1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41
42 #include "sane_ctype.h"
43
44 struct perf_missing_features perf_missing_features;
45
46 static clockid_t clockid;
47
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 return 0;
51 }
52
test_attr__ready(void)53 void __weak test_attr__ready(void) { }
54
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58
59 static struct {
60 size_t size;
61 int (*init)(struct perf_evsel *evsel);
62 void (*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 .size = sizeof(struct perf_evsel),
65 .init = perf_evsel__no_extra_init,
66 .fini = perf_evsel__no_extra_fini,
67 };
68
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))69 int perf_evsel__object_config(size_t object_size,
70 int (*init)(struct perf_evsel *evsel),
71 void (*fini)(struct perf_evsel *evsel))
72 {
73
74 if (object_size == 0)
75 goto set_methods;
76
77 if (perf_evsel__object.size > object_size)
78 return -EINVAL;
79
80 perf_evsel__object.size = object_size;
81
82 set_methods:
83 if (init != NULL)
84 perf_evsel__object.init = init;
85
86 if (fini != NULL)
87 perf_evsel__object.fini = fini;
88
89 return 0;
90 }
91
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93
__perf_evsel__sample_size(u64 sample_type)94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 u64 mask = sample_type & PERF_SAMPLE_MASK;
97 int size = 0;
98 int i;
99
100 for (i = 0; i < 64; i++) {
101 if (mask & (1ULL << i))
102 size++;
103 }
104
105 size *= sizeof(u64);
106
107 return size;
108 }
109
110 /**
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
113 *
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116 * sample_event.
117 */
__perf_evsel__calc_id_pos(u64 sample_type)118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 int idx = 0;
121
122 if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 return 0;
124
125 if (!(sample_type & PERF_SAMPLE_ID))
126 return -1;
127
128 if (sample_type & PERF_SAMPLE_IP)
129 idx += 1;
130
131 if (sample_type & PERF_SAMPLE_TID)
132 idx += 1;
133
134 if (sample_type & PERF_SAMPLE_TIME)
135 idx += 1;
136
137 if (sample_type & PERF_SAMPLE_ADDR)
138 idx += 1;
139
140 return idx;
141 }
142
143 /**
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
146 *
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
150 */
__perf_evsel__calc_is_pos(u64 sample_type)151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 int idx = 1;
154
155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 return 1;
157
158 if (!(sample_type & PERF_SAMPLE_ID))
159 return -1;
160
161 if (sample_type & PERF_SAMPLE_CPU)
162 idx += 1;
163
164 if (sample_type & PERF_SAMPLE_STREAM_ID)
165 idx += 1;
166
167 return idx;
168 }
169
perf_evsel__calc_id_pos(struct perf_evsel * evsel)170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 enum perf_event_sample_format bit)
178 {
179 if (!(evsel->attr.sample_type & bit)) {
180 evsel->attr.sample_type |= bit;
181 evsel->sample_size += sizeof(u64);
182 perf_evsel__calc_id_pos(evsel);
183 }
184 }
185
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
188 {
189 if (evsel->attr.sample_type & bit) {
190 evsel->attr.sample_type &= ~bit;
191 evsel->sample_size -= sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
193 }
194 }
195
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 bool can_sample_identifier)
198 {
199 if (can_sample_identifier) {
200 perf_evsel__reset_sample_bit(evsel, ID);
201 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 } else {
203 perf_evsel__set_sample_bit(evsel, ID);
204 }
205 evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207
208 /**
209 * perf_evsel__is_function_event - Return whether given evsel is a function
210 * trace event
211 *
212 * @evsel - evsel selector to be tested
213 *
214 * Return %true if event is function trace event
215 */
perf_evsel__is_function_event(struct perf_evsel * evsel)216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219
220 return evsel->name &&
221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222
223 #undef FUNCTION_EVENT
224 }
225
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)226 void perf_evsel__init(struct perf_evsel *evsel,
227 struct perf_event_attr *attr, int idx)
228 {
229 evsel->idx = idx;
230 evsel->tracking = !idx;
231 evsel->attr = *attr;
232 evsel->leader = evsel;
233 evsel->unit = "";
234 evsel->scale = 1.0;
235 evsel->evlist = NULL;
236 evsel->bpf_fd = -1;
237 INIT_LIST_HEAD(&evsel->node);
238 INIT_LIST_HEAD(&evsel->config_terms);
239 perf_evsel__object.init(evsel);
240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 perf_evsel__calc_id_pos(evsel);
242 evsel->cmdline_group_boundary = false;
243 evsel->metric_expr = NULL;
244 evsel->metric_name = NULL;
245 evsel->metric_events = NULL;
246 evsel->collect_stat = false;
247 evsel->pmu_name = NULL;
248 }
249
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253
254 if (!evsel)
255 return NULL;
256 perf_evsel__init(evsel, attr, idx);
257
258 if (perf_evsel__is_bpf_output(evsel)) {
259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 evsel->attr.sample_period = 1;
262 }
263
264 if (perf_evsel__is_clock(evsel)) {
265 /*
266 * The evsel->unit points to static alias->unit
267 * so it's ok to use static string in here.
268 */
269 static const char *unit = "msec";
270
271 evsel->unit = unit;
272 evsel->scale = 1e-6;
273 }
274
275 return evsel;
276 }
277
perf_event_can_profile_kernel(void)278 static bool perf_event_can_profile_kernel(void)
279 {
280 return geteuid() == 0 || perf_event_paranoid() == -1;
281 }
282
perf_evsel__new_cycles(bool precise)283 struct perf_evsel *perf_evsel__new_cycles(bool precise)
284 {
285 struct perf_event_attr attr = {
286 .type = PERF_TYPE_HARDWARE,
287 .config = PERF_COUNT_HW_CPU_CYCLES,
288 .exclude_kernel = !perf_event_can_profile_kernel(),
289 };
290 struct perf_evsel *evsel;
291
292 event_attr_init(&attr);
293
294 if (!precise)
295 goto new_event;
296 /*
297 * Unnamed union member, not supported as struct member named
298 * initializer in older compilers such as gcc 4.4.7
299 *
300 * Just for probing the precise_ip:
301 */
302 attr.sample_period = 1;
303
304 perf_event_attr__set_max_precise_ip(&attr);
305 /*
306 * Now let the usual logic to set up the perf_event_attr defaults
307 * to kick in when we return and before perf_evsel__open() is called.
308 */
309 attr.sample_period = 0;
310 new_event:
311 evsel = perf_evsel__new(&attr);
312 if (evsel == NULL)
313 goto out;
314
315 /* use asprintf() because free(evsel) assumes name is allocated */
316 if (asprintf(&evsel->name, "cycles%s%s%.*s",
317 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
318 attr.exclude_kernel ? "u" : "",
319 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
320 goto error_free;
321 out:
322 return evsel;
323 error_free:
324 perf_evsel__delete(evsel);
325 evsel = NULL;
326 goto out;
327 }
328
329 /*
330 * Returns pointer with encoded error via <linux/err.h> interface.
331 */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)332 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
333 {
334 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
335 int err = -ENOMEM;
336
337 if (evsel == NULL) {
338 goto out_err;
339 } else {
340 struct perf_event_attr attr = {
341 .type = PERF_TYPE_TRACEPOINT,
342 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
343 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
344 };
345
346 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
347 goto out_free;
348
349 evsel->tp_format = trace_event__tp_format(sys, name);
350 if (IS_ERR(evsel->tp_format)) {
351 err = PTR_ERR(evsel->tp_format);
352 goto out_free;
353 }
354
355 event_attr_init(&attr);
356 attr.config = evsel->tp_format->id;
357 attr.sample_period = 1;
358 perf_evsel__init(evsel, &attr, idx);
359 }
360
361 return evsel;
362
363 out_free:
364 zfree(&evsel->name);
365 free(evsel);
366 out_err:
367 return ERR_PTR(err);
368 }
369
370 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
371 "cycles",
372 "instructions",
373 "cache-references",
374 "cache-misses",
375 "branches",
376 "branch-misses",
377 "bus-cycles",
378 "stalled-cycles-frontend",
379 "stalled-cycles-backend",
380 "ref-cycles",
381 };
382
__perf_evsel__hw_name(u64 config)383 static const char *__perf_evsel__hw_name(u64 config)
384 {
385 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
386 return perf_evsel__hw_names[config];
387
388 return "unknown-hardware";
389 }
390
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)391 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
392 {
393 int colon = 0, r = 0;
394 struct perf_event_attr *attr = &evsel->attr;
395 bool exclude_guest_default = false;
396
397 #define MOD_PRINT(context, mod) do { \
398 if (!attr->exclude_##context) { \
399 if (!colon) colon = ++r; \
400 r += scnprintf(bf + r, size - r, "%c", mod); \
401 } } while(0)
402
403 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
404 MOD_PRINT(kernel, 'k');
405 MOD_PRINT(user, 'u');
406 MOD_PRINT(hv, 'h');
407 exclude_guest_default = true;
408 }
409
410 if (attr->precise_ip) {
411 if (!colon)
412 colon = ++r;
413 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
414 exclude_guest_default = true;
415 }
416
417 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
418 MOD_PRINT(host, 'H');
419 MOD_PRINT(guest, 'G');
420 }
421 #undef MOD_PRINT
422 if (colon)
423 bf[colon - 1] = ':';
424 return r;
425 }
426
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)427 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
428 {
429 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
430 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
431 }
432
433 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
434 "cpu-clock",
435 "task-clock",
436 "page-faults",
437 "context-switches",
438 "cpu-migrations",
439 "minor-faults",
440 "major-faults",
441 "alignment-faults",
442 "emulation-faults",
443 "dummy",
444 };
445
__perf_evsel__sw_name(u64 config)446 static const char *__perf_evsel__sw_name(u64 config)
447 {
448 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
449 return perf_evsel__sw_names[config];
450 return "unknown-software";
451 }
452
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)453 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
454 {
455 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
456 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
457 }
458
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)459 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
460 {
461 int r;
462
463 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
464
465 if (type & HW_BREAKPOINT_R)
466 r += scnprintf(bf + r, size - r, "r");
467
468 if (type & HW_BREAKPOINT_W)
469 r += scnprintf(bf + r, size - r, "w");
470
471 if (type & HW_BREAKPOINT_X)
472 r += scnprintf(bf + r, size - r, "x");
473
474 return r;
475 }
476
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)477 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
478 {
479 struct perf_event_attr *attr = &evsel->attr;
480 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
481 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
482 }
483
484 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
485 [PERF_EVSEL__MAX_ALIASES] = {
486 { "L1-dcache", "l1-d", "l1d", "L1-data", },
487 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
488 { "LLC", "L2", },
489 { "dTLB", "d-tlb", "Data-TLB", },
490 { "iTLB", "i-tlb", "Instruction-TLB", },
491 { "branch", "branches", "bpu", "btb", "bpc", },
492 { "node", },
493 };
494
495 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
496 [PERF_EVSEL__MAX_ALIASES] = {
497 { "load", "loads", "read", },
