1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62 struct task_struct *p;
63 remote_function_f func;
64 void *info;
65 int ret;
66 };
67
remote_function(void * data)68 static void remote_function(void *data)
69 {
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly. This will
99 * retry due to any failures in smp_call_function_single(), such as if the
100 * task_cpu() goes offline concurrently.
101 *
102 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
103 */
104 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 struct remote_function_call data = {
108 .p = p,
109 .func = func,
110 .info = info,
111 .ret = -EAGAIN,
112 };
113 int ret;
114
115 for (;;) {
116 ret = smp_call_function_single(task_cpu(p), remote_function,
117 &data, 1);
118 if (!ret)
119 ret = data.ret;
120
121 if (ret != -EAGAIN)
122 break;
123
124 cond_resched();
125 }
126
127 return ret;
128 }
129
130 /**
131 * cpu_function_call - call a function on the cpu
132 * @func: the function to be called
133 * @info: the function call argument
134 *
135 * Calls the function @func on the remote cpu.
136 *
137 * returns: @func return value or -ENXIO when the cpu is offline
138 */
cpu_function_call(int cpu,remote_function_f func,void * info)139 static int cpu_function_call(int cpu, remote_function_f func, void *info)
140 {
141 struct remote_function_call data = {
142 .p = NULL,
143 .func = func,
144 .info = info,
145 .ret = -ENXIO, /* No such CPU */
146 };
147
148 smp_call_function_single(cpu, remote_function, &data, 1);
149
150 return data.ret;
151 }
152
153 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)154 __get_cpu_context(struct perf_event_context *ctx)
155 {
156 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
157 }
158
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)159 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161 {
162 raw_spin_lock(&cpuctx->ctx.lock);
163 if (ctx)
164 raw_spin_lock(&ctx->lock);
165 }
166
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)167 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
168 struct perf_event_context *ctx)
169 {
170 if (ctx)
171 raw_spin_unlock(&ctx->lock);
172 raw_spin_unlock(&cpuctx->ctx.lock);
173 }
174
175 #define TASK_TOMBSTONE ((void *)-1L)
176
is_kernel_event(struct perf_event * event)177 static bool is_kernel_event(struct perf_event *event)
178 {
179 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
180 }
181
182 /*
183 * On task ctx scheduling...
184 *
185 * When !ctx->nr_events a task context will not be scheduled. This means
186 * we can disable the scheduler hooks (for performance) without leaving
187 * pending task ctx state.
188 *
189 * This however results in two special cases:
190 *
191 * - removing the last event from a task ctx; this is relatively straight
192 * forward and is done in __perf_remove_from_context.
193 *
194 * - adding the first event to a task ctx; this is tricky because we cannot
195 * rely on ctx->is_active and therefore cannot use event_function_call().
196 * See perf_install_in_context().
197 *
198 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
199 */
200
201 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
202 struct perf_event_context *, void *);
203
204 struct event_function_struct {
205 struct perf_event *event;
206 event_f func;
207 void *data;
208 };
209
event_function(void * info)210 static int event_function(void *info)
211 {
212 struct event_function_struct *efs = info;
213 struct perf_event *event = efs->event;
214 struct perf_event_context *ctx = event->ctx;
215 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
216 struct perf_event_context *task_ctx = cpuctx->task_ctx;
217 int ret = 0;
218
219 lockdep_assert_irqs_disabled();
220
221 perf_ctx_lock(cpuctx, task_ctx);
222 /*
223 * Since we do the IPI call without holding ctx->lock things can have
224 * changed, double check we hit the task we set out to hit.
225 */
226 if (ctx->task) {
227 if (ctx->task != current) {
228 ret = -ESRCH;
229 goto unlock;
230 }
231
232 /*
233 * We only use event_function_call() on established contexts,
234 * and event_function() is only ever called when active (or
235 * rather, we'll have bailed in task_function_call() or the
236 * above ctx->task != current test), therefore we must have
237 * ctx->is_active here.
238 */
239 WARN_ON_ONCE(!ctx->is_active);
240 /*
241 * And since we have ctx->is_active, cpuctx->task_ctx must
242 * match.
243 */
244 WARN_ON_ONCE(task_ctx != ctx);
245 } else {
246 WARN_ON_ONCE(&cpuctx->ctx != ctx);
247 }
248
249 efs->func(event, cpuctx, ctx, efs->data);
250 unlock:
251 perf_ctx_unlock(cpuctx, task_ctx);
252
253 return ret;
254 }
255
event_function_call(struct perf_event * event,event_f func,void * data)256 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 {
258 struct perf_event_context *ctx = event->ctx;
259 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
260 struct event_function_struct efs = {
261 .event = event,
262 .func = func,
263 .data = data,
264 };
265
266 if (!event->parent) {
267 /*
268 * If this is a !child event, we must hold ctx::mutex to
269 * stabilize the the event->ctx relation. See
270 * perf_event_ctx_lock().
271 */
272 lockdep_assert_held(&ctx->mutex);
273 }
274
275 if (!task) {
276 cpu_function_call(event->cpu, event_function, &efs);
277 return;
278 }
279
280 if (task == TASK_TOMBSTONE)
281 return;
282
283 again:
284 if (!task_function_call(task, event_function, &efs))
285 return;
286
287 raw_spin_lock_irq(&ctx->lock);
288 /*
289 * Reload the task pointer, it might have been changed by
290 * a concurrent perf_event_context_sched_out().
291 */
292 task = ctx->task;
293 if (task == TASK_TOMBSTONE) {
294 raw_spin_unlock_irq(&ctx->lock);
295 return;
296 }
297 if (ctx->is_active) {
298 raw_spin_unlock_irq(&ctx->lock);
299 goto again;
300 }
301 func(event, NULL, ctx, data);
302 raw_spin_unlock_irq(&ctx->lock);
303 }
304
305 /*
306 * Similar to event_function_call() + event_function(), but hard assumes IRQs
307 * are already disabled and we're on the right CPU.
308 */
event_function_local(struct perf_event * event,event_f func,void * data)309 static void event_function_local(struct perf_event *event, event_f func, void *data)
310 {
311 struct perf_event_context *ctx = event->ctx;
312 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
313 struct task_struct *task = READ_ONCE(ctx->task);
314 struct perf_event_context *task_ctx = NULL;
315
316 lockdep_assert_irqs_disabled();
317
318 if (task) {
319 if (task == TASK_TOMBSTONE)
320 return;
321
322 task_ctx = ctx;
323 }
324
325 perf_ctx_lock(cpuctx, task_ctx);
326
327 task = ctx->task;
328 if (task == TASK_TOMBSTONE)
329 goto unlock;
330
331 if (task) {
332 /*
333 * We must be either inactive or active and the right task,
334 * otherwise we're screwed, since we cannot IPI to somewhere
335 * else.
336 */
337 if (ctx->is_active) {
338 if (WARN_ON_ONCE(task != current))
339 goto unlock;
340
341 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
342 goto unlock;
343 }
344 } else {
345 WARN_ON_ONCE(&cpuctx->ctx != ctx);
346 }
347
348 func(event, cpuctx, ctx, data);
349 unlock:
350 perf_ctx_unlock(cpuctx, task_ctx);
351 }
352
353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
354 PERF_FLAG_FD_OUTPUT |\
355 PERF_FLAG_PID_CGROUP |\
356 PERF_FLAG_FD_CLOEXEC)
357
358 /*
359 * branch priv levels that need permission checks
360 */
361 #define PERF_SAMPLE_BRANCH_PERM_PLM \
362 (PERF_SAMPLE_BRANCH_KERNEL |\
363 PERF_SAMPLE_BRANCH_HV)
364
365 enum event_type_t {
366 EVENT_FLEXIBLE = 0x1,
367 EVENT_PINNED = 0x2,
368 EVENT_TIME = 0x4,
369 /* see ctx_resched() for details */
370 EVENT_CPU = 0x8,
371 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
372 };
373
374 /*
375 * perf_sched_events : >0 events exist
376 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
377 */
378
379 static void perf_sched_delayed(struct work_struct *work);
380 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
381 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
382 static DEFINE_MUTEX(perf_sched_mutex);
383 static atomic_t perf_sched_count;
384
385 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394 static atomic_t nr_ksymbol_events __read_mostly;
395 static atomic_t nr_bpf_events __read_mostly;
396 static atomic_t nr_cgroup_events __read_mostly;
397 static atomic_t nr_text_poke_events __read_mostly;
398
399 static LIST_HEAD(pmus);
400 static DEFINE_MUTEX(pmus_lock);
401 static struct srcu_struct pmus_srcu;
402 static cpumask_var_t perf_online_mask;
403
404 /*
405 * perf event paranoia level:
406 * -1 - not paranoid at all
407 * 0 - disallow raw tracepoint access for unpriv
408 * 1 - disallow cpu events for unpriv
409 * 2 - disallow kernel profiling for unpriv
410 */
411 int sysctl_perf_event_paranoid __read_mostly = 2;
412
413 /* Minimum for 512 kiB + 1 user control page */
414 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
415
416 /*
417 * max perf event sample rate
418 */
419 #define DEFAULT_MAX_SAMPLE_RATE 100000
420 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
421 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
422
423 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
424
425 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
426 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
427
428 static int perf_sample_allowed_ns __read_mostly =
429 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
430
update_perf_cpu_limits(void)431 static void update_perf_cpu_limits(void)
432 {
433 u64 tmp = perf_sample_period_ns;
434
435 tmp *= sysctl_perf_cpu_time_max_percent;
436 tmp = div_u64(tmp, 100);
437 if (!tmp)
438 tmp = 1;
439
440 WRITE_ONCE(perf_sample_allowed_ns, tmp);
441 }
442
443 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
444
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)445 int perf_proc_update_handler(struct ctl_table *table, int write,
446 void *buffer, size_t *lenp, loff_t *ppos)
447 {
448 int ret;
449 int perf_cpu = sysctl_perf_cpu_time_max_percent;
450 /*
451 * If throttling is disabled don't allow the write:
452 */
453 if (write && (perf_cpu == 100 || perf_cpu == 0))
454 return -EINVAL;
455
456 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
457 if (ret || !write)
458 return ret;
459
460 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
461 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
462 update_perf_cpu_limits();
463
464 return 0;
465 }
466
467 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)469 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
470 void *buffer, size_t *lenp, loff_t *ppos)
471 {
472 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
473
474 if (ret || !write)
475 return ret;
476
477 if (sysctl_perf_cpu_time_max_percent == 100 ||
478 sysctl_perf_cpu_time_max_percent == 0) {
479 printk(KERN_WARNING
480 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
481 WRITE_ONCE(perf_sample_allowed_ns, 0);
482 } else {
483 update_perf_cpu_limits();
484 }
485
486 return 0;
487 }
488
489 /*
490 * perf samples are done in some very critical code paths (NMIs).
491 * If they take too much CPU time, the system can lock up and not
492 * get any real work done. This will drop the sample rate when
493 * we detect that events are taking too long.
494 */
495 #define NR_ACCUMULATED_SAMPLES 128
496 static DEFINE_PER_CPU(u64, running_sample_length);
497
498 static u64 __report_avg;
499 static u64 __report_allowed;
500
perf_duration_warn(struct irq_work * w)501 static void perf_duration_warn(struct irq_work *w)
502 {
503 printk_ratelimited(KERN_INFO
504 "perf: interrupt took too long (%lld > %lld), lowering "
505 "kernel.perf_event_max_sample_rate to %d\n",
506 __report_avg, __report_allowed,
507 sysctl_perf_event_sample_rate);
508 }
509
510 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
511
perf_sample_event_took(u64 sample_len_ns)512 void perf_sample_event_took(u64 sample_len_ns)
513 {
514 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
515 u64 running_len;
516 u64 avg_len;
517 u32 max;
518
519 if (max_len == 0)
520 return;
521
522 /* Decay the counter by 1 average sample. */
523 running_len = __this_cpu_read(running_sample_length);
524 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
525 running_len += sample_len_ns;
526 __this_cpu_write(running_sample_length, running_len);
527
528 /*
529 * Note: this will be biased artifically low until we have
530 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
531 * from having to maintain a count.
532 */
533 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
534 if (avg_len <= max_len)
535 return;
536
537 __report_avg = avg_len;
538 __report_allowed = max_len;
539
540 /*
541 * Compute a throttle threshold 25% below the current duration.
542 */
543 avg_len += avg_len / 4;
544 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
545 if (avg_len < max)
546 max /= (u32)avg_len;
547 else
548 max = 1;
549
550 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
551 WRITE_ONCE(max_samples_per_tick, max);
552
553 sysctl_perf_event_sample_rate = max * HZ;
554 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
555
556 if (!irq_work_queue(&perf_duration_work)) {
557 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
558 "kernel.perf_event_max_sample_rate to %d\n",
559 __report_avg, __report_allowed,
560 sysctl_perf_event_sample_rate);
561 }
562 }
563
564 static atomic64_t perf_event_id;
565
566 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
567 enum event_type_t event_type);
568
569 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
570 enum event_type_t event_type,
571 struct task_struct *task);
572
573 static void update_context_time(struct perf_event_context *ctx);
574 static u64 perf_event_time(struct perf_event *event);
575
perf_event_print_debug(void)576 void __weak perf_event_print_debug(void) { }
577
perf_pmu_name(void)578 extern __weak const char *perf_pmu_name(void)
579 {
580 return "pmu";
581 }
582
perf_clock(void)583 static inline u64 perf_clock(void)
584 {
585 return local_clock();
586 }
587
perf_event_clock(struct perf_event * event)588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590 return event->clock();
591 }
592
593 /*
594 * State based event timekeeping...
595 *
596 * The basic idea is to use event->state to determine which (if any) time
597 * fields to increment with the current delta. This means we only need to
598 * update timestamps when we change state or when they are explicitly requested
599 * (read).
600 *
601 * Event groups make things a little more complicated, but not terribly so. The
602 * rules for a group are that if the group leader is OFF the entire group is
603 * OFF, irrespecive of what the group member states are. This results in
604 * __perf_effective_state().
605 *
606 * A futher ramification is that when a group leader flips between OFF and
607 * !OFF, we need to update all group member times.
608 *
609 *
610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611 * need to make sure the relevant context time is updated before we try and
612 * update our timestamps.
613 */
614
615 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)616 __perf_effective_state(struct perf_event *event)
617 {
618 struct perf_event *leader = event->group_leader;
619
620 if (leader->state <= PERF_EVENT_STATE_OFF)
621 return leader->state;
622
623 return event->state;
624 }
625
626 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629 enum perf_event_state state = __perf_effective_state(event);
630 u64 delta = now - event->tstamp;
631
632 *enabled = event->total_time_enabled;
633 if (state >= PERF_EVENT_STATE_INACTIVE)
634 *enabled += delta;
635
636 *running = event->total_time_running;
637 if (state >= PERF_EVENT_STATE_ACTIVE)
638 *running += delta;
639 }
640
perf_event_update_time(struct perf_event * event)641 static void perf_event_update_time(struct perf_event *event)
642 {
643 u64 now = perf_event_time(event);
644
645 __perf_update_times(event, now, &event->total_time_enabled,
646 &event->total_time_running);
647 event->tstamp = now;
648 }
649
perf_event_update_sibling_time(struct perf_event * leader)650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652 struct perf_event *sibling;
653
654 for_each_sibling_event(sibling, leader)
655 perf_event_update_time(sibling);
656 }
657
658 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661 if (event->state == state)
662 return;
663
664 perf_event_update_time(event);
665 /*
666 * If a group leader gets enabled/disabled all its siblings
667 * are affected too.
668 */
669 if ((event->state < 0) ^ (state < 0))
670 perf_event_update_sibling_time(event);
671
672 WRITE_ONCE(event->state, state);
673 }
674
675 #ifdef CONFIG_CGROUP_PERF
676
677 static inline bool
perf_cgroup_match(struct perf_event * event)678 perf_cgroup_match(struct perf_event *event)
679 {
680 struct perf_event_context *ctx = event->ctx;
681 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
682
683 /* @event doesn't care about cgroup */
684 if (!event->cgrp)
685 return true;
686
687 /* wants specific cgroup scope but @cpuctx isn't associated with any */
688 if (!cpuctx->cgrp)
689 return false;
690
691 /*
692 * Cgroup scoping is recursive. An event enabled for a cgroup is
693 * also enabled for all its descendant cgroups. If @cpuctx's
694 * cgroup is a descendant of @event's (the test covers identity
695 * case), it's a match.
696 */
697 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
698 event->cgrp->css.cgroup);
699 }
700
perf_detach_cgroup(struct perf_event * event)701 static inline void perf_detach_cgroup(struct perf_event *event)
702 {
703 css_put(&event->cgrp->css);
704 event->cgrp = NULL;
705 }
706
is_cgroup_event(struct perf_event * event)707 static inline int is_cgroup_event(struct perf_event *event)
708 {
709 return event->cgrp != NULL;
710 }
711
perf_cgroup_event_time(struct perf_event * event)712 static inline u64 perf_cgroup_event_time(struct perf_event *event)
713 {
714 struct perf_cgroup_info *t;
715
716 t = per_cpu_ptr(event->cgrp->info, event->cpu);
717 return t->time;
718 }
719
__update_cgrp_time(struct perf_cgroup * cgrp)720 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
721 {
722 struct perf_cgroup_info *info;
723 u64 now;
724
725 now = perf_clock();
726
727 info = this_cpu_ptr(cgrp->info);
728
729 info->time += now - info->timestamp;
730 info->timestamp = now;
731 }
732
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)733 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
734 {
735 struct perf_cgroup *cgrp = cpuctx->cgrp;
736 struct cgroup_subsys_state *css;
737
738 if (cgrp) {
739 for (css = &cgrp->css; css; css = css->parent) {
740 cgrp = container_of(css, struct perf_cgroup, css);
741 __update_cgrp_time(cgrp);
742 }
743 }
744 }
745
update_cgrp_time_from_event(struct perf_event * event)746 static inline void update_cgrp_time_from_event(struct perf_event *event)
747 {
748 struct perf_cgroup *cgrp;
749
750 /*
751 * ensure we access cgroup data only when needed and
752 * when we know the cgroup is pinned (css_get)
753 */
754 if (!is_cgroup_event(event))
755 return;
756
757 cgrp = perf_cgroup_from_task(current, event->ctx);
758 /*
759 * Do not update time when cgroup is not active
760 */
761 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
762 __update_cgrp_time(event->cgrp);
763 }
764
765 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)766 perf_cgroup_set_timestamp(struct task_struct *task,
767 struct perf_event_context *ctx)
768 {
769 struct perf_cgroup *cgrp;
770 struct perf_cgroup_info *info;
771 struct cgroup_subsys_state *css;
772
773 /*
774 * ctx->lock held by caller
775 * ensure we do not access cgroup data
776 * unless we have the cgroup pinned (css_get)
777 */
778 if (!task || !ctx->nr_cgroups)
779 return;
780
781 cgrp = perf_cgroup_from_task(task, ctx);
782
783 for (css = &cgrp->css; css; css = css->parent) {
784 cgrp = container_of(css, struct perf_cgroup, css);
785 info = this_cpu_ptr(cgrp->info);
786 info->timestamp = ctx->timestamp;
787 }
788 }
789
790 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
791
792 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
793 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
794
795 /*
796 * reschedule events based on the cgroup constraint of task.
797 *
798 * mode SWOUT : schedule out everything
799 * mode SWIN : schedule in based on cgroup for next
800 */
perf_cgroup_switch(struct task_struct * task,int mode)801 static void perf_cgroup_switch(struct task_struct *task, int mode)
802 {
803 struct perf_cpu_context *cpuctx;
804 struct list_head *list;
805 unsigned long flags;
806
807 /*
808 * Disable interrupts and preemption to avoid this CPU's
809 * cgrp_cpuctx_entry to change under us.
810 */
811 local_irq_save(flags);
812
813 list = this_cpu_ptr(&cgrp_cpuctx_list);
814 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
815 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
816
817 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
818 perf_pmu_disable(cpuctx->ctx.pmu);
819
820 if (mode & PERF_CGROUP_SWOUT) {
821 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
822 /*
823 * must not be done before ctxswout due
824 * to event_filter_match() in event_sched_out()
825 */
826 cpuctx->cgrp = NULL;
827 }
828
829 if (mode & PERF_CGROUP_SWIN) {
830 WARN_ON_ONCE(cpuctx->cgrp);
831 /*
832 * set cgrp before ctxsw in to allow
833 * event_filter_match() to not have to pass
834 * task around
835 * we pass the cpuctx->ctx to perf_cgroup_from_task()
836 * because cgorup events are only per-cpu
837 */
838 cpuctx->cgrp = perf_cgroup_from_task(task,
839 &cpuctx->ctx);
840 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
841 }
842 perf_pmu_enable(cpuctx->ctx.pmu);
843 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
844 }
845
846 local_irq_restore(flags);
847 }
848
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)849 static inline void perf_cgroup_sched_out(struct task_struct *task,
850 struct task_struct *next)
851 {
852 struct perf_cgroup *cgrp1;
853 struct perf_cgroup *cgrp2 = NULL;
854
855 rcu_read_lock();
856 /*
857 * we come here when we know perf_cgroup_events > 0
858 * we do not need to pass the ctx here because we know
859 * we are holding the rcu lock
860 */
861 cgrp1 = perf_cgroup_from_task(task, NULL);
862 cgrp2 = perf_cgroup_from_task(next, NULL);
863
864 /*
865 * only schedule out current cgroup events if we know
866 * that we are switching to a different cgroup. Otherwise,
867 * do no touch the cgroup events.
868 */
869 if (cgrp1 != cgrp2)
870 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
871
872 rcu_read_unlock();
873 }
874
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)875 static inline void perf_cgroup_sched_in(struct task_struct *prev,
876 struct task_struct *task)
877 {
878 struct perf_cgroup *cgrp1;
879 struct perf_cgroup *cgrp2 = NULL;
880
881 rcu_read_lock();
882 /*
883 * we come here when we know perf_cgroup_events > 0
884 * we do not need to pass the ctx here because we know
885 * we are holding the rcu lock
886 */
887 cgrp1 = perf_cgroup_from_task(task, NULL);
888 cgrp2 = perf_cgroup_from_task(prev, NULL);
889
890 /*
891 * only need to schedule in cgroup events if we are changing
892 * cgroup during ctxsw. Cgroup events were not scheduled
893 * out of ctxsw out if that was not the case.
894 */
895 if (cgrp1 != cgrp2)
896 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
897
898 rcu_read_unlock();
899 }
900
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)901 static int perf_cgroup_ensure_storage(struct perf_event *event,
902 struct cgroup_subsys_state *css)
903 {
904 struct perf_cpu_context *cpuctx;
905 struct perf_event **storage;
906 int cpu, heap_size, ret = 0;
907
908 /*
909 * Allow storage to have sufficent space for an iterator for each
910 * possibly nested cgroup plus an iterator for events with no cgroup.
