836 
2837 	/*
2838 	 * Rebuild group relationship based on the group_desc
2839 	 */
2840 	session = container_of(ff->ph, struct perf_session, header);
2841 
2842 	i = nr = 0;
2843 	evlist__for_each_entry(session->evlist, evsel) {
2844 		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2845 			evsel__set_leader(evsel, evsel);
2846 			/* {anon_group} is a dummy name */
2847 			if (strcmp(desc[i].name, "{anon_group}")) {
2848 				evsel->group_name = desc[i].name;
2849 				desc[i].name = NULL;
2850 			}
2851 			evsel->core.nr_members = desc[i].nr_members;
2852 
2853 			if (i >= nr_groups || nr > 0) {
2854 				pr_debug("invalid group desc\n");
2855 				goto out_free;
2856 			}
2857 
2858 			leader = evsel;
2859 			nr = evsel->core.nr_members - 1;
2860 			i++;
2861 		} else if (nr) {
2862 			/* This is a group member */
2863 			evsel__set_leader(evsel, leader);
2864 
2865 			nr--;
2866 		}
2867 	}
2868 
2869 	if (i != nr_groups || nr != 0) {
2870 		pr_debug("invalid group desc\n");
2871 		goto out_free;
2872 	}
2873 
2874 	ret = 0;
2875 out_free:
2876 	for (i = 0; i < nr_groups; i++)
2877 		zfree(&desc[i].name);
2878 	free(desc);
2879 
2880 	return ret;
2881 }
2882 
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2883 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2884 {
2885 	struct perf_session *session;
2886 	int err;
2887 
2888 	session = container_of(ff->ph, struct perf_session, header);
2889 
2890 	err = auxtrace_index__process(ff->fd, ff->size, session,
2891 				      ff->ph->needs_swap);
2892 	if (err < 0)
2893 		pr_err("Failed to process auxtrace index\n");
2894 	return err;
2895 }
2896 
process_cache(struct feat_fd * ff,void * data __maybe_unused)2897 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2898 {
2899 	struct cpu_cache_level *caches;
2900 	u32 cnt, i, version;
2901 
2902 	if (do_read_u32(ff, &version))
2903 		return -1;
2904 
2905 	if (version != 1)
2906 		return -1;
2907 
2908 	if (do_read_u32(ff, &cnt))
2909 		return -1;
2910 
2911 	caches = zalloc(sizeof(*caches) * cnt);
2912 	if (!caches)
2913 		return -1;
2914 
2915 	for (i = 0; i < cnt; i++) {
2916 		struct cpu_cache_level c;
2917 
2918 		#define _R(v)						\
2919 			if (do_read_u32(ff, &c.v))\
2920 				goto out_free_caches;			\
2921 
2922 		_R(level)
2923 		_R(line_size)
2924 		_R(sets)
2925 		_R(ways)
2926 		#undef _R
2927 
2928 		#define _R(v)					\
2929 			c.v = do_read_string(ff);		\
2930 			if (!c.v)				\
2931 				goto out_free_caches;
2932 
2933 		_R(type)
2934 		_R(size)
2935 		_R(map)
2936 		#undef _R
2937 
2938 		caches[i] = c;
2939 	}
2940 
2941 	ff->ph->env.caches = caches;
2942 	ff->ph->env.caches_cnt = cnt;
2943 	return 0;
2944 out_free_caches:
2945 	free(caches);
2946 	return -1;
2947 }
2948 
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2949 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2950 {
2951 	struct perf_session *session;
2952 	u64 first_sample_time, last_sample_time;
2953 	int ret;
2954 
2955 	session = container_of(ff->ph, struct perf_session, header);
2956 
2957 	ret = do_read_u64(ff, &first_sample_time);
2958 	if (ret)
2959 		return -1;
2960 
2961 	ret = do_read_u64(ff, &last_sample_time);
2962 	if (ret)
2963 		return -1;
2964 
2965 	session->evlist->first_sample_time = first_sample_time;
2966 	session->evlist->last_sample_time = last_sample_time;
2967 	return 0;
2968 }
2969 
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2970 static int process_mem_topology(struct feat_fd *ff,
2971 				void *data __maybe_unused)
2972 {
2973 	struct memory_node *nodes;
2974 	u64 version, i, nr, bsize;
2975 	int ret = -1;
2976 
2977 	if (do_read_u64(ff, &version))
2978 		return -1;
2979 
2980 	if (version != 1)
2981 		return -1;
2982 
2983 	if (do_read_u64(ff, &bsize))
2984 		return -1;
2985 
2986 	if (do_read_u64(ff, &nr))
2987 		return -1;
2988 
2989 	nodes = zalloc(sizeof(*nodes) * nr);
2990 	if (!nodes)
2991 		return -1;
2992 
2993 	for (i = 0; i < nr; i++) {
2994 		struct memory_node n;
2995 
2996 		#define _R(v)				\
2997 			if (do_read_u64(ff, &n.v))	\
2998 				goto out;		\
2999 
3000 		_R(node)
3001 		_R(size)
3002 
3003 		#undef _R
3004 
3005 		if (do_read_bitmap(ff, &n.set, &n.size))
3006 			goto out;
3007 
3008 		nodes[i] = n;
3009 	}
3010 
3011 	ff->ph->env.memory_bsize    = bsize;
3012 	ff->ph->env.memory_nodes    = nodes;
3013 	ff->ph->env.nr_memory_nodes = nr;
3014 	ret = 0;
3015 
3016 out:
3017 	if (ret)
3018 		free(nodes);
3019 	return ret;
3020 }
3021 
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3022 static int process_clockid(struct feat_fd *ff,
3023 			   void *data __maybe_unused)
3024 {
3025 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3026 		return -1;
3027 
3028 	return 0;
3029 }
3030 
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3031 static int process_clock_data(struct feat_fd *ff,
3032 			      void *_data __maybe_unused)
3033 {
3034 	u32 data32;
3035 	u64 data64;
3036 
3037 	/* version */
3038 	if (do_read_u32(ff, &data32))
3039 		return -1;
3040 
3041 	if (data32 != 1)
3042 		return -1;
3043 
3044 	/* clockid */
3045 	if (do_read_u32(ff, &data32))
3046 		return -1;
3047 
3048 	ff->ph->env.clock.clockid = data32;
3049 
3050 	/* TOD ref time */
3051 	if (do_read_u64(ff, &data64))
3052 		return -1;
3053 
3054 	ff->ph->env.clock.tod_ns = data64;
3055 
3056 	/* clockid ref time */
3057 	if (do_read_u64(ff, &data64))
3058 		return -1;
3059 
3060 	ff->ph->env.clock.clockid_ns = data64;
3061 	ff->ph->env.clock.enabled = true;
3062 	return 0;
3063 }
3064 
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3065 static int process_hybrid_topology(struct feat_fd *ff,
3066 				   void *data __maybe_unused)
3067 {
3068 	struct hybrid_node *nodes, *n;
3069 	u32 nr, i;
3070 
3071 	/* nr nodes */
3072 	if (do_read_u32(ff, &nr))
3073 		return -1;
3074 
3075 	nodes = zalloc(sizeof(*nodes) * nr);
3076 	if (!nodes)
3077 		return -ENOMEM;
3078 
3079 	for (i = 0; i < nr; i++) {
3080 		n = &nodes[i];
3081 
3082 		n->pmu_name = do_read_string(ff);
3083 		if (!n->pmu_name)
3084 			goto error;
3085 
3086 		n->cpus = do_read_string(ff);
3087 		if (!n->cpus)
3088 			goto error;
3089 	}
3090 
3091 	ff->ph->env.nr_hybrid_nodes = nr;
3092 	ff->ph->env.hybrid_nodes = nodes;
3093 	return 0;
3094 
3095 error:
3096 	for (i = 0; i < nr; i++) {
3097 		free(nodes[i].pmu_name);
3098 		free(nodes[i].cpus);
3099 	}
3100 
3101 	free(nodes);
3102 	return -1;
3103 }
3104 
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3105 static int process_dir_format(struct feat_fd *ff,