498 { "store", "stores", "write", },
499 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
500 };
501
502 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
503 [PERF_EVSEL__MAX_ALIASES] = {
504 { "refs", "Reference", "ops", "access", },
505 { "misses", "miss", },
506 };
507
508 #define C(x) PERF_COUNT_HW_CACHE_##x
509 #define CACHE_READ (1 << C(OP_READ))
510 #define CACHE_WRITE (1 << C(OP_WRITE))
511 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
512 #define COP(x) (1 << x)
513
514 /*
515 * cache operartion stat
516 * L1I : Read and prefetch only
517 * ITLB and BPU : Read-only
518 */
519 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
520 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
522 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 [C(ITLB)] = (CACHE_READ),
525 [C(BPU)] = (CACHE_READ),
526 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
527 };
528
perf_evsel__is_cache_op_valid(u8 type,u8 op)529 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
530 {
531 if (perf_evsel__hw_cache_stat[type] & COP(op))
532 return true; /* valid */
533 else
534 return false; /* invalid */
535 }
536
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)537 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
538 char *bf, size_t size)
539 {
540 if (result) {
541 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
542 perf_evsel__hw_cache_op[op][0],
543 perf_evsel__hw_cache_result[result][0]);
544 }
545
546 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
547 perf_evsel__hw_cache_op[op][1]);
548 }
549
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)550 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
551 {
552 u8 op, result, type = (config >> 0) & 0xff;
553 const char *err = "unknown-ext-hardware-cache-type";
554
555 if (type >= PERF_COUNT_HW_CACHE_MAX)
556 goto out_err;
557
558 op = (config >> 8) & 0xff;
559 err = "unknown-ext-hardware-cache-op";
560 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
561 goto out_err;
562
563 result = (config >> 16) & 0xff;
564 err = "unknown-ext-hardware-cache-result";
565 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
566 goto out_err;
567
568 err = "invalid-cache";
569 if (!perf_evsel__is_cache_op_valid(type, op))
570 goto out_err;
571
572 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
573 out_err:
574 return scnprintf(bf, size, "%s", err);
575 }
576
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)577 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)583 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
584 {
585 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
586 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
587 }
588
perf_evsel__name(struct perf_evsel * evsel)589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 char bf[128];
592
593 if (evsel->name)
594 return evsel->name;
595
596 switch (evsel->attr.type) {
597 case PERF_TYPE_RAW:
598 perf_evsel__raw_name(evsel, bf, sizeof(bf));
599 break;
600
601 case PERF_TYPE_HARDWARE:
602 perf_evsel__hw_name(evsel, bf, sizeof(bf));
603 break;
604
605 case PERF_TYPE_HW_CACHE:
606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
607 break;
608
609 case PERF_TYPE_SOFTWARE:
610 perf_evsel__sw_name(evsel, bf, sizeof(bf));
611 break;
612
613 case PERF_TYPE_TRACEPOINT:
614 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
615 break;
616
617 case PERF_TYPE_BREAKPOINT:
618 perf_evsel__bp_name(evsel, bf, sizeof(bf));
619 break;
620
621 default:
622 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
623 evsel->attr.type);
624 break;
625 }
626
627 evsel->name = strdup(bf);
628
629 return evsel->name ?: "unknown";
630 }
631
perf_evsel__group_name(struct perf_evsel * evsel)632 const char *perf_evsel__group_name(struct perf_evsel *evsel)
633 {
634 return evsel->group_name ?: "anon group";
635 }
636
637 /*
638 * Returns the group details for the specified leader,
639 * with following rules.
640 *
641 * For record -e '{cycles,instructions}'
642 * 'anon group { cycles:u, instructions:u }'
643 *
644 * For record -e 'cycles,instructions' and report --group
645 * 'cycles:u, instructions:u'
646 */
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)647 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
648 {
649 int ret = 0;
650 struct perf_evsel *pos;
651 const char *group_name = perf_evsel__group_name(evsel);
652
653 if (!evsel->forced_leader)
654 ret = scnprintf(buf, size, "%s { ", group_name);
655
656 ret += scnprintf(buf + ret, size - ret, "%s",
657 perf_evsel__name(evsel));
658
659 for_each_group_member(pos, evsel)
660 ret += scnprintf(buf + ret, size - ret, ", %s",
661 perf_evsel__name(pos));
662
663 if (!evsel->forced_leader)
664 ret += scnprintf(buf + ret, size - ret, " }");
665
666 return ret;
667 }
668
__perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)669 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
670 struct record_opts *opts,
671 struct callchain_param *param)
672 {
673 bool function = perf_evsel__is_function_event(evsel);
674 struct perf_event_attr *attr = &evsel->attr;
675
676 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
677
678 attr->sample_max_stack = param->max_stack;
679
680 if (param->record_mode == CALLCHAIN_LBR) {
681 if (!opts->branch_stack) {
682 if (attr->exclude_user) {
683 pr_warning("LBR callstack option is only available "
684 "to get user callchain information. "
685 "Falling back to framepointers.\n");
686 } else {
687 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
688 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
689 PERF_SAMPLE_BRANCH_CALL_STACK |
690 PERF_SAMPLE_BRANCH_NO_CYCLES |
691 PERF_SAMPLE_BRANCH_NO_FLAGS;
692 }
693 } else
694 pr_warning("Cannot use LBR callstack with branch stack. "
695 "Falling back to framepointers.\n");
696 }
697
698 if (param->record_mode == CALLCHAIN_DWARF) {
699 if (!function) {
700 perf_evsel__set_sample_bit(evsel, REGS_USER);
701 perf_evsel__set_sample_bit(evsel, STACK_USER);
702 attr->sample_regs_user |= PERF_REGS_MASK;
703 attr->sample_stack_user = param->dump_size;
704 attr->exclude_callchain_user = 1;
705 } else {
706 pr_info("Cannot use DWARF unwind for function trace event,"
707 " falling back to framepointers.\n");
708 }
709 }
710
711 if (function) {
712 pr_info("Disabling user space callchains for function trace event.\n");
713 attr->exclude_callchain_user = 1;
714 }
715 }
716
perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)717 void perf_evsel__config_callchain(struct perf_evsel *evsel,
718 struct record_opts *opts,
719 struct callchain_param *param)
720 {
721 if (param->enabled)
722 return __perf_evsel__config_callchain(evsel, opts, param);
723 }
724
725 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)726 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
727 struct callchain_param *param)
728 {
729 struct perf_event_attr *attr = &evsel->attr;
730
731 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
732 if (param->record_mode == CALLCHAIN_LBR) {
733 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
734 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
735 PERF_SAMPLE_BRANCH_CALL_STACK);
736 }
737 if (param->record_mode == CALLCHAIN_DWARF) {
738 perf_evsel__reset_sample_bit(evsel, REGS_USER);
739 perf_evsel__reset_sample_bit(evsel, STACK_USER);
740 }
741 }
742
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts,bool track)743 static void apply_config_terms(struct perf_evsel *evsel,
744 struct record_opts *opts, bool track)
745 {
746 struct perf_evsel_config_term *term;
747 struct list_head *config_terms = &evsel->config_terms;
748 struct perf_event_attr *attr = &evsel->attr;
749 /* callgraph default */
750 struct callchain_param param = {
751 .record_mode = callchain_param.record_mode,
752 };
753 u32 dump_size = 0;
754 int max_stack = 0;
755 const char *callgraph_buf = NULL;
756
757 list_for_each_entry(term, config_terms, list) {
758 switch (term->type) {
759 case PERF_EVSEL__CONFIG_TERM_PERIOD:
760 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
761 attr->sample_period = term->val.period;
762 attr->freq = 0;
763 perf_evsel__reset_sample_bit(evsel, PERIOD);
764 }
765 break;
766 case PERF_EVSEL__CONFIG_TERM_FREQ:
767 if (!(term->weak && opts->user_freq != UINT_MAX)) {
768 attr->sample_freq = term->val.freq;
769 attr->freq = 1;
770 perf_evsel__set_sample_bit(evsel, PERIOD);
771 }
772 break;
773 case PERF_EVSEL__CONFIG_TERM_TIME:
774 if (term->val.time)
775 perf_evsel__set_sample_bit(evsel, TIME);
776 else
777 perf_evsel__reset_sample_bit(evsel, TIME);
778 break;
779 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
780 callgraph_buf = term->val.callgraph;
781 break;
782 case PERF_EVSEL__CONFIG_TERM_BRANCH:
783 if (term->val.branch && strcmp(term->val.branch, "no")) {
784 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
785 parse_branch_str(term->val.branch,
786 &attr->branch_sample_type);
787 } else
788 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
789 break;
790 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
791 dump_size = term->val.stack_user;
792 break;
793 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
794 max_stack = term->val.max_stack;
795 break;
796 case PERF_EVSEL__CONFIG_TERM_INHERIT:
797 /*
798 * attr->inherit should has already been set by
799 * perf_evsel__config. If user explicitly set
800 * inherit using config terms, override global
801 * opt->no_inherit setting.
802 */
803 attr->inherit = term->val.inherit ? 1 : 0;
804 break;
805 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
806 attr->write_backward = term->val.overwrite ? 1 : 0;
807 break;
808 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
809 break;
810 default:
811 break;
812 }
813 }
814
815 /* User explicitly set per-event callgraph, clear the old setting and reset. */
816 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
817 bool sample_address = false;
818
819 if (max_stack) {
820 param.max_stack = max_stack;
821 if (callgraph_buf == NULL)
822 callgraph_buf = "fp";
823 }
824
825 /* parse callgraph parameters */
826 if (callgraph_buf != NULL) {
827 if (!strcmp(callgraph_buf, "no")) {
828 param.enabled = false;
829 param.record_mode = CALLCHAIN_NONE;
830 } else {
831 param.enabled = true;
832 if (parse_callchain_record(callgraph_buf, ¶m)) {
833 pr_err("per-event callgraph setting for %s failed. "
834 "Apply callgraph global setting for it\n",
835 evsel->name);
836 return;
837 }
838 if (param.record_mode == CALLCHAIN_DWARF)
839 sample_address = true;
840 }
841 }
842 if (dump_size > 0) {
843 dump_size = round_up(dump_size, sizeof(u64));
844 param.dump_size = dump_size;
845 }
846
847 /* If global callgraph set, clear it */
848 if (callchain_param.enabled)
849 perf_evsel__reset_callgraph(evsel, &callchain_param);
850
851 /* set perf-event callgraph */
852 if (param.enabled) {
853 if (sample_address) {
854 perf_evsel__set_sample_bit(evsel, ADDR);
855 perf_evsel__set_sample_bit(evsel, DATA_SRC);
856 evsel->attr.mmap_data = track;
857 }
858 perf_evsel__config_callchain(evsel, opts, ¶m);
859 }
860 }
861 }
862
is_dummy_event(struct perf_evsel * evsel)863 static bool is_dummy_event(struct perf_evsel *evsel)
864 {
865 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
866 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
867 }
868
869 /*
870 * The enable_on_exec/disabled value strategy:
871 *
872 * 1) For any type of traced program:
873 * - all independent events and group leaders are disabled
874 * - all group members are enabled
875 *
876 * Group members are ruled by group leaders. They need to
877 * be enabled, because the group scheduling relies on that.