911 */
912 for (heap_size = 1; css; css = css->parent)
913 heap_size++;
914
915 for_each_possible_cpu(cpu) {
916 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
917 if (heap_size <= cpuctx->heap_size)
918 continue;
919
920 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
921 GFP_KERNEL, cpu_to_node(cpu));
922 if (!storage) {
923 ret = -ENOMEM;
924 break;
925 }
926
927 raw_spin_lock_irq(&cpuctx->ctx.lock);
928 if (cpuctx->heap_size < heap_size) {
929 swap(cpuctx->heap, storage);
930 if (storage == cpuctx->heap_default)
931 storage = NULL;
932 cpuctx->heap_size = heap_size;
933 }
934 raw_spin_unlock_irq(&cpuctx->ctx.lock);
935
936 kfree(storage);
937 }
938
939 return ret;
940 }
941
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)942 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
943 struct perf_event_attr *attr,
944 struct perf_event *group_leader)
945 {
946 struct perf_cgroup *cgrp;
947 struct cgroup_subsys_state *css;
948 struct fd f = fdget(fd);
949 int ret = 0;
950
951 if (!f.file)
952 return -EBADF;
953
954 css = css_tryget_online_from_dir(f.file->f_path.dentry,
955 &perf_event_cgrp_subsys);
956 if (IS_ERR(css)) {
957 ret = PTR_ERR(css);
958 goto out;
959 }
960
961 ret = perf_cgroup_ensure_storage(event, css);
962 if (ret)
963 goto out;
964
965 cgrp = container_of(css, struct perf_cgroup, css);
966 event->cgrp = cgrp;
967
968 /*
969 * all events in a group must monitor
970 * the same cgroup because a task belongs
971 * to only one perf cgroup at a time
972 */
973 if (group_leader && group_leader->cgrp != cgrp) {
974 perf_detach_cgroup(event);
975 ret = -EINVAL;
976 }
977 out:
978 fdput(f);
979 return ret;
980 }
981
982 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)983 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
984 {
985 struct perf_cgroup_info *t;
986 t = per_cpu_ptr(event->cgrp->info, event->cpu);
987 event->shadow_ctx_time = now - t->timestamp;
988 }
989
990 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)991 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
992 {
993 struct perf_cpu_context *cpuctx;
994
995 if (!is_cgroup_event(event))
996 return;
997
998 /*
999 * Because cgroup events are always per-cpu events,
1000 * @ctx == &cpuctx->ctx.
1001 */
1002 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1003
1004 /*
1005 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006 * matching the event's cgroup, we must do this for every new event,
1007 * because if the first would mismatch, the second would not try again
1008 * and we would leave cpuctx->cgrp unset.
1009 */
1010 if (ctx->is_active && !cpuctx->cgrp) {
1011 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012
1013 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014 cpuctx->cgrp = cgrp;
1015 }
1016
1017 if (ctx->nr_cgroups++)
1018 return;
1019
1020 list_add(&cpuctx->cgrp_cpuctx_entry,
1021 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1022 }
1023
1024 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1025 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1026 {
1027 struct perf_cpu_context *cpuctx;
1028
1029 if (!is_cgroup_event(event))
1030 return;
1031
1032 /*
1033 * Because cgroup events are always per-cpu events,
1034 * @ctx == &cpuctx->ctx.
1035 */
1036 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037
1038 if (--ctx->nr_cgroups)
1039 return;
1040
1041 if (ctx->is_active && cpuctx->cgrp)
1042 cpuctx->cgrp = NULL;
1043
1044 list_del(&cpuctx->cgrp_cpuctx_entry);
1045 }
1046
1047 #else /* !CONFIG_CGROUP_PERF */
1048
1049 static inline bool
perf_cgroup_match(struct perf_event * event)1050 perf_cgroup_match(struct perf_event *event)
1051 {
1052 return true;
1053 }
1054
perf_detach_cgroup(struct perf_event * event)1055 static inline void perf_detach_cgroup(struct perf_event *event)
1056 {}
1057
is_cgroup_event(struct perf_event * event)1058 static inline int is_cgroup_event(struct perf_event *event)
1059 {
1060 return 0;
1061 }
1062
update_cgrp_time_from_event(struct perf_event * event)1063 static inline void update_cgrp_time_from_event(struct perf_event *event)
1064 {
1065 }
1066
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1068 {
1069 }
1070
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1071 static inline void perf_cgroup_sched_out(struct task_struct *task,
1072 struct task_struct *next)
1073 {
1074 }
1075
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1076 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1077 struct task_struct *task)
1078 {
1079 }
1080
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1081 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1082 struct perf_event_attr *attr,
1083 struct perf_event *group_leader)
1084 {
1085 return -EINVAL;
1086 }
1087
1088 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1089 perf_cgroup_set_timestamp(struct task_struct *task,
1090 struct perf_event_context *ctx)
1091 {
1092 }
1093
1094 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1095 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1096 {
1097 }
1098
1099 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)1100 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1101 {
1102 }
1103
perf_cgroup_event_time(struct perf_event * event)1104 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1105 {
1106 return 0;
1107 }
1108
1109 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1110 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1111 {
1112 }
1113
1114 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1115 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1116 {
1117 }
1118 #endif
1119
1120 /*
1121 * set default to be dependent on timer tick just
1122 * like original code
1123 */
1124 #define PERF_CPU_HRTIMER (1000 / HZ)
1125 /*
1126 * function must be called with interrupts disabled
1127 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1128 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1129 {
1130 struct perf_cpu_context *cpuctx;
1131 bool rotations;
1132
1133 lockdep_assert_irqs_disabled();
1134
1135 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1136 rotations = perf_rotate_context(cpuctx);
1137
1138 raw_spin_lock(&cpuctx->hrtimer_lock);
1139 if (rotations)
1140 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1141 else
1142 cpuctx->hrtimer_active = 0;
1143 raw_spin_unlock(&cpuctx->hrtimer_lock);
1144
1145 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1146 }
1147
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1148 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1149 {
1150 struct hrtimer *timer = &cpuctx->hrtimer;
1151 struct pmu *pmu = cpuctx->ctx.pmu;
1152 u64 interval;
1153
1154 /* no multiplexing needed for SW PMU */
1155 if (pmu->task_ctx_nr == perf_sw_context)
1156 return;
1157
1158 /*
1159 * check default is sane, if not set then force to
1160 * default interval (1/tick)
1161 */
1162 interval = pmu->hrtimer_interval_ms;
1163 if (interval < 1)
1164 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1165
1166 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1167
1168 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1169 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1170 timer->function = perf_mux_hrtimer_handler;
1171 }
1172
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1173 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1174 {
1175 struct hrtimer *timer = &cpuctx->hrtimer;
1176 struct pmu *pmu = cpuctx->ctx.pmu;
1177 unsigned long flags;
1178
1179 /* not for SW PMU */
1180 if (pmu->task_ctx_nr == perf_sw_context)
1181 return 0;
1182
1183 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1184 if (!cpuctx->hrtimer_active) {
1185 cpuctx->hrtimer_active = 1;
1186 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1187 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1188 }
1189 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1190
1191 return 0;
1192 }
1193
perf_pmu_disable(struct pmu * pmu)1194 void perf_pmu_disable(struct pmu *pmu)
1195 {
1196 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1197 if (!(*count)++)
1198 pmu->pmu_disable(pmu);
1199 }
1200
perf_pmu_enable(struct pmu * pmu)1201 void perf_pmu_enable(struct pmu *pmu)
1202 {
1203 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204 if (!--(*count))
1205 pmu->pmu_enable(pmu);
1206 }
1207
1208 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1209
1210 /*
1211 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1212 * perf_event_task_tick() are fully serialized because they're strictly cpu
1213 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1214 * disabled, while perf_event_task_tick is called from IRQ context.
1215 */
perf_event_ctx_activate(struct perf_event_context * ctx)1216 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1217 {
1218 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1219
1220 lockdep_assert_irqs_disabled();
1221
1222 WARN_ON(!list_empty(&ctx->active_ctx_list));
1223
1224 list_add(&ctx->active_ctx_list, head);
1225 }
1226
perf_event_ctx_deactivate(struct perf_event_context * ctx)1227 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1228 {
1229 lockdep_assert_irqs_disabled();
1230
1231 WARN_ON(list_empty(&ctx->active_ctx_list));
1232
1233 list_del_init(&ctx->active_ctx_list);
1234 }
1235
get_ctx(struct perf_event_context * ctx)1236 static void get_ctx(struct perf_event_context *ctx)
1237 {
1238 refcount_inc(&ctx->refcount);
1239 }
1240
alloc_task_ctx_data(struct pmu * pmu)1241 static void *alloc_task_ctx_data(struct pmu *pmu)
1242 {
1243 if (pmu->task_ctx_cache)
1244 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1245
1246 return NULL;
1247 }
1248
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1249 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1250 {
1251 if (pmu->task_ctx_cache && task_ctx_data)
1252 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1253 }
1254
free_ctx(struct rcu_head * head)1255 static void free_ctx(struct rcu_head *head)
1256 {
1257 struct perf_event_context *ctx;
1258
1259 ctx = container_of(head, struct perf_event_context, rcu_head);
1260 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1261 kfree(ctx);
1262 }
1263
put_ctx(struct perf_event_context * ctx)1264 static void put_ctx(struct perf_event_context *ctx)
1265 {
1266 if (refcount_dec_and_test(&ctx->refcount)) {
1267 if (ctx->parent_ctx)
1268 put_ctx(ctx->parent_ctx);
1269 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1270 put_task_struct(ctx->task);
1271 call_rcu(&ctx->rcu_head, free_ctx);
1272 }
1273 }
1274
1275 /*
1276 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1277 * perf_pmu_migrate_context() we need some magic.
1278 *
1279 * Those places that change perf_event::ctx will hold both
1280 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1281 *
1282 * Lock ordering is by mutex address. There are two other sites where
1283 * perf_event_context::mutex nests and those are:
1284 *
1285 * - perf_event_exit_task_context() [ child , 0 ]
1286 * perf_event_exit_event()
1287 * put_event() [ parent, 1 ]
1288 *
1289 * - perf_event_init_context() [ parent, 0 ]
1290 * inherit_task_group()
1291 * inherit_group()
1292 * inherit_event()
1293 * perf_event_alloc()
1294 * perf_init_event()
1295 * perf_try_init_event() [ child , 1 ]
1296 *
1297 * While it appears there is an obvious deadlock here -- the parent and child
1298 * nesting levels are inverted between the two. This is in fact safe because
1299 * life-time rules separate them. That is an exiting task cannot fork, and a
1300 * spawning task cannot (yet) exit.
1301 *
1302 * But remember that that these are parent<->child context relations, and
1303 * migration does not affect children, therefore these two orderings should not
1304 * interact.
1305 *
1306 * The change in perf_event::ctx does not affect children (as claimed above)
1307 * because the sys_perf_event_open() case will install a new event and break
1308 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1309 * concerned with cpuctx and that doesn't have children.
1310 *
1311 * The places that change perf_event::ctx will issue:
1312 *
1313 * perf_remove_from_context();
1314 * synchronize_rcu();
1315 * perf_install_in_context();
1316 *
1317 * to affect the change. The remove_from_context() + synchronize_rcu() should
1318 * quiesce the event, after which we can install it in the new location. This
1319 * means that only external vectors (perf_fops, prctl) can perturb the event
1320 * while in transit. Therefore all such accessors should also acquire
1321 * perf_event_context::mutex to serialize against this.
1322 *
1323 * However; because event->ctx can change while we're waiting to acquire
1324 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1325 * function.
1326 *
1327 * Lock order:
1328 * exec_update_mutex
1329 * task_struct::perf_event_mutex
1330 * perf_event_context::mutex
1331 * perf_event::child_mutex;
1332 * perf_event_context::lock
1333 * perf_event::mmap_mutex
1334 * mmap_lock
1335 * perf_addr_filters_head::lock
1336 *
1337 * cpu_hotplug_lock
1338 * pmus_lock
1339 * cpuctx->mutex / perf_event_context::mutex
1340 */
1341 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1342 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1343 {
1344 struct perf_event_context *ctx;
1345
1346 again:
1347 rcu_read_lock();
1348 ctx = READ_ONCE(event->ctx);
1349 if (!refcount_inc_not_zero(&ctx->refcount)) {
1350 rcu_read_unlock();
1351 goto again;
1352 }
1353 rcu_read_unlock();
1354
1355 mutex_lock_nested(&ctx->mutex, nesting);
1356 if (event->ctx != ctx) {
1357 mutex_unlock(&ctx->mutex);
1358 put_ctx(ctx);
1359 goto again;
1360 }
1361
1362 return ctx;
1363 }
1364
1365 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1366 perf_event_ctx_lock(struct perf_event *event)
1367 {
1368 return perf_event_ctx_lock_nested(event, 0);
1369 }
1370
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1371 static void perf_event_ctx_unlock(struct perf_event *event,
1372 struct perf_event_context *ctx)
1373 {
1374 mutex_unlock(&ctx->mutex);
1375 put_ctx(ctx);
1376 }
1377
1378 /*
1379 * This must be done under the ctx->lock, such as to serialize against
1380 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1381 * calling scheduler related locks and ctx->lock nests inside those.
1382 */
1383 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1384 unclone_ctx(struct perf_event_context *ctx)
1385 {
1386 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1387
1388 lockdep_assert_held(&ctx->lock);
1389
1390 if (parent_ctx)
1391 ctx->parent_ctx = NULL;
1392 ctx->generation++;
1393
1394 return parent_ctx;
1395 }
1396
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1397 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1398 enum pid_type type)
1399 {
1400 u32 nr;
1401 /*
1402 * only top level events have the pid namespace they were created in
1403 */
1404 if (event->parent)
1405 event = event->parent;
1406
1407 nr = __task_pid_nr_ns(p, type, event->ns);
1408 /* avoid -1 if it is idle thread or runs in another ns */
1409 if (!nr && !pid_alive(p))
1410 nr = -1;
1411 return nr;
1412 }
1413
perf_event_pid(struct perf_event * event,struct task_struct * p)1414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1415 {
1416 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1417 }
1418
perf_event_tid(struct perf_event * event,struct task_struct * p)1419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1420 {
1421 return perf_event_pid_type(event, p, PIDTYPE_PID);
1422 }
1423
1424 /*
1425 * If we inherit events we want to return the parent event id
1426 * to userspace.
1427 */
primary_event_id(struct perf_event * event)1428 static u64 primary_event_id(struct perf_event *event)
1429 {
1430 u64 id = event->id;
1431
1432 if (event->parent)
1433 id = event->parent->id;
1434
1435 return id;
1436 }
1437
1438 /*
1439 * Get the perf_event_context for a task and lock it.
1440 *
1441 * This has to cope with with the fact that until it is locked,
1442 * the context could get moved to another task.
1443 */
1444 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1445 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1446 {
1447 struct perf_event_context *ctx;
1448
1449 retry:
1450 /*
1451 * One of the few rules of preemptible RCU is that one cannot do
1452 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1453 * part of the read side critical section was irqs-enabled -- see
1454 * rcu_read_unlock_special().
1455 *
1456 * Since ctx->lock nests under rq->lock we must ensure the entire read
1457 * side critical section has interrupts disabled.
1458 */
1459 local_irq_save(*flags);
1460 rcu_read_lock();
1461 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1462 if (ctx) {
1463 /*
1464 * If this context is a clone of another, it might
1465 * get swapped for another underneath us by
1466 * perf_event_task_sched_out, though the
1467 * rcu_read_lock() protects us from any context
1468 * getting freed. Lock the context and check if it
1469 * got swapped before we could get the lock, and retry
1470 * if so. If we locked the right context, then it
1471 * can't get swapped on us any more.
1472 */
1473 raw_spin_lock(&ctx->lock);
1474 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1475 raw_spin_unlock(&ctx->lock);
1476 rcu_read_unlock();
1477 local_irq_restore(*flags);
1478 goto retry;
1479 }
1480
1481 if (ctx->task == TASK_TOMBSTONE ||
1482 !refcount_inc_not_zero(&ctx->refcount)) {
1483 raw_spin_unlock(&ctx->lock);
1484 ctx = NULL;
1485 } else {
1486 WARN_ON_ONCE(ctx->task != task);
1487 }
1488 }
1489 rcu_read_unlock();
1490 if (!ctx)
1491 local_irq_restore(*flags);
1492 return ctx;
1493 }
1494
1495 /*
1496 * Get the context for a task and increment its pin_count so it
1497 * can't get swapped to another task. This also increments its
1498 * reference count so that the context can't get freed.
1499 */
1500 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1501 perf_pin_task_context(struct task_struct *task, int ctxn)
1502 {
1503 struct perf_event_context *ctx;
1504 unsigned long flags;
1505
1506 ctx = perf_lock_task_context(task, ctxn, &flags);
1507 if (ctx) {
1508 ++ctx->pin_count;
1509 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1510 }
1511 return ctx;
1512 }
1513
perf_unpin_context(struct perf_event_context * ctx)1514 static void perf_unpin_context(struct perf_event_context *ctx)
1515 {
1516 unsigned long flags;
1517
1518 raw_spin_lock_irqsave(&ctx->lock, flags);
1519 --ctx->pin_count;
1520 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1521 }
1522
1523 /*
1524 * Update the record of the current time in a context.
1525 */
update_context_time(struct perf_event_context * ctx)1526 static void update_context_time(struct perf_event_context *ctx)
1527 {
1528 u64 now = perf_clock();
1529
1530 ctx->time += now - ctx->timestamp;
1531 ctx->timestamp = now;
1532 }
1533
perf_event_time(struct perf_event * event)1534 static u64 perf_event_time(struct perf_event *event)
1535 {
1536 struct perf_event_context *ctx = event->ctx;
1537
1538 if (is_cgroup_event(event))
1539 return perf_cgroup_event_time(event);
1540
1541 return ctx ? ctx->time : 0;
1542 }
1543
get_event_type(struct perf_event * event)1544 static enum event_type_t get_event_type(struct perf_event *event)
1545 {
1546 struct perf_event_context *ctx = event->ctx;
1547 enum event_type_t event_type;
1548
1549 lockdep_assert_held(&ctx->lock);
1550
1551 /*
1552 * It's 'group type', really, because if our group leader is
1553 * pinned, so are we.
1554 */
1555 if (event->group_leader != event)
1556 event = event->group_leader;
1557
1558 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1559 if (!ctx->task)
1560 event_type |= EVENT_CPU;
1561
1562 return event_type;
1563 }
1564
1565 /*
1566 * Helper function to initialize event group nodes.
1567 */
init_event_group(struct perf_event * event)1568 static void init_event_group(struct perf_event *event)
1569 {
1570 RB_CLEAR_NODE(&event->group_node);
1571 event->group_index = 0;
1572 }
1573
1574 /*
1575 * Extract pinned or flexible groups from the context
1576 * based on event attrs bits.
1577 */
1578 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1579 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1580 {
1581 if (event->attr.pinned)
1582 return &ctx->pinned_groups;
1583 else
1584 return &ctx->flexible_groups;
1585 }
1586
1587 /*
1588 * Helper function to initializes perf_event_group trees.
1589 */
perf_event_groups_init(struct perf_event_groups * groups)1590 static void perf_event_groups_init(struct perf_event_groups *groups)
1591 {
1592 groups->tree = RB_ROOT;
1593 groups->index = 0;
1594 }
1595
1596 /*
1597 * Compare function for event groups;
1598 *
1599 * Implements complex key that first sorts by CPU and then by virtual index
1600 * which provides ordering when rotating groups for the same CPU.
1601 */
1602 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1603 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1604 {
1605 if (left->cpu < right->cpu)
1606 return true;
1607 if (left->cpu > right->cpu)
1608 return false;
1609
1610 #ifdef CONFIG_CGROUP_PERF
1611 if (left->cgrp != right->cgrp) {
1612 if (!left->cgrp || !left->cgrp->css.cgroup) {
1613 /*
1614 * Left has no cgroup but right does, no cgroups come
1615 * first.
1616 */
1617 return true;
1618 }
1619 if (!right->cgrp || !right->cgrp->css.cgroup) {
1620 /*
1621 * Right has no cgroup but left does, no cgroups come
1622 * first.
1623 */
1624 return false;
1625 }
1626 /* Two dissimilar cgroups, order by id. */
1627 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1628 return true;
1629
1630 return false;
1631 }
1632 #endif
1633
1634 if (left->group_index < right->group_index)
1635 return true;
1636 if (left->group_index > right->group_index)
1637 return false;
1638
1639 return false;
1640 }
1641
1642 /*
1643 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1644 * key (see perf_event_groups_less). This places it last inside the CPU
1645 * subtree.
1646 */
1647 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1648 perf_event_groups_insert(struct perf_event_groups *groups,
1649 struct perf_event *event)
1650 {
1651 struct perf_event *node_event;
1652 struct rb_node *parent;
1653 struct rb_node **node;
1654
1655 event->group_index = ++groups->index;
1656
1657 node = &groups->tree.rb_node;
1658 parent = *node;
1659
1660 while (*node) {
1661 parent = *node;
1662 node_event = container_of(*node, struct perf_event, group_node);
1663
1664 if (perf_event_groups_less(event, node_event))
1665 node = &parent->rb_left;
1666 else
1667 node = &parent->rb_right;
1668 }
1669
1670 rb_link_node(&event->group_node, parent, node);
1671 rb_insert_color(&event->group_node, &groups->tree);
1672 }
1673
1674 /*
1675 * Helper function to insert event into the pinned or flexible groups.
1676 */
1677 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1678 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680 struct perf_event_groups *groups;
1681
1682 groups = get_event_groups(event, ctx);
1683 perf_event_groups_insert(groups, event);
1684 }
1685
1686 /*
1687 * Delete a group from a tree.
1688 */
1689 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1690 perf_event_groups_delete(struct perf_event_groups *groups,
1691 struct perf_event *event)
1692 {
1693 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1694 RB_EMPTY_ROOT(&groups->tree));
1695
1696 rb_erase(&event->group_node, &groups->tree);
1697 init_event_group(event);
1698 }
1699
1700 /*
1701 * Helper function to delete event from its groups.
1702 */
1703 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1704 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1705 {
1706 struct perf_event_groups *groups;
1707
1708 groups = get_event_groups(event, ctx);
1709 perf_event_groups_delete(groups, event);
1710 }
1711
1712 /*
1713 * Get the leftmost event in the cpu/cgroup subtree.
1714 */
1715 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct cgroup * cgrp)1716 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1717 struct cgroup *cgrp)
1718 {
1719 struct perf_event *node_event = NULL, *match = NULL;
1720 struct rb_node *node = groups->tree.rb_node;
1721 #ifdef CONFIG_CGROUP_PERF
1722 u64 node_cgrp_id, cgrp_id = 0;
1723
1724 if (cgrp)
1725 cgrp_id = cgrp->kn->id;
1726 #endif
1727
1728 while (node) {
1729 node_event = container_of(node, struct perf_event, group_node);
1730
1731 if (cpu < node_event->cpu) {
1732 node = node->rb_left;
1733 continue;
1734 }
1735 if (cpu > node_event->cpu) {
1736 node = node->rb_right;
1737 continue;
1738 }
1739 #ifdef CONFIG_CGROUP_PERF
1740 node_cgrp_id = 0;
1741 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1742 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1743
1744 if (cgrp_id < node_cgrp_id) {
1745 node = node->rb_left;
1746 continue;
1747 }
1748 if (cgrp_id > node_cgrp_id) {
1749 node = node->rb_right;
1750 continue;
1751 }
1752 #endif
1753 match = node_event;
1754 node = node->rb_left;
1755 }
1756
1757 return match;
1758 }
1759
1760 /*
1761 * Like rb_entry_next_safe() for the @cpu subtree.