3106 			      void *_data __maybe_unused)
3107 {
3108 	struct perf_session *session;
3109 	struct perf_data *data;
3110 
3111 	session = container_of(ff->ph, struct perf_session, header);
3112 	data = session->data;
3113 
3114 	if (WARN_ON(!perf_data__is_dir(data)))
3115 		return -1;
3116 
3117 	return do_read_u64(ff, &data->dir.version);
3118 }
3119 
3120 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3121 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3122 {
3123 	struct bpf_prog_info_node *info_node;
3124 	struct perf_env *env = &ff->ph->env;
3125 	struct perf_bpil *info_linear;
3126 	u32 count, i;
3127 	int err = -1;
3128 
3129 	if (ff->ph->needs_swap) {
3130 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3131 		return 0;
3132 	}
3133 
3134 	if (do_read_u32(ff, &count))
3135 		return -1;
3136 
3137 	down_write(&env->bpf_progs.lock);
3138 
3139 	for (i = 0; i < count; ++i) {
3140 		u32 info_len, data_len;
3141 
3142 		info_linear = NULL;
3143 		info_node = NULL;
3144 		if (do_read_u32(ff, &info_len))
3145 			goto out;
3146 		if (do_read_u32(ff, &data_len))
3147 			goto out;
3148 
3149 		if (info_len > sizeof(struct bpf_prog_info)) {
3150 			pr_warning("detected invalid bpf_prog_info\n");
3151 			goto out;
3152 		}
3153 
3154 		info_linear = malloc(sizeof(struct perf_bpil) +
3155 				     data_len);
3156 		if (!info_linear)
3157 			goto out;
3158 		info_linear->info_len = sizeof(struct bpf_prog_info);
3159 		info_linear->data_len = data_len;
3160 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3161 			goto out;
3162 		if (__do_read(ff, &info_linear->info, info_len))
3163 			goto out;
3164 		if (info_len < sizeof(struct bpf_prog_info))
3165 			memset(((void *)(&info_linear->info)) + info_len, 0,
3166 			       sizeof(struct bpf_prog_info) - info_len);
3167 
3168 		if (__do_read(ff, info_linear->data, data_len))
3169 			goto out;
3170 
3171 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3172 		if (!info_node)
3173 			goto out;
3174 
3175 		/* after reading from file, translate offset to address */
3176 		bpil_offs_to_addr(info_linear);
3177 		info_node->info_linear = info_linear;
3178 		perf_env__insert_bpf_prog_info(env, info_node);
3179 	}
3180 
3181 	up_write(&env->bpf_progs.lock);
3182 	return 0;
3183 out:
3184 	free(info_linear);
3185 	free(info_node);
3186 	up_write(&env->bpf_progs.lock);
3187 	return err;
3188 }
3189 
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3190 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3191 {
3192 	struct perf_env *env = &ff->ph->env;
3193 	struct btf_node *node = NULL;
3194 	u32 count, i;
3195 	int err = -1;
3196 
3197 	if (ff->ph->needs_swap) {
3198 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3199 		return 0;
3200 	}
3201 
3202 	if (do_read_u32(ff, &count))
3203 		return -1;
3204 
3205 	down_write(&env->bpf_progs.lock);
3206 
3207 	for (i = 0; i < count; ++i) {
3208 		u32 id, data_size;
3209 
3210 		if (do_read_u32(ff, &id))
3211 			goto out;
3212 		if (do_read_u32(ff, &data_size))
3213 			goto out;
3214 
3215 		node = malloc(sizeof(struct btf_node) + data_size);
3216 		if (!node)
3217 			goto out;
3218 
3219 		node->id = id;
3220 		node->data_size = data_size;
3221 
3222 		if (__do_read(ff, node->data, data_size))
3223 			goto out;
3224 
3225 		perf_env__insert_btf(env, node);
3226 		node = NULL;
3227 	}
3228 
3229 	err = 0;
3230 out:
3231 	up_write(&env->bpf_progs.lock);
3232 	free(node);
3233 	return err;
3234 }
3235 #endif // HAVE_LIBBPF_SUPPORT
3236 
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3237 static int process_compressed(struct feat_fd *ff,
3238 			      void *data __maybe_unused)
3239 {
3240 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3241 		return -1;
3242 
3243 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3244 		return -1;
3245 
3246 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3247 		return -1;
3248 
3249 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3250 		return -1;
3251 
3252 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3253 		return -1;
3254 
3255 	return 0;
3256 }
3257 
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches)3258 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3259 			      char ***caps, unsigned int *max_branches)
3260 {
3261 	char *name, *value, *ptr;
3262 	u32 nr_pmu_caps, i;
3263 
3264 	*nr_caps = 0;
3265 	*caps = NULL;
3266 
3267 	if (do_read_u32(ff, &nr_pmu_caps))
3268 		return -1;
3269 
3270 	if (!nr_pmu_caps)
3271 		return 0;
3272 
3273 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3274 	if (!*caps)
3275 		return -1;
3276 
3277 	for (i = 0; i < nr_pmu_caps; i++) {
3278 		name = do_read_string(ff);
3279 		if (!name)
3280 			goto error;
3281 
3282 		value = do_read_string(ff);
3283 		if (!value)
3284 			goto free_name;
3285 
3286 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3287 			goto free_value;
3288 
3289 		(*caps)[i] = ptr;
3290 
3291 		if (!strcmp(name, "branches"))
3292 			*max_branches = atoi(value);
3293 
3294 		free(value);
3295 		free(name);
3296 	}
3297 	*nr_caps = nr_pmu_caps;
3298 	return 0;
3299 
3300 free_value:
3301 	free(value);
3302 free_name:
3303 	free(name);
3304 error:
3305 	for (; i > 0; i--)
3306 		free((*caps)[i - 1]);
3307 	free(*caps);
3308 	*caps = NULL;
3309 	*nr_caps = 0;
3310 	return -1;
3311 }
3312 
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3313 static int process_cpu_pmu_caps(struct feat_fd *ff,
3314 				void *data __maybe_unused)
3315 {
3316 	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3317 				     &ff->ph->env.cpu_pmu_caps,
3318 				     &ff->ph->env.max_branches);
3319 
3320 	if (!ret && !ff->ph->env.cpu_pmu_caps)
3321 		pr_debug("cpu pmu capabilities not available\n");
3322 	return ret;
3323 }
3324 
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3325 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3326 {
3327 	struct pmu_caps *pmu_caps;
3328 	u32 nr_pmu, i;
3329 	int ret;
3330 	int j;
3331 
3332 	if (do_read_u32(ff, &nr_pmu))
3333 		return -1;
3334 
3335 	if (!nr_pmu) {
3336 		pr_debug("pmu capabilities not available\n");
3337 		return 0;
3338 	}
3339 
3340 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3341 	if (!pmu_caps)
3342 		return -ENOMEM;
3343 
3344 	for (i = 0; i < nr_pmu; i++) {
3345 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3346 					 &pmu_caps[i].caps,
3347 					 &pmu_caps[i].max_branches);
3348 		if (ret)
3349 			goto err;
3350 