878 *
879 * 2) For traced programs executed by perf:
880 * - all independent events and group leaders have
881 * enable_on_exec set
882 * - we don't specifically enable or disable any event during
883 * the record command
884 *
885 * Independent events and group leaders are initially disabled
886 * and get enabled by exec. Group members are ruled by group
887 * leaders as stated in 1).
888 *
889 * 3) For traced programs attached by perf (pid/tid):
890 * - we specifically enable or disable all events during
891 * the record command
892 *
893 * When attaching events to already running traced we
894 * enable/disable events specifically, as there's no
895 * initial traced exec call.
896 */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)897 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
898 struct callchain_param *callchain)
899 {
900 struct perf_evsel *leader = evsel->leader;
901 struct perf_event_attr *attr = &evsel->attr;
902 int track = evsel->tracking;
903 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
904
905 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
906 attr->inherit = !opts->no_inherit;
907 attr->write_backward = opts->overwrite ? 1 : 0;
908
909 perf_evsel__set_sample_bit(evsel, IP);
910 perf_evsel__set_sample_bit(evsel, TID);
911
912 if (evsel->sample_read) {
913 perf_evsel__set_sample_bit(evsel, READ);
914
915 /*
916 * We need ID even in case of single event, because
917 * PERF_SAMPLE_READ process ID specific data.
918 */
919 perf_evsel__set_sample_id(evsel, false);
920
921 /*
922 * Apply group format only if we belong to group
923 * with more than one members.
924 */
925 if (leader->nr_members > 1) {
926 attr->read_format |= PERF_FORMAT_GROUP;
927 attr->inherit = 0;
928 }
929 }
930
931 /*
932 * We default some events to have a default interval. But keep
933 * it a weak assumption overridable by the user.
934 */
935 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
936 opts->user_interval != ULLONG_MAX)) {
937 if (opts->freq) {
938 perf_evsel__set_sample_bit(evsel, PERIOD);
939 attr->freq = 1;
940 attr->sample_freq = opts->freq;
941 } else {
942 attr->sample_period = opts->default_interval;
943 }
944 }
945
946 /*
947 * Disable sampling for all group members other
948 * than leader in case leader 'leads' the sampling.
949 */
950 if ((leader != evsel) && leader->sample_read) {
951 attr->freq = 0;
952 attr->sample_freq = 0;
953 attr->sample_period = 0;
954 attr->write_backward = 0;
955 attr->sample_id_all = 0;
956 }
957
958 if (opts->no_samples)
959 attr->sample_freq = 0;
960
961 if (opts->inherit_stat) {
962 evsel->attr.read_format |=
963 PERF_FORMAT_TOTAL_TIME_ENABLED |
964 PERF_FORMAT_TOTAL_TIME_RUNNING |
965 PERF_FORMAT_ID;
966 attr->inherit_stat = 1;
967 }
968
969 if (opts->sample_address) {
970 perf_evsel__set_sample_bit(evsel, ADDR);
971 attr->mmap_data = track;
972 }
973
974 /*
975 * We don't allow user space callchains for function trace
976 * event, due to issues with page faults while tracing page
977 * fault handler and its overall trickiness nature.
978 */
979 if (perf_evsel__is_function_event(evsel))
980 evsel->attr.exclude_callchain_user = 1;
981
982 if (callchain && callchain->enabled && !evsel->no_aux_samples)
983 perf_evsel__config_callchain(evsel, opts, callchain);
984
985 if (opts->sample_intr_regs) {
986 attr->sample_regs_intr = opts->sample_intr_regs;
987 perf_evsel__set_sample_bit(evsel, REGS_INTR);
988 }
989
990 if (opts->sample_user_regs) {
991 attr->sample_regs_user |= opts->sample_user_regs;
992 perf_evsel__set_sample_bit(evsel, REGS_USER);
993 }
994
995 if (target__has_cpu(&opts->target) || opts->sample_cpu)
996 perf_evsel__set_sample_bit(evsel, CPU);
997
998 /*
999 * When the user explicitly disabled time don't force it here.
1000 */
1001 if (opts->sample_time &&
1002 (!perf_missing_features.sample_id_all &&
1003 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1004 opts->sample_time_set)))
1005 perf_evsel__set_sample_bit(evsel, TIME);
1006
1007 if (opts->raw_samples && !evsel->no_aux_samples) {
1008 perf_evsel__set_sample_bit(evsel, TIME);
1009 perf_evsel__set_sample_bit(evsel, RAW);
1010 perf_evsel__set_sample_bit(evsel, CPU);
1011 }
1012
1013 if (opts->sample_address)
1014 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1015
1016 if (opts->sample_phys_addr)
1017 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1018
1019 if (opts->no_buffering) {
1020 attr->watermark = 0;
1021 attr->wakeup_events = 1;
1022 }
1023 if (opts->branch_stack && !evsel->no_aux_samples) {
1024 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1025 attr->branch_sample_type = opts->branch_stack;
1026 }
1027
1028 if (opts->sample_weight)
1029 perf_evsel__set_sample_bit(evsel, WEIGHT);
1030
1031 attr->task = track;
1032 attr->mmap = track;
1033 attr->mmap2 = track && !perf_missing_features.mmap2;
1034 attr->comm = track;
1035
1036 if (opts->record_namespaces)
1037 attr->namespaces = track;
1038
1039 if (opts->record_switch_events)
1040 attr->context_switch = track;
1041
1042 if (opts->sample_transaction)
1043 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1044
1045 if (opts->running_time) {
1046 evsel->attr.read_format |=
1047 PERF_FORMAT_TOTAL_TIME_ENABLED |
1048 PERF_FORMAT_TOTAL_TIME_RUNNING;
1049 }
1050
1051 /*
1052 * XXX see the function comment above
1053 *
1054 * Disabling only independent events or group leaders,
1055 * keeping group members enabled.
1056 */
1057 if (perf_evsel__is_group_leader(evsel))
1058 attr->disabled = 1;
1059
1060 /*
1061 * Setting enable_on_exec for independent events and
1062 * group leaders for traced executed by perf.
1063 */
1064 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1065 !opts->initial_delay)
1066 attr->enable_on_exec = 1;
1067
1068 if (evsel->immediate) {
1069 attr->disabled = 0;
1070 attr->enable_on_exec = 0;
1071 }
1072
1073 clockid = opts->clockid;
1074 if (opts->use_clockid) {
1075 attr->use_clockid = 1;
1076 attr->clockid = opts->clockid;
1077 }
1078
1079 if (evsel->precise_max)
1080 perf_event_attr__set_max_precise_ip(attr);
1081
1082 if (opts->all_user) {
1083 attr->exclude_kernel = 1;
1084 attr->exclude_user = 0;
1085 }
1086
1087 if (opts->all_kernel) {
1088 attr->exclude_kernel = 0;
1089 attr->exclude_user = 1;
1090 }
1091
1092 if (evsel->own_cpus)
1093 evsel->attr.read_format |= PERF_FORMAT_ID;
1094
1095 /*
1096 * Apply event specific term settings,
1097 * it overloads any global configuration.
1098 */
1099 apply_config_terms(evsel, opts, track);
1100
1101 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1102
1103 /* The --period option takes the precedence. */
1104 if (opts->period_set) {
1105 if (opts->period)
1106 perf_evsel__set_sample_bit(evsel, PERIOD);
1107 else
1108 perf_evsel__reset_sample_bit(evsel, PERIOD);
1109 }
1110
1111 /*
1112 * For initial_delay, a dummy event is added implicitly.
1113 * The software event will trigger -EOPNOTSUPP error out,
1114 * if BRANCH_STACK bit is set.