1762 */
1763 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1764 perf_event_groups_next(struct perf_event *event)
1765 {
1766 struct perf_event *next;
1767 #ifdef CONFIG_CGROUP_PERF
1768 u64 curr_cgrp_id = 0;
1769 u64 next_cgrp_id = 0;
1770 #endif
1771
1772 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1773 if (next == NULL || next->cpu != event->cpu)
1774 return NULL;
1775
1776 #ifdef CONFIG_CGROUP_PERF
1777 if (event->cgrp && event->cgrp->css.cgroup)
1778 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1779
1780 if (next->cgrp && next->cgrp->css.cgroup)
1781 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1782
1783 if (curr_cgrp_id != next_cgrp_id)
1784 return NULL;
1785 #endif
1786 return next;
1787 }
1788
1789 /*
1790 * Iterate through the whole groups tree.
1791 */
1792 #define perf_event_groups_for_each(event, groups) \
1793 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1794 typeof(*event), group_node); event; \
1795 event = rb_entry_safe(rb_next(&event->group_node), \
1796 typeof(*event), group_node))
1797
1798 /*
1799 * Add an event from the lists for its context.
1800 * Must be called with ctx->mutex and ctx->lock held.
1801 */
1802 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1803 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1804 {
1805 lockdep_assert_held(&ctx->lock);
1806
1807 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1808 event->attach_state |= PERF_ATTACH_CONTEXT;
1809
1810 event->tstamp = perf_event_time(event);
1811
1812 /*
1813 * If we're a stand alone event or group leader, we go to the context
1814 * list, group events are kept attached to the group so that
1815 * perf_group_detach can, at all times, locate all siblings.
1816 */
1817 if (event->group_leader == event) {
1818 event->group_caps = event->event_caps;
1819 add_event_to_groups(event, ctx);
1820 }
1821
1822 list_add_rcu(&event->event_entry, &ctx->event_list);
1823 ctx->nr_events++;
1824 if (event->attr.inherit_stat)
1825 ctx->nr_stat++;
1826
1827 if (event->state > PERF_EVENT_STATE_OFF)
1828 perf_cgroup_event_enable(event, ctx);
1829
1830 ctx->generation++;
1831 }
1832
1833 /*
1834 * Initialize event state based on the perf_event_attr::disabled.
1835 */
perf_event__state_init(struct perf_event * event)1836 static inline void perf_event__state_init(struct perf_event *event)
1837 {
1838 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1839 PERF_EVENT_STATE_INACTIVE;
1840 }
1841
__perf_event_read_size(struct perf_event * event,int nr_siblings)1842 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1843 {
1844 int entry = sizeof(u64); /* value */
1845 int size = 0;
1846 int nr = 1;
1847
1848 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1849 size += sizeof(u64);
1850
1851 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1852 size += sizeof(u64);
1853
1854 if (event->attr.read_format & PERF_FORMAT_ID)
1855 entry += sizeof(u64);
1856
1857 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1858 nr += nr_siblings;
1859 size += sizeof(u64);
1860 }
1861
1862 size += entry * nr;
1863 event->read_size = size;
1864 }
1865
__perf_event_header_size(struct perf_event * event,u64 sample_type)1866 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1867 {
1868 struct perf_sample_data *data;
1869 u16 size = 0;
1870
1871 if (sample_type & PERF_SAMPLE_IP)
1872 size += sizeof(data->ip);
1873
1874 if (sample_type & PERF_SAMPLE_ADDR)
1875 size += sizeof(data->addr);
1876
1877 if (sample_type & PERF_SAMPLE_PERIOD)
1878 size += sizeof(data->period);
1879
1880 if (sample_type & PERF_SAMPLE_WEIGHT)
1881 size += sizeof(data->weight);
1882
1883 if (sample_type & PERF_SAMPLE_READ)
1884 size += event->read_size;
1885
1886 if (sample_type & PERF_SAMPLE_DATA_SRC)
1887 size += sizeof(data->data_src.val);
1888
1889 if (sample_type & PERF_SAMPLE_TRANSACTION)
1890 size += sizeof(data->txn);
1891
1892 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1893 size += sizeof(data->phys_addr);
1894
1895 if (sample_type & PERF_SAMPLE_CGROUP)
1896 size += sizeof(data->cgroup);
1897
1898 event->header_size = size;
1899 }
1900
1901 /*
1902 * Called at perf_event creation and when events are attached/detached from a
1903 * group.
1904 */
perf_event__header_size(struct perf_event * event)1905 static void perf_event__header_size(struct perf_event *event)
1906 {
1907 __perf_event_read_size(event,
1908 event->group_leader->nr_siblings);
1909 __perf_event_header_size(event, event->attr.sample_type);
1910 }
1911
perf_event__id_header_size(struct perf_event * event)1912 static void perf_event__id_header_size(struct perf_event *event)
1913 {
1914 struct perf_sample_data *data;
1915 u64 sample_type = event->attr.sample_type;
1916 u16 size = 0;
1917
1918 if (sample_type & PERF_SAMPLE_TID)
1919 size += sizeof(data->tid_entry);
1920
1921 if (sample_type & PERF_SAMPLE_TIME)
1922 size += sizeof(data->time);
1923
1924 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1925 size += sizeof(data->id);
1926
1927 if (sample_type & PERF_SAMPLE_ID)
1928 size += sizeof(data->id);
1929
1930 if (sample_type & PERF_SAMPLE_STREAM_ID)
1931 size += sizeof(data->stream_id);
1932
1933 if (sample_type & PERF_SAMPLE_CPU)
1934 size += sizeof(data->cpu_entry);
1935
1936 event->id_header_size = size;
1937 }
1938
perf_event_validate_size(struct perf_event * event)1939 static bool perf_event_validate_size(struct perf_event *event)
1940 {
1941 /*
1942 * The values computed here will be over-written when we actually
1943 * attach the event.
1944 */
1945 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1946 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1947 perf_event__id_header_size(event);
1948
1949 /*
1950 * Sum the lot; should not exceed the 64k limit we have on records.
1951 * Conservative limit to allow for callchains and other variable fields.
1952 */
1953 if (event->read_size + event->header_size +
1954 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1955 return false;
1956
1957 return true;
1958 }
1959
perf_group_attach(struct perf_event * event)1960 static void perf_group_attach(struct perf_event *event)
1961 {
1962 struct perf_event *group_leader = event->group_leader, *pos;
1963
1964 lockdep_assert_held(&event->ctx->lock);
1965
1966 /*
1967 * We can have double attach due to group movement in perf_event_open.
1968 */
1969 if (event->attach_state & PERF_ATTACH_GROUP)
1970 return;
1971
1972 event->attach_state |= PERF_ATTACH_GROUP;
1973
1974 if (group_leader == event)
1975 return;
1976
1977 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978
1979 group_leader->group_caps &= event->event_caps;
1980
1981 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982 group_leader->nr_siblings++;
1983
1984 perf_event__header_size(group_leader);
1985
1986 for_each_sibling_event(pos, group_leader)
1987 perf_event__header_size(pos);
1988 }
1989
1990 /*
1991 * Remove an event from the lists for its context.
1992 * Must be called with ctx->mutex and ctx->lock held.
1993 */
1994 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1995 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1996 {
1997 WARN_ON_ONCE(event->ctx != ctx);
1998 lockdep_assert_held(&ctx->lock);
1999
2000 /*
2001 * We can have double detach due to exit/hot-unplug + close.
2002 */
2003 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2004 return;
2005
2006 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2007
2008 ctx->nr_events--;
2009 if (event->attr.inherit_stat)
2010 ctx->nr_stat--;
2011
2012 list_del_rcu(&event->event_entry);
2013
2014 if (event->group_leader == event)
2015 del_event_from_groups(event, ctx);
2016
2017 /*
2018 * If event was in error state, then keep it
2019 * that way, otherwise bogus counts will be
2020 * returned on read(). The only way to get out
2021 * of error state is by explicit re-enabling
2022 * of the event
2023 */
2024 if (event->state > PERF_EVENT_STATE_OFF) {
2025 perf_cgroup_event_disable(event, ctx);
2026 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2027 }
2028
2029 ctx->generation++;
2030 }
2031
2032 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2033 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2034 {
2035 if (!has_aux(aux_event))
2036 return 0;
2037
2038 if (!event->pmu->aux_output_match)
2039 return 0;
2040
2041 return event->pmu->aux_output_match(aux_event);
2042 }
2043
2044 static void put_event(struct perf_event *event);
2045 static void event_sched_out(struct perf_event *event,
2046 struct perf_cpu_context *cpuctx,
2047 struct perf_event_context *ctx);
2048
perf_put_aux_event(struct perf_event * event)2049 static void perf_put_aux_event(struct perf_event *event)
2050 {
2051 struct perf_event_context *ctx = event->ctx;
2052 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2053 struct perf_event *iter;
2054
2055 /*
2056 * If event uses aux_event tear down the link
2057 */
2058 if (event->aux_event) {
2059 iter = event->aux_event;
2060 event->aux_event = NULL;
2061 put_event(iter);
2062 return;
2063 }
2064
2065 /*
2066 * If the event is an aux_event, tear down all links to
2067 * it from other events.
2068 */
2069 for_each_sibling_event(iter, event->group_leader) {
2070 if (iter->aux_event != event)
2071 continue;
2072
2073 iter->aux_event = NULL;
2074 put_event(event);
2075
2076 /*
2077 * If it's ACTIVE, schedule it out and put it into ERROR
2078 * state so that we don't try to schedule it again. Note
2079 * that perf_event_enable() will clear the ERROR status.
2080 */
2081 event_sched_out(iter, cpuctx, ctx);
2082 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2083 }
2084 }
2085
perf_need_aux_event(struct perf_event * event)2086 static bool perf_need_aux_event(struct perf_event *event)
2087 {
2088 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2089 }
2090
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2091 static int perf_get_aux_event(struct perf_event *event,
2092 struct perf_event *group_leader)
2093 {
2094 /*
2095 * Our group leader must be an aux event if we want to be
2096 * an aux_output. This way, the aux event will precede its
2097 * aux_output events in the group, and therefore will always
2098 * schedule first.
2099 */
2100 if (!group_leader)
2101 return 0;
2102
2103 /*
2104 * aux_output and aux_sample_size are mutually exclusive.
2105 */
2106 if (event->attr.aux_output && event->attr.aux_sample_size)
2107 return 0;
2108
2109 if (event->attr.aux_output &&
2110 !perf_aux_output_match(event, group_leader))
2111 return 0;
2112
2113 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2114 return 0;
2115
2116 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2117 return 0;
2118
2119 /*
2120 * Link aux_outputs to their aux event; this is undone in
2121 * perf_group_detach() by perf_put_aux_event(). When the
2122 * group in torn down, the aux_output events loose their
2123 * link to the aux_event and can't schedule any more.
2124 */
2125 event->aux_event = group_leader;
2126
2127 return 1;
2128 }
2129
get_event_list(struct perf_event * event)2130 static inline struct list_head *get_event_list(struct perf_event *event)
2131 {
2132 struct perf_event_context *ctx = event->ctx;
2133 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2134 }
2135
2136 /*
2137 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2138 * cannot exist on their own, schedule them out and move them into the ERROR
2139 * state. Also see _perf_event_enable(), it will not be able to recover
2140 * this ERROR state.
2141 */
perf_remove_sibling_event(struct perf_event * event)2142 static inline void perf_remove_sibling_event(struct perf_event *event)
2143 {
2144 struct perf_event_context *ctx = event->ctx;
2145 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2146
2147 event_sched_out(event, cpuctx, ctx);
2148 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2149 }
2150
perf_group_detach(struct perf_event * event)2151 static void perf_group_detach(struct perf_event *event)
2152 {
2153 struct perf_event *leader = event->group_leader;
2154 struct perf_event *sibling, *tmp;
2155 struct perf_event_context *ctx = event->ctx;
2156
2157 lockdep_assert_held(&ctx->lock);
2158
2159 /*
2160 * We can have double detach due to exit/hot-unplug + close.
2161 */
2162 if (!(event->attach_state & PERF_ATTACH_GROUP))
2163 return;
2164
2165 event->attach_state &= ~PERF_ATTACH_GROUP;
2166
2167 perf_put_aux_event(event);
2168
2169 /*
2170 * If this is a sibling, remove it from its group.
2171 */
2172 if (leader != event) {
2173 list_del_init(&event->sibling_list);
2174 event->group_leader->nr_siblings--;
2175 goto out;
2176 }
2177
2178 /*
2179 * If this was a group event with sibling events then
2180 * upgrade the siblings to singleton events by adding them
2181 * to whatever list we are on.
2182 */
2183 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2184
2185 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2186 perf_remove_sibling_event(sibling);
2187
2188 sibling->group_leader = sibling;
2189 list_del_init(&sibling->sibling_list);
2190
2191 /* Inherit group flags from the previous leader */
2192 sibling->group_caps = event->group_caps;
2193
2194 if (!RB_EMPTY_NODE(&event->group_node)) {
2195 add_event_to_groups(sibling, event->ctx);
2196
2197 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2198 list_add_tail(&sibling->active_list, get_event_list(sibling));
2199 }
2200
2201 WARN_ON_ONCE(sibling->ctx != event->ctx);
2202 }
2203
2204 out:
2205 for_each_sibling_event(tmp, leader)
2206 perf_event__header_size(tmp);
2207
2208 perf_event__header_size(leader);
2209 }
2210
is_orphaned_event(struct perf_event * event)2211 static bool is_orphaned_event(struct perf_event *event)
2212 {
2213 return event->state == PERF_EVENT_STATE_DEAD;
2214 }
2215
__pmu_filter_match(struct perf_event * event)2216 static inline int __pmu_filter_match(struct perf_event *event)
2217 {
2218 struct pmu *pmu = event->pmu;
2219 return pmu->filter_match ? pmu->filter_match(event) : 1;
2220 }
2221
2222 /*
2223 * Check whether we should attempt to schedule an event group based on
2224 * PMU-specific filtering. An event group can consist of HW and SW events,
2225 * potentially with a SW leader, so we must check all the filters, to
2226 * determine whether a group is schedulable:
2227 */
pmu_filter_match(struct perf_event * event)2228 static inline int pmu_filter_match(struct perf_event *event)
2229 {
2230 struct perf_event *sibling;
2231
2232 if (!__pmu_filter_match(event))
2233 return 0;
2234
2235 for_each_sibling_event(sibling, event) {
2236 if (!__pmu_filter_match(sibling))
2237 return 0;
2238 }
2239
2240 return 1;
2241 }
2242
2243 static inline int
event_filter_match(struct perf_event * event)2244 event_filter_match(struct perf_event *event)
2245 {
2246 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2247 perf_cgroup_match(event) && pmu_filter_match(event);
2248 }
2249
2250 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2251 event_sched_out(struct perf_event *event,
2252 struct perf_cpu_context *cpuctx,
2253 struct perf_event_context *ctx)
2254 {
2255 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2256
2257 WARN_ON_ONCE(event->ctx != ctx);
2258 lockdep_assert_held(&ctx->lock);
2259
2260 if (event->state != PERF_EVENT_STATE_ACTIVE)
2261 return;
2262
2263 /*
2264 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2265 * we can schedule events _OUT_ individually through things like
2266 * __perf_remove_from_context().
2267 */
2268 list_del_init(&event->active_list);
2269
2270 perf_pmu_disable(event->pmu);
2271
2272 event->pmu->del(event, 0);
2273 event->oncpu = -1;
2274
2275 if (READ_ONCE(event->pending_disable) >= 0) {
2276 WRITE_ONCE(event->pending_disable, -1);
2277 perf_cgroup_event_disable(event, ctx);
2278 state = PERF_EVENT_STATE_OFF;
2279 }
2280 perf_event_set_state(event, state);
2281
2282 if (!is_software_event(event))
2283 cpuctx->active_oncpu--;
2284 if (!--ctx->nr_active)
2285 perf_event_ctx_deactivate(ctx);
2286 if (event->attr.freq && event->attr.sample_freq)
2287 ctx->nr_freq--;
2288 if (event->attr.exclusive || !cpuctx->active_oncpu)
2289 cpuctx->exclusive = 0;
2290
2291 perf_pmu_enable(event->pmu);
2292 }
2293
2294 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2295 group_sched_out(struct perf_event *group_event,
2296 struct perf_cpu_context *cpuctx,
2297 struct perf_event_context *ctx)
2298 {
2299 struct perf_event *event;
2300
2301 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2302 return;
2303
2304 perf_pmu_disable(ctx->pmu);
2305
2306 event_sched_out(group_event, cpuctx, ctx);
2307
2308 /*
2309 * Schedule out siblings (if any):
2310 */
2311 for_each_sibling_event(event, group_event)
2312 event_sched_out(event, cpuctx, ctx);
2313
2314 perf_pmu_enable(ctx->pmu);
2315 }
2316
2317 #define DETACH_GROUP 0x01UL
2318
2319 /*
2320 * Cross CPU call to remove a performance event
2321 *
2322 * We disable the event on the hardware level first. After that we
2323 * remove it from the context list.
2324 */
2325 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2326 __perf_remove_from_context(struct perf_event *event,
2327 struct perf_cpu_context *cpuctx,
2328 struct perf_event_context *ctx,
2329 void *info)
2330 {
2331 unsigned long flags = (unsigned long)info;
2332
2333 if (ctx->is_active & EVENT_TIME) {
2334 update_context_time(ctx);
2335 update_cgrp_time_from_cpuctx(cpuctx);
2336 }
2337
2338 event_sched_out(event, cpuctx, ctx);
2339 if (flags & DETACH_GROUP)
2340 perf_group_detach(event);
2341 list_del_event(event, ctx);
2342
2343 if (!ctx->nr_events && ctx->is_active) {
2344 ctx->is_active = 0;
2345 ctx->rotate_necessary = 0;
2346 if (ctx->task) {
2347 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2348 cpuctx->task_ctx = NULL;
2349 }
2350 }
2351 }
2352
2353 /*
2354 * Remove the event from a task's (or a CPU's) list of events.
2355 *
2356 * If event->ctx is a cloned context, callers must make sure that
2357 * every task struct that event->ctx->task could possibly point to
2358 * remains valid. This is OK when called from perf_release since
2359 * that only calls us on the top-level context, which can't be a clone.
2360 * When called from perf_event_exit_task, it's OK because the
2361 * context has been detached from its task.
2362 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2363 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2364 {
2365 struct perf_event_context *ctx = event->ctx;
2366
2367 lockdep_assert_held(&ctx->mutex);
2368
2369 event_function_call(event, __perf_remove_from_context, (void *)flags);
2370
2371 /*
2372 * The above event_function_call() can NO-OP when it hits
2373 * TASK_TOMBSTONE. In that case we must already have been detached
2374 * from the context (by perf_event_exit_event()) but the grouping
2375 * might still be in-tact.
2376 */
2377 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2378 if ((flags & DETACH_GROUP) &&
2379 (event->attach_state & PERF_ATTACH_GROUP)) {
2380 /*
2381 * Since in that case we cannot possibly be scheduled, simply
2382 * detach now.
2383 */
2384 raw_spin_lock_irq(&ctx->lock);
2385 perf_group_detach(event);
2386 raw_spin_unlock_irq(&ctx->lock);
2387 }
2388 }
2389
2390 /*
2391 * Cross CPU call to disable a performance event
2392 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2393 static void __perf_event_disable(struct perf_event *event,
2394 struct perf_cpu_context *cpuctx,
2395 struct perf_event_context *ctx,
2396 void *info)
2397 {
2398 if (event->state < PERF_EVENT_STATE_INACTIVE)
2399 return;
2400
2401 if (ctx->is_active & EVENT_TIME) {
2402 update_context_time(ctx);
2403 update_cgrp_time_from_event(event);
2404 }
2405
2406 if (event == event->group_leader)
2407 group_sched_out(event, cpuctx, ctx);
2408 else
2409 event_sched_out(event, cpuctx, ctx);
2410
2411 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2412 perf_cgroup_event_disable(event, ctx);
2413 }
2414
2415 /*
2416 * Disable an event.
2417 *
2418 * If event->ctx is a cloned context, callers must make sure that
2419 * every task struct that event->ctx->task could possibly point to
2420 * remains valid. This condition is satisfied when called through
2421 * perf_event_for_each_child or perf_event_for_each because they
2422 * hold the top-level event's child_mutex, so any descendant that
2423 * goes to exit will block in perf_event_exit_event().
2424 *
2425 * When called from perf_pending_event it's OK because event->ctx
2426 * is the current context on this CPU and preemption is disabled,
2427 * hence we can't get into perf_event_task_sched_out for this context.
2428 */
_perf_event_disable(struct perf_event * event)2429 static void _perf_event_disable(struct perf_event *event)
2430 {
2431 struct perf_event_context *ctx = event->ctx;
2432
2433 raw_spin_lock_irq(&ctx->lock);
2434 if (event->state <= PERF_EVENT_STATE_OFF) {
2435 raw_spin_unlock_irq(&ctx->lock);
2436 return;
2437 }
2438 raw_spin_unlock_irq(&ctx->lock);
2439
2440 event_function_call(event, __perf_event_disable, NULL);
2441 }
2442
perf_event_disable_local(struct perf_event * event)2443 void perf_event_disable_local(struct perf_event *event)
2444 {
2445 event_function_local(event, __perf_event_disable, NULL);
2446 }
2447
2448 /*
2449 * Strictly speaking kernel users cannot create groups and therefore this
2450 * interface does not need the perf_event_ctx_lock() magic.
2451 */
perf_event_disable(struct perf_event * event)2452 void perf_event_disable(struct perf_event *event)
2453 {
2454 struct perf_event_context *ctx;
2455
2456 ctx = perf_event_ctx_lock(event);
2457 _perf_event_disable(event);
2458 perf_event_ctx_unlock(event, ctx);
2459 }
2460 EXPORT_SYMBOL_GPL(perf_event_disable);
2461
perf_event_disable_inatomic(struct perf_event * event)2462 void perf_event_disable_inatomic(struct perf_event *event)
2463 {
2464 WRITE_ONCE(event->pending_disable, smp_processor_id());
2465 /* can fail, see perf_pending_event_disable() */
2466 irq_work_queue(&event->pending);
2467 }
2468
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx)2469 static void perf_set_shadow_time(struct perf_event *event,
2470 struct perf_event_context *ctx)
2471 {
2472 /*
2473 * use the correct time source for the time snapshot
2474 *
2475 * We could get by without this by leveraging the
2476 * fact that to get to this function, the caller
2477 * has most likely already called update_context_time()
2478 * and update_cgrp_time_xx() and thus both timestamp
2479 * are identical (or very close). Given that tstamp is,
2480 * already adjusted for cgroup, we could say that:
2481 * tstamp - ctx->timestamp
2482 * is equivalent to
2483 * tstamp - cgrp->timestamp.