3351 		pmu_caps[i].pmu_name = do_read_string(ff);
3352 		if (!pmu_caps[i].pmu_name) {
3353 			ret = -1;
3354 			goto err;
3355 		}
3356 		if (!pmu_caps[i].nr_caps) {
3357 			pr_debug("%s pmu capabilities not available\n",
3358 				 pmu_caps[i].pmu_name);
3359 		}
3360 	}
3361 
3362 	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3363 	ff->ph->env.pmu_caps = pmu_caps;
3364 	return 0;
3365 
3366 err:
3367 	for (i = 0; i < nr_pmu; i++) {
3368 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3369 			free(pmu_caps[i].caps[j]);
3370 		free(pmu_caps[i].caps);
3371 		free(pmu_caps[i].pmu_name);
3372 	}
3373 
3374 	free(pmu_caps);
3375 	return ret;
3376 }
3377 
3378 #define FEAT_OPR(n, func, __full_only) \
3379 	[HEADER_##n] = {					\
3380 		.name	    = __stringify(n),			\
3381 		.write	    = write_##func,			\
3382 		.print	    = print_##func,			\
3383 		.full_only  = __full_only,			\
3384 		.process    = process_##func,			\
3385 		.synthesize = true				\
3386 	}
3387 
3388 #define FEAT_OPN(n, func, __full_only) \
3389 	[HEADER_##n] = {					\
3390 		.name	    = __stringify(n),			\
3391 		.write	    = write_##func,			\
3392 		.print	    = print_##func,			\
3393 		.full_only  = __full_only,			\
3394 		.process    = process_##func			\
3395 	}
3396 
3397 /* feature_ops not implemented: */
3398 #define print_tracing_data	NULL
3399 #define print_build_id		NULL
3400 
3401 #define process_branch_stack	NULL
3402 #define process_stat		NULL
3403 
3404 // Only used in util/synthetic-events.c
3405 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3406 
3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3408 #ifdef HAVE_LIBTRACEEVENT
3409 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3410 #endif
3411 	FEAT_OPN(BUILD_ID,	build_id,	false),
3412 	FEAT_OPR(HOSTNAME,	hostname,	false),
3413 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3414 	FEAT_OPR(VERSION,	version,	false),
3415 	FEAT_OPR(ARCH,		arch,		false),
3416 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3417 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3418 	FEAT_OPR(CPUID,		cpuid,		false),
3419 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3420 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3421 	FEAT_OPR(CMDLINE,	cmdline,	false),
3422 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3423 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3424 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3425 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3426 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3427 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3428 	FEAT_OPN(STAT,		stat,		false),
3429 	FEAT_OPN(CACHE,		cache,		true),
3430 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3431 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3432 	FEAT_OPR(CLOCKID,	clockid,	false),
3433 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3434 #ifdef HAVE_LIBBPF_SUPPORT
3435 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3436 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3437 #endif
3438 	FEAT_OPR(COMPRESSED,	compressed,	false),
3439 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3440 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3441 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3442 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3443 };
3444 
3445 struct header_print_data {
3446 	FILE *fp;
3447 	bool full; /* extended list of headers */
3448 };
3449 
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3450 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3451 					   struct perf_header *ph,
3452 					   int feat, int fd, void *data)
3453 {
3454 	struct header_print_data *hd = data;
3455 	struct feat_fd ff;
3456 
3457 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3458 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3459 				"%d, continuing...\n", section->offset, feat);
3460 		return 0;
3461 	}
3462 	if (feat >= HEADER_LAST_FEATURE) {
3463 		pr_warning("unknown feature %d\n", feat);
3464 		return 0;
3465 	}
3466 	if (!feat_ops[feat].print)
3467 		return 0;
3468 
3469 	ff = (struct  feat_fd) {
3470 		.fd = fd,
3471 		.ph = ph,
3472 	};
3473 
3474 	if (!feat_ops[feat].full_only || hd->full)
3475 		feat_ops[feat].print(&ff, hd->fp);
3476 	else
3477 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3478 			feat_ops[feat].name);
3479 
3480 	return 0;
3481 }
3482 
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3483 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3484 {
3485 	struct header_print_data hd;
3486 	struct perf_header *header = &session->header;
3487 	int fd = perf_data__fd(session->data);
3488 	struct stat st;
3489 	time_t stctime;
3490 	int ret, bit;
3491 
3492 	hd.fp = fp;
3493 	hd.full = full;
3494 
3495 	ret = fstat(fd, &st);
3496 	if (ret == -1)
3497 		return -1;
3498 
3499 	stctime = st.st_mtime;
3500 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3501 
3502 	fprintf(fp, "# header version : %u\n", header->version);
3503 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3504 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3505 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3506 
3507 	perf_header__process_sections(header, fd, &hd,
3508 				      perf_file_section__fprintf_info);
3509 
3510 	if (session->data->is_pipe)
3511 		return 0;
3512 
3513 	fprintf(fp, "# missing features: ");
3514 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3515 		if (bit)
3516 			fprintf(fp, "%s ", feat_ops[bit].name);
3517 	}
3518 
3519 	fprintf(fp, "\n");
3520 	return 0;
3521 }
3522 
3523 struct header_fw {
3524 	struct feat_writer	fw;
3525 	struct feat_fd		*ff;
3526 };
3527 
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3528 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3529 {
3530 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3531 
3532 	return do_write(h->ff, buf, sz);
3533 }
3534 
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3535 static int do_write_feat(struct feat_fd *ff, int type,
3536 			 struct perf_file_section **p,
3537 			 struct evlist *evlist,
3538 			 struct feat_copier *fc)
3539 {
3540 	int err;
3541 	int ret = 0;
3542 
3543 	if (perf_header__has_feat(ff->ph, type)) {
3544 		if (!feat_ops[type].write)
3545 			return -1;
3546 
3547 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3548 			return -1;
3549 
3550 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3551 
3552 		/*
3553 		 * Hook to let perf inject copy features sections from the input
3554 		 * file.