1115 */
1116 if (opts->initial_delay && is_dummy_event(evsel))
1117 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1118 }
1119
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1120 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1121 {
1122 if (evsel->system_wide)
1123 nthreads = 1;
1124
1125 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1126
1127 if (evsel->fd) {
1128 int cpu, thread;
1129 for (cpu = 0; cpu < ncpus; cpu++) {
1130 for (thread = 0; thread < nthreads; thread++) {
1131 FD(evsel, cpu, thread) = -1;
1132 }
1133 }
1134 }
1135
1136 return evsel->fd != NULL ? 0 : -ENOMEM;
1137 }
1138
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ioc,void * arg)1139 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1140 int ioc, void *arg)
1141 {
1142 int cpu, thread;
1143
1144 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1145 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1146 int fd = FD(evsel, cpu, thread),
1147 err = ioctl(fd, ioc, arg);
1148
1149 if (err)
1150 return err;
1151 }
1152 }
1153
1154 return 0;
1155 }
1156
perf_evsel__apply_filter(struct perf_evsel * evsel,const char * filter)1157 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1158 {
1159 return perf_evsel__run_ioctl(evsel,
1160 PERF_EVENT_IOC_SET_FILTER,
1161 (void *)filter);
1162 }
1163
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)1164 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1165 {
1166 char *new_filter = strdup(filter);
1167
1168 if (new_filter != NULL) {
1169 free(evsel->filter);
1170 evsel->filter = new_filter;
1171 return 0;
1172 }
1173
1174 return -1;
1175 }
1176
perf_evsel__append_filter(struct perf_evsel * evsel,const char * fmt,const char * filter)1177 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1178 const char *fmt, const char *filter)
1179 {
1180 char *new_filter;
1181
1182 if (evsel->filter == NULL)
1183 return perf_evsel__set_filter(evsel, filter);
1184
1185 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1186 free(evsel->filter);
1187 evsel->filter = new_filter;
1188 return 0;
1189 }
1190
1191 return -1;
1192 }
1193
perf_evsel__append_tp_filter(struct perf_evsel * evsel,const char * filter)1194 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1195 {
1196 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1197 }
1198
perf_evsel__append_addr_filter(struct perf_evsel * evsel,const char * filter)1199 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1200 {
1201 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1202 }
1203
perf_evsel__enable(struct perf_evsel * evsel)1204 int perf_evsel__enable(struct perf_evsel *evsel)
1205 {
1206 return perf_evsel__run_ioctl(evsel,
1207 PERF_EVENT_IOC_ENABLE,
1208 0);
1209 }
1210
perf_evsel__disable(struct perf_evsel * evsel)1211 int perf_evsel__disable(struct perf_evsel *evsel)
1212 {
1213 return perf_evsel__run_ioctl(evsel,
1214 PERF_EVENT_IOC_DISABLE,
1215 0);
1216 }
1217
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)1218 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1219 {
1220 if (ncpus == 0 || nthreads == 0)
1221 return 0;
1222
1223 if (evsel->system_wide)
1224 nthreads = 1;
1225
1226 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1227 if (evsel->sample_id == NULL)
1228 return -ENOMEM;
1229
1230 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1231 if (evsel->id == NULL) {
1232 xyarray__delete(evsel->sample_id);
1233 evsel->sample_id = NULL;
1234 return -ENOMEM;
1235 }
1236
1237 return 0;
1238 }
1239
perf_evsel__free_fd(struct perf_evsel * evsel)1240 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1241 {
1242 xyarray__delete(evsel->fd);
1243 evsel->fd = NULL;
1244 }
1245
perf_evsel__free_id(struct perf_evsel * evsel)1246 static void perf_evsel__free_id(struct perf_evsel *evsel)
1247 {
1248 xyarray__delete(evsel->sample_id);
1249 evsel->sample_id = NULL;
1250 zfree(&evsel->id);
1251 }
1252
perf_evsel__free_config_terms(struct perf_evsel * evsel)1253 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1254 {
1255 struct perf_evsel_config_term *term, *h;
1256
1257 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1258 list_del(&term->list);
1259 free(term);
1260 }
1261 }
1262
perf_evsel__close_fd(struct perf_evsel * evsel)1263 void perf_evsel__close_fd(struct perf_evsel *evsel)
1264 {
1265 int cpu, thread;
1266
1267 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1268 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1269 close(FD(evsel, cpu, thread));
1270 FD(evsel, cpu, thread) = -1;
1271 }
1272 }
1273
perf_evsel__exit(struct perf_evsel * evsel)1274 void perf_evsel__exit(struct perf_evsel *evsel)
1275 {
1276 assert(list_empty(&evsel->node));
1277 assert(evsel->evlist == NULL);
1278 perf_evsel__free_fd(evsel);
1279 perf_evsel__free_id(evsel);
1280 perf_evsel__free_config_terms(evsel);
1281 cgroup__put(evsel->cgrp);
1282 cpu_map__put(evsel->cpus);
1283 cpu_map__put(evsel->own_cpus);
1284 thread_map__put(evsel->threads);
1285 zfree(&evsel->group_name);
1286 zfree(&evsel->name);
1287 perf_evsel__object.fini(evsel);
1288 }
1289
perf_evsel__delete(struct perf_evsel * evsel)1290 void perf_evsel__delete(struct perf_evsel *evsel)
1291 {
1292 perf_evsel__exit(evsel);
1293 free(evsel);
1294 }
1295
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1296 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1297 struct perf_counts_values *count)
1298 {
1299 struct perf_counts_values tmp;
1300
1301 if (!evsel->prev_raw_counts)
1302 return;
1303
1304 if (cpu == -1) {
1305 tmp = evsel->prev_raw_counts->aggr;
1306 evsel->prev_raw_counts->aggr = *count;
1307 } else {
1308 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1309 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1310 }
1311
1312 count->val = count->val - tmp.val;
1313 count->ena = count->ena - tmp.ena;
1314 count->run = count->run - tmp.run;
1315 }
1316
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1317 void perf_counts_values__scale(struct perf_counts_values *count,
1318 bool scale, s8 *pscaled)
1319 {
1320 s8 scaled = 0;
1321
1322 if (scale) {
1323 if (count->run == 0) {
1324 scaled = -1;
1325 count->val = 0;
1326 } else if (count->run < count->ena) {
1327 scaled = 1;
1328 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1329 }
1330 } else
1331 count->ena = count->run = 0;
1332
1333 if (pscaled)
1334 *pscaled = scaled;
1335 }
1336
perf_evsel__read_size(struct perf_evsel * evsel)1337 static int perf_evsel__read_size(struct perf_evsel *evsel)
1338 {
1339 u64 read_format = evsel->attr.read_format;
1340 int entry = sizeof(u64); /* value */
1341 int size = 0;
1342 int nr = 1;
1343
1344 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1345 size += sizeof(u64);
1346
1347 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1348 size += sizeof(u64);
1349
1350 if (read_format & PERF_FORMAT_ID)
1351 entry += sizeof(u64);
1352
1353 if (read_format & PERF_FORMAT_GROUP) {
1354 nr = evsel->nr_members;
1355 size += sizeof(u64);
1356 }
1357
1358 size += entry * nr;
1359 return size;
1360 }
1361
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1362 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1363 struct perf_counts_values *count)
1364 {
1365 size_t size = perf_evsel__read_size(evsel);
1366
1367 memset(count, 0, sizeof(*count));
1368
1369 if (FD(evsel, cpu, thread) < 0)
1370 return -EINVAL;
1371
1372 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1373 return -errno;
1374
1375 return 0;
1376 }
1377
1378 static int
perf_evsel__read_one(struct perf_evsel * evsel,int cpu,int thread)1379 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1380 {
1381 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1382
1383 return perf_evsel__read(evsel, cpu, thread, count);
1384 }
1385
1386 static void
perf_evsel__set_count(struct perf_evsel * counter,int cpu,int thread,u64 val,u64 ena,u64 run)1387 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1388 u64 val, u64 ena, u64 run)
1389 {
1390 struct perf_counts_values *count;
1391
1392 count = perf_counts(counter->counts, cpu, thread);
1393
1394 count->val = val;
1395 count->ena = ena;
1396 count->run = run;
1397 count->loaded = true;
1398 }
1399
1400 static int
perf_evsel__process_group_data(struct perf_evsel * leader,int cpu,int thread,u64 * data)1401 perf_evsel__process_group_data(struct perf_evsel *leader,
1402 int cpu, int thread, u64 *data)
1403 {
1404 u64 read_format = leader->attr.read_format;
1405 struct sample_read_value *v;
1406 u64 nr, ena = 0, run = 0, i;
1407
1408 nr = *data++;
1409
1410 if (nr != (u64) leader->nr_members)
1411 return -EINVAL;
1412
1413 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1414 ena = *data++;
1415
1416 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1417 run = *data++;
1418
1419 v = (struct sample_read_value *) data;
1420
1421 perf_evsel__set_count(leader, cpu, thread,
1422 v[0].value, ena, run);
1423
1424 for (i = 1; i < nr; i++) {
1425 struct perf_evsel *counter;
1426
1427 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1428 if (!counter)
1429 return -EINVAL;
1430
1431 perf_evsel__set_count(counter, cpu, thread,
1432 v[i].value, ena, run);
1433 }
1434
1435 return 0;
1436 }
1437
1438 static int
perf_evsel__read_group(struct perf_evsel * leader,int cpu,int thread)1439 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1440 {
1441 struct perf_stat_evsel *ps = leader->stats;
1442 u64 read_format = leader->attr.read_format;
1443 int size = perf_evsel__read_size(leader);
1444 u64 *data = ps->group_data;
1445
1446 if (!(read_format & PERF_FORMAT_ID))
1447 return -EINVAL;
1448
1449 if (!perf_evsel__is_group_leader(leader))
1450 return -EINVAL;
1451
1452 if (!data) {
1453 data = zalloc(size);
1454 if (!data)
1455 return -ENOMEM;
1456
1457 ps->group_data = data;
1458 }
1459
1460 if (FD(leader, cpu, thread) < 0)
1461 return -EINVAL;
1462
1463 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1464 return -errno;
1465
1466 return perf_evsel__process_group_data(leader, cpu, thread, data);
1467 }
1468
perf_evsel__read_counter(struct perf_evsel * evsel,int cpu,int thread)1469 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1470 {
1471 u64 read_format = evsel->attr.read_format;
1472
1473 if (read_format & PERF_FORMAT_GROUP)
1474 return perf_evsel__read_group(evsel, cpu, thread);
1475 else
1476 return perf_evsel__read_one(evsel, cpu, thread);
1477 }
1478
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1479 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1480 int cpu, int thread, bool scale)
1481 {
1482 struct perf_counts_values count;
1483 size_t nv = scale ? 3 : 1;
1484
1485 if (FD(evsel, cpu, thread) < 0)
1486 return -EINVAL;
1487
1488 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1489 return -ENOMEM;
1490
1491 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1492 return -errno;
1493
1494 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1495 perf_counts_values__scale(&count, scale, NULL);
1496 *perf_counts(evsel->counts, cpu, thread) = count;
1497 return 0;
1498 }
1499
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1500 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1501 {
1502 struct perf_evsel *leader = evsel->leader;
1503 int fd;
1504
1505 if (perf_evsel__is_group_leader(evsel))
1506 return -1;
1507
1508 /*
1509 * Leader must be already processed/open,
1510 * if not it's a bug.