2484 *
2485 * Then, in perf_output_read(), the calculation would
2486 * work with no changes because:
2487 * - event is guaranteed scheduled in
2488 * - no scheduled out in between
2489 * - thus the timestamp would be the same
2490 *
2491 * But this is a bit hairy.
2492 *
2493 * So instead, we have an explicit cgroup call to remain
2494 * within the time time source all along. We believe it
2495 * is cleaner and simpler to understand.
2496 */
2497 if (is_cgroup_event(event))
2498 perf_cgroup_set_shadow_time(event, event->tstamp);
2499 else
2500 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2501 }
2502
2503 #define MAX_INTERRUPTS (~0ULL)
2504
2505 static void perf_log_throttle(struct perf_event *event, int enable);
2506 static void perf_log_itrace_start(struct perf_event *event);
2507
2508 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2509 event_sched_in(struct perf_event *event,
2510 struct perf_cpu_context *cpuctx,
2511 struct perf_event_context *ctx)
2512 {
2513 int ret = 0;
2514
2515 WARN_ON_ONCE(event->ctx != ctx);
2516
2517 lockdep_assert_held(&ctx->lock);
2518
2519 if (event->state <= PERF_EVENT_STATE_OFF)
2520 return 0;
2521
2522 WRITE_ONCE(event->oncpu, smp_processor_id());
2523 /*
2524 * Order event::oncpu write to happen before the ACTIVE state is
2525 * visible. This allows perf_event_{stop,read}() to observe the correct
2526 * ->oncpu if it sees ACTIVE.
2527 */
2528 smp_wmb();
2529 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2530
2531 /*
2532 * Unthrottle events, since we scheduled we might have missed several
2533 * ticks already, also for a heavily scheduling task there is little
2534 * guarantee it'll get a tick in a timely manner.
2535 */
2536 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2537 perf_log_throttle(event, 1);
2538 event->hw.interrupts = 0;
2539 }
2540
2541 perf_pmu_disable(event->pmu);
2542
2543 perf_set_shadow_time(event, ctx);
2544
2545 perf_log_itrace_start(event);
2546
2547 if (event->pmu->add(event, PERF_EF_START)) {
2548 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2549 event->oncpu = -1;
2550 ret = -EAGAIN;
2551 goto out;
2552 }
2553
2554 if (!is_software_event(event))
2555 cpuctx->active_oncpu++;
2556 if (!ctx->nr_active++)
2557 perf_event_ctx_activate(ctx);
2558 if (event->attr.freq && event->attr.sample_freq)
2559 ctx->nr_freq++;
2560
2561 if (event->attr.exclusive)
2562 cpuctx->exclusive = 1;
2563
2564 out:
2565 perf_pmu_enable(event->pmu);
2566
2567 return ret;
2568 }
2569
2570 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2571 group_sched_in(struct perf_event *group_event,
2572 struct perf_cpu_context *cpuctx,
2573 struct perf_event_context *ctx)
2574 {
2575 struct perf_event *event, *partial_group = NULL;
2576 struct pmu *pmu = ctx->pmu;
2577
2578 if (group_event->state == PERF_EVENT_STATE_OFF)
2579 return 0;
2580
2581 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2582
2583 if (event_sched_in(group_event, cpuctx, ctx))
2584 goto error;
2585
2586 /*
2587 * Schedule in siblings as one group (if any):
2588 */
2589 for_each_sibling_event(event, group_event) {
2590 if (event_sched_in(event, cpuctx, ctx)) {
2591 partial_group = event;
2592 goto group_error;
2593 }
2594 }
2595
2596 if (!pmu->commit_txn(pmu))
2597 return 0;
2598
2599 group_error:
2600 /*
2601 * Groups can be scheduled in as one unit only, so undo any
2602 * partial group before returning:
2603 * The events up to the failed event are scheduled out normally.
2604 */
2605 for_each_sibling_event(event, group_event) {
2606 if (event == partial_group)
2607 break;
2608
2609 event_sched_out(event, cpuctx, ctx);
2610 }
2611 event_sched_out(group_event, cpuctx, ctx);
2612
2613 error:
2614 pmu->cancel_txn(pmu);
2615 return -EAGAIN;
2616 }
2617
2618 /*
2619 * Work out whether we can put this event group on the CPU now.
2620 */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2621 static int group_can_go_on(struct perf_event *event,
2622 struct perf_cpu_context *cpuctx,
2623 int can_add_hw)
2624 {
2625 /*
2626 * Groups consisting entirely of software events can always go on.
2627 */
2628 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2629 return 1;
2630 /*
2631 * If an exclusive group is already on, no other hardware
2632 * events can go on.
2633 */
2634 if (cpuctx->exclusive)
2635 return 0;
2636 /*
2637 * If this group is exclusive and there are already
2638 * events on the CPU, it can't go on.
2639 */
2640 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2641 return 0;
2642 /*
2643 * Otherwise, try to add it if all previous groups were able
2644 * to go on.
2645 */
2646 return can_add_hw;
2647 }
2648
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2649 static void add_event_to_ctx(struct perf_event *event,
2650 struct perf_event_context *ctx)
2651 {
2652 list_add_event(event, ctx);
2653 perf_group_attach(event);
2654 }
2655
2656 static void ctx_sched_out(struct perf_event_context *ctx,
2657 struct perf_cpu_context *cpuctx,
2658 enum event_type_t event_type);
2659 static void
2660 ctx_sched_in(struct perf_event_context *ctx,
2661 struct perf_cpu_context *cpuctx,
2662 enum event_type_t event_type,
2663 struct task_struct *task);
2664
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2665 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2666 struct perf_event_context *ctx,
2667 enum event_type_t event_type)
2668 {
2669 if (!cpuctx->task_ctx)
2670 return;
2671
2672 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2673 return;
2674
2675 ctx_sched_out(ctx, cpuctx, event_type);
2676 }
2677
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2678 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2679 struct perf_event_context *ctx,
2680 struct task_struct *task)
2681 {
2682 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2683 if (ctx)
2684 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2685 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2686 if (ctx)
2687 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2688 }
2689
2690 /*
2691 * We want to maintain the following priority of scheduling:
2692 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2693 * - task pinned (EVENT_PINNED)
2694 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2695 * - task flexible (EVENT_FLEXIBLE).
2696 *
2697 * In order to avoid unscheduling and scheduling back in everything every
2698 * time an event is added, only do it for the groups of equal priority and
2699 * below.
2700 *
2701 * This can be called after a batch operation on task events, in which case
2702 * event_type is a bit mask of the types of events involved. For CPU events,
2703 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2704 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2705 static void ctx_resched(struct perf_cpu_context *cpuctx,
2706 struct perf_event_context *task_ctx,
2707 enum event_type_t event_type)
2708 {
2709 enum event_type_t ctx_event_type;
2710 bool cpu_event = !!(event_type & EVENT_CPU);
2711
2712 /*
2713 * If pinned groups are involved, flexible groups also need to be
2714 * scheduled out.
2715 */
2716 if (event_type & EVENT_PINNED)
2717 event_type |= EVENT_FLEXIBLE;
2718
2719 ctx_event_type = event_type & EVENT_ALL;
2720
2721 perf_pmu_disable(cpuctx->ctx.pmu);
2722 if (task_ctx)
2723 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2724
2725 /*
2726 * Decide which cpu ctx groups to schedule out based on the types
2727 * of events that caused rescheduling:
2728 * - EVENT_CPU: schedule out corresponding groups;
2729 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2730 * - otherwise, do nothing more.
2731 */
2732 if (cpu_event)
2733 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2734 else if (ctx_event_type & EVENT_PINNED)
2735 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2736
2737 perf_event_sched_in(cpuctx, task_ctx, current);
2738 perf_pmu_enable(cpuctx->ctx.pmu);
2739 }
2740
perf_pmu_resched(struct pmu * pmu)2741 void perf_pmu_resched(struct pmu *pmu)
2742 {
2743 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2744 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2745
2746 perf_ctx_lock(cpuctx, task_ctx);
2747 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2748 perf_ctx_unlock(cpuctx, task_ctx);
2749 }
2750
2751 /*
2752 * Cross CPU call to install and enable a performance event
2753 *
2754 * Very similar to remote_function() + event_function() but cannot assume that
2755 * things like ctx->is_active and cpuctx->task_ctx are set.
2756 */
__perf_install_in_context(void * info)2757 static int __perf_install_in_context(void *info)
2758 {
2759 struct perf_event *event = info;
2760 struct perf_event_context *ctx = event->ctx;
2761 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2762 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2763 bool reprogram = true;
2764 int ret = 0;
2765
2766 raw_spin_lock(&cpuctx->ctx.lock);
2767 if (ctx->task) {
2768 raw_spin_lock(&ctx->lock);
2769 task_ctx = ctx;
2770
2771 reprogram = (ctx->task == current);
2772
2773 /*
2774 * If the task is running, it must be running on this CPU,
2775 * otherwise we cannot reprogram things.
2776 *
2777 * If its not running, we don't care, ctx->lock will
2778 * serialize against it becoming runnable.
2779 */
2780 if (task_curr(ctx->task) && !reprogram) {
2781 ret = -ESRCH;
2782 goto unlock;
2783 }
2784
2785 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2786 } else if (task_ctx) {
2787 raw_spin_lock(&task_ctx->lock);
2788 }
2789
2790 #ifdef CONFIG_CGROUP_PERF
2791 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2792 /*
2793 * If the current cgroup doesn't match the event's
2794 * cgroup, we should not try to schedule it.
2795 */
2796 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2797 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2798 event->cgrp->css.cgroup);
2799 }
2800 #endif
2801
2802 if (reprogram) {
2803 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2804 add_event_to_ctx(event, ctx);
2805 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2806 } else {
2807 add_event_to_ctx(event, ctx);
2808 }
2809
2810 unlock:
2811 perf_ctx_unlock(cpuctx, task_ctx);
2812
2813 return ret;
2814 }
2815
2816 static bool exclusive_event_installable(struct perf_event *event,
2817 struct perf_event_context *ctx);
2818
2819 /*
2820 * Attach a performance event to a context.
2821 *
2822 * Very similar to event_function_call, see comment there.
2823 */
2824 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2825 perf_install_in_context(struct perf_event_context *ctx,
2826 struct perf_event *event,
2827 int cpu)
2828 {
2829 struct task_struct *task = READ_ONCE(ctx->task);
2830
2831 lockdep_assert_held(&ctx->mutex);
2832
2833 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2834
2835 if (event->cpu != -1)
2836 event->cpu = cpu;
2837
2838 /*
2839 * Ensures that if we can observe event->ctx, both the event and ctx
2840 * will be 'complete'. See perf_iterate_sb_cpu().
2841 */
2842 smp_store_release(&event->ctx, ctx);
2843
2844 /*
2845 * perf_event_attr::disabled events will not run and can be initialized
2846 * without IPI. Except when this is the first event for the context, in
2847 * that case we need the magic of the IPI to set ctx->is_active.
2848 *
2849 * The IOC_ENABLE that is sure to follow the creation of a disabled
2850 * event will issue the IPI and reprogram the hardware.
2851 */
2852 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2853 raw_spin_lock_irq(&ctx->lock);
2854 if (ctx->task == TASK_TOMBSTONE) {
2855 raw_spin_unlock_irq(&ctx->lock);
2856 return;
2857 }
2858 add_event_to_ctx(event, ctx);
2859 raw_spin_unlock_irq(&ctx->lock);
2860 return;
2861 }
2862
2863 if (!task) {
2864 cpu_function_call(cpu, __perf_install_in_context, event);
2865 return;
2866 }
2867
2868 /*
2869 * Should not happen, we validate the ctx is still alive before calling.
2870 */
2871 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872 return;
2873
2874 /*
2875 * Installing events is tricky because we cannot rely on ctx->is_active
2876 * to be set in case this is the nr_events 0 -> 1 transition.
2877 *
2878 * Instead we use task_curr(), which tells us if the task is running.
2879 * However, since we use task_curr() outside of rq::lock, we can race
2880 * against the actual state. This means the result can be wrong.
2881 *
2882 * If we get a false positive, we retry, this is harmless.
2883 *
2884 * If we get a false negative, things are complicated. If we are after
2885 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886 * value must be correct. If we're before, it doesn't matter since
2887 * perf_event_context_sched_in() will program the counter.
2888 *
2889 * However, this hinges on the remote context switch having observed
2890 * our task->perf_event_ctxp[] store, such that it will in fact take
2891 * ctx::lock in perf_event_context_sched_in().
2892 *
2893 * We do this by task_function_call(), if the IPI fails to hit the task
2894 * we know any future context switch of task must see the
2895 * perf_event_ctpx[] store.
2896 */
2897
2898 /*
2899 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900 * task_cpu() load, such that if the IPI then does not find the task
2901 * running, a future context switch of that task must observe the
2902 * store.
2903 */
2904 smp_mb();
2905 again:
2906 if (!task_function_call(task, __perf_install_in_context, event))
2907 return;
2908
2909 raw_spin_lock_irq(&ctx->lock);
2910 task = ctx->task;
2911 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912 /*
2913 * Cannot happen because we already checked above (which also
2914 * cannot happen), and we hold ctx->mutex, which serializes us
2915 * against perf_event_exit_task_context().
2916 */
2917 raw_spin_unlock_irq(&ctx->lock);
2918 return;
2919 }
2920 /*
2921 * If the task is not running, ctx->lock will avoid it becoming so,
2922 * thus we can safely install the event.
2923 */
2924 if (task_curr(task)) {
2925 raw_spin_unlock_irq(&ctx->lock);
2926 goto again;
2927 }
2928 add_event_to_ctx(event, ctx);
2929 raw_spin_unlock_irq(&ctx->lock);
2930 }
2931
2932 /*
2933 * Cross CPU call to enable a performance event
2934 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2935 static void __perf_event_enable(struct perf_event *event,
2936 struct perf_cpu_context *cpuctx,
2937 struct perf_event_context *ctx,
2938 void *info)
2939 {
2940 struct perf_event *leader = event->group_leader;
2941 struct perf_event_context *task_ctx;
2942
2943 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 event->state <= PERF_EVENT_STATE_ERROR)
2945 return;
2946
2947 if (ctx->is_active)
2948 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2949
2950 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951 perf_cgroup_event_enable(event, ctx);
2952
2953 if (!ctx->is_active)
2954 return;
2955
2956 if (!event_filter_match(event)) {
2957 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2958 return;
2959 }
2960
2961 /*
2962 * If the event is in a group and isn't the group leader,
2963 * then don't put it on unless the group is on.
2964 */
2965 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2967 return;
2968 }
2969
2970 task_ctx = cpuctx->task_ctx;
2971 if (ctx->task)
2972 WARN_ON_ONCE(task_ctx != ctx);
2973
2974 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975 }
2976
2977 /*
2978 * Enable an event.
2979 *
2980 * If event->ctx is a cloned context, callers must make sure that
2981 * every task struct that event->ctx->task could possibly point to
2982 * remains valid. This condition is satisfied when called through
2983 * perf_event_for_each_child or perf_event_for_each as described
2984 * for perf_event_disable.
2985 */
_perf_event_enable(struct perf_event * event)2986 static void _perf_event_enable(struct perf_event *event)
2987 {
2988 struct perf_event_context *ctx = event->ctx;
2989
2990 raw_spin_lock_irq(&ctx->lock);
2991 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992 event->state < PERF_EVENT_STATE_ERROR) {
2993 out:
2994 raw_spin_unlock_irq(&ctx->lock);
2995 return;
2996 }
2997
2998 /*
2999 * If the event is in error state, clear that first.
3000 *
3001 * That way, if we see the event in error state below, we know that it
3002 * has gone back into error state, as distinct from the task having
3003 * been scheduled away before the cross-call arrived.
3004 */
3005 if (event->state == PERF_EVENT_STATE_ERROR) {
3006 /*
3007 * Detached SIBLING events cannot leave ERROR state.
3008 */
3009 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010 event->group_leader == event)
3011 goto out;
3012
3013 event->state = PERF_EVENT_STATE_OFF;
3014 }
3015 raw_spin_unlock_irq(&ctx->lock);
3016
3017 event_function_call(event, __perf_event_enable, NULL);
3018 }
3019
3020 /*
3021 * See perf_event_disable();
3022 */
perf_event_enable(struct perf_event * event)3023 void perf_event_enable(struct perf_event *event)
3024 {
3025 struct perf_event_context *ctx;
3026
3027 ctx = perf_event_ctx_lock(event);
3028 _perf_event_enable(event);
3029 perf_event_ctx_unlock(event, ctx);
3030 }
3031 EXPORT_SYMBOL_GPL(perf_event_enable);
3032
3033 struct stop_event_data {
3034 struct perf_event *event;
3035 unsigned int restart;
3036 };
3037
__perf_event_stop(void * info)3038 static int __perf_event_stop(void *info)
3039 {
3040 struct stop_event_data *sd = info;
3041 struct perf_event *event = sd->event;
3042
3043 /* if it's already INACTIVE, do nothing */
3044 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045 return 0;
3046
3047 /* matches smp_wmb() in event_sched_in() */
3048 smp_rmb();
3049
3050 /*
3051 * There is a window with interrupts enabled before we get here,
3052 * so we need to check again lest we try to stop another CPU's event.
3053 */
3054 if (READ_ONCE(event->oncpu) != smp_processor_id())
3055 return -EAGAIN;
3056
3057 event->pmu->stop(event, PERF_EF_UPDATE);
3058
3059 /*
3060 * May race with the actual stop (through perf_pmu_output_stop()),
3061 * but it is only used for events with AUX ring buffer, and such
3062 * events will refuse to restart because of rb::aux_mmap_count==0,
3063 * see comments in perf_aux_output_begin().
3064 *
3065 * Since this is happening on an event-local CPU, no trace is lost
3066 * while restarting.
3067 */
3068 if (sd->restart)
3069 event->pmu->start(event, 0);
3070
3071 return 0;
3072 }
3073
perf_event_stop(struct perf_event * event,int restart)3074 static int perf_event_stop(struct perf_event *event, int restart)
3075 {
3076 struct stop_event_data sd = {
3077 .event = event,
3078 .restart = restart,
3079 };
3080 int ret = 0;
3081
3082 do {
3083 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084 return 0;
3085
3086 /* matches smp_wmb() in event_sched_in() */
3087 smp_rmb();
3088
3089 /*
3090 * We only want to restart ACTIVE events, so if the event goes
3091 * inactive here (event->oncpu==-1), there's nothing more to do;
3092 * fall through with ret==-ENXIO.
3093 */
3094 ret = cpu_function_call(READ_ONCE(event->oncpu),
3095 __perf_event_stop, &sd);
3096 } while (ret == -EAGAIN);
3097
3098 return ret;
3099 }
3100
3101 /*
3102 * In order to contain the amount of racy and tricky in the address filter
3103 * configuration management, it is a two part process:
3104 *
3105 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106 * we update the addresses of corresponding vmas in
3107 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108 * (p2) when an event is scheduled in (pmu::add), it calls
3109 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110 * if the generation has changed since the previous call.
3111 *
3112 * If (p1) happens while the event is active, we restart it to force (p2).
3113 *
3114 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3116 * ioctl;
3117 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3119 * for reading;
3120 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121 * of exec.
3122 */
perf_event_addr_filters_sync(struct perf_event * event)3123 void perf_event_addr_filters_sync(struct perf_event *event)
3124 {
3125 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126
3127 if (!has_addr_filter(event))
3128 return;
3129
3130 raw_spin_lock(&ifh->lock);
3131 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132 event->pmu->addr_filters_sync(event);
3133 event->hw.addr_filters_gen = event->addr_filters_gen;
3134 }
3135 raw_spin_unlock(&ifh->lock);
3136 }
3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138
_perf_event_refresh(struct perf_event * event,int refresh)3139 static int _perf_event_refresh(struct perf_event *event, int refresh)
3140 {
3141 /*
3142 * not supported on inherited events
3143 */
3144 if (event->attr.inherit || !is_sampling_event(event))
3145 return -EINVAL;
3146
3147 atomic_add(refresh, &event->event_limit);
3148 _perf_event_enable(event);
3149
3150 return 0;
3151 }
3152
3153 /*
3154 * See perf_event_disable()
3155 */
perf_event_refresh(struct perf_event * event,int refresh)3156 int perf_event_refresh(struct perf_event *event, int refresh)
3157 {
3158 struct perf_event_context *ctx;
3159 int ret;
3160
3161 ctx = perf_event_ctx_lock(event);
3162 ret = _perf_event_refresh(event, refresh);
3163 perf_event_ctx_unlock(event, ctx);
3164
3165 return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_event_refresh);
3168
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3169 static int perf_event_modify_breakpoint(struct perf_event *bp,
3170 struct perf_event_attr *attr)
3171 {
3172 int err;
3173
3174 _perf_event_disable(bp);
3175
3176 err = modify_user_hw_breakpoint_check(bp, attr, true);
3177
3178 if (!bp->attr.disabled)
3179 _perf_event_enable(bp);
3180
3181 return err;
3182 }
3183
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3184 static int perf_event_modify_attr(struct perf_event *event,
3185 struct perf_event_attr *attr)
3186 {
3187 if (event->attr.type != attr->type)
3188 return -EINVAL;
3189
3190 switch (event->attr.type) {
3191 case PERF_TYPE_BREAKPOINT:
3192 return perf_event_modify_breakpoint(event, attr);
3193 default:
3194 /* Place holder for future additions. */
3195 return -EOPNOTSUPP;
3196 }
3197 }
3198
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3199 static void ctx_sched_out(struct perf_event_context *ctx,
3200 struct perf_cpu_context *cpuctx,
3201 enum event_type_t event_type)
3202 {
3203 struct perf_event *event, *tmp;
3204 int is_active = ctx->is_active;
3205
3206 lockdep_assert_held(&ctx->lock);
3207
3208 if (likely(!ctx->nr_events)) {
3209 /*
3210 * See __perf_remove_from_context().
3211 */
3212 WARN_ON_ONCE(ctx->is_active);
3213 if (ctx->task)
3214 WARN_ON_ONCE(cpuctx->task_ctx);
3215 return;
3216 }
3217
3218 ctx->is_active &= ~event_type;
3219 if (!(ctx->is_active & EVENT_ALL))
3220 ctx->is_active = 0;
3221
3222 if (ctx->task) {
3223 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3224 if (!ctx->is_active)
3225 cpuctx->task_ctx = NULL;
3226 }
3227
3228 /*
3229 * Always update time if it was set; not only when it changes.
3230 * Otherwise we can 'forget' to update time for any but the last
3231 * context we sched out. For example:
3232 *
3233 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3234 * ctx_sched_out(.event_type = EVENT_PINNED)
3235 *
3236 * would only update time for the pinned events.