3555 		 */
3556 		if (fc && fc->copy) {
3557 			struct header_fw h = {
3558 				.fw.write = feat_writer_cb,
3559 				.ff = ff,
3560 			};
3561 
3562 			/* ->copy() returns 0 if the feature was not copied */
3563 			err = fc->copy(fc, type, &h.fw);
3564 		} else {
3565 			err = 0;
3566 		}
3567 		if (!err)
3568 			err = feat_ops[type].write(ff, evlist);
3569 		if (err < 0) {
3570 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3571 
3572 			/* undo anything written */
3573 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3574 
3575 			return -1;
3576 		}
3577 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3578 		(*p)++;
3579 	}
3580 	return ret;
3581 }
3582 
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3583 static int perf_header__adds_write(struct perf_header *header,
3584 				   struct evlist *evlist, int fd,
3585 				   struct feat_copier *fc)
3586 {
3587 	int nr_sections;
3588 	struct feat_fd ff;
3589 	struct perf_file_section *feat_sec, *p;
3590 	int sec_size;
3591 	u64 sec_start;
3592 	int feat;
3593 	int err;
3594 
3595 	ff = (struct feat_fd){
3596 		.fd  = fd,
3597 		.ph = header,
3598 	};
3599 
3600 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3601 	if (!nr_sections)
3602 		return 0;
3603 
3604 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3605 	if (feat_sec == NULL)
3606 		return -ENOMEM;
3607 
3608 	sec_size = sizeof(*feat_sec) * nr_sections;
3609 
3610 	sec_start = header->feat_offset;
3611 	lseek(fd, sec_start + sec_size, SEEK_SET);
3612 
3613 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3614 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3615 			perf_header__clear_feat(header, feat);
3616 	}
3617 
3618 	lseek(fd, sec_start, SEEK_SET);
3619 	/*
3620 	 * may write more than needed due to dropped feature, but
3621 	 * this is okay, reader will skip the missing entries
3622 	 */
3623 	err = do_write(&ff, feat_sec, sec_size);
3624 	if (err < 0)
3625 		pr_debug("failed to write feature section\n");
3626 	free(feat_sec);
3627 	return err;
3628 }
3629 
perf_header__write_pipe(int fd)3630 int perf_header__write_pipe(int fd)
3631 {
3632 	struct perf_pipe_file_header f_header;
3633 	struct feat_fd ff;
3634 	int err;
3635 
3636 	ff = (struct feat_fd){ .fd = fd };
3637 
3638 	f_header = (struct perf_pipe_file_header){
3639 		.magic	   = PERF_MAGIC,
3640 		.size	   = sizeof(f_header),
3641 	};
3642 
3643 	err = do_write(&ff, &f_header, sizeof(f_header));
3644 	if (err < 0) {
3645 		pr_debug("failed to write perf pipe header\n");
3646 		return err;
3647 	}
3648 
3649 	return 0;
3650 }
3651 
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc)3652 static int perf_session__do_write_header(struct perf_session *session,
3653 					 struct evlist *evlist,
3654 					 int fd, bool at_exit,
3655 					 struct feat_copier *fc)
3656 {
3657 	struct perf_file_header f_header;
3658 	struct perf_file_attr   f_attr;
3659 	struct perf_header *header = &session->header;
3660 	struct evsel *evsel;
3661 	struct feat_fd ff;
3662 	u64 attr_offset;
3663 	int err;
3664 
3665 	ff = (struct feat_fd){ .fd = fd};
3666 	lseek(fd, sizeof(f_header), SEEK_SET);
3667 
3668 	evlist__for_each_entry(session->evlist, evsel) {
3669 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3670 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3671 		if (err < 0) {
3672 			pr_debug("failed to write perf header\n");
3673 			return err;
3674 		}
3675 	}
3676 
3677 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3678 
3679 	evlist__for_each_entry(evlist, evsel) {
3680 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3681 			/*
3682 			 * We are likely in "perf inject" and have read
3683 			 * from an older file. Update attr size so that
3684 			 * reader gets the right offset to the ids.