1511 */
1512 BUG_ON(!leader->fd);
1513
1514 fd = FD(leader, cpu, thread);
1515 BUG_ON(fd == -1);
1516
1517 return fd;
1518 }
1519
1520 struct bit_names {
1521 int bit;
1522 const char *name;
1523 };
1524
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1525 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1526 {
1527 bool first_bit = true;
1528 int i = 0;
1529
1530 do {
1531 if (value & bits[i].bit) {
1532 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1533 first_bit = false;
1534 }
1535 } while (bits[++i].name != NULL);
1536 }
1537
__p_sample_type(char * buf,size_t size,u64 value)1538 static void __p_sample_type(char *buf, size_t size, u64 value)
1539 {
1540 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1541 struct bit_names bits[] = {
1542 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1543 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1544 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1545 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1546 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1547 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1548 { .name = NULL, }
1549 };
1550 #undef bit_name
1551 __p_bits(buf, size, value, bits);
1552 }
1553
__p_branch_sample_type(char * buf,size_t size,u64 value)1554 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1555 {
1556 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1557 struct bit_names bits[] = {
1558 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1559 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1560 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1561 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1562 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1563 { .name = NULL, }
1564 };
1565 #undef bit_name
1566 __p_bits(buf, size, value, bits);
1567 }
1568
__p_read_format(char * buf,size_t size,u64 value)1569 static void __p_read_format(char *buf, size_t size, u64 value)
1570 {
1571 #define bit_name(n) { PERF_FORMAT_##n, #n }
1572 struct bit_names bits[] = {
1573 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1574 bit_name(ID), bit_name(GROUP),
1575 { .name = NULL, }
1576 };
1577 #undef bit_name
1578 __p_bits(buf, size, value, bits);
1579 }
1580
1581 #define BUF_SIZE 1024
1582
1583 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1584 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1585 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1586 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1587 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1588 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1589
1590 #define PRINT_ATTRn(_n, _f, _p) \
1591 do { \
1592 if (attr->_f) { \
1593 _p(attr->_f); \
1594 ret += attr__fprintf(fp, _n, buf, priv);\
1595 } \
1596 } while (0)
1597
1598 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1599
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1600 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1601 attr__fprintf_f attr__fprintf, void *priv)
1602 {
1603 char buf[BUF_SIZE];
1604 int ret = 0;
1605
1606 PRINT_ATTRf(type, p_unsigned);
1607 PRINT_ATTRf(size, p_unsigned);
1608 PRINT_ATTRf(config, p_hex);
1609 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1610 PRINT_ATTRf(sample_type, p_sample_type);
1611 PRINT_ATTRf(read_format, p_read_format);
1612
1613 PRINT_ATTRf(disabled, p_unsigned);
1614 PRINT_ATTRf(inherit, p_unsigned);
1615 PRINT_ATTRf(pinned, p_unsigned);
1616 PRINT_ATTRf(exclusive, p_unsigned);
1617 PRINT_ATTRf(exclude_user, p_unsigned);
1618 PRINT_ATTRf(exclude_kernel, p_unsigned);
1619 PRINT_ATTRf(exclude_hv, p_unsigned);
1620 PRINT_ATTRf(exclude_idle, p_unsigned);
1621 PRINT_ATTRf(mmap, p_unsigned);
1622 PRINT_ATTRf(comm, p_unsigned);
1623 PRINT_ATTRf(freq, p_unsigned);
1624 PRINT_ATTRf(inherit_stat, p_unsigned);
1625 PRINT_ATTRf(enable_on_exec, p_unsigned);
1626 PRINT_ATTRf(task, p_unsigned);
1627 PRINT_ATTRf(watermark, p_unsigned);
1628 PRINT_ATTRf(precise_ip, p_unsigned);
1629 PRINT_ATTRf(mmap_data, p_unsigned);
1630 PRINT_ATTRf(sample_id_all, p_unsigned);
1631 PRINT_ATTRf(exclude_host, p_unsigned);
1632 PRINT_ATTRf(exclude_guest, p_unsigned);
1633 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1634 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1635 PRINT_ATTRf(mmap2, p_unsigned);
1636 PRINT_ATTRf(comm_exec, p_unsigned);
1637 PRINT_ATTRf(use_clockid, p_unsigned);
1638 PRINT_ATTRf(context_switch, p_unsigned);
1639 PRINT_ATTRf(write_backward, p_unsigned);
1640 PRINT_ATTRf(namespaces, p_unsigned);
1641
1642 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1643 PRINT_ATTRf(bp_type, p_unsigned);
1644 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1645 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1646 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1647 PRINT_ATTRf(sample_regs_user, p_hex);
1648 PRINT_ATTRf(sample_stack_user, p_unsigned);
1649 PRINT_ATTRf(clockid, p_signed);
1650 PRINT_ATTRf(sample_regs_intr, p_hex);
1651 PRINT_ATTRf(aux_watermark, p_unsigned);
1652 PRINT_ATTRf(sample_max_stack, p_unsigned);
1653
1654 return ret;
1655 }
1656
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1657 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1658 void *priv __maybe_unused)
1659 {
1660 return fprintf(fp, " %-32s %s\n", name, val);
1661 }
1662
perf_evsel__remove_fd(struct perf_evsel * pos,int nr_cpus,int nr_threads,int thread_idx)1663 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1664 int nr_cpus, int nr_threads,
1665 int thread_idx)
1666 {
1667 for (int cpu = 0; cpu < nr_cpus; cpu++)
1668 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1669 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1670 }
1671
update_fds(struct perf_evsel * evsel,int nr_cpus,int cpu_idx,int nr_threads,int thread_idx)1672 static int update_fds(struct perf_evsel *evsel,
1673 int nr_cpus, int cpu_idx,
1674 int nr_threads, int thread_idx)
1675 {
1676 struct perf_evsel *pos;
1677
1678 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1679 return -EINVAL;
1680
1681 evlist__for_each_entry(evsel->evlist, pos) {
1682 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1683
1684 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1685
1686 /*
1687 * Since fds for next evsel has not been created,
1688 * there is no need to iterate whole event list.
1689 */
1690 if (pos == evsel)
1691 break;
1692 }
1693 return 0;
1694 }
1695
ignore_missing_thread(struct perf_evsel * evsel,int nr_cpus,int cpu,struct thread_map * threads,int thread,int err)1696 static bool ignore_missing_thread(struct perf_evsel *evsel,
1697 int nr_cpus, int cpu,
1698 struct thread_map *threads,
1699 int thread, int err)
1700 {
1701 pid_t ignore_pid = thread_map__pid(threads, thread);
1702
1703 if (!evsel->ignore_missing_thread)
1704 return false;
1705
1706 /* The system wide setup does not work with threads. */
1707 if (evsel->system_wide)
1708 return false;
1709
1710 /* The -ESRCH is perf event syscall errno for pid's not found. */
1711 if (err != -ESRCH)
1712 return false;
1713
1714 /* If there's only one thread, let it fail. */
1715 if (threads->nr == 1)
1716 return false;
1717
1718 /*
1719 * We should remove fd for missing_thread first
1720 * because thread_map__remove() will decrease threads->nr.
1721 */
1722 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1723 return false;
1724
1725 if (thread_map__remove(threads, thread))
1726 return false;
1727
1728 pr_warning("WARNING: Ignored open failure for pid %d\n",
1729 ignore_pid);
1730 return true;
1731 }
1732
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1733 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1734 struct thread_map *threads)
1735 {
1736 int cpu, thread, nthreads;
1737 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1738 int pid = -1, err;
1739 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1740
1741 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1742 return -EINVAL;
1743
1744 if (cpus == NULL) {
1745 static struct cpu_map *empty_cpu_map;
1746
1747 if (empty_cpu_map == NULL) {
1748 empty_cpu_map = cpu_map__dummy_new();
1749 if (empty_cpu_map == NULL)
1750 return -ENOMEM;
1751 }
1752
1753 cpus = empty_cpu_map;
1754 }
1755
1756 if (threads == NULL) {
1757 static struct thread_map *empty_thread_map;
1758
1759 if (empty_thread_map == NULL) {
1760 empty_thread_map = thread_map__new_by_tid(-1);
1761 if (empty_thread_map == NULL)
1762 return -ENOMEM;
1763 }
1764
1765 threads = empty_thread_map;
1766 }
1767
1768 if (evsel->system_wide)
1769 nthreads = 1;
1770 else
1771 nthreads = threads->nr;
1772
1773 if (evsel->fd == NULL &&
1774 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1775 return -ENOMEM;
1776
1777 if (evsel->cgrp) {
1778 flags |= PERF_FLAG_PID_CGROUP;
1779 pid = evsel->cgrp->fd;
1780 }
1781
1782 fallback_missing_features:
1783 if (perf_missing_features.clockid_wrong)
1784 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1785 if (perf_missing_features.clockid) {
1786 evsel->attr.use_clockid = 0;
1787 evsel->attr.clockid = 0;
1788 }
1789 if (perf_missing_features.cloexec)
1790 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1791 if (perf_missing_features.mmap2)
1792 evsel->attr.mmap2 = 0;
1793 if (perf_missing_features.exclude_guest)
1794 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1795 if (perf_missing_features.lbr_flags)
1796 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1797 PERF_SAMPLE_BRANCH_NO_CYCLES);
1798 if (perf_missing_features.group_read && evsel->attr.inherit)
1799 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1800 retry_sample_id:
1801 if (perf_missing_features.sample_id_all)
1802 evsel->attr.sample_id_all = 0;
1803
1804 if (verbose >= 2) {
1805 fprintf(stderr, "%.60s\n", graph_dotted_line);
1806 fprintf(stderr, "perf_event_attr:\n");
1807 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1808 fprintf(stderr, "%.60s\n", graph_dotted_line);
1809 }
1810
1811 for (cpu = 0; cpu < cpus->nr; cpu++) {
1812
1813 for (thread = 0; thread < nthreads; thread++) {
1814 int fd, group_fd;
1815
1816 if (!evsel->cgrp && !evsel->system_wide)
1817 pid = thread_map__pid(threads, thread);
1818
1819 group_fd = get_group_fd(evsel, cpu, thread);
1820 retry_open:
1821 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1822 pid, cpus->map[cpu], group_fd, flags);
1823
1824 test_attr__ready();
1825
1826 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1827 group_fd, flags);
1828
1829 FD(evsel, cpu, thread) = fd;
1830
1831 if (fd < 0) {
1832 err = -errno;
1833
1834 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1835 /*
1836 * We just removed 1 thread, so take a step
1837 * back on thread index and lower the upper
1838 * nthreads limit.
1839 */
1840 nthreads--;
1841 thread--;
1842
1843 /* ... and pretend like nothing have happened. */
1844 err = 0;
1845 continue;
1846 }
1847
1848 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1849 err);
1850 goto try_fallback;
1851 }
1852
1853 pr_debug2(" = %d\n", fd);
1854
1855 if (evsel->bpf_fd >= 0) {
1856 int evt_fd = fd;
1857 int bpf_fd = evsel->bpf_fd;
1858
1859 err = ioctl(evt_fd,
1860 PERF_EVENT_IOC_SET_BPF,
1861 bpf_fd);
1862 if (err && errno != EEXIST) {
1863 pr_err("failed to attach bpf fd %d: %s\n",
1864 bpf_fd, strerror(errno));
1865 err = -EINVAL;
1866 goto out_close;
1867 }
1868 }
1869
1870 set_rlimit = NO_CHANGE;
1871
1872 /*
1873 * If we succeeded but had to kill clockid, fail and
1874 * have perf_evsel__open_strerror() print us a nice
1875 * error.
1876 */
1877 if (perf_missing_features.clockid ||
1878 perf_missing_features.clockid_wrong) {
1879 err = -EINVAL;
1880 goto out_close;
1881 }
1882 }
1883 }
1884
1885 return 0;
1886
1887 try_fallback:
1888 /*
1889 * perf stat needs between 5 and 22 fds per CPU. When we run out
1890 * of them try to increase the limits.