3237 */
3238 if (is_active & EVENT_TIME) {
3239 /* update (and stop) ctx time */
3240 update_context_time(ctx);
3241 update_cgrp_time_from_cpuctx(cpuctx);
3242 }
3243
3244 is_active ^= ctx->is_active; /* changed bits */
3245
3246 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3247 return;
3248
3249 perf_pmu_disable(ctx->pmu);
3250 if (is_active & EVENT_PINNED) {
3251 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3252 group_sched_out(event, cpuctx, ctx);
3253 }
3254
3255 if (is_active & EVENT_FLEXIBLE) {
3256 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3257 group_sched_out(event, cpuctx, ctx);
3258
3259 /*
3260 * Since we cleared EVENT_FLEXIBLE, also clear
3261 * rotate_necessary, is will be reset by
3262 * ctx_flexible_sched_in() when needed.
3263 */
3264 ctx->rotate_necessary = 0;
3265 }
3266 perf_pmu_enable(ctx->pmu);
3267 }
3268
3269 /*
3270 * Test whether two contexts are equivalent, i.e. whether they have both been
3271 * cloned from the same version of the same context.
3272 *
3273 * Equivalence is measured using a generation number in the context that is
3274 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3275 * and list_del_event().
3276 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3277 static int context_equiv(struct perf_event_context *ctx1,
3278 struct perf_event_context *ctx2)
3279 {
3280 lockdep_assert_held(&ctx1->lock);
3281 lockdep_assert_held(&ctx2->lock);
3282
3283 /* Pinning disables the swap optimization */
3284 if (ctx1->pin_count || ctx2->pin_count)
3285 return 0;
3286
3287 /* If ctx1 is the parent of ctx2 */
3288 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3289 return 1;
3290
3291 /* If ctx2 is the parent of ctx1 */
3292 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3293 return 1;
3294
3295 /*
3296 * If ctx1 and ctx2 have the same parent; we flatten the parent
3297 * hierarchy, see perf_event_init_context().
3298 */
3299 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3300 ctx1->parent_gen == ctx2->parent_gen)
3301 return 1;
3302
3303 /* Unmatched */
3304 return 0;
3305 }
3306
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3307 static void __perf_event_sync_stat(struct perf_event *event,
3308 struct perf_event *next_event)
3309 {
3310 u64 value;
3311
3312 if (!event->attr.inherit_stat)
3313 return;
3314
3315 /*
3316 * Update the event value, we cannot use perf_event_read()
3317 * because we're in the middle of a context switch and have IRQs
3318 * disabled, which upsets smp_call_function_single(), however
3319 * we know the event must be on the current CPU, therefore we
3320 * don't need to use it.
3321 */
3322 if (event->state == PERF_EVENT_STATE_ACTIVE)
3323 event->pmu->read(event);
3324
3325 perf_event_update_time(event);
3326
3327 /*
3328 * In order to keep per-task stats reliable we need to flip the event
3329 * values when we flip the contexts.
3330 */
3331 value = local64_read(&next_event->count);
3332 value = local64_xchg(&event->count, value);
3333 local64_set(&next_event->count, value);
3334
3335 swap(event->total_time_enabled, next_event->total_time_enabled);
3336 swap(event->total_time_running, next_event->total_time_running);
3337
3338 /*
3339 * Since we swizzled the values, update the user visible data too.
3340 */
3341 perf_event_update_userpage(event);
3342 perf_event_update_userpage(next_event);
3343 }
3344
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3345 static void perf_event_sync_stat(struct perf_event_context *ctx,
3346 struct perf_event_context *next_ctx)
3347 {
3348 struct perf_event *event, *next_event;
3349
3350 if (!ctx->nr_stat)
3351 return;
3352
3353 update_context_time(ctx);
3354
3355 event = list_first_entry(&ctx->event_list,
3356 struct perf_event, event_entry);
3357
3358 next_event = list_first_entry(&next_ctx->event_list,
3359 struct perf_event, event_entry);
3360
3361 while (&event->event_entry != &ctx->event_list &&
3362 &next_event->event_entry != &next_ctx->event_list) {
3363
3364 __perf_event_sync_stat(event, next_event);
3365
3366 event = list_next_entry(event, event_entry);
3367 next_event = list_next_entry(next_event, event_entry);
3368 }
3369 }
3370
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3371 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3372 struct task_struct *next)
3373 {
3374 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3375 struct perf_event_context *next_ctx;
3376 struct perf_event_context *parent, *next_parent;
3377 struct perf_cpu_context *cpuctx;
3378 int do_switch = 1;
3379 struct pmu *pmu;
3380
3381 if (likely(!ctx))
3382 return;
3383
3384 pmu = ctx->pmu;
3385 cpuctx = __get_cpu_context(ctx);
3386 if (!cpuctx->task_ctx)
3387 return;
3388
3389 rcu_read_lock();
3390 next_ctx = next->perf_event_ctxp[ctxn];
3391 if (!next_ctx)
3392 goto unlock;
3393
3394 parent = rcu_dereference(ctx->parent_ctx);
3395 next_parent = rcu_dereference(next_ctx->parent_ctx);
3396
3397 /* If neither context have a parent context; they cannot be clones. */
3398 if (!parent && !next_parent)
3399 goto unlock;
3400
3401 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3402 /*
3403 * Looks like the two contexts are clones, so we might be
3404 * able to optimize the context switch. We lock both
3405 * contexts and check that they are clones under the
3406 * lock (including re-checking that neither has been
3407 * uncloned in the meantime). It doesn't matter which
3408 * order we take the locks because no other cpu could
3409 * be trying to lock both of these tasks.
3410 */
3411 raw_spin_lock(&ctx->lock);
3412 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3413 if (context_equiv(ctx, next_ctx)) {
3414
3415 WRITE_ONCE(ctx->task, next);
3416 WRITE_ONCE(next_ctx->task, task);
3417
3418 perf_pmu_disable(pmu);
3419
3420 if (cpuctx->sched_cb_usage && pmu->sched_task)
3421 pmu->sched_task(ctx, false);
3422
3423 /*
3424 * PMU specific parts of task perf context can require
3425 * additional synchronization. As an example of such
3426 * synchronization see implementation details of Intel
3427 * LBR call stack data profiling;
3428 */
3429 if (pmu->swap_task_ctx)
3430 pmu->swap_task_ctx(ctx, next_ctx);
3431 else
3432 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3433
3434 perf_pmu_enable(pmu);
3435
3436 /*
3437 * RCU_INIT_POINTER here is safe because we've not
3438 * modified the ctx and the above modification of
3439 * ctx->task and ctx->task_ctx_data are immaterial
3440 * since those values are always verified under
3441 * ctx->lock which we're now holding.
3442 */
3443 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3444 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3445
3446 do_switch = 0;
3447
3448 perf_event_sync_stat(ctx, next_ctx);
3449 }
3450 raw_spin_unlock(&next_ctx->lock);
3451 raw_spin_unlock(&ctx->lock);
3452 }
3453 unlock:
3454 rcu_read_unlock();
3455
3456 if (do_switch) {
3457 raw_spin_lock(&ctx->lock);
3458 perf_pmu_disable(pmu);
3459
3460 if (cpuctx->sched_cb_usage && pmu->sched_task)
3461 pmu->sched_task(ctx, false);
3462 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3463
3464 perf_pmu_enable(pmu);
3465 raw_spin_unlock(&ctx->lock);
3466 }
3467 }
3468
perf_sched_cb_dec(struct pmu * pmu)3469 void perf_sched_cb_dec(struct pmu *pmu)
3470 {
3471 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3472
3473 --cpuctx->sched_cb_usage;
3474 }
3475
3476
perf_sched_cb_inc(struct pmu * pmu)3477 void perf_sched_cb_inc(struct pmu *pmu)
3478 {
3479 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3480
3481 cpuctx->sched_cb_usage++;
3482 }
3483
3484 /*
3485 * This function provides the context switch callback to the lower code
3486 * layer. It is invoked ONLY when the context switch callback is enabled.
3487 *
3488 * This callback is relevant even to per-cpu events; for example multi event
3489 * PEBS requires this to provide PID/TID information. This requires we flush
3490 * all queued PEBS records before we context switch to a new task.
3491 */
__perf_pmu_sched_task(struct perf_cpu_context * cpuctx,bool sched_in)3492 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3493 {
3494 struct pmu *pmu;
3495
3496 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3497
3498 if (WARN_ON_ONCE(!pmu->sched_task))
3499 return;
3500
3501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3502 perf_pmu_disable(pmu);
3503
3504 pmu->sched_task(cpuctx->task_ctx, sched_in);
3505
3506 perf_pmu_enable(pmu);
3507 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3508 }
3509
3510 static void perf_event_switch(struct task_struct *task,
3511 struct task_struct *next_prev, bool sched_in);
3512
3513 #define for_each_task_context_nr(ctxn) \
3514 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3515
3516 /*
3517 * Called from scheduler to remove the events of the current task,
3518 * with interrupts disabled.
3519 *
3520 * We stop each event and update the event value in event->count.
3521 *
3522 * This does not protect us against NMI, but disable()
3523 * sets the disabled bit in the control field of event _before_
3524 * accessing the event control register. If a NMI hits, then it will
3525 * not restart the event.
3526 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3527 void __perf_event_task_sched_out(struct task_struct *task,
3528 struct task_struct *next)
3529 {
3530 int ctxn;
3531
3532 if (atomic_read(&nr_switch_events))
3533 perf_event_switch(task, next, false);
3534
3535 for_each_task_context_nr(ctxn)
3536 perf_event_context_sched_out(task, ctxn, next);
3537
3538 /*
3539 * if cgroup events exist on this CPU, then we need
3540 * to check if we have to switch out PMU state.
3541 * cgroup event are system-wide mode only
3542 */
3543 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3544 perf_cgroup_sched_out(task, next);
3545 }
3546
3547 /*
3548 * Called with IRQs disabled
3549 */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3551 enum event_type_t event_type)
3552 {
3553 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3554 }
3555
perf_less_group_idx(const void * l,const void * r)3556 static bool perf_less_group_idx(const void *l, const void *r)
3557 {
3558 const struct perf_event *le = *(const struct perf_event **)l;
3559 const struct perf_event *re = *(const struct perf_event **)r;
3560
3561 return le->group_index < re->group_index;
3562 }
3563
swap_ptr(void * l,void * r)3564 static void swap_ptr(void *l, void *r)
3565 {
3566 void **lp = l, **rp = r;
3567
3568 swap(*lp, *rp);
3569 }
3570
3571 static const struct min_heap_callbacks perf_min_heap = {
3572 .elem_size = sizeof(struct perf_event *),
3573 .less = perf_less_group_idx,
3574 .swp = swap_ptr,
3575 };
3576
__heap_add(struct min_heap * heap,struct perf_event * event)3577 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3578 {
3579 struct perf_event **itrs = heap->data;
3580
3581 if (event) {
3582 itrs[heap->nr] = event;
3583 heap->nr++;
3584 }
3585 }
3586
visit_groups_merge(struct perf_cpu_context * cpuctx,struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3587 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3588 struct perf_event_groups *groups, int cpu,
3589 int (*func)(struct perf_event *, void *),
3590 void *data)
3591 {
3592 #ifdef CONFIG_CGROUP_PERF
3593 struct cgroup_subsys_state *css = NULL;
3594 #endif
3595 /* Space for per CPU and/or any CPU event iterators. */
3596 struct perf_event *itrs[2];
3597 struct min_heap event_heap;
3598 struct perf_event **evt;
3599 int ret;
3600
3601 if (cpuctx) {
3602 event_heap = (struct min_heap){
3603 .data = cpuctx->heap,
3604 .nr = 0,
3605 .size = cpuctx->heap_size,
3606 };
3607
3608 lockdep_assert_held(&cpuctx->ctx.lock);
3609
3610 #ifdef CONFIG_CGROUP_PERF
3611 if (cpuctx->cgrp)
3612 css = &cpuctx->cgrp->css;
3613 #endif
3614 } else {
3615 event_heap = (struct min_heap){
3616 .data = itrs,
3617 .nr = 0,
3618 .size = ARRAY_SIZE(itrs),
3619 };
3620 /* Events not within a CPU context may be on any CPU. */
3621 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3622 }
3623 evt = event_heap.data;
3624
3625 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3626
3627 #ifdef CONFIG_CGROUP_PERF
3628 for (; css; css = css->parent)
3629 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3630 #endif
3631
3632 min_heapify_all(&event_heap, &perf_min_heap);
3633
3634 while (event_heap.nr) {
3635 ret = func(*evt, data);
3636 if (ret)
3637 return ret;
3638
3639 *evt = perf_event_groups_next(*evt);
3640 if (*evt)
3641 min_heapify(&event_heap, 0, &perf_min_heap);
3642 else
3643 min_heap_pop(&event_heap, &perf_min_heap);
3644 }
3645
3646 return 0;
3647 }
3648
merge_sched_in(struct perf_event * event,void * data)3649 static int merge_sched_in(struct perf_event *event, void *data)
3650 {
3651 struct perf_event_context *ctx = event->ctx;
3652 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3653 int *can_add_hw = data;
3654
3655 if (event->state <= PERF_EVENT_STATE_OFF)
3656 return 0;
3657
3658 if (!event_filter_match(event))
3659 return 0;
3660
3661 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3662 if (!group_sched_in(event, cpuctx, ctx))
3663 list_add_tail(&event->active_list, get_event_list(event));
3664 }
3665
3666 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3667 if (event->attr.pinned) {
3668 perf_cgroup_event_disable(event, ctx);
3669 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3670 }
3671
3672 *can_add_hw = 0;
3673 ctx->rotate_necessary = 1;
3674 perf_mux_hrtimer_restart(cpuctx);
3675 }
3676
3677 return 0;
3678 }
3679
3680 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3681 ctx_pinned_sched_in(struct perf_event_context *ctx,
3682 struct perf_cpu_context *cpuctx)
3683 {
3684 int can_add_hw = 1;
3685
3686 if (ctx != &cpuctx->ctx)
3687 cpuctx = NULL;
3688
3689 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3690 smp_processor_id(),
3691 merge_sched_in, &can_add_hw);
3692 }
3693
3694 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3695 ctx_flexible_sched_in(struct perf_event_context *ctx,
3696 struct perf_cpu_context *cpuctx)
3697 {
3698 int can_add_hw = 1;
3699
3700 if (ctx != &cpuctx->ctx)
3701 cpuctx = NULL;
3702
3703 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3704 smp_processor_id(),
3705 merge_sched_in, &can_add_hw);
3706 }
3707
3708 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3709 ctx_sched_in(struct perf_event_context *ctx,
3710 struct perf_cpu_context *cpuctx,
3711 enum event_type_t event_type,
3712 struct task_struct *task)
3713 {
3714 int is_active = ctx->is_active;
3715 u64 now;
3716
3717 lockdep_assert_held(&ctx->lock);
3718
3719 if (likely(!ctx->nr_events))
3720 return;
3721
3722 ctx->is_active |= (event_type | EVENT_TIME);
3723 if (ctx->task) {
3724 if (!is_active)
3725 cpuctx->task_ctx = ctx;
3726 else
3727 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3728 }
3729
3730 is_active ^= ctx->is_active; /* changed bits */
3731
3732 if (is_active & EVENT_TIME) {
3733 /* start ctx time */
3734 now = perf_clock();
3735 ctx->timestamp = now;
3736 perf_cgroup_set_timestamp(task, ctx);
3737 }
3738
3739 /*
3740 * First go through the list and put on any pinned groups
3741 * in order to give them the best chance of going on.
3742 */
3743 if (is_active & EVENT_PINNED)
3744 ctx_pinned_sched_in(ctx, cpuctx);
3745
3746 /* Then walk through the lower prio flexible groups */
3747 if (is_active & EVENT_FLEXIBLE)
3748 ctx_flexible_sched_in(ctx, cpuctx);
3749 }
3750
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3751 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3752 enum event_type_t event_type,
3753 struct task_struct *task)
3754 {
3755 struct perf_event_context *ctx = &cpuctx->ctx;
3756
3757 ctx_sched_in(ctx, cpuctx, event_type, task);
3758 }
3759
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3760 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3761 struct task_struct *task)
3762 {
3763 struct perf_cpu_context *cpuctx;
3764 struct pmu *pmu = ctx->pmu;
3765
3766 cpuctx = __get_cpu_context(ctx);
3767 if (cpuctx->task_ctx == ctx) {
3768 if (cpuctx->sched_cb_usage)
3769 __perf_pmu_sched_task(cpuctx, true);
3770 return;
3771 }
3772
3773 perf_ctx_lock(cpuctx, ctx);
3774 /*
3775 * We must check ctx->nr_events while holding ctx->lock, such
3776 * that we serialize against perf_install_in_context().
3777 */
3778 if (!ctx->nr_events)
3779 goto unlock;
3780
3781 perf_pmu_disable(pmu);
3782 /*
3783 * We want to keep the following priority order:
3784 * cpu pinned (that don't need to move), task pinned,
3785 * cpu flexible, task flexible.
3786 *
3787 * However, if task's ctx is not carrying any pinned
3788 * events, no need to flip the cpuctx's events around.
3789 */
3790 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3791 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3792 perf_event_sched_in(cpuctx, ctx, task);
3793
3794 if (cpuctx->sched_cb_usage && pmu->sched_task)
3795 pmu->sched_task(cpuctx->task_ctx, true);
3796
3797 perf_pmu_enable(pmu);
3798
3799 unlock:
3800 perf_ctx_unlock(cpuctx, ctx);
3801 }
3802
3803 /*
3804 * Called from scheduler to add the events of the current task
3805 * with interrupts disabled.
3806 *
3807 * We restore the event value and then enable it.
3808 *
3809 * This does not protect us against NMI, but enable()
3810 * sets the enabled bit in the control field of event _before_
3811 * accessing the event control register. If a NMI hits, then it will
3812 * keep the event running.
3813 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3814 void __perf_event_task_sched_in(struct task_struct *prev,
3815 struct task_struct *task)
3816 {
3817 struct perf_event_context *ctx;
3818 int ctxn;
3819
3820 /*
3821 * If cgroup events exist on this CPU, then we need to check if we have
3822 * to switch in PMU state; cgroup event are system-wide mode only.
3823 *
3824 * Since cgroup events are CPU events, we must schedule these in before
3825 * we schedule in the task events.
3826 */
3827 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3828 perf_cgroup_sched_in(prev, task);
3829
3830 for_each_task_context_nr(ctxn) {
3831 ctx = task->perf_event_ctxp[ctxn];
3832 if (likely(!ctx))
3833 continue;
3834
3835 perf_event_context_sched_in(ctx, task);
3836 }
3837
3838 if (atomic_read(&nr_switch_events))
3839 perf_event_switch(task, prev, true);
3840 }
3841
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3842 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3843 {
3844 u64 frequency = event->attr.sample_freq;
3845 u64 sec = NSEC_PER_SEC;
3846 u64 divisor, dividend;
3847
3848 int count_fls, nsec_fls, frequency_fls, sec_fls;
3849
3850 count_fls = fls64(count);
3851 nsec_fls = fls64(nsec);
3852 frequency_fls = fls64(frequency);
3853 sec_fls = 30;
3854
3855 /*
3856 * We got @count in @nsec, with a target of sample_freq HZ
3857 * the target period becomes:
3858 *
3859 * @count * 10^9
3860 * period = -------------------
3861 * @nsec * sample_freq
3862 *
3863 */
3864
3865 /*
3866 * Reduce accuracy by one bit such that @a and @b converge
3867 * to a similar magnitude.
3868 */
3869 #define REDUCE_FLS(a, b) \
3870 do { \
3871 if (a##_fls > b##_fls) { \
3872 a >>= 1; \
3873 a##_fls--; \
3874 } else { \
3875 b >>= 1; \
3876 b##_fls--; \
3877 } \
3878 } while (0)
3879
3880 /*
3881 * Reduce accuracy until either term fits in a u64, then proceed with
3882 * the other, so that finally we can do a u64/u64 division.
3883 */
3884 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3885 REDUCE_FLS(nsec, frequency);
3886 REDUCE_FLS(sec, count);
3887 }
3888
3889 if (count_fls + sec_fls > 64) {
3890 divisor = nsec * frequency;
3891
3892 while (count_fls + sec_fls > 64) {
3893 REDUCE_FLS(count, sec);
3894 divisor >>= 1;
3895 }
3896
3897 dividend = count * sec;
3898 } else {
3899 dividend = count * sec;
3900
3901 while (nsec_fls + frequency_fls > 64) {
3902 REDUCE_FLS(nsec, frequency);
3903 dividend >>= 1;
3904 }
3905
3906 divisor = nsec * frequency;
3907 }
3908
3909 if (!divisor)
3910 return dividend;
3911
3912 return div64_u64(dividend, divisor);
3913 }
3914
3915 static DEFINE_PER_CPU(int, perf_throttled_count);
3916 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3917
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3918 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3919 {
3920 struct hw_perf_event *hwc = &event->hw;
3921 s64 period, sample_period;
3922 s64 delta;
3923
3924 period = perf_calculate_period(event, nsec, count);
3925
3926 delta = (s64)(period - hwc->sample_period);
3927 delta = (delta + 7) / 8; /* low pass filter */
3928
3929 sample_period = hwc->sample_period + delta;
3930
3931 if (!sample_period)
3932 sample_period = 1;
3933
3934 hwc->sample_period = sample_period;
3935
3936 if (local64_read(&hwc->period_left) > 8*sample_period) {
3937 if (disable)
3938 event->pmu->stop(event, PERF_EF_UPDATE);
3939
3940 local64_set(&hwc->period_left, 0);
3941
3942 if (disable)
3943 event->pmu->start(event, PERF_EF_RELOAD);
3944 }
3945 }
3946
3947 /*
3948 * combine freq adjustment with unthrottling to avoid two passes over the
3949 * events. At the same time, make sure, having freq events does not change
3950 * the rate of unthrottling as that would introduce bias.
3951 */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)3952 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3953 int needs_unthr)
3954 {
3955 struct perf_event *event;
3956 struct hw_perf_event *hwc;
3957 u64 now, period = TICK_NSEC;
3958 s64 delta;
3959
3960 /*
3961 * only need to iterate over all events iff:
3962 * - context have events in frequency mode (needs freq adjust)
3963 * - there are events to unthrottle on this cpu
3964 */
3965 if (!(ctx->nr_freq || needs_unthr))
3966 return;
3967
3968 raw_spin_lock(&ctx->lock);
3969 perf_pmu_disable(ctx->pmu);
3970
3971 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3972 if (event->state != PERF_EVENT_STATE_ACTIVE)
3973 continue;
3974
3975 if (!event_filter_match(event))
3976 continue;
3977
3978 perf_pmu_disable(event->pmu);
3979
3980 hwc = &event->hw;
3981
3982 if (hwc->interrupts == MAX_INTERRUPTS) {
3983 hwc->interrupts = 0;
3984 perf_log_throttle(event, 1);
3985 event->pmu->start(event, 0);
3986 }
3987
3988 if (!event->attr.freq || !event->attr.sample_freq)
3989 goto next;
3990
3991 /*
3992 * stop the event and update event->count
3993 */
3994 event->pmu->stop(event, PERF_EF_UPDATE);
3995
3996 now = local64_read(&event->count);
3997 delta = now - hwc->freq_count_stamp;
3998 hwc->freq_count_stamp = now;
3999
4000 /*
4001 * restart the event
4002 * reload only if value has changed
4003 * we have stopped the event so tell that
4004 * to perf_adjust_period() to avoid stopping it
4005 * twice.