3685 			 */
3686 			evsel->core.attr.size = sizeof(evsel->core.attr);
3687 		}
3688 		f_attr = (struct perf_file_attr){
3689 			.attr = evsel->core.attr,
3690 			.ids  = {
3691 				.offset = evsel->id_offset,
3692 				.size   = evsel->core.ids * sizeof(u64),
3693 			}
3694 		};
3695 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3696 		if (err < 0) {
3697 			pr_debug("failed to write perf header attribute\n");
3698 			return err;
3699 		}
3700 	}
3701 
3702 	if (!header->data_offset)
3703 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3704 	header->feat_offset = header->data_offset + header->data_size;
3705 
3706 	if (at_exit) {
3707 		err = perf_header__adds_write(header, evlist, fd, fc);
3708 		if (err < 0)
3709 			return err;
3710 	}
3711 
3712 	f_header = (struct perf_file_header){
3713 		.magic	   = PERF_MAGIC,
3714 		.size	   = sizeof(f_header),
3715 		.attr_size = sizeof(f_attr),
3716 		.attrs = {
3717 			.offset = attr_offset,
3718 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3719 		},
3720 		.data = {
3721 			.offset = header->data_offset,
3722 			.size	= header->data_size,
3723 		},
3724 		/* event_types is ignored, store zeros */
3725 	};
3726 
3727 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3728 
3729 	lseek(fd, 0, SEEK_SET);
3730 	err = do_write(&ff, &f_header, sizeof(f_header));
3731 	if (err < 0) {
3732 		pr_debug("failed to write perf header\n");
3733 		return err;
3734 	}
3735 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3736 
3737 	return 0;
3738 }
3739 
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3740 int perf_session__write_header(struct perf_session *session,
3741 			       struct evlist *evlist,
3742 			       int fd, bool at_exit)
3743 {
3744 	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3745 }
3746 
perf_session__data_offset(const struct evlist * evlist)3747 size_t perf_session__data_offset(const struct evlist *evlist)
3748 {
3749 	struct evsel *evsel;
3750 	size_t data_offset;
3751 
3752 	data_offset = sizeof(struct perf_file_header);
3753 	evlist__for_each_entry(evlist, evsel) {
3754 		data_offset += evsel->core.ids * sizeof(u64);
3755 	}
3756 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3757 
3758 	return data_offset;
3759 }
3760 
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc)3761 int perf_session__inject_header(struct perf_session *session,
3762 				struct evlist *evlist,
3763 				int fd,
3764 				struct feat_copier *fc)
3765 {
3766 	return perf_session__do_write_header(session, evlist, fd, true, fc);
3767 }
3768 
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3769 static int perf_header__getbuffer64(struct perf_header *header,
3770 				    int fd, void *buf, size_t size)
3771 {
3772 	if (readn(fd, buf, size) <= 0)
3773 		return -1;
3774 
3775 	if (header->needs_swap)
3776 		mem_bswap_64(buf, size);
3777 
3778 	return 0;
3779 }
3780 
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3781 int perf_header__process_sections(struct perf_header *header, int fd,
3782 				  void *data,
3783 				  int (*process)(struct perf_file_section *section,
3784 						 struct perf_header *ph,
3785 						 int feat, int fd, void *data))
3786 {
3787 	struct perf_file_section *feat_sec, *sec;
3788 	int nr_sections;
3789 	int sec_size;
3790 	int feat;
3791 	int err;
3792 
3793 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3794 	if (!nr_sections)
3795 		return 0;
3796 
3797 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3798 	if (!feat_sec)
3799 		return -1;
3800 
3801 	sec_size = sizeof(*feat_sec) * nr_sections;
3802 
3803 	lseek(fd, header->feat_offset, SEEK_SET);
3804 
3805 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3806 	if (err < 0)
3807 		goto out_free;
3808 
3809 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3810 		err = process(sec++, header, feat, fd, data);
3811 		if (err < 0)
3812 			goto out_free;
3813 	}
3814 	err = 0;
3815 out_free:
3816 	free(feat_sec);
3817 	return err;
3818 }
3819 
3820 static const int attr_file_abi_sizes[] = {
3821 	[0] = PERF_ATTR_SIZE_VER0,
3822 	[1] = PERF_ATTR_SIZE_VER1,
3823 	[2] = PERF_ATTR_SIZE_VER2,
3824 	[3] = PERF_ATTR_SIZE_VER3,
3825 	[4] = PERF_ATTR_SIZE_VER4,
3826 	0,
3827 };
3828 
3829 /*
3830  * In the legacy file format, the magic number is not used to encode endianness.
3831  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3832  * on ABI revisions, we need to try all combinations for all endianness to
3833  * detect the endianness.
3834  */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3835 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3836 {
3837 	uint64_t ref_size, attr_size;
3838 	int i;
3839 
3840 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3841 		ref_size = attr_file_abi_sizes[i]
3842 			 + sizeof(struct perf_file_section);
3843 		if (hdr_sz != ref_size) {
3844 			attr_size = bswap_64(hdr_sz);
3845 			if (attr_size != ref_size)
3846 				continue;
3847 
3848 			ph->needs_swap = true;
3849 		}
3850 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3851 			 i,
3852 			 ph->needs_swap);
3853 		return 0;
3854 	}
3855 	/* could not determine endianness */
3856 	return -1;
3857 }
3858 
3859 #define PERF_PIPE_HDR_VER0	16
3860 
3861 static const size_t attr_pipe_abi_sizes[] = {
3862 	[0] = PERF_PIPE_HDR_VER0,
3863 	0,
3864 };
3865 
3866 /*
3867  * In the legacy pipe format, there is an implicit assumption that endianness
3868  * between host recording the samples, and host parsing the samples is the
3869  * same. This is not always the case given that the pipe output may always be
3870  * redirected into a file and analyzed on a different machine with possibly a
3871  * different endianness and perf_event ABI revisions in the perf tool itself.