1891 */
1892 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1893 struct rlimit l;
1894 int old_errno = errno;
1895
1896 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1897 if (set_rlimit == NO_CHANGE)
1898 l.rlim_cur = l.rlim_max;
1899 else {
1900 l.rlim_cur = l.rlim_max + 1000;
1901 l.rlim_max = l.rlim_cur;
1902 }
1903 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1904 set_rlimit++;
1905 errno = old_errno;
1906 goto retry_open;
1907 }
1908 }
1909 errno = old_errno;
1910 }
1911
1912 if (err != -EINVAL || cpu > 0 || thread > 0)
1913 goto out_close;
1914
1915 /*
1916 * Must probe features in the order they were added to the
1917 * perf_event_attr interface.
1918 */
1919 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1920 perf_missing_features.write_backward = true;
1921 pr_debug2("switching off write_backward\n");
1922 goto out_close;
1923 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1924 perf_missing_features.clockid_wrong = true;
1925 pr_debug2("switching off clockid\n");
1926 goto fallback_missing_features;
1927 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1928 perf_missing_features.clockid = true;
1929 pr_debug2("switching off use_clockid\n");
1930 goto fallback_missing_features;
1931 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1932 perf_missing_features.cloexec = true;
1933 pr_debug2("switching off cloexec flag\n");
1934 goto fallback_missing_features;
1935 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1936 perf_missing_features.mmap2 = true;
1937 pr_debug2("switching off mmap2\n");
1938 goto fallback_missing_features;
1939 } else if (!perf_missing_features.exclude_guest &&
1940 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1941 perf_missing_features.exclude_guest = true;
1942 pr_debug2("switching off exclude_guest, exclude_host\n");
1943 goto fallback_missing_features;
1944 } else if (!perf_missing_features.sample_id_all) {
1945 perf_missing_features.sample_id_all = true;
1946 pr_debug2("switching off sample_id_all\n");
1947 goto retry_sample_id;
1948 } else if (!perf_missing_features.lbr_flags &&
1949 (evsel->attr.branch_sample_type &
1950 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1951 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1952 perf_missing_features.lbr_flags = true;
1953 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1954 goto fallback_missing_features;
1955 } else if (!perf_missing_features.group_read &&
1956 evsel->attr.inherit &&
1957 (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1958 perf_evsel__is_group_leader(evsel)) {
1959 perf_missing_features.group_read = true;
1960 pr_debug2("switching off group read\n");
1961 goto fallback_missing_features;
1962 }
1963 out_close:
1964 if (err)
1965 threads->err_thread = thread;
1966
1967 do {
1968 while (--thread >= 0) {
1969 close(FD(evsel, cpu, thread));
1970 FD(evsel, cpu, thread) = -1;
1971 }
1972 thread = nthreads;
1973 } while (--cpu >= 0);
1974 return err;
1975 }
1976
perf_evsel__close(struct perf_evsel * evsel)1977 void perf_evsel__close(struct perf_evsel *evsel)
1978 {
1979 if (evsel->fd == NULL)
1980 return;
1981
1982 perf_evsel__close_fd(evsel);
1983 perf_evsel__free_fd(evsel);
1984 }
1985
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1986 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1987 struct cpu_map *cpus)
1988 {
1989 return perf_evsel__open(evsel, cpus, NULL);
1990 }
1991
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)1992 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1993 struct thread_map *threads)
1994 {
1995 return perf_evsel__open(evsel, NULL, threads);
1996 }
1997
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)1998 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1999 const union perf_event *event,
2000 struct perf_sample *sample)
2001 {
2002 u64 type = evsel->attr.sample_type;
2003 const u64 *array = event->sample.array;
2004 bool swapped = evsel->needs_swap;
2005 union u64_swap u;
2006
2007 array += ((event->header.size -
2008 sizeof(event->header)) / sizeof(u64)) - 1;
2009
2010 if (type & PERF_SAMPLE_IDENTIFIER) {
2011 sample->id = *array;
2012 array--;
2013 }
2014
2015 if (type & PERF_SAMPLE_CPU) {
2016 u.val64 = *array;
2017 if (swapped) {
2018 /* undo swap of u64, then swap on individual u32s */
2019 u.val64 = bswap_64(u.val64);
2020 u.val32[0] = bswap_32(u.val32[0]);
2021 }
2022
2023 sample->cpu = u.val32[0];
2024 array--;
2025 }
2026
2027 if (type & PERF_SAMPLE_STREAM_ID) {
2028 sample->stream_id = *array;
2029 array--;
2030 }
2031
2032 if (type & PERF_SAMPLE_ID) {
2033 sample->id = *array;
2034 array--;
2035 }
2036
2037 if (type & PERF_SAMPLE_TIME) {
2038 sample->time = *array;
2039 array--;
2040 }
2041
2042 if (type & PERF_SAMPLE_TID) {
2043 u.val64 = *array;
2044 if (swapped) {
2045 /* undo swap of u64, then swap on individual u32s */
2046 u.val64 = bswap_64(u.val64);
2047 u.val32[0] = bswap_32(u.val32[0]);
2048 u.val32[1] = bswap_32(u.val32[1]);
2049 }
2050
2051 sample->pid = u.val32[0];
2052 sample->tid = u.val32[1];
2053 array--;
2054 }
2055
2056 return 0;
2057 }
2058
overflow(const void * endp,u16 max_size,const void * offset,u64 size)2059 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2060 u64 size)
2061 {
2062 return size > max_size || offset + size > endp;
2063 }
2064
2065 #define OVERFLOW_CHECK(offset, size, max_size) \
2066 do { \
2067 if (overflow(endp, (max_size), (offset), (size))) \
2068 return -EFAULT; \
2069 } while (0)
2070
2071 #define OVERFLOW_CHECK_u64(offset) \
2072 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2073
2074 static int
perf_event__check_size(union perf_event * event,unsigned int sample_size)2075 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2076 {
2077 /*
2078 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2079 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2080 * check the format does not go past the end of the event.
2081 */
2082 if (sample_size + sizeof(event->header) > event->header.size)
2083 return -EFAULT;
2084
2085 return 0;
2086 }
2087
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)2088 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2089 struct perf_sample *data)
2090 {
2091 u64 type = evsel->attr.sample_type;
2092 bool swapped = evsel->needs_swap;
2093 const u64 *array;
2094 u16 max_size = event->header.size;
2095 const void *endp = (void *)event + max_size;
2096 u64 sz;
2097
2098 /*
2099 * used for cross-endian analysis. See git commit 65014ab3
2100 * for why this goofiness is needed.
2101 */
2102 union u64_swap u;
2103
2104 memset(data, 0, sizeof(*data));
2105 data->cpu = data->pid = data->tid = -1;
2106 data->stream_id = data->id = data->time = -1ULL;
2107 data->period = evsel->attr.sample_period;
2108 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2109 data->misc = event->header.misc;
2110 data->id = -1ULL;
2111 data->data_src = PERF_MEM_DATA_SRC_NONE;
2112
2113 if (event->header.type != PERF_RECORD_SAMPLE) {
2114 if (!evsel->attr.sample_id_all)
2115 return 0;
2116 return perf_evsel__parse_id_sample(evsel, event, data);
2117 }
2118
2119 array = event->sample.array;
2120
2121 if (perf_event__check_size(event, evsel->sample_size))
2122 return -EFAULT;
2123
2124 if (type & PERF_SAMPLE_IDENTIFIER) {
2125 data->id = *array;
2126 array++;
2127 }
2128
2129 if (type & PERF_SAMPLE_IP) {
2130 data->ip = *array;
2131 array++;
2132 }
2133
2134 if (type & PERF_SAMPLE_TID) {
2135 u.val64 = *array;
2136 if (swapped) {
2137 /* undo swap of u64, then swap on individual u32s */
2138 u.val64 = bswap_64(u.val64);
2139 u.val32[0] = bswap_32(u.val32[0]);
2140 u.val32[1] = bswap_32(u.val32[1]);
2141 }
2142
2143 data->pid = u.val32[0];
2144 data->tid = u.val32[1];
2145 array++;
2146 }
2147
2148 if (type & PERF_SAMPLE_TIME) {
2149 data->time = *array;
2150 array++;
2151 }
2152
2153 if (type & PERF_SAMPLE_ADDR) {
2154 data->addr = *array;
2155 array++;
2156 }
2157
2158 if (type & PERF_SAMPLE_ID) {
2159 data->id = *array;
2160 array++;
2161 }
2162
2163 if (type & PERF_SAMPLE_STREAM_ID) {
2164 data->stream_id = *array;
2165 array++;
2166 }
2167
2168 if (type & PERF_SAMPLE_CPU) {
2169
2170 u.val64 = *array;
2171 if (swapped) {
2172 /* undo swap of u64, then swap on individual u32s */
2173 u.val64 = bswap_64(u.val64);
2174 u.val32[0] = bswap_32(u.val32[0]);
2175 }
2176
2177 data->cpu = u.val32[0];
2178 array++;
2179 }
2180
2181 if (type & PERF_SAMPLE_PERIOD) {
2182 data->period = *array;
2183 array++;
2184 }
2185
2186 if (type & PERF_SAMPLE_READ) {
2187 u64 read_format = evsel->attr.read_format;
2188
2189 OVERFLOW_CHECK_u64(array);
2190 if (read_format & PERF_FORMAT_GROUP)
2191 data->read.group.nr = *array;
2192 else
2193 data->read.one.value = *array;
2194
2195 array++;
2196
2197 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2198 OVERFLOW_CHECK_u64(array);
2199 data->read.time_enabled = *array;
2200 array++;
2201 }
2202
2203 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2204 OVERFLOW_CHECK_u64(array);
2205 data->read.time_running = *array;
2206 array++;
2207 }
2208
2209 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2210 if (read_format & PERF_FORMAT_GROUP) {
2211 const u64 max_group_nr = UINT64_MAX /
2212 sizeof(struct sample_read_value);
2213
2214 if (data->read.group.nr > max_group_nr)
2215 return -EFAULT;
2216 sz = data->read.group.nr *
2217 sizeof(struct sample_read_value);
2218 OVERFLOW_CHECK(array, sz, max_size);
2219 data->read.group.values =
2220 (struct sample_read_value *)array;
2221 array = (void *)array + sz;
2222 } else {
2223 OVERFLOW_CHECK_u64(array);
2224 data->read.one.id = *array;
2225 array++;
2226 }
2227 }
2228
2229 if (evsel__has_callchain(evsel)) {
2230 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2231
2232 OVERFLOW_CHECK_u64(array);
2233 data->callchain = (struct ip_callchain *)array++;
2234 if (data->callchain->nr > max_callchain_nr)
2235 return -EFAULT;
2236 sz = data->callchain->nr * sizeof(u64);
2237 OVERFLOW_CHECK(array, sz, max_size);
2238 array = (void *)array + sz;
2239 }
2240
2241 if (type & PERF_SAMPLE_RAW) {
2242 OVERFLOW_CHECK_u64(array);
2243 u.val64 = *array;
2244
2245 /*
2246 * Undo swap of u64, then swap on individual u32s,
2247 * get the size of the raw area and undo all of the
2248 * swap. The pevent interface handles endianity by
2249 * itself.