4006 */
4007 if (delta > 0)
4008 perf_adjust_period(event, period, delta, false);
4009
4010 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4011 next:
4012 perf_pmu_enable(event->pmu);
4013 }
4014
4015 perf_pmu_enable(ctx->pmu);
4016 raw_spin_unlock(&ctx->lock);
4017 }
4018
4019 /*
4020 * Move @event to the tail of the @ctx's elegible events.
4021 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4022 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4023 {
4024 /*
4025 * Rotate the first entry last of non-pinned groups. Rotation might be
4026 * disabled by the inheritance code.
4027 */
4028 if (ctx->rotate_disable)
4029 return;
4030
4031 perf_event_groups_delete(&ctx->flexible_groups, event);
4032 perf_event_groups_insert(&ctx->flexible_groups, event);
4033 }
4034
4035 /* pick an event from the flexible_groups to rotate */
4036 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)4037 ctx_event_to_rotate(struct perf_event_context *ctx)
4038 {
4039 struct perf_event *event;
4040
4041 /* pick the first active flexible event */
4042 event = list_first_entry_or_null(&ctx->flexible_active,
4043 struct perf_event, active_list);
4044
4045 /* if no active flexible event, pick the first event */
4046 if (!event) {
4047 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4048 typeof(*event), group_node);
4049 }
4050
4051 /*
4052 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4053 * finds there are unschedulable events, it will set it again.
4054 */
4055 ctx->rotate_necessary = 0;
4056
4057 return event;
4058 }
4059
perf_rotate_context(struct perf_cpu_context * cpuctx)4060 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4061 {
4062 struct perf_event *cpu_event = NULL, *task_event = NULL;
4063 struct perf_event_context *task_ctx = NULL;
4064 int cpu_rotate, task_rotate;
4065
4066 /*
4067 * Since we run this from IRQ context, nobody can install new
4068 * events, thus the event count values are stable.
4069 */
4070
4071 cpu_rotate = cpuctx->ctx.rotate_necessary;
4072 task_ctx = cpuctx->task_ctx;
4073 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4074
4075 if (!(cpu_rotate || task_rotate))
4076 return false;
4077
4078 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4079 perf_pmu_disable(cpuctx->ctx.pmu);
4080
4081 if (task_rotate)
4082 task_event = ctx_event_to_rotate(task_ctx);
4083 if (cpu_rotate)
4084 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4085
4086 /*
4087 * As per the order given at ctx_resched() first 'pop' task flexible
4088 * and then, if needed CPU flexible.
4089 */
4090 if (task_event || (task_ctx && cpu_event))
4091 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4092 if (cpu_event)
4093 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4094
4095 if (task_event)
4096 rotate_ctx(task_ctx, task_event);
4097 if (cpu_event)
4098 rotate_ctx(&cpuctx->ctx, cpu_event);
4099
4100 perf_event_sched_in(cpuctx, task_ctx, current);
4101
4102 perf_pmu_enable(cpuctx->ctx.pmu);
4103 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4104
4105 return true;
4106 }
4107
perf_event_task_tick(void)4108 void perf_event_task_tick(void)
4109 {
4110 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4111 struct perf_event_context *ctx, *tmp;
4112 int throttled;
4113
4114 lockdep_assert_irqs_disabled();
4115
4116 __this_cpu_inc(perf_throttled_seq);
4117 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4118 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4119
4120 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4121 perf_adjust_freq_unthr_context(ctx, throttled);
4122 }
4123
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4124 static int event_enable_on_exec(struct perf_event *event,
4125 struct perf_event_context *ctx)
4126 {
4127 if (!event->attr.enable_on_exec)
4128 return 0;
4129
4130 event->attr.enable_on_exec = 0;
4131 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4132 return 0;
4133
4134 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4135
4136 return 1;
4137 }
4138
4139 /*
4140 * Enable all of a task's events that have been marked enable-on-exec.
4141 * This expects task == current.
4142 */
perf_event_enable_on_exec(int ctxn)4143 static void perf_event_enable_on_exec(int ctxn)
4144 {
4145 struct perf_event_context *ctx, *clone_ctx = NULL;
4146 enum event_type_t event_type = 0;
4147 struct perf_cpu_context *cpuctx;
4148 struct perf_event *event;
4149 unsigned long flags;
4150 int enabled = 0;
4151
4152 local_irq_save(flags);
4153 ctx = current->perf_event_ctxp[ctxn];
4154 if (!ctx || !ctx->nr_events)
4155 goto out;
4156
4157 cpuctx = __get_cpu_context(ctx);
4158 perf_ctx_lock(cpuctx, ctx);
4159 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4160 list_for_each_entry(event, &ctx->event_list, event_entry) {
4161 enabled |= event_enable_on_exec(event, ctx);
4162 event_type |= get_event_type(event);
4163 }
4164
4165 /*
4166 * Unclone and reschedule this context if we enabled any event.
4167 */
4168 if (enabled) {
4169 clone_ctx = unclone_ctx(ctx);
4170 ctx_resched(cpuctx, ctx, event_type);
4171 } else {
4172 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4173 }
4174 perf_ctx_unlock(cpuctx, ctx);
4175
4176 out:
4177 local_irq_restore(flags);
4178
4179 if (clone_ctx)
4180 put_ctx(clone_ctx);
4181 }
4182
4183 struct perf_read_data {
4184 struct perf_event *event;
4185 bool group;
4186 int ret;
4187 };
4188
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4189 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4190 {
4191 u16 local_pkg, event_pkg;
4192
4193 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4194 int local_cpu = smp_processor_id();
4195
4196 event_pkg = topology_physical_package_id(event_cpu);
4197 local_pkg = topology_physical_package_id(local_cpu);
4198
4199 if (event_pkg == local_pkg)
4200 return local_cpu;
4201 }
4202
4203 return event_cpu;
4204 }
4205
4206 /*
4207 * Cross CPU call to read the hardware event
4208 */
__perf_event_read(void * info)4209 static void __perf_event_read(void *info)
4210 {
4211 struct perf_read_data *data = info;
4212 struct perf_event *sub, *event = data->event;
4213 struct perf_event_context *ctx = event->ctx;
4214 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4215 struct pmu *pmu = event->pmu;
4216
4217 /*
4218 * If this is a task context, we need to check whether it is
4219 * the current task context of this cpu. If not it has been
4220 * scheduled out before the smp call arrived. In that case
4221 * event->count would have been updated to a recent sample
4222 * when the event was scheduled out.
4223 */
4224 if (ctx->task && cpuctx->task_ctx != ctx)
4225 return;
4226
4227 raw_spin_lock(&ctx->lock);
4228 if (ctx->is_active & EVENT_TIME) {
4229 update_context_time(ctx);
4230 update_cgrp_time_from_event(event);
4231 }
4232
4233 perf_event_update_time(event);
4234 if (data->group)
4235 perf_event_update_sibling_time(event);
4236
4237 if (event->state != PERF_EVENT_STATE_ACTIVE)
4238 goto unlock;
4239
4240 if (!data->group) {
4241 pmu->read(event);
4242 data->ret = 0;
4243 goto unlock;
4244 }
4245
4246 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4247
4248 pmu->read(event);
4249
4250 for_each_sibling_event(sub, event) {
4251 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4252 /*
4253 * Use sibling's PMU rather than @event's since
4254 * sibling could be on different (eg: software) PMU.
4255 */
4256 sub->pmu->read(sub);
4257 }
4258 }
4259
4260 data->ret = pmu->commit_txn(pmu);
4261
4262 unlock:
4263 raw_spin_unlock(&ctx->lock);
4264 }
4265
perf_event_count(struct perf_event * event)4266 static inline u64 perf_event_count(struct perf_event *event)
4267 {
4268 return local64_read(&event->count) + atomic64_read(&event->child_count);
4269 }
4270
4271 /*
4272 * NMI-safe method to read a local event, that is an event that
4273 * is:
4274 * - either for the current task, or for this CPU
4275 * - does not have inherit set, for inherited task events
4276 * will not be local and we cannot read them atomically
4277 * - must not have a pmu::count method
4278 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4279 int perf_event_read_local(struct perf_event *event, u64 *value,
4280 u64 *enabled, u64 *running)
4281 {
4282 unsigned long flags;
4283 int ret = 0;
4284
4285 /*
4286 * Disabling interrupts avoids all counter scheduling (context
4287 * switches, timer based rotation and IPIs).
4288 */
4289 local_irq_save(flags);
4290
4291 /*
4292 * It must not be an event with inherit set, we cannot read
4293 * all child counters from atomic context.
4294 */
4295 if (event->attr.inherit) {
4296 ret = -EOPNOTSUPP;
4297 goto out;
4298 }
4299
4300 /* If this is a per-task event, it must be for current */
4301 if ((event->attach_state & PERF_ATTACH_TASK) &&
4302 event->hw.target != current) {
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306
4307 /* If this is a per-CPU event, it must be for this CPU */
4308 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4309 event->cpu != smp_processor_id()) {
4310 ret = -EINVAL;
4311 goto out;
4312 }
4313
4314 /* If this is a pinned event it must be running on this CPU */
4315 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4316 ret = -EBUSY;
4317 goto out;
4318 }
4319
4320 /*
4321 * If the event is currently on this CPU, its either a per-task event,
4322 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4323 * oncpu == -1).
4324 */
4325 if (event->oncpu == smp_processor_id())
4326 event->pmu->read(event);
4327
4328 *value = local64_read(&event->count);
4329 if (enabled || running) {
4330 u64 now = event->shadow_ctx_time + perf_clock();
4331 u64 __enabled, __running;
4332
4333 __perf_update_times(event, now, &__enabled, &__running);
4334 if (enabled)
4335 *enabled = __enabled;
4336 if (running)
4337 *running = __running;
4338 }
4339 out:
4340 local_irq_restore(flags);
4341
4342 return ret;
4343 }
4344
perf_event_read(struct perf_event * event,bool group)4345 static int perf_event_read(struct perf_event *event, bool group)
4346 {
4347 enum perf_event_state state = READ_ONCE(event->state);
4348 int event_cpu, ret = 0;
4349
4350 /*
4351 * If event is enabled and currently active on a CPU, update the
4352 * value in the event structure:
4353 */
4354 again:
4355 if (state == PERF_EVENT_STATE_ACTIVE) {
4356 struct perf_read_data data;
4357
4358 /*
4359 * Orders the ->state and ->oncpu loads such that if we see
4360 * ACTIVE we must also see the right ->oncpu.
4361 *
4362 * Matches the smp_wmb() from event_sched_in().
4363 */
4364 smp_rmb();
4365
4366 event_cpu = READ_ONCE(event->oncpu);
4367 if ((unsigned)event_cpu >= nr_cpu_ids)
4368 return 0;
4369
4370 data = (struct perf_read_data){
4371 .event = event,
4372 .group = group,
4373 .ret = 0,
4374 };
4375
4376 preempt_disable();
4377 event_cpu = __perf_event_read_cpu(event, event_cpu);
4378
4379 /*
4380 * Purposely ignore the smp_call_function_single() return
4381 * value.
4382 *
4383 * If event_cpu isn't a valid CPU it means the event got
4384 * scheduled out and that will have updated the event count.
4385 *
4386 * Therefore, either way, we'll have an up-to-date event count
4387 * after this.
4388 */
4389 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4390 preempt_enable();
4391 ret = data.ret;
4392
4393 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4394 struct perf_event_context *ctx = event->ctx;
4395 unsigned long flags;
4396
4397 raw_spin_lock_irqsave(&ctx->lock, flags);
4398 state = event->state;
4399 if (state != PERF_EVENT_STATE_INACTIVE) {
4400 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4401 goto again;
4402 }
4403
4404 /*
4405 * May read while context is not active (e.g., thread is
4406 * blocked), in that case we cannot update context time
4407 */
4408 if (ctx->is_active & EVENT_TIME) {
4409 update_context_time(ctx);
4410 update_cgrp_time_from_event(event);
4411 }
4412
4413 perf_event_update_time(event);
4414 if (group)
4415 perf_event_update_sibling_time(event);
4416 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417 }
4418
4419 return ret;
4420 }
4421
4422 /*
4423 * Initialize the perf_event context in a task_struct:
4424 */
__perf_event_init_context(struct perf_event_context * ctx)4425 static void __perf_event_init_context(struct perf_event_context *ctx)
4426 {
4427 raw_spin_lock_init(&ctx->lock);
4428 mutex_init(&ctx->mutex);
4429 INIT_LIST_HEAD(&ctx->active_ctx_list);
4430 perf_event_groups_init(&ctx->pinned_groups);
4431 perf_event_groups_init(&ctx->flexible_groups);
4432 INIT_LIST_HEAD(&ctx->event_list);
4433 INIT_LIST_HEAD(&ctx->pinned_active);
4434 INIT_LIST_HEAD(&ctx->flexible_active);
4435 refcount_set(&ctx->refcount, 1);
4436 }
4437
4438 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4439 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4440 {
4441 struct perf_event_context *ctx;
4442
4443 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4444 if (!ctx)
4445 return NULL;
4446
4447 __perf_event_init_context(ctx);
4448 if (task)
4449 ctx->task = get_task_struct(task);
4450 ctx->pmu = pmu;
4451
4452 return ctx;
4453 }
4454
4455 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4456 find_lively_task_by_vpid(pid_t vpid)
4457 {
4458 struct task_struct *task;
4459
4460 rcu_read_lock();
4461 if (!vpid)
4462 task = current;
4463 else
4464 task = find_task_by_vpid(vpid);
4465 if (task)
4466 get_task_struct(task);
4467 rcu_read_unlock();
4468
4469 if (!task)
4470 return ERR_PTR(-ESRCH);
4471
4472 return task;
4473 }
4474
4475 /*
4476 * Returns a matching context with refcount and pincount.
4477 */
4478 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4479 find_get_context(struct pmu *pmu, struct task_struct *task,
4480 struct perf_event *event)
4481 {
4482 struct perf_event_context *ctx, *clone_ctx = NULL;
4483 struct perf_cpu_context *cpuctx;
4484 void *task_ctx_data = NULL;
4485 unsigned long flags;
4486 int ctxn, err;
4487 int cpu = event->cpu;
4488
4489 if (!task) {
4490 /* Must be root to operate on a CPU event: */
4491 err = perf_allow_cpu(&event->attr);
4492 if (err)
4493 return ERR_PTR(err);
4494
4495 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4496 ctx = &cpuctx->ctx;
4497 get_ctx(ctx);
4498 ++ctx->pin_count;
4499
4500 return ctx;
4501 }
4502
4503 err = -EINVAL;
4504 ctxn = pmu->task_ctx_nr;
4505 if (ctxn < 0)
4506 goto errout;
4507
4508 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4509 task_ctx_data = alloc_task_ctx_data(pmu);
4510 if (!task_ctx_data) {
4511 err = -ENOMEM;
4512 goto errout;
4513 }
4514 }
4515
4516 retry:
4517 ctx = perf_lock_task_context(task, ctxn, &flags);
4518 if (ctx) {
4519 clone_ctx = unclone_ctx(ctx);
4520 ++ctx->pin_count;
4521
4522 if (task_ctx_data && !ctx->task_ctx_data) {
4523 ctx->task_ctx_data = task_ctx_data;
4524 task_ctx_data = NULL;
4525 }
4526 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4527
4528 if (clone_ctx)
4529 put_ctx(clone_ctx);
4530 } else {
4531 ctx = alloc_perf_context(pmu, task);
4532 err = -ENOMEM;
4533 if (!ctx)
4534 goto errout;
4535
4536 if (task_ctx_data) {
4537 ctx->task_ctx_data = task_ctx_data;
4538 task_ctx_data = NULL;
4539 }
4540
4541 err = 0;
4542 mutex_lock(&task->perf_event_mutex);
4543 /*
4544 * If it has already passed perf_event_exit_task().
4545 * we must see PF_EXITING, it takes this mutex too.
4546 */
4547 if (task->flags & PF_EXITING)
4548 err = -ESRCH;
4549 else if (task->perf_event_ctxp[ctxn])
4550 err = -EAGAIN;
4551 else {
4552 get_ctx(ctx);
4553 ++ctx->pin_count;
4554 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4555 }
4556 mutex_unlock(&task->perf_event_mutex);
4557
4558 if (unlikely(err)) {
4559 put_ctx(ctx);
4560
4561 if (err == -EAGAIN)
4562 goto retry;
4563 goto errout;
4564 }
4565 }
4566
4567 free_task_ctx_data(pmu, task_ctx_data);
4568 return ctx;
4569
4570 errout:
4571 free_task_ctx_data(pmu, task_ctx_data);
4572 return ERR_PTR(err);
4573 }
4574
4575 static void perf_event_free_filter(struct perf_event *event);
4576 static void perf_event_free_bpf_prog(struct perf_event *event);
4577
free_event_rcu(struct rcu_head * head)4578 static void free_event_rcu(struct rcu_head *head)
4579 {
4580 struct perf_event *event;
4581
4582 event = container_of(head, struct perf_event, rcu_head);
4583 if (event->ns)
4584 put_pid_ns(event->ns);
4585 perf_event_free_filter(event);
4586 kfree(event);
4587 }
4588
4589 static void ring_buffer_attach(struct perf_event *event,
4590 struct perf_buffer *rb);
4591
detach_sb_event(struct perf_event * event)4592 static void detach_sb_event(struct perf_event *event)
4593 {
4594 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4595
4596 raw_spin_lock(&pel->lock);
4597 list_del_rcu(&event->sb_list);
4598 raw_spin_unlock(&pel->lock);
4599 }
4600
is_sb_event(struct perf_event * event)4601 static bool is_sb_event(struct perf_event *event)
4602 {
4603 struct perf_event_attr *attr = &event->attr;
4604
4605 if (event->parent)
4606 return false;
4607
4608 if (event->attach_state & PERF_ATTACH_TASK)
4609 return false;
4610
4611 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4612 attr->comm || attr->comm_exec ||
4613 attr->task || attr->ksymbol ||
4614 attr->context_switch || attr->text_poke ||
4615 attr->bpf_event)
4616 return true;
4617 return false;
4618 }
4619
unaccount_pmu_sb_event(struct perf_event * event)4620 static void unaccount_pmu_sb_event(struct perf_event *event)
4621 {
4622 if (is_sb_event(event))
4623 detach_sb_event(event);
4624 }
4625
unaccount_event_cpu(struct perf_event * event,int cpu)4626 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4627 {
4628 if (event->parent)
4629 return;
4630
4631 if (is_cgroup_event(event))
4632 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4633 }
4634
4635 #ifdef CONFIG_NO_HZ_FULL
4636 static DEFINE_SPINLOCK(nr_freq_lock);
4637 #endif
4638
unaccount_freq_event_nohz(void)4639 static void unaccount_freq_event_nohz(void)
4640 {
4641 #ifdef CONFIG_NO_HZ_FULL
4642 spin_lock(&nr_freq_lock);
4643 if (atomic_dec_and_test(&nr_freq_events))
4644 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4645 spin_unlock(&nr_freq_lock);
4646 #endif
4647 }
4648
unaccount_freq_event(void)4649 static void unaccount_freq_event(void)
4650 {
4651 if (tick_nohz_full_enabled())
4652 unaccount_freq_event_nohz();
4653 else
4654 atomic_dec(&nr_freq_events);
4655 }
4656
unaccount_event(struct perf_event * event)4657 static void unaccount_event(struct perf_event *event)
4658 {
4659 bool dec = false;
4660
4661 if (event->parent)
4662 return;
4663
4664 if (event->attach_state & PERF_ATTACH_TASK)
4665 dec = true;
4666 if (event->attr.mmap || event->attr.mmap_data)
4667 atomic_dec(&nr_mmap_events);
4668 if (event->attr.comm)
4669 atomic_dec(&nr_comm_events);
4670 if (event->attr.namespaces)
4671 atomic_dec(&nr_namespaces_events);
4672 if (event->attr.cgroup)
4673 atomic_dec(&nr_cgroup_events);
4674 if (event->attr.task)
4675 atomic_dec(&nr_task_events);
4676 if (event->attr.freq)
4677 unaccount_freq_event();
4678 if (event->attr.context_switch) {
4679 dec = true;
4680 atomic_dec(&nr_switch_events);
4681 }
4682 if (is_cgroup_event(event))
4683 dec = true;
4684 if (has_branch_stack(event))
4685 dec = true;
4686 if (event->attr.ksymbol)
4687 atomic_dec(&nr_ksymbol_events);
4688 if (event->attr.bpf_event)
4689 atomic_dec(&nr_bpf_events);
4690 if (event->attr.text_poke)
4691 atomic_dec(&nr_text_poke_events);
4692
4693 if (dec) {
4694 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4695 schedule_delayed_work(&perf_sched_work, HZ);
4696 }
4697
4698 unaccount_event_cpu(event, event->cpu);
4699
4700 unaccount_pmu_sb_event(event);
4701 }
4702
perf_sched_delayed(struct work_struct * work)4703 static void perf_sched_delayed(struct work_struct *work)
4704 {
4705 mutex_lock(&perf_sched_mutex);
4706 if (atomic_dec_and_test(&perf_sched_count))
4707 static_branch_disable(&perf_sched_events);
4708 mutex_unlock(&perf_sched_mutex);
4709 }
4710
4711 /*
4712 * The following implement mutual exclusion of events on "exclusive" pmus
4713 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4714 * at a time, so we disallow creating events that might conflict, namely:
4715 *
4716 * 1) cpu-wide events in the presence of per-task events,
4717 * 2) per-task events in the presence of cpu-wide events,
4718 * 3) two matching events on the same context.
4719 *
4720 * The former two cases are handled in the allocation path (perf_event_alloc(),
4721 * _free_event()), the latter -- before the first perf_install_in_context().
4722 */
exclusive_event_init(struct perf_event * event)4723 static int exclusive_event_init(struct perf_event *event)
4724 {
4725 struct pmu *pmu = event->pmu;
4726
4727 if (!is_exclusive_pmu(pmu))
4728 return 0;
4729
4730 /*
4731 * Prevent co-existence of per-task and cpu-wide events on the
4732 * same exclusive pmu.
4733 *
4734 * Negative pmu::exclusive_cnt means there are cpu-wide
4735 * events on this "exclusive" pmu, positive means there are
4736 * per-task events.
4737 *
4738 * Since this is called in perf_event_alloc() path, event::ctx
4739 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4740 * to mean "per-task event", because unlike other attach states it
4741 * never gets cleared.