3872  */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3873 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3874 {
3875 	u64 attr_size;
3876 	int i;
3877 
3878 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3879 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3880 			attr_size = bswap_64(hdr_sz);
3881 			if (attr_size != hdr_sz)
3882 				continue;
3883 
3884 			ph->needs_swap = true;
3885 		}
3886 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3887 		return 0;
3888 	}
3889 	return -1;
3890 }
3891 
is_perf_magic(u64 magic)3892 bool is_perf_magic(u64 magic)
3893 {
3894 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3895 		|| magic == __perf_magic2
3896 		|| magic == __perf_magic2_sw)
3897 		return true;
3898 
3899 	return false;
3900 }
3901 
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3902 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3903 			      bool is_pipe, struct perf_header *ph)
3904 {
3905 	int ret;
3906 
3907 	/* check for legacy format */
3908 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3909 	if (ret == 0) {
3910 		ph->version = PERF_HEADER_VERSION_1;
3911 		pr_debug("legacy perf.data format\n");
3912 		if (is_pipe)
3913 			return try_all_pipe_abis(hdr_sz, ph);
3914 
3915 		return try_all_file_abis(hdr_sz, ph);
3916 	}
3917 	/*
3918 	 * the new magic number serves two purposes:
3919 	 * - unique number to identify actual perf.data files
3920 	 * - encode endianness of file
3921 	 */
3922 	ph->version = PERF_HEADER_VERSION_2;
3923 
3924 	/* check magic number with one endianness */
3925 	if (magic == __perf_magic2)
3926 		return 0;
3927 
3928 	/* check magic number with opposite endianness */
3929 	if (magic != __perf_magic2_sw)
3930 		return -1;
3931 
3932 	ph->needs_swap = true;
3933 
3934 	return 0;
3935 }
3936 
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3937 int perf_file_header__read(struct perf_file_header *header,
3938 			   struct perf_header *ph, int fd)
3939 {
3940 	ssize_t ret;
3941 
3942 	lseek(fd, 0, SEEK_SET);
3943 
3944 	ret = readn(fd, header, sizeof(*header));
3945 	if (ret <= 0)
3946 		return -1;
3947 
3948 	if (check_magic_endian(header->magic,
3949 			       header->attr_size, false, ph) < 0) {
3950 		pr_debug("magic/endian check failed\n");
3951 		return -1;
3952 	}
3953 
3954 	if (ph->needs_swap) {
3955 		mem_bswap_64(header, offsetof(struct perf_file_header,
3956 			     adds_features));
3957 	}
3958 
3959 	if (header->size != sizeof(*header)) {
3960 		/* Support the previous format */
3961 		if (header->size == offsetof(typeof(*header), adds_features))
3962 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3963 		else
3964 			return -1;
3965 	} else if (ph->needs_swap) {
3966 		/*
3967 		 * feature bitmap is declared as an array of unsigned longs --
3968 		 * not good since its size can differ between the host that
3969 		 * generated the data file and the host analyzing the file.
3970 		 *
3971 		 * We need to handle endianness, but we don't know the size of
3972 		 * the unsigned long where the file was generated. Take a best
3973 		 * guess at determining it: try 64-bit swap first (ie., file
3974 		 * created on a 64-bit host), and check if the hostname feature
3975 		 * bit is set (this feature bit is forced on as of fbe96f2).
3976 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3977 		 * swap. If the hostname bit is still not set (e.g., older data
3978 		 * file), punt and fallback to the original behavior --
3979 		 * clearing all feature bits and setting buildid.
3980 		 */
3981 		mem_bswap_64(&header->adds_features,
3982 			    BITS_TO_U64(HEADER_FEAT_BITS));
3983 
3984 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3985 			/* unswap as u64 */
3986 			mem_bswap_64(&header->adds_features,
3987 				    BITS_TO_U64(HEADER_FEAT_BITS));
3988 
3989 			/* unswap as u32 */
3990 			mem_bswap_32(&header->adds_features,
3991 				    BITS_TO_U32(HEADER_FEAT_BITS));
3992 		}
3993 
3994 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3995 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3996 			__set_bit(HEADER_BUILD_ID, header->adds_features);
3997 		}
3998 	}
3999 
4000 	memcpy(&ph->adds_features, &header->adds_features,
4001 	       sizeof(ph->adds_features));
4002 
4003 	ph->data_offset  = header->data.offset;
4004 	ph->data_size	 = header->data.size;
4005 	ph->feat_offset  = header->data.offset + header->data.size;
4006 	return 0;
4007 }
4008 
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4009 static int perf_file_section__process(struct perf_file_section *section,
4010 				      struct perf_header *ph,
4011 				      int feat, int fd, void *data)
4012 {
4013 	struct feat_fd fdd = {
4014 		.fd	= fd,
4015 		.ph	= ph,
4016 		.size	= section->size,
4017 		.offset	= section->offset,
4018 	};
4019 
4020 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4021 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4022 			  "%d, continuing...\n", section->offset, feat);
4023 		return 0;
4024 	}
4025 
4026 	if (feat >= HEADER_LAST_FEATURE) {
4027 		pr_debug("unknown feature %d, continuing...\n", feat);
4028 		return 0;
4029 	}
4030 
4031 	if (!feat_ops[feat].process)
4032 		return 0;
4033 
4034 	return feat_ops[feat].process(&fdd, data);
4035 }
4036 
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data,bool repipe,int repipe_fd)4037 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4038 				       struct perf_header *ph,
4039 				       struct perf_data* data,
4040 				       bool repipe, int repipe_fd)
4041 {
4042 	struct feat_fd ff = {
4043 		.fd = repipe_fd,
4044 		.ph = ph,
4045 	};
4046 	ssize_t ret;
4047 
4048 	ret = perf_data__read(data, header, sizeof(*header));
4049 	if (ret <= 0)
4050 		return -1;
4051 
4052 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4053 		pr_debug("endian/magic failed\n");
4054 		return -1;
4055 	}
4056 
4057 	if (ph->needs_swap)
4058 		header->size = bswap_64(header->size);
4059 
4060 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4061 		return -1;
4062 
4063 	return 0;
4064 }
4065 