2250 */
2251 if (swapped) {
2252 u.val64 = bswap_64(u.val64);
2253 u.val32[0] = bswap_32(u.val32[0]);
2254 u.val32[1] = bswap_32(u.val32[1]);
2255 }
2256 data->raw_size = u.val32[0];
2257
2258 /*
2259 * The raw data is aligned on 64bits including the
2260 * u32 size, so it's safe to use mem_bswap_64.
2261 */
2262 if (swapped)
2263 mem_bswap_64((void *) array, data->raw_size);
2264
2265 array = (void *)array + sizeof(u32);
2266
2267 OVERFLOW_CHECK(array, data->raw_size, max_size);
2268 data->raw_data = (void *)array;
2269 array = (void *)array + data->raw_size;
2270 }
2271
2272 if (type & PERF_SAMPLE_BRANCH_STACK) {
2273 const u64 max_branch_nr = UINT64_MAX /
2274 sizeof(struct branch_entry);
2275
2276 OVERFLOW_CHECK_u64(array);
2277 data->branch_stack = (struct branch_stack *)array++;
2278
2279 if (data->branch_stack->nr > max_branch_nr)
2280 return -EFAULT;
2281 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2282 OVERFLOW_CHECK(array, sz, max_size);
2283 array = (void *)array + sz;
2284 }
2285
2286 if (type & PERF_SAMPLE_REGS_USER) {
2287 OVERFLOW_CHECK_u64(array);
2288 data->user_regs.abi = *array;
2289 array++;
2290
2291 if (data->user_regs.abi) {
2292 u64 mask = evsel->attr.sample_regs_user;
2293
2294 sz = hweight_long(mask) * sizeof(u64);
2295 OVERFLOW_CHECK(array, sz, max_size);
2296 data->user_regs.mask = mask;
2297 data->user_regs.regs = (u64 *)array;
2298 array = (void *)array + sz;
2299 }
2300 }
2301
2302 if (type & PERF_SAMPLE_STACK_USER) {
2303 OVERFLOW_CHECK_u64(array);
2304 sz = *array++;
2305
2306 data->user_stack.offset = ((char *)(array - 1)
2307 - (char *) event);
2308
2309 if (!sz) {
2310 data->user_stack.size = 0;
2311 } else {
2312 OVERFLOW_CHECK(array, sz, max_size);
2313 data->user_stack.data = (char *)array;
2314 array = (void *)array + sz;
2315 OVERFLOW_CHECK_u64(array);
2316 data->user_stack.size = *array++;
2317 if (WARN_ONCE(data->user_stack.size > sz,
2318 "user stack dump failure\n"))
2319 return -EFAULT;
2320 }
2321 }
2322
2323 if (type & PERF_SAMPLE_WEIGHT) {
2324 OVERFLOW_CHECK_u64(array);
2325 data->weight = *array;
2326 array++;
2327 }
2328
2329 if (type & PERF_SAMPLE_DATA_SRC) {
2330 OVERFLOW_CHECK_u64(array);
2331 data->data_src = *array;
2332 array++;
2333 }
2334
2335 if (type & PERF_SAMPLE_TRANSACTION) {
2336 OVERFLOW_CHECK_u64(array);
2337 data->transaction = *array;
2338 array++;
2339 }
2340
2341 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2342 if (type & PERF_SAMPLE_REGS_INTR) {
2343 OVERFLOW_CHECK_u64(array);
2344 data->intr_regs.abi = *array;
2345 array++;
2346
2347 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2348 u64 mask = evsel->attr.sample_regs_intr;
2349
2350 sz = hweight_long(mask) * sizeof(u64);
2351 OVERFLOW_CHECK(array, sz, max_size);
2352 data->intr_regs.mask = mask;
2353 data->intr_regs.regs = (u64 *)array;
2354 array = (void *)array + sz;
2355 }
2356 }
2357
2358 data->phys_addr = 0;
2359 if (type & PERF_SAMPLE_PHYS_ADDR) {
2360 data->phys_addr = *array;
2361 array++;
2362 }
2363
2364 return 0;
2365 }
2366
perf_evsel__parse_sample_timestamp(struct perf_evsel * evsel,union perf_event * event,u64 * timestamp)2367 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2368 union perf_event *event,
2369 u64 *timestamp)
2370 {
2371 u64 type = evsel->attr.sample_type;
2372 const u64 *array;
2373
2374 if (!(type & PERF_SAMPLE_TIME))
2375 return -1;
2376
2377 if (event->header.type != PERF_RECORD_SAMPLE) {
2378 struct perf_sample data = {
2379 .time = -1ULL,
2380 };
2381
2382 if (!evsel->attr.sample_id_all)
2383 return -1;
2384 if (perf_evsel__parse_id_sample(evsel, event, &data))
2385 return -1;
2386
2387 *timestamp = data.time;
2388 return 0;
2389 }
2390
2391 array = event->sample.array;
2392
2393 if (perf_event__check_size(event, evsel->sample_size))
2394 return -EFAULT;
2395
2396 if (type & PERF_SAMPLE_IDENTIFIER)
2397 array++;
2398
2399 if (type & PERF_SAMPLE_IP)
2400 array++;
2401
2402 if (type & PERF_SAMPLE_TID)
2403 array++;
2404
2405 if (type & PERF_SAMPLE_TIME)
2406 *timestamp = *array;
2407
2408 return 0;
2409 }
2410
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)2411 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2412 u64 read_format)
2413 {
2414 size_t sz, result = sizeof(struct sample_event);
2415
2416 if (type & PERF_SAMPLE_IDENTIFIER)
2417 result += sizeof(u64);
2418
2419 if (type & PERF_SAMPLE_IP)
2420 result += sizeof(u64);
2421
2422 if (type & PERF_SAMPLE_TID)
2423 result += sizeof(u64);
2424
2425 if (type & PERF_SAMPLE_TIME)
2426 result += sizeof(u64);
2427
2428 if (type & PERF_SAMPLE_ADDR)
2429 result += sizeof(u64);
2430
2431 if (type & PERF_SAMPLE_ID)
2432 result += sizeof(u64);
2433
2434 if (type & PERF_SAMPLE_STREAM_ID)
2435 result += sizeof(u64);
2436
2437 if (type & PERF_SAMPLE_CPU)
2438 result += sizeof(u64);
2439
2440 if (type & PERF_SAMPLE_PERIOD)
2441 result += sizeof(u64);
2442
2443 if (type & PERF_SAMPLE_READ) {
2444 result += sizeof(u64);
2445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2446 result += sizeof(u64);
2447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2448 result += sizeof(u64);
2449 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2450 if (read_format & PERF_FORMAT_GROUP) {
2451 sz = sample->read.group.nr *
2452 sizeof(struct sample_read_value);
2453 result += sz;
2454 } else {
2455 result += sizeof(u64);
2456 }
2457 }
2458
2459 if (type & PERF_SAMPLE_CALLCHAIN) {
2460 sz = (sample->callchain->nr + 1) * sizeof(u64);
2461 result += sz;
2462 }
2463
2464 if (type & PERF_SAMPLE_RAW) {
2465 result += sizeof(u32);
2466 result += sample->raw_size;
2467 }
2468
2469 if (type & PERF_SAMPLE_BRANCH_STACK) {
2470 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2471 sz += sizeof(u64);
2472 result += sz;
2473 }
2474
2475 if (type & PERF_SAMPLE_REGS_USER) {
2476 if (sample->user_regs.abi) {
2477 result += sizeof(u64);
2478 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2479 result += sz;
2480 } else {
2481 result += sizeof(u64);
2482 }
2483 }
2484
2485 if (type & PERF_SAMPLE_STACK_USER) {
2486 sz = sample->user_stack.size;
2487 result += sizeof(u64);
2488 if (sz) {
2489 result += sz;
2490 result += sizeof(u64);
2491 }
2492 }
2493
2494 if (type & PERF_SAMPLE_WEIGHT)
2495 result += sizeof(u64);
2496
2497 if (type & PERF_SAMPLE_DATA_SRC)
2498 result += sizeof(u64);
2499
2500 if (type & PERF_SAMPLE_TRANSACTION)
2501 result += sizeof(u64);
2502
2503 if (type & PERF_SAMPLE_REGS_INTR) {
2504 if (sample->intr_regs.abi) {
2505 result += sizeof(u64);
2506 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2507 result += sz;
2508 } else {
2509 result += sizeof(u64);
2510 }
2511 }
2512
2513 if (type & PERF_SAMPLE_PHYS_ADDR)
2514 result += sizeof(u64);
2515
2516 return result;
2517 }
2518
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample)2519 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2520 u64 read_format,
2521 const struct perf_sample *sample)
2522 {
2523 u64 *array;
2524 size_t sz;
2525 /*
2526 * used for cross-endian analysis. See git commit 65014ab3
2527 * for why this goofiness is needed.