4742 */
4743 if (event->attach_state & PERF_ATTACH_TASK) {
4744 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4745 return -EBUSY;
4746 } else {
4747 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4748 return -EBUSY;
4749 }
4750
4751 return 0;
4752 }
4753
exclusive_event_destroy(struct perf_event * event)4754 static void exclusive_event_destroy(struct perf_event *event)
4755 {
4756 struct pmu *pmu = event->pmu;
4757
4758 if (!is_exclusive_pmu(pmu))
4759 return;
4760
4761 /* see comment in exclusive_event_init() */
4762 if (event->attach_state & PERF_ATTACH_TASK)
4763 atomic_dec(&pmu->exclusive_cnt);
4764 else
4765 atomic_inc(&pmu->exclusive_cnt);
4766 }
4767
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4768 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4769 {
4770 if ((e1->pmu == e2->pmu) &&
4771 (e1->cpu == e2->cpu ||
4772 e1->cpu == -1 ||
4773 e2->cpu == -1))
4774 return true;
4775 return false;
4776 }
4777
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4778 static bool exclusive_event_installable(struct perf_event *event,
4779 struct perf_event_context *ctx)
4780 {
4781 struct perf_event *iter_event;
4782 struct pmu *pmu = event->pmu;
4783
4784 lockdep_assert_held(&ctx->mutex);
4785
4786 if (!is_exclusive_pmu(pmu))
4787 return true;
4788
4789 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4790 if (exclusive_event_match(iter_event, event))
4791 return false;
4792 }
4793
4794 return true;
4795 }
4796
4797 static void perf_addr_filters_splice(struct perf_event *event,
4798 struct list_head *head);
4799
_free_event(struct perf_event * event)4800 static void _free_event(struct perf_event *event)
4801 {
4802 irq_work_sync(&event->pending);
4803
4804 unaccount_event(event);
4805
4806 security_perf_event_free(event);
4807
4808 if (event->rb) {
4809 /*
4810 * Can happen when we close an event with re-directed output.
4811 *
4812 * Since we have a 0 refcount, perf_mmap_close() will skip
4813 * over us; possibly making our ring_buffer_put() the last.
4814 */
4815 mutex_lock(&event->mmap_mutex);
4816 ring_buffer_attach(event, NULL);
4817 mutex_unlock(&event->mmap_mutex);
4818 }
4819
4820 if (is_cgroup_event(event))
4821 perf_detach_cgroup(event);
4822
4823 if (!event->parent) {
4824 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4825 put_callchain_buffers();
4826 }
4827
4828 perf_event_free_bpf_prog(event);
4829 perf_addr_filters_splice(event, NULL);
4830 kfree(event->addr_filter_ranges);
4831
4832 if (event->destroy)
4833 event->destroy(event);
4834
4835 /*
4836 * Must be after ->destroy(), due to uprobe_perf_close() using
4837 * hw.target.
4838 */
4839 if (event->hw.target)
4840 put_task_struct(event->hw.target);
4841
4842 /*
4843 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4844 * all task references must be cleaned up.
4845 */
4846 if (event->ctx)
4847 put_ctx(event->ctx);
4848
4849 exclusive_event_destroy(event);
4850 module_put(event->pmu->module);
4851
4852 call_rcu(&event->rcu_head, free_event_rcu);
4853 }
4854
4855 /*
4856 * Used to free events which have a known refcount of 1, such as in error paths
4857 * where the event isn't exposed yet and inherited events.
4858 */
free_event(struct perf_event * event)4859 static void free_event(struct perf_event *event)
4860 {
4861 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4862 "unexpected event refcount: %ld; ptr=%p\n",
4863 atomic_long_read(&event->refcount), event)) {
4864 /* leak to avoid use-after-free */
4865 return;
4866 }
4867
4868 _free_event(event);
4869 }
4870
4871 /*
4872 * Remove user event from the owner task.
4873 */
perf_remove_from_owner(struct perf_event * event)4874 static void perf_remove_from_owner(struct perf_event *event)
4875 {
4876 struct task_struct *owner;
4877
4878 rcu_read_lock();
4879 /*
4880 * Matches the smp_store_release() in perf_event_exit_task(). If we
4881 * observe !owner it means the list deletion is complete and we can
4882 * indeed free this event, otherwise we need to serialize on
4883 * owner->perf_event_mutex.
4884 */
4885 owner = READ_ONCE(event->owner);
4886 if (owner) {
4887 /*
4888 * Since delayed_put_task_struct() also drops the last
4889 * task reference we can safely take a new reference
4890 * while holding the rcu_read_lock().
4891 */
4892 get_task_struct(owner);
4893 }
4894 rcu_read_unlock();
4895
4896 if (owner) {
4897 /*
4898 * If we're here through perf_event_exit_task() we're already
4899 * holding ctx->mutex which would be an inversion wrt. the
4900 * normal lock order.
4901 *
4902 * However we can safely take this lock because its the child
4903 * ctx->mutex.
4904 */
4905 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4906
4907 /*
4908 * We have to re-check the event->owner field, if it is cleared
4909 * we raced with perf_event_exit_task(), acquiring the mutex
4910 * ensured they're done, and we can proceed with freeing the
4911 * event.
4912 */
4913 if (event->owner) {
4914 list_del_init(&event->owner_entry);
4915 smp_store_release(&event->owner, NULL);
4916 }
4917 mutex_unlock(&owner->perf_event_mutex);
4918 put_task_struct(owner);
4919 }
4920 }
4921
put_event(struct perf_event * event)4922 static void put_event(struct perf_event *event)
4923 {
4924 if (!atomic_long_dec_and_test(&event->refcount))
4925 return;
4926
4927 _free_event(event);
4928 }
4929
4930 /*
4931 * Kill an event dead; while event:refcount will preserve the event
4932 * object, it will not preserve its functionality. Once the last 'user'
4933 * gives up the object, we'll destroy the thing.
4934 */
perf_event_release_kernel(struct perf_event * event)4935 int perf_event_release_kernel(struct perf_event *event)
4936 {
4937 struct perf_event_context *ctx = event->ctx;
4938 struct perf_event *child, *tmp;
4939 LIST_HEAD(free_list);
4940
4941 /*
4942 * If we got here through err_file: fput(event_file); we will not have
4943 * attached to a context yet.
4944 */
4945 if (!ctx) {
4946 WARN_ON_ONCE(event->attach_state &
4947 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4948 goto no_ctx;
4949 }
4950
4951 if (!is_kernel_event(event))
4952 perf_remove_from_owner(event);
4953
4954 ctx = perf_event_ctx_lock(event);
4955 WARN_ON_ONCE(ctx->parent_ctx);
4956 perf_remove_from_context(event, DETACH_GROUP);
4957
4958 raw_spin_lock_irq(&ctx->lock);
4959 /*
4960 * Mark this event as STATE_DEAD, there is no external reference to it
4961 * anymore.
4962 *
4963 * Anybody acquiring event->child_mutex after the below loop _must_
4964 * also see this, most importantly inherit_event() which will avoid
4965 * placing more children on the list.
4966 *
4967 * Thus this guarantees that we will in fact observe and kill _ALL_
4968 * child events.
4969 */
4970 event->state = PERF_EVENT_STATE_DEAD;
4971 raw_spin_unlock_irq(&ctx->lock);
4972
4973 perf_event_ctx_unlock(event, ctx);
4974
4975 again:
4976 mutex_lock(&event->child_mutex);
4977 list_for_each_entry(child, &event->child_list, child_list) {
4978
4979 /*
4980 * Cannot change, child events are not migrated, see the
4981 * comment with perf_event_ctx_lock_nested().
4982 */
4983 ctx = READ_ONCE(child->ctx);
4984 /*
4985 * Since child_mutex nests inside ctx::mutex, we must jump
4986 * through hoops. We start by grabbing a reference on the ctx.
4987 *
4988 * Since the event cannot get freed while we hold the
4989 * child_mutex, the context must also exist and have a !0
4990 * reference count.
4991 */
4992 get_ctx(ctx);
4993
4994 /*
4995 * Now that we have a ctx ref, we can drop child_mutex, and
4996 * acquire ctx::mutex without fear of it going away. Then we
4997 * can re-acquire child_mutex.
4998 */
4999 mutex_unlock(&event->child_mutex);
5000 mutex_lock(&ctx->mutex);
5001 mutex_lock(&event->child_mutex);
5002
5003 /*
5004 * Now that we hold ctx::mutex and child_mutex, revalidate our
5005 * state, if child is still the first entry, it didn't get freed
5006 * and we can continue doing so.
5007 */
5008 tmp = list_first_entry_or_null(&event->child_list,
5009 struct perf_event, child_list);
5010 if (tmp == child) {
5011 perf_remove_from_context(child, DETACH_GROUP);
5012 list_move(&child->child_list, &free_list);
5013 /*
5014 * This matches the refcount bump in inherit_event();
5015 * this can't be the last reference.
5016 */
5017 put_event(event);
5018 }
5019
5020 mutex_unlock(&event->child_mutex);
5021 mutex_unlock(&ctx->mutex);
5022 put_ctx(ctx);
5023 goto again;
5024 }
5025 mutex_unlock(&event->child_mutex);
5026
5027 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5028 void *var = &child->ctx->refcount;
5029
5030 list_del(&child->child_list);
5031 free_event(child);
5032
5033 /*
5034 * Wake any perf_event_free_task() waiting for this event to be
5035 * freed.
5036 */
5037 smp_mb(); /* pairs with wait_var_event() */
5038 wake_up_var(var);
5039 }
5040
5041 no_ctx:
5042 put_event(event); /* Must be the 'last' reference */
5043 return 0;
5044 }
5045 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5046
5047 /*
5048 * Called when the last reference to the file is gone.
5049 */
perf_release(struct inode * inode,struct file * file)5050 static int perf_release(struct inode *inode, struct file *file)
5051 {
5052 perf_event_release_kernel(file->private_data);
5053 return 0;
5054 }
5055
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5056 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5057 {
5058 struct perf_event *child;
5059 u64 total = 0;
5060
5061 *enabled = 0;
5062 *running = 0;
5063
5064 mutex_lock(&event->child_mutex);
5065
5066 (void)perf_event_read(event, false);
5067 total += perf_event_count(event);
5068
5069 *enabled += event->total_time_enabled +
5070 atomic64_read(&event->child_total_time_enabled);
5071 *running += event->total_time_running +
5072 atomic64_read(&event->child_total_time_running);
5073
5074 list_for_each_entry(child, &event->child_list, child_list) {
5075 (void)perf_event_read(child, false);
5076 total += perf_event_count(child);
5077 *enabled += child->total_time_enabled;
5078 *running += child->total_time_running;
5079 }
5080 mutex_unlock(&event->child_mutex);
5081
5082 return total;
5083 }
5084
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5085 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5086 {
5087 struct perf_event_context *ctx;
5088 u64 count;
5089
5090 ctx = perf_event_ctx_lock(event);
5091 count = __perf_event_read_value(event, enabled, running);
5092 perf_event_ctx_unlock(event, ctx);
5093
5094 return count;
5095 }
5096 EXPORT_SYMBOL_GPL(perf_event_read_value);
5097
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5098 static int __perf_read_group_add(struct perf_event *leader,
5099 u64 read_format, u64 *values)
5100 {
5101 struct perf_event_context *ctx = leader->ctx;
5102 struct perf_event *sub;
5103 unsigned long flags;
5104 int n = 1; /* skip @nr */
5105 int ret;
5106
5107 ret = perf_event_read(leader, true);
5108 if (ret)
5109 return ret;
5110
5111 raw_spin_lock_irqsave(&ctx->lock, flags);
5112
5113 /*
5114 * Since we co-schedule groups, {enabled,running} times of siblings
5115 * will be identical to those of the leader, so we only publish one
5116 * set.
5117 */
5118 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5119 values[n++] += leader->total_time_enabled +
5120 atomic64_read(&leader->child_total_time_enabled);
5121 }
5122
5123 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5124 values[n++] += leader->total_time_running +
5125 atomic64_read(&leader->child_total_time_running);
5126 }
5127
5128 /*
5129 * Write {count,id} tuples for every sibling.
5130 */
5131 values[n++] += perf_event_count(leader);
5132 if (read_format & PERF_FORMAT_ID)
5133 values[n++] = primary_event_id(leader);
5134
5135 for_each_sibling_event(sub, leader) {
5136 values[n++] += perf_event_count(sub);
5137 if (read_format & PERF_FORMAT_ID)
5138 values[n++] = primary_event_id(sub);
5139 }
5140
5141 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5142 return 0;
5143 }
5144
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5145 static int perf_read_group(struct perf_event *event,
5146 u64 read_format, char __user *buf)
5147 {
5148 struct perf_event *leader = event->group_leader, *child;
5149 struct perf_event_context *ctx = leader->ctx;
5150 int ret;
5151 u64 *values;
5152
5153 lockdep_assert_held(&ctx->mutex);
5154
5155 values = kzalloc(event->read_size, GFP_KERNEL);
5156 if (!values)
5157 return -ENOMEM;
5158
5159 values[0] = 1 + leader->nr_siblings;
5160
5161 /*
5162 * By locking the child_mutex of the leader we effectively
5163 * lock the child list of all siblings.. XXX explain how.
5164 */
5165 mutex_lock(&leader->child_mutex);
5166
5167 ret = __perf_read_group_add(leader, read_format, values);
5168 if (ret)
5169 goto unlock;
5170
5171 list_for_each_entry(child, &leader->child_list, child_list) {
5172 ret = __perf_read_group_add(child, read_format, values);
5173 if (ret)
5174 goto unlock;
5175 }
5176
5177 mutex_unlock(&leader->child_mutex);
5178
5179 ret = event->read_size;
5180 if (copy_to_user(buf, values, event->read_size))
5181 ret = -EFAULT;
5182 goto out;
5183
5184 unlock:
5185 mutex_unlock(&leader->child_mutex);
5186 out:
5187 kfree(values);
5188 return ret;
5189 }
5190
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5191 static int perf_read_one(struct perf_event *event,
5192 u64 read_format, char __user *buf)
5193 {
5194 u64 enabled, running;
5195 u64 values[4];
5196 int n = 0;
5197
5198 values[n++] = __perf_event_read_value(event, &enabled, &running);
5199 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5200 values[n++] = enabled;
5201 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5202 values[n++] = running;
5203 if (read_format & PERF_FORMAT_ID)
5204 values[n++] = primary_event_id(event);
5205
5206 if (copy_to_user(buf, values, n * sizeof(u64)))
5207 return -EFAULT;
5208
5209 return n * sizeof(u64);
5210 }
5211
is_event_hup(struct perf_event * event)5212 static bool is_event_hup(struct perf_event *event)
5213 {
5214 bool no_children;
5215
5216 if (event->state > PERF_EVENT_STATE_EXIT)
5217 return false;
5218
5219 mutex_lock(&event->child_mutex);
5220 no_children = list_empty(&event->child_list);
5221 mutex_unlock(&event->child_mutex);
5222 return no_children;
5223 }
5224
5225 /*
5226 * Read the performance event - simple non blocking version for now
5227 */
5228 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5229 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5230 {
5231 u64 read_format = event->attr.read_format;
5232 int ret;
5233
5234 /*
5235 * Return end-of-file for a read on an event that is in
5236 * error state (i.e. because it was pinned but it couldn't be
5237 * scheduled on to the CPU at some point).
5238 */
5239 if (event->state == PERF_EVENT_STATE_ERROR)
5240 return 0;
5241
5242 if (count < event->read_size)
5243 return -ENOSPC;
5244
5245 WARN_ON_ONCE(event->ctx->parent_ctx);
5246 if (read_format & PERF_FORMAT_GROUP)
5247 ret = perf_read_group(event, read_format, buf);
5248 else
5249 ret = perf_read_one(event, read_format, buf);
5250
5251 return ret;
5252 }
5253
5254 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5255 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5256 {
5257 struct perf_event *event = file->private_data;
5258 struct perf_event_context *ctx;
5259 int ret;
5260
5261 ret = security_perf_event_read(event);
5262 if (ret)
5263 return ret;
5264
5265 ctx = perf_event_ctx_lock(event);
5266 ret = __perf_read(event, buf, count);
5267 perf_event_ctx_unlock(event, ctx);
5268
5269 return ret;
5270 }
5271
perf_poll(struct file * file,poll_table * wait)5272 static __poll_t perf_poll(struct file *file, poll_table *wait)
5273 {
5274 struct perf_event *event = file->private_data;
5275 struct perf_buffer *rb;
5276 __poll_t events = EPOLLHUP;
5277
5278 poll_wait(file, &event->waitq, wait);
5279
5280 if (is_event_hup(event))
5281 return events;
5282
5283 /*
5284 * Pin the event->rb by taking event->mmap_mutex; otherwise
5285 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5286 */
5287 mutex_lock(&event->mmap_mutex);
5288 rb = event->rb;
5289 if (rb)
5290 events = atomic_xchg(&rb->poll, 0);
5291 mutex_unlock(&event->mmap_mutex);
5292 return events;
5293 }
5294
_perf_event_reset(struct perf_event * event)5295 static void _perf_event_reset(struct perf_event *event)
5296 {
5297 (void)perf_event_read(event, false);
5298 local64_set(&event->count, 0);
5299 perf_event_update_userpage(event);
5300 }
5301
5302 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5303 u64 perf_event_pause(struct perf_event *event, bool reset)
5304 {
5305 struct perf_event_context *ctx;
5306 u64 count;
5307
5308 ctx = perf_event_ctx_lock(event);
5309 WARN_ON_ONCE(event->attr.inherit);
5310 _perf_event_disable(event);
5311 count = local64_read(&event->count);
5312 if (reset)
5313 local64_set(&event->count, 0);
5314 perf_event_ctx_unlock(event, ctx);
5315
5316 return count;
5317 }
5318 EXPORT_SYMBOL_GPL(perf_event_pause);
5319
5320 /*
5321 * Holding the top-level event's child_mutex means that any
5322 * descendant process that has inherited this event will block
5323 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5324 * task existence requirements of perf_event_enable/disable.
5325 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5326 static void perf_event_for_each_child(struct perf_event *event,
5327 void (*func)(struct perf_event *))
5328 {
5329 struct perf_event *child;
5330
5331 WARN_ON_ONCE(event->ctx->parent_ctx);
5332
5333 mutex_lock(&event->child_mutex);
5334 func(event);
5335 list_for_each_entry(child, &event->child_list, child_list)
5336 func(child);
5337 mutex_unlock(&event->child_mutex);
5338 }
5339
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5340 static void perf_event_for_each(struct perf_event *event,
5341 void (*func)(struct perf_event *))
5342 {
5343 struct perf_event_context *ctx = event->ctx;
5344 struct perf_event *sibling;
5345
5346 lockdep_assert_held(&ctx->mutex);
5347
5348 event = event->group_leader;
5349
5350 perf_event_for_each_child(event, func);
5351 for_each_sibling_event(sibling, event)
5352 perf_event_for_each_child(sibling, func);
5353 }
5354
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5355 static void __perf_event_period(struct perf_event *event,
5356 struct perf_cpu_context *cpuctx,
5357 struct perf_event_context *ctx,
5358 void *info)
5359 {
5360 u64 value = *((u64 *)info);
5361 bool active;
5362
5363 if (event->attr.freq) {
5364 event->attr.sample_freq = value;
5365 } else {
5366 event->attr.sample_period = value;
5367 event->hw.sample_period = value;
5368 }
5369
5370 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5371 if (active) {
5372 perf_pmu_disable(ctx->pmu);
5373 /*
5374 * We could be throttled; unthrottle now to avoid the tick
5375 * trying to unthrottle while we already re-started the event.