perf_header__read_pipe(struct perf_session * session,int repipe_fd)4066 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4067 {
4068 	struct perf_header *header = &session->header;
4069 	struct perf_pipe_file_header f_header;
4070 
4071 	if (perf_file_header__read_pipe(&f_header, header, session->data,
4072 					session->repipe, repipe_fd) < 0) {
4073 		pr_debug("incompatible file format\n");
4074 		return -EINVAL;
4075 	}
4076 
4077 	return f_header.size == sizeof(f_header) ? 0 : -1;
4078 }
4079 
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4080 static int read_attr(int fd, struct perf_header *ph,
4081 		     struct perf_file_attr *f_attr)
4082 {
4083 	struct perf_event_attr *attr = &f_attr->attr;
4084 	size_t sz, left;
4085 	size_t our_sz = sizeof(f_attr->attr);
4086 	ssize_t ret;
4087 
4088 	memset(f_attr, 0, sizeof(*f_attr));
4089 
4090 	/* read minimal guaranteed structure */
4091 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4092 	if (ret <= 0) {
4093 		pr_debug("cannot read %d bytes of header attr\n",
4094 			 PERF_ATTR_SIZE_VER0);
4095 		return -1;
4096 	}
4097 
4098 	/* on file perf_event_attr size */
4099 	sz = attr->size;
4100 
4101 	if (ph->needs_swap)
4102 		sz = bswap_32(sz);
4103 
4104 	if (sz == 0) {
4105 		/* assume ABI0 */
4106 		sz =  PERF_ATTR_SIZE_VER0;
4107 	} else if (sz > our_sz) {
4108 		pr_debug("file uses a more recent and unsupported ABI"
4109 			 " (%zu bytes extra)\n", sz - our_sz);
4110 		return -1;
4111 	}
4112 	/* what we have not yet read and that we know about */
4113 	left = sz - PERF_ATTR_SIZE_VER0;
4114 	if (left) {
4115 		void *ptr = attr;
4116 		ptr += PERF_ATTR_SIZE_VER0;
4117 
4118 		ret = readn(fd, ptr, left);
4119 	}
4120 	/* read perf_file_section, ids are read in caller */
4121 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4122 
4123 	return ret <= 0 ? -1 : 0;
4124 }
4125 
4126 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4127 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4128 {
4129 	struct tep_event *event;
4130 	char bf[128];
4131 
4132 	/* already prepared */
4133 	if (evsel->tp_format)
4134 		return 0;
4135 
4136 	if (pevent == NULL) {
4137 		pr_debug("broken or missing trace data\n");
4138 		return -1;
4139 	}
4140 
4141 	event = tep_find_event(pevent, evsel->core.attr.config);
4142 	if (event == NULL) {
4143 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4144 		return -1;
4145 	}
4146 
4147 	if (!evsel->name) {
4148 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4149 		evsel->name = strdup(bf);
4150 		if (evsel->name == NULL)
4151 			return -1;
4152 	}
4153 
4154 	evsel->tp_format = event;
4155 	return 0;
4156 }
4157 
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4158 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4159 {
4160 	struct evsel *pos;
4161 
4162 	evlist__for_each_entry(evlist, pos) {
4163 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4164 		    evsel__prepare_tracepoint_event(pos, pevent))
4165 			return -1;
4166 	}
4167 
4168 	return 0;
4169 }
4170 #endif
4171 
perf_session__read_header(struct perf_session * session,int repipe_fd)4172 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4173 {
4174 	struct perf_data *data = session->data;
4175 	struct perf_header *header = &session->header;
4176 	struct perf_file_header	f_header;
4177 	struct perf_file_attr	f_attr;
4178 	u64			f_id;
4179 	int nr_attrs, nr_ids, i, j, err;
4180 	int fd = perf_data__fd(data);
4181 
4182 	session->evlist = evlist__new();
4183 	if (session->evlist == NULL)
4184 		return -ENOMEM;
4185 
4186 	session->evlist->env = &header->env;
4187 	session->machines.host.env = &header->env;
4188 
4189 	/*
4190 	 * We can read 'pipe' data event from regular file,
4191 	 * check for the pipe header regardless of source.
4192 	 */
4193 	err = perf_header__read_pipe(session, repipe_fd);
4194 	if (!err || perf_data__is_pipe(data)) {
4195 		data->is_pipe = true;
4196 		return err;
4197 	}
4198 
4199 	if (perf_file_header__read(&f_header, header, fd) < 0)
4200 		return -EINVAL;
4201 
4202 	if (header->needs_swap && data->in_place_update) {
4203 		pr_err("In-place update not supported when byte-swapping is required\n");
4204 		return -EINVAL;
4205 	}
4206 
4207 	/*
4208 	 * Sanity check that perf.data was written cleanly; data size is
4209 	 * initialized to 0 and updated only if the on_exit function is run.
4210 	 * If data size is still 0 then the file contains only partial
4211 	 * information.  Just warn user and process it as much as it can.
4212 	 */
4213 	if (f_header.data.size == 0) {
4214 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4215 			   "Was the 'perf record' command properly terminated?\n",
4216 			   data->file.path);
4217 	}
4218 
4219 	if (f_header.attr_size == 0) {
4220 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4221 		       "Was the 'perf record' command properly terminated?\n",
4222 		       data->file.path);
4223 		return -EINVAL;
4224 	}
4225 
4226 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4227 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4228 
4229 	for (i = 0; i < nr_attrs; i++) {
4230 		struct evsel *evsel;
4231 		off_t tmp;
4232 
4233 		if (read_attr(fd, header, &f_attr) < 0)
4234 			goto out_errno;
4235 
4236 		if (header->needs_swap) {
4237 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4238 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4239 			perf_event__attr_swap(&f_attr.attr);
4240 		}
4241 
4242 		tmp = lseek(fd, 0, SEEK_CUR);
4243 		evsel = evsel__new(&f_attr.attr);
4244 
4245 		if (evsel == NULL)
4246 			goto out_delete_evlist;
4247 
4248 		evsel->needs_swap = header->needs_swap;
4249 		/*
4250 		 * Do it before so that if perf_evsel__alloc_id fails, this
4251 		 * entry gets purged too at evlist__delete().
4252 		 */
4253 		evlist__add(session->evlist, evsel);
4254 
4255 		nr_ids = f_attr.ids.size / sizeof(u64);
4256 		/*
4257 		 * We don't have the cpu and thread maps on the header, so
4258 		 * for allocating the perf_sample_id table we fake 1 cpu and
4259 		 * hattr->ids threads.