2528 */
2529 union u64_swap u;
2530
2531 array = event->sample.array;
2532
2533 if (type & PERF_SAMPLE_IDENTIFIER) {
2534 *array = sample->id;
2535 array++;
2536 }
2537
2538 if (type & PERF_SAMPLE_IP) {
2539 *array = sample->ip;
2540 array++;
2541 }
2542
2543 if (type & PERF_SAMPLE_TID) {
2544 u.val32[0] = sample->pid;
2545 u.val32[1] = sample->tid;
2546 *array = u.val64;
2547 array++;
2548 }
2549
2550 if (type & PERF_SAMPLE_TIME) {
2551 *array = sample->time;
2552 array++;
2553 }
2554
2555 if (type & PERF_SAMPLE_ADDR) {
2556 *array = sample->addr;
2557 array++;
2558 }
2559
2560 if (type & PERF_SAMPLE_ID) {
2561 *array = sample->id;
2562 array++;
2563 }
2564
2565 if (type & PERF_SAMPLE_STREAM_ID) {
2566 *array = sample->stream_id;
2567 array++;
2568 }
2569
2570 if (type & PERF_SAMPLE_CPU) {
2571 u.val32[0] = sample->cpu;
2572 u.val32[1] = 0;
2573 *array = u.val64;
2574 array++;
2575 }
2576
2577 if (type & PERF_SAMPLE_PERIOD) {
2578 *array = sample->period;
2579 array++;
2580 }
2581
2582 if (type & PERF_SAMPLE_READ) {
2583 if (read_format & PERF_FORMAT_GROUP)
2584 *array = sample->read.group.nr;
2585 else
2586 *array = sample->read.one.value;
2587 array++;
2588
2589 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2590 *array = sample->read.time_enabled;
2591 array++;
2592 }
2593
2594 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2595 *array = sample->read.time_running;
2596 array++;
2597 }
2598
2599 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2600 if (read_format & PERF_FORMAT_GROUP) {
2601 sz = sample->read.group.nr *
2602 sizeof(struct sample_read_value);
2603 memcpy(array, sample->read.group.values, sz);
2604 array = (void *)array + sz;
2605 } else {
2606 *array = sample->read.one.id;
2607 array++;
2608 }
2609 }
2610
2611 if (type & PERF_SAMPLE_CALLCHAIN) {
2612 sz = (sample->callchain->nr + 1) * sizeof(u64);
2613 memcpy(array, sample->callchain, sz);
2614 array = (void *)array + sz;
2615 }
2616
2617 if (type & PERF_SAMPLE_RAW) {
2618 u.val32[0] = sample->raw_size;
2619 *array = u.val64;
2620 array = (void *)array + sizeof(u32);
2621
2622 memcpy(array, sample->raw_data, sample->raw_size);
2623 array = (void *)array + sample->raw_size;
2624 }
2625
2626 if (type & PERF_SAMPLE_BRANCH_STACK) {
2627 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2628 sz += sizeof(u64);
2629 memcpy(array, sample->branch_stack, sz);
2630 array = (void *)array + sz;
2631 }
2632
2633 if (type & PERF_SAMPLE_REGS_USER) {
2634 if (sample->user_regs.abi) {
2635 *array++ = sample->user_regs.abi;
2636 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2637 memcpy(array, sample->user_regs.regs, sz);
2638 array = (void *)array + sz;
2639 } else {
2640 *array++ = 0;
2641 }
2642 }
2643
2644 if (type & PERF_SAMPLE_STACK_USER) {
2645 sz = sample->user_stack.size;
2646 *array++ = sz;
2647 if (sz) {
2648 memcpy(array, sample->user_stack.data, sz);
2649 array = (void *)array + sz;
2650 *array++ = sz;
2651 }
2652 }
2653
2654 if (type & PERF_SAMPLE_WEIGHT) {
2655 *array = sample->weight;
2656 array++;
2657 }
2658
2659 if (type & PERF_SAMPLE_DATA_SRC) {
2660 *array = sample->data_src;
2661 array++;
2662 }
2663
2664 if (type & PERF_SAMPLE_TRANSACTION) {
2665 *array = sample->transaction;
2666 array++;
2667 }
2668
2669 if (type & PERF_SAMPLE_REGS_INTR) {
2670 if (sample->intr_regs.abi) {
2671 *array++ = sample->intr_regs.abi;
2672 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2673 memcpy(array, sample->intr_regs.regs, sz);
2674 array = (void *)array + sz;
2675 } else {
2676 *array++ = 0;
2677 }
2678 }
2679
2680 if (type & PERF_SAMPLE_PHYS_ADDR) {
2681 *array = sample->phys_addr;
2682 array++;
2683 }
2684
2685 return 0;
2686 }
2687
perf_evsel__field(struct perf_evsel * evsel,const char * name)2688 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2689 {
2690 return tep_find_field(evsel->tp_format, name);
2691 }
2692
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2693 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2694 const char *name)
2695 {
2696 struct format_field *field = perf_evsel__field(evsel, name);
2697 int offset;
2698
2699 if (!field)
2700 return NULL;
2701
2702 offset = field->offset;
2703
2704 if (field->flags & FIELD_IS_DYNAMIC) {
2705 offset = *(int *)(sample->raw_data + field->offset);
2706 offset &= 0xffff;
2707 }
2708
2709 return sample->raw_data + offset;
2710 }
2711
format_field__intval(struct format_field * field,struct perf_sample * sample,bool needs_swap)2712 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2713 bool needs_swap)
2714 {
2715 u64 value;
2716 void *ptr = sample->raw_data + field->offset;
2717
2718 switch (field->size) {
2719 case 1:
2720 return *(u8 *)ptr;
2721 case 2:
2722 value = *(u16 *)ptr;
2723 break;
2724 case 4:
2725 value = *(u32 *)ptr;
2726 break;
2727 case 8:
2728 memcpy(&value, ptr, sizeof(u64));
2729 break;
2730 default:
2731 return 0;
2732 }
2733
2734 if (!needs_swap)
2735 return value;
2736
2737 switch (field->size) {
2738 case 2:
2739 return bswap_16(value);
2740 case 4:
2741 return bswap_32(value);
2742 case 8:
2743 return bswap_64(value);
2744 default:
2745 return 0;
2746 }
2747
2748 return 0;
2749 }
2750
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2751 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2752 const char *name)
2753 {
2754 struct format_field *field = perf_evsel__field(evsel, name);
2755
2756 if (!field)
2757 return 0;
2758
2759 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2760 }
2761
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2762 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2763 char *msg, size_t msgsize)
2764 {
2765 int paranoid;
2766
2767 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2768 evsel->attr.type == PERF_TYPE_HARDWARE &&
2769 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2770 /*
2771 * If it's cycles then fall back to hrtimer based
2772 * cpu-clock-tick sw counter, which is always available even if
2773 * no PMU support.
2774 *
2775 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2776 * b0a873e).
2777 */
2778 scnprintf(msg, msgsize, "%s",
2779 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2780
2781 evsel->attr.type = PERF_TYPE_SOFTWARE;
2782 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2783
2784 zfree(&evsel->name);
2785 return true;
2786 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2787 (paranoid = perf_event_paranoid()) > 1) {
2788 const char *name = perf_evsel__name(evsel);
2789 char *new_name;
2790 const char *sep = ":";
2791
2792 /* Is there already the separator in the name. */
2793 if (strchr(name, '/') ||
2794 strchr(name, ':'))
2795 sep = "";
2796
2797 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2798 return false;
2799
2800 if (evsel->name)
2801 free(evsel->name);
2802 evsel->name = new_name;
2803 scnprintf(msg, msgsize,
2804 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2805 evsel->attr.exclude_kernel = 1;
2806
2807 return true;
2808 }
2809
2810 return false;
2811 }
2812
find_process(const char * name)2813 static bool find_process(const char *name)
2814 {
2815 size_t len = strlen(name);
2816 DIR *dir;
2817 struct dirent *d;
2818 int ret = -1;
2819
2820 dir = opendir(procfs__mountpoint());
2821 if (!dir)
2822 return false;
2823
2824 /* Walk through the directory. */
2825 while (ret && (d = readdir(dir)) != NULL) {
2826 char path[PATH_MAX];
2827 char *data;
2828 size_t size;
2829
2830 if ((d->d_type != DT_DIR) ||
2831 !strcmp(".", d->d_name) ||
2832 !strcmp("..", d->d_name))
2833 continue;
2834
2835 scnprintf(path, sizeof(path), "%s/%s/comm",
2836 procfs__mountpoint(), d->d_name);
2837
2838 if (filename__read_str(path, &data, &size))
2839 continue;
2840
2841 ret = strncmp(name, data, len);
2842 free(data);
2843 }
2844
2845 closedir(dir);
2846 return ret ? false : true;
2847 }
2848
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2849 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2850 int err, char *msg, size_t size)
2851 {
2852 char sbuf[STRERR_BUFSIZE];
2853 int printed = 0;
2854
2855 switch (err) {
2856 case EPERM:
2857 case EACCES:
2858 if (err == EPERM)
2859 printed = scnprintf(msg, size,
2860 "No permission to enable %s event.\n\n",
2861 perf_evsel__name(evsel));
2862
2863 return scnprintf(msg + printed, size - printed,
2864 "You may not have permission to collect %sstats.\n\n"
2865 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2866 "which controls use of the performance events system by\n"
2867 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2868 "The current value is %d:\n\n"
2869 " -1: Allow use of (almost) all events by all users\n"
2870 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2871 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2872 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2873 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2874 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2875 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2876 " kernel.perf_event_paranoid = -1\n" ,
2877 target->system_wide ? "system-wide " : "",
2878 perf_event_paranoid());
2879 case ENOENT:
2880 return scnprintf(msg, size, "The %s event is not supported.",
2881 perf_evsel__name(evsel));
2882 case EMFILE:
2883 return scnprintf(msg, size, "%s",
2884 "Too many events are opened.\n"
2885 "Probably the maximum number of open file descriptors has been reached.\n"
2886 "Hint: Try again after reducing the number of events.\n"
2887 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2888 case ENOMEM:
2889 if (evsel__has_callchain(evsel) &&
2890 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2891 return scnprintf(msg, size,
2892 "Not enough memory to setup event with callchain.\n"
2893 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2894 "Hint: Current value: %d", sysctl__max_stack());
2895 break;
2896 case ENODEV:
2897 if (target->cpu_list)
2898 return scnprintf(msg, size, "%s",
2899 "No such device - did you specify an out-of-range profile CPU?");
2900 break;
2901 case EOPNOTSUPP:
2902 if (evsel->attr.sample_period != 0)
2903 return scnprintf(msg, size,
2904 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2905 perf_evsel__name(evsel));
2906 if (evsel->attr.precise_ip)
2907 return scnprintf(msg, size, "%s",
2908 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2909 #if defined(__i386__) || defined(__x86_64__)
2910 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2911 return scnprintf(msg, size, "%s",
2912 "No hardware sampling interrupt available.\n");
2913 #endif
2914 break;
2915 case EBUSY:
2916 if (find_process("oprofiled"))
2917 return scnprintf(msg, size,
2918 "The PMU counters are busy/taken by another profiler.\n"
2919 "We found oprofile daemon running, please stop it and try again.");
2920 break;
2921 case EINVAL:
2922 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2923 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2924 if (perf_missing_features.clockid)
2925 return scnprintf(msg, size, "clockid feature not supported.");
2926 if (perf_missing_features.clockid_wrong)
2927 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2928 break;
2929 default:
2930 break;
2931 }
2932
2933 return scnprintf(msg, size,
2934 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2935 "/bin/dmesg | grep -i perf may provide additional information.\n",
2936 err, str_error_r(err, sbuf, sizeof(sbuf)),
2937 perf_evsel__name(evsel));
2938 }
2939
perf_evsel__env(struct perf_evsel * evsel)2940 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2941 {
2942 if (evsel && evsel->evlist)
2943 return evsel->evlist->env;
2944 return NULL;
2945 }
2946