4260 		 */
4261 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4262 			goto out_delete_evlist;
4263 
4264 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4265 
4266 		for (j = 0; j < nr_ids; j++) {
4267 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4268 				goto out_errno;
4269 
4270 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4271 		}
4272 
4273 		lseek(fd, tmp, SEEK_SET);
4274 	}
4275 
4276 #ifdef HAVE_LIBTRACEEVENT
4277 	perf_header__process_sections(header, fd, &session->tevent,
4278 				      perf_file_section__process);
4279 
4280 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4281 		goto out_delete_evlist;
4282 #else
4283 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4284 #endif
4285 
4286 	return 0;
4287 out_errno:
4288 	return -errno;
4289 
4290 out_delete_evlist:
4291 	evlist__delete(session->evlist);
4292 	session->evlist = NULL;
4293 	return -ENOMEM;
4294 }
4295 
perf_event__process_feature(struct perf_session * session,union perf_event * event)4296 int perf_event__process_feature(struct perf_session *session,
4297 				union perf_event *event)
4298 {
4299 	struct perf_tool *tool = session->tool;
4300 	struct feat_fd ff = { .fd = 0 };
4301 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4302 	int type = fe->header.type;
4303 	u64 feat = fe->feat_id;
4304 	int ret = 0;
4305 
4306 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4307 		pr_warning("invalid record type %d in pipe-mode\n", type);
4308 		return 0;
4309 	}
4310 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4311 		pr_warning("invalid record type %d in pipe-mode\n", type);
4312 		return -1;
4313 	}
4314 
4315 	if (!feat_ops[feat].process)
4316 		return 0;
4317 
4318 	ff.buf  = (void *)fe->data;
4319 	ff.size = event->header.size - sizeof(*fe);
4320 	ff.ph = &session->header;
4321 
4322 	if (feat_ops[feat].process(&ff, NULL)) {
4323 		ret = -1;
4324 		goto out;
4325 	}
4326 
4327 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4328 		goto out;
4329 
4330 	if (!feat_ops[feat].full_only ||
4331 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4332 		feat_ops[feat].print(&ff, stdout);
4333 	} else {
4334 		fprintf(stdout, "# %s info available, use -I to display\n",
4335 			feat_ops[feat].name);
4336 	}
4337 out:
4338 	free_event_desc(ff.events);
4339 	return ret;
4340 }
4341 
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4342 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4343 {
4344 	struct perf_record_event_update *ev = &event->event_update;
4345 	struct perf_cpu_map *map;
4346 	size_t ret;
4347 
4348 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4349 
4350 	switch (ev->type) {
4351 	case PERF_EVENT_UPDATE__SCALE:
4352 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4353 		break;
4354 	case PERF_EVENT_UPDATE__UNIT:
4355 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4356 		break;
4357 	case PERF_EVENT_UPDATE__NAME:
4358 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4359 		break;
4360 	case PERF_EVENT_UPDATE__CPUS:
4361 		ret += fprintf(fp, "... ");
4362 
4363 		map = cpu_map__new_data(&ev->cpus.cpus);
4364 		if (map)
4365 			ret += cpu_map__fprintf(map, fp);
4366 		else
4367 			ret += fprintf(fp, "failed to get cpus\n");
4368 		break;
4369 	default:
4370 		ret += fprintf(fp, "... unknown type\n");
4371 		break;
4372 	}
4373 
4374 	return ret;
4375 }
4376 
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4377 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4378 			     union perf_event *event,
4379 			     struct evlist **pevlist)
4380 {
4381 	u32 i, n_ids;
4382 	u64 *ids;
4383 	struct evsel *evsel;
4384 	struct evlist *evlist = *pevlist;
4385 
4386 	if (evlist == NULL) {
4387 		*pevlist = evlist = evlist__new();
4388 		if (evlist == NULL)
4389 			return -ENOMEM;
4390 	}
4391 
4392 	evsel = evsel__new(&event->attr.attr);
4393 	if (evsel == NULL)
4394 		return -ENOMEM;
4395 
4396 	evlist__add(evlist, evsel);
4397 
4398 	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4399 	n_ids = n_ids / sizeof(u64);
4400 	/*
4401 	 * We don't have the cpu and thread maps on the header, so
4402 	 * for allocating the perf_sample_id table we fake 1 cpu and
4403 	 * hattr->ids threads.
4404 	 */
4405 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4406 		return -ENOMEM;
4407 
4408 	ids = perf_record_header_attr_id(event);
4409 	for (i = 0; i < n_ids; i++) {
4410 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4411 	}
4412 
4413 	return 0;
4414 }
4415 
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4416 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4417 				     union perf_event *event,
4418 				     struct evlist **pevlist)
4419 {
4420 	struct perf_record_event_update *ev = &event->event_update;
4421 	struct evlist *evlist;
4422 	struct evsel *evsel;
4423 	struct perf_cpu_map *map;
4424 
4425 	if (dump_trace)
4426 		perf_event__fprintf_event_update(event, stdout);
4427 
4428 	if (!pevlist || *pevlist == NULL)
4429 		return -EINVAL;
4430 
4431 	evlist = *pevlist;
4432 
4433 	evsel = evlist__id2evsel(evlist, ev->id);
4434 	if (evsel == NULL)
4435 		return -EINVAL;
4436 
4437 	switch (ev->type) {
4438 	case PERF_EVENT_UPDATE__UNIT:
4439 		free((char *)evsel->unit);
4440 		evsel->unit = strdup(ev->unit);
4441 		break;
4442 	case PERF_EVENT_UPDATE__NAME:
4443 		free(evsel->name);
4444 		evsel->name = strdup(ev->name);
4445 		break;
4446 	case PERF_EVENT_UPDATE__SCALE:
4447 		evsel->scale = ev->scale.scale;
4448 		break;
4449 	case PERF_EVENT_UPDATE__CPUS:
4450 		map = cpu_map__new_data(&ev->cpus.cpus);
4451 		if (map) {
4452 			perf_cpu_map__put(evsel->core.own_cpus);
4453 			evsel->core.own_cpus = map;
4454 		} else
4455 			pr_err("failed to get event_update cpus\n");
4456 	default:
4457 		break;
4458 	}
4459 
4460 	return 0;
4461 }
4462 
4463 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4464 int perf_event__process_tracing_data(struct perf_session *session,
4465 				     union perf_event *event)
4466 {
4467 	ssize_t size_read, padding, size = event->tracing_data.size;
4468 	int fd = perf_data__fd(session->data);
4469 	char buf[BUFSIZ];
4470 
4471 	/*
4472 	 * The pipe fd is already in proper place and in any case
4473 	 * we can't move it, and we'd screw the case where we read
4474 	 * 'pipe' data from regular file. The trace_report reads
4475 	 * data from 'fd' so we need to set it directly behind the
4476 	 * event, where the tracing data starts.
4477 	 */
4478 	if (!perf_data__is_pipe(session->data)) {
4479 		off_t offset = lseek(fd, 0, SEEK_CUR);
4480 
4481 		/* setup for reading amidst mmap */
4482 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4483 		      SEEK_SET);
4484 	}
4485 
4486 	size_read = trace_report(fd, &session->tevent,
4487 				 session->repipe);
4488 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4489 
4490 	if (readn(fd, buf, padding) < 0) {
4491 		pr_err("%s: reading input file", __func__);
4492 		return -1;
4493 	}
4494 	if (session->repipe) {
4495 		int retw = write(STDOUT_FILENO, buf, padding);
4496 		if (retw <= 0 || retw != padding) {
4497 			pr_err("%s: repiping tracing data padding", __func__);
4498 			return -1;
4499 		}
4500 	}
4501 
4502 	if (size_read + padding != size) {
4503 		pr_err("%s: tracing data size mismatch", __func__);
4504 		return -1;
4505 	}
4506 
4507 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4508 
4509 	return size_read + padding;
4510 }
4511 #endif
4512 
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4513 int perf_event__process_build_id(struct perf_session *session,
4514 				 union perf_event *event)
4515 {
4516 	__event_process_build_id(&event->build_id,
4517 				 event->build_id.filename,
4518 				 session);
4519 	return 0;
4520 }
4521