5376 */
5377 if (event->hw.interrupts == MAX_INTERRUPTS) {
5378 event->hw.interrupts = 0;
5379 perf_log_throttle(event, 1);
5380 }
5381 event->pmu->stop(event, PERF_EF_UPDATE);
5382 }
5383
5384 local64_set(&event->hw.period_left, 0);
5385
5386 if (active) {
5387 event->pmu->start(event, PERF_EF_RELOAD);
5388 perf_pmu_enable(ctx->pmu);
5389 }
5390 }
5391
perf_event_check_period(struct perf_event * event,u64 value)5392 static int perf_event_check_period(struct perf_event *event, u64 value)
5393 {
5394 return event->pmu->check_period(event, value);
5395 }
5396
_perf_event_period(struct perf_event * event,u64 value)5397 static int _perf_event_period(struct perf_event *event, u64 value)
5398 {
5399 if (!is_sampling_event(event))
5400 return -EINVAL;
5401
5402 if (!value)
5403 return -EINVAL;
5404
5405 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5406 return -EINVAL;
5407
5408 if (perf_event_check_period(event, value))
5409 return -EINVAL;
5410
5411 if (!event->attr.freq && (value & (1ULL << 63)))
5412 return -EINVAL;
5413
5414 event_function_call(event, __perf_event_period, &value);
5415
5416 return 0;
5417 }
5418
perf_event_period(struct perf_event * event,u64 value)5419 int perf_event_period(struct perf_event *event, u64 value)
5420 {
5421 struct perf_event_context *ctx;
5422 int ret;
5423
5424 ctx = perf_event_ctx_lock(event);
5425 ret = _perf_event_period(event, value);
5426 perf_event_ctx_unlock(event, ctx);
5427
5428 return ret;
5429 }
5430 EXPORT_SYMBOL_GPL(perf_event_period);
5431
5432 static const struct file_operations perf_fops;
5433
perf_fget_light(int fd,struct fd * p)5434 static inline int perf_fget_light(int fd, struct fd *p)
5435 {
5436 struct fd f = fdget(fd);
5437 if (!f.file)
5438 return -EBADF;
5439
5440 if (f.file->f_op != &perf_fops) {
5441 fdput(f);
5442 return -EBADF;
5443 }
5444 *p = f;
5445 return 0;
5446 }
5447
5448 static int perf_event_set_output(struct perf_event *event,
5449 struct perf_event *output_event);
5450 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5451 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5452 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5453 struct perf_event_attr *attr);
5454
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5455 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5456 {
5457 void (*func)(struct perf_event *);
5458 u32 flags = arg;
5459
5460 switch (cmd) {
5461 case PERF_EVENT_IOC_ENABLE:
5462 func = _perf_event_enable;
5463 break;
5464 case PERF_EVENT_IOC_DISABLE:
5465 func = _perf_event_disable;
5466 break;
5467 case PERF_EVENT_IOC_RESET:
5468 func = _perf_event_reset;
5469 break;
5470
5471 case PERF_EVENT_IOC_REFRESH:
5472 return _perf_event_refresh(event, arg);
5473
5474 case PERF_EVENT_IOC_PERIOD:
5475 {
5476 u64 value;
5477
5478 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5479 return -EFAULT;
5480
5481 return _perf_event_period(event, value);
5482 }
5483 case PERF_EVENT_IOC_ID:
5484 {
5485 u64 id = primary_event_id(event);
5486
5487 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5488 return -EFAULT;
5489 return 0;
5490 }
5491
5492 case PERF_EVENT_IOC_SET_OUTPUT:
5493 {
5494 int ret;
5495 if (arg != -1) {
5496 struct perf_event *output_event;
5497 struct fd output;
5498 ret = perf_fget_light(arg, &output);
5499 if (ret)
5500 return ret;
5501 output_event = output.file->private_data;
5502 ret = perf_event_set_output(event, output_event);
5503 fdput(output);
5504 } else {
5505 ret = perf_event_set_output(event, NULL);
5506 }
5507 return ret;
5508 }
5509
5510 case PERF_EVENT_IOC_SET_FILTER:
5511 return perf_event_set_filter(event, (void __user *)arg);
5512
5513 case PERF_EVENT_IOC_SET_BPF:
5514 return perf_event_set_bpf_prog(event, arg);
5515
5516 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5517 struct perf_buffer *rb;
5518
5519 rcu_read_lock();
5520 rb = rcu_dereference(event->rb);
5521 if (!rb || !rb->nr_pages) {
5522 rcu_read_unlock();
5523 return -EINVAL;
5524 }
5525 rb_toggle_paused(rb, !!arg);
5526 rcu_read_unlock();
5527 return 0;
5528 }
5529
5530 case PERF_EVENT_IOC_QUERY_BPF:
5531 return perf_event_query_prog_array(event, (void __user *)arg);
5532
5533 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5534 struct perf_event_attr new_attr;
5535 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5536 &new_attr);
5537
5538 if (err)
5539 return err;
5540
5541 return perf_event_modify_attr(event, &new_attr);
5542 }
5543 default:
5544 return -ENOTTY;
5545 }
5546
5547 if (flags & PERF_IOC_FLAG_GROUP)
5548 perf_event_for_each(event, func);
5549 else
5550 perf_event_for_each_child(event, func);
5551
5552 return 0;
5553 }
5554
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5555 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5556 {
5557 struct perf_event *event = file->private_data;
5558 struct perf_event_context *ctx;
5559 long ret;
5560
5561 /* Treat ioctl like writes as it is likely a mutating operation. */
5562 ret = security_perf_event_write(event);
5563 if (ret)
5564 return ret;
5565
5566 ctx = perf_event_ctx_lock(event);
5567 ret = _perf_ioctl(event, cmd, arg);
5568 perf_event_ctx_unlock(event, ctx);
5569
5570 return ret;
5571 }
5572
5573 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5574 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5575 unsigned long arg)
5576 {
5577 switch (_IOC_NR(cmd)) {
5578 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5579 case _IOC_NR(PERF_EVENT_IOC_ID):
5580 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5581 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5582 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5583 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5584 cmd &= ~IOCSIZE_MASK;
5585 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5586 }
5587 break;
5588 }
5589 return perf_ioctl(file, cmd, arg);
5590 }
5591 #else
5592 # define perf_compat_ioctl NULL
5593 #endif
5594
perf_event_task_enable(void)5595 int perf_event_task_enable(void)
5596 {
5597 struct perf_event_context *ctx;
5598 struct perf_event *event;
5599
5600 mutex_lock(¤t->perf_event_mutex);
5601 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5602 ctx = perf_event_ctx_lock(event);
5603 perf_event_for_each_child(event, _perf_event_enable);
5604 perf_event_ctx_unlock(event, ctx);
5605 }
5606 mutex_unlock(¤t->perf_event_mutex);
5607
5608 return 0;
5609 }
5610
perf_event_task_disable(void)5611 int perf_event_task_disable(void)
5612 {
5613 struct perf_event_context *ctx;
5614 struct perf_event *event;
5615
5616 mutex_lock(¤t->perf_event_mutex);
5617 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5618 ctx = perf_event_ctx_lock(event);
5619 perf_event_for_each_child(event, _perf_event_disable);
5620 perf_event_ctx_unlock(event, ctx);
5621 }
5622 mutex_unlock(¤t->perf_event_mutex);
5623
5624 return 0;
5625 }
5626
perf_event_index(struct perf_event * event)5627 static int perf_event_index(struct perf_event *event)
5628 {
5629 if (event->hw.state & PERF_HES_STOPPED)
5630 return 0;
5631
5632 if (event->state != PERF_EVENT_STATE_ACTIVE)
5633 return 0;
5634
5635 return event->pmu->event_idx(event);
5636 }
5637
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)5638 static void calc_timer_values(struct perf_event *event,
5639 u64 *now,
5640 u64 *enabled,
5641 u64 *running)
5642 {
5643 u64 ctx_time;
5644
5645 *now = perf_clock();
5646 ctx_time = event->shadow_ctx_time + *now;
5647 __perf_update_times(event, ctx_time, enabled, running);
5648 }
5649
perf_event_init_userpage(struct perf_event * event)5650 static void perf_event_init_userpage(struct perf_event *event)
5651 {
5652 struct perf_event_mmap_page *userpg;
5653 struct perf_buffer *rb;
5654
5655 rcu_read_lock();
5656 rb = rcu_dereference(event->rb);
5657 if (!rb)
5658 goto unlock;
5659
5660 userpg = rb->user_page;
5661
5662 /* Allow new userspace to detect that bit 0 is deprecated */
5663 userpg->cap_bit0_is_deprecated = 1;
5664 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5665 userpg->data_offset = PAGE_SIZE;
5666 userpg->data_size = perf_data_size(rb);
5667
5668 unlock:
5669 rcu_read_unlock();
5670 }
5671
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5672 void __weak arch_perf_update_userpage(
5673 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5674 {
5675 }
5676
5677 /*
5678 * Callers need to ensure there can be no nesting of this function, otherwise
5679 * the seqlock logic goes bad. We can not serialize this because the arch
5680 * code calls this from NMI context.
5681 */
perf_event_update_userpage(struct perf_event * event)5682 void perf_event_update_userpage(struct perf_event *event)
5683 {
5684 struct perf_event_mmap_page *userpg;
5685 struct perf_buffer *rb;
5686 u64 enabled, running, now;
5687
5688 rcu_read_lock();
5689 rb = rcu_dereference(event->rb);
5690 if (!rb)
5691 goto unlock;
5692
5693 /*
5694 * compute total_time_enabled, total_time_running
5695 * based on snapshot values taken when the event
5696 * was last scheduled in.
5697 *
5698 * we cannot simply called update_context_time()
5699 * because of locking issue as we can be called in
5700 * NMI context
5701 */
5702 calc_timer_values(event, &now, &enabled, &running);
5703
5704 userpg = rb->user_page;
5705 /*
5706 * Disable preemption to guarantee consistent time stamps are stored to
5707 * the user page.
5708 */
5709 preempt_disable();
5710 ++userpg->lock;
5711 barrier();
5712 userpg->index = perf_event_index(event);
5713 userpg->offset = perf_event_count(event);
5714 if (userpg->index)
5715 userpg->offset -= local64_read(&event->hw.prev_count);
5716
5717 userpg->time_enabled = enabled +
5718 atomic64_read(&event->child_total_time_enabled);
5719
5720 userpg->time_running = running +
5721 atomic64_read(&event->child_total_time_running);
5722
5723 arch_perf_update_userpage(event, userpg, now);
5724
5725 barrier();
5726 ++userpg->lock;
5727 preempt_enable();
5728 unlock:
5729 rcu_read_unlock();
5730 }
5731 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5732
perf_mmap_fault(struct vm_fault * vmf)5733 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5734 {
5735 struct perf_event *event = vmf->vma->vm_file->private_data;
5736 struct perf_buffer *rb;
5737 vm_fault_t ret = VM_FAULT_SIGBUS;
5738
5739 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5740 if (vmf->pgoff == 0)
5741 ret = 0;
5742 return ret;
5743 }
5744
5745 rcu_read_lock();
5746 rb = rcu_dereference(event->rb);
5747 if (!rb)
5748 goto unlock;
5749
5750 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5751 goto unlock;
5752
5753 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5754 if (!vmf->page)
5755 goto unlock;
5756
5757 get_page(vmf->page);
5758 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5759 vmf->page->index = vmf->pgoff;
5760
5761 ret = 0;
5762 unlock:
5763 rcu_read_unlock();
5764
5765 return ret;
5766 }
5767
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)5768 static void ring_buffer_attach(struct perf_event *event,
5769 struct perf_buffer *rb)
5770 {
5771 struct perf_buffer *old_rb = NULL;
5772 unsigned long flags;
5773
5774 if (event->rb) {
5775 /*
5776 * Should be impossible, we set this when removing
5777 * event->rb_entry and wait/clear when adding event->rb_entry.
5778 */
5779 WARN_ON_ONCE(event->rcu_pending);
5780
5781 old_rb = event->rb;
5782 spin_lock_irqsave(&old_rb->event_lock, flags);
5783 list_del_rcu(&event->rb_entry);
5784 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5785
5786 event->rcu_batches = get_state_synchronize_rcu();
5787 event->rcu_pending = 1;
5788 }
5789
5790 if (rb) {
5791 if (event->rcu_pending) {
5792 cond_synchronize_rcu(event->rcu_batches);
5793 event->rcu_pending = 0;
5794 }
5795
5796 spin_lock_irqsave(&rb->event_lock, flags);
5797 list_add_rcu(&event->rb_entry, &rb->event_list);
5798 spin_unlock_irqrestore(&rb->event_lock, flags);
5799 }
5800
5801 /*
5802 * Avoid racing with perf_mmap_close(AUX): stop the event
5803 * before swizzling the event::rb pointer; if it's getting
5804 * unmapped, its aux_mmap_count will be 0 and it won't
5805 * restart. See the comment in __perf_pmu_output_stop().
5806 *
5807 * Data will inevitably be lost when set_output is done in
5808 * mid-air, but then again, whoever does it like this is
5809 * not in for the data anyway.
5810 */
5811 if (has_aux(event))
5812 perf_event_stop(event, 0);
5813
5814 rcu_assign_pointer(event->rb, rb);
5815
5816 if (old_rb) {
5817 ring_buffer_put(old_rb);
5818 /*
5819 * Since we detached before setting the new rb, so that we
5820 * could attach the new rb, we could have missed a wakeup.
5821 * Provide it now.
5822 */
5823 wake_up_all(&event->waitq);
5824 }
5825 }
5826
ring_buffer_wakeup(struct perf_event * event)5827 static void ring_buffer_wakeup(struct perf_event *event)
5828 {
5829 struct perf_buffer *rb;
5830
5831 rcu_read_lock();
5832 rb = rcu_dereference(event->rb);
5833 if (rb) {
5834 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5835 wake_up_all(&event->waitq);
5836 }
5837 rcu_read_unlock();
5838 }
5839
ring_buffer_get(struct perf_event * event)5840 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5841 {
5842 struct perf_buffer *rb;
5843
5844 rcu_read_lock();
5845 rb = rcu_dereference(event->rb);
5846 if (rb) {
5847 if (!refcount_inc_not_zero(&rb->refcount))
5848 rb = NULL;
5849 }
5850 rcu_read_unlock();
5851
5852 return rb;
5853 }
5854
ring_buffer_put(struct perf_buffer * rb)5855 void ring_buffer_put(struct perf_buffer *rb)
5856 {
5857 if (!refcount_dec_and_test(&rb->refcount))
5858 return;
5859
5860 WARN_ON_ONCE(!list_empty(&rb->event_list));
5861
5862 call_rcu(&rb->rcu_head, rb_free_rcu);
5863 }
5864
perf_mmap_open(struct vm_area_struct * vma)5865 static void perf_mmap_open(struct vm_area_struct *vma)
5866 {
5867 struct perf_event *event = vma->vm_file->private_data;
5868
5869 atomic_inc(&event->mmap_count);
5870 atomic_inc(&event->rb->mmap_count);
5871
5872 if (vma->vm_pgoff)
5873 atomic_inc(&event->rb->aux_mmap_count);
5874
5875 if (event->pmu->event_mapped)
5876 event->pmu->event_mapped(event, vma->vm_mm);
5877 }
5878
5879 static void perf_pmu_output_stop(struct perf_event *event);
5880
5881 /*
5882 * A buffer can be mmap()ed multiple times; either directly through the same
5883 * event, or through other events by use of perf_event_set_output().
5884 *
5885 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5886 * the buffer here, where we still have a VM context. This means we need
5887 * to detach all events redirecting to us.
5888 */
perf_mmap_close(struct vm_area_struct * vma)5889 static void perf_mmap_close(struct vm_area_struct *vma)
5890 {
5891 struct perf_event *event = vma->vm_file->private_data;
5892 struct perf_buffer *rb = ring_buffer_get(event);
5893 struct user_struct *mmap_user = rb->mmap_user;
5894 int mmap_locked = rb->mmap_locked;
5895 unsigned long size = perf_data_size(rb);
5896 bool detach_rest = false;
5897
5898 if (event->pmu->event_unmapped)
5899 event->pmu->event_unmapped(event, vma->vm_mm);
5900
5901 /*
5902 * rb->aux_mmap_count will always drop before rb->mmap_count and
5903 * event->mmap_count, so it is ok to use event->mmap_mutex to
5904 * serialize with perf_mmap here.
5905 */
5906 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5907 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5908 /*
5909 * Stop all AUX events that are writing to this buffer,
5910 * so that we can free its AUX pages and corresponding PMU
5911 * data. Note that after rb::aux_mmap_count dropped to zero,
5912 * they won't start any more (see perf_aux_output_begin()).
5913 */
5914 perf_pmu_output_stop(event);
5915
5916 /* now it's safe to free the pages */
5917 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5918 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5919
5920 /* this has to be the last one */
5921 rb_free_aux(rb);
5922 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5923
5924 mutex_unlock(&event->mmap_mutex);
5925 }
5926
5927 if (atomic_dec_and_test(&rb->mmap_count))
5928 detach_rest = true;
5929
5930 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5931 goto out_put;
5932
5933 ring_buffer_attach(event, NULL);
5934 mutex_unlock(&event->mmap_mutex);
5935
5936 /* If there's still other mmap()s of this buffer, we're done. */
5937 if (!detach_rest)
5938 goto out_put;
5939
5940 /*
5941 * No other mmap()s, detach from all other events that might redirect
5942 * into the now unreachable buffer. Somewhat complicated by the
5943 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5944 */
5945 again:
5946 rcu_read_lock();
5947 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5948 if (!atomic_long_inc_not_zero(&event->refcount)) {
5949 /*
5950 * This event is en-route to free_event() which will
5951 * detach it and remove it from the list.
5952 */
5953 continue;
5954 }
5955 rcu_read_unlock();
5956
5957 mutex_lock(&event->mmap_mutex);
5958 /*
5959 * Check we didn't race with perf_event_set_output() which can
5960 * swizzle the rb from under us while we were waiting to
5961 * acquire mmap_mutex.
5962 *
5963 * If we find a different rb; ignore this event, a next
5964 * iteration will no longer find it on the list. We have to
5965 * still restart the iteration to make sure we're not now
5966 * iterating the wrong list.
5967 */
5968 if (event->rb == rb)
5969 ring_buffer_attach(event, NULL);
5970
5971 mutex_unlock(&event->mmap_mutex);
5972 put_event(event);
5973
5974 /*
5975 * Restart the iteration; either we're on the wrong list or
5976 * destroyed its integrity by doing a deletion.
5977 */
5978 goto again;
5979 }
5980 rcu_read_unlock();
5981
5982 /*
5983 * It could be there's still a few 0-ref events on the list; they'll
5984 * get cleaned up by free_event() -- they'll also still have their
5985 * ref on the rb and will free it whenever they are done with it.
5986 *
5987 * Aside from that, this buffer is 'fully' detached and unmapped,
5988 * undo the VM accounting.
5989 */
5990
5991 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5992 &mmap_user->locked_vm);
5993 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5994 free_uid(mmap_user);
5995
5996 out_put:
5997 ring_buffer_put(rb); /* could be last */
5998 }
5999
6000 static const struct vm_operations_struct perf_mmap_vmops = {
6001 .open = perf_mmap_open,
6002 .close = perf_mmap_close, /* non mergeable */
6003 .fault = perf_mmap_fault,
6004 .page_mkwrite = perf_mmap_fault,
6005 };
6006
perf_mmap(struct file * file,struct vm_area_struct * vma)6007 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6008 {
6009 struct perf_event *event = file->private_data;
6010 unsigned long user_locked, user_lock_limit;
6011 struct user_struct *user = current_user();
6012 struct perf_buffer *rb = NULL;
6013 unsigned long locked, lock_limit;
6014 unsigned long vma_size;
6015 unsigned long nr_pages;
6016 long user_extra = 0, extra = 0;
6017 int ret = 0, flags = 0;
6018
6019 /*
6020 * Don't allow mmap() of inherited per-task counters. This would
6021 * create a performance issue due to all children writing to the
6022 * same rb.
6023 */
6024 if (event->cpu == -1 && event->attr.inherit)
6025 return -EINVAL;
6026
6027 if (!(vma->vm_flags & VM_SHARED))
6028 return -EINVAL;
6029
6030 ret = security_perf_event_read(event);
6031 if (ret)
6032 return ret;
6033
6034 vma_size = vma->vm_end - vma->vm_start;
6035
6036 if (vma->vm_pgoff == 0) {
6037 nr_pages = (vma_size / PAGE_SIZE) - 1;
6038 } else {
6039 /*
6040 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6041 * mapped, all subsequent mappings should have the same size
6042 * and offset. Must be above the normal perf buffer.
6043 */
6044 u64 aux_offset, aux_size;
6045
6046 if (!event->rb)
6047 return -EINVAL;
6048
6049 nr_pages = vma_size / PAGE_SIZE;
6050
6051 mutex_lock(&event->mmap_mutex);
6052 ret = -EINVAL;
6053
6054 rb = event->rb;
6055 if (!rb)
6056 goto aux_unlock;
6057
6058 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6059 aux_size = READ_ONCE(rb->user_page->aux_size);
6060
6061 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6062 goto aux_unlock;
6063
6064 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6065 goto aux_unlock;
6066
6067 /* already mapped with a different offset */
6068 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6069 goto aux_unlock;
6070
6071 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6072 goto aux_unlock;
6073
6074 /* already mapped with a different size */
6075 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6076 goto aux_unlock;
6077
6078 if (!is_power_of_2(nr_pages))
6079 goto aux_unlock;
6080
6081 if (!atomic_inc_not_zero(&rb->mmap_count))
6082 goto aux_unlock;
6083
6084 if (rb_has_aux(rb)) {
6085 atomic_inc(&rb->aux_mmap_count);
6086 ret = 0;
6087 goto unlock;
6088 }
6089
6090 atomic_set(&rb->aux_mmap_count, 1);
6091 user_extra = nr_pages;
6092
6093 goto accounting;
6094 }
6095
6096 /*
6097 * If we have rb pages ensure they're a power-of-two number, so we
6098 * can do bitmasks instead of modulo.
6099 */
6100 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6101 return -EINVAL;
6102
6103 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6104 return -EINVAL;
6105
6106 WARN_ON_ONCE(event->ctx->parent_ctx);
6107 again:
6108 mutex_lock(&event->mmap_mutex);
6109 if (event->rb) {
6110 if (event->rb->nr_pages != nr_pages) {
6111 ret = -EINVAL;
6112 goto unlock;
6113 }
6114
6115 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6116 /*
6117 * Raced against perf_mmap_close() through
6118 * perf_event_set_output(). Try again, hope for better
6119 * luck.
6120 */
6121 mutex_unlock(&event->mmap_mutex);
6122 goto again;
6123 }
6124
6125 goto unlock;
6126 }
6127
6128 user_extra = nr_pages + 1;
6129
6130 accounting:
6131 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6132
6133 /*
6134 * Increase the limit linearly with more CPUs:
6135 */
6136 user_lock_limit *= num_online_cpus();
6137
6138 user_locked = atomic_long_read(&user->locked_vm);
6139
6140 /*
6141 * sysctl_perf_event_mlock may have changed, so that
6142 * user->locked_vm > user_lock_limit
6143 */
6144 if (user_locked > user_lock_limit)
6145 user_locked = user_lock_limit;
6146 user_locked += user_extra;
6147
6148 if (user_locked > user_lock_limit) {
6149 /*
6150 * charge locked_vm until it hits user_lock_limit;
6151 * charge the rest from pinned_vm
6152 */
6153 extra = user_locked - user_lock_limit;
6154 user_extra -= extra;
6155 }
6156
6157 lock_limit = rlimit(RLIMIT_MEMLOCK);
6158 lock_limit >>= PAGE_SHIFT;
6159 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6160
6161 if ((locked > lock_limit) && perf_is_paranoid() &&
6162 !capable(CAP_IPC_LOCK)) {
6163 ret = -EPERM;
6164 goto unlock;
6165 }
6166
6167 WARN_ON(!rb && event->rb);
6168
6169 if (vma->vm_flags & VM_WRITE)
6170 flags |= RING_BUFFER_WRITABLE;
6171
6172 if (!rb) {
6173 rb = rb_alloc(nr_pages,
6174 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6175 event->cpu, flags);
6176
6177 if (!rb) {
6178 ret = -ENOMEM;
6179 goto unlock;
6180 }
6181
6182 atomic_set(&rb->mmap_count, 1);
6183 rb->mmap_user = get_current_user();
6184 rb->mmap_locked = extra;
6185
6186 ring_buffer_attach(event, rb);
6187
6188 perf_event_init_userpage(event);
6189 perf_event_update_userpage(event);
6190 } else {
6191 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6192 event->attr.aux_watermark, flags);
6193 if (!ret)
6194 rb->aux_mmap_locked = extra;
6195 }
6196
6197 unlock:
6198 if (!ret) {
6199 atomic_long_add(user_extra, &user->locked_vm);
6200 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6201
6202 atomic_inc(&event->mmap_count);
6203 } else if (rb) {
6204 atomic_dec(&rb->mmap_count);
6205 }
6206 aux_unlock:
6207 mutex_unlock(&event->mmap_mutex);
6208
6209 /*
6210 * Since pinned accounting is per vm we cannot allow fork() to copy our
6211 * vma.
6212 */
6213 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6214 vma->vm_ops = &perf_mmap_vmops;
6215
6216 if (event->pmu->event_mapped)
6217 event->pmu->event_mapped(event, vma->vm_mm);
6218
6219 return ret;
6220 }
6221
perf_fasync(int fd,struct file * filp,int on)6222 static int perf_fasync(int fd, struct file *filp, int on)
6223 {
6224 struct inode *inode = file_inode(filp);
6225 struct perf_event *event = filp->private_data;
6226 int retval;
6227
6228 inode_lock(inode);
6229 retval = fasync_helper(fd, filp, on, &event->fasync);
6230 inode_unlock(inode);
6231
6232 if (retval < 0)
6233 return retval;
6234
6235 return 0;
6236 }
6237
6238 static const struct file_operations perf_fops = {
6239 .llseek = no_llseek,
6240 .release = perf_release,
6241 .read = perf_read,
6242 .poll = perf_poll,
6243 .unlocked_ioctl = perf_ioctl,
6244 .compat_ioctl = perf_compat_ioctl,
6245 .mmap = perf_mmap,
6246 .fasync = perf_fasync,
6247 };
6248
6249 /*
6250 * Perf event wakeup
6251 *
6252 * If there's data, ensure we set the poll() state and publish everything
6253 * to user-space before waking everybody up.
6254 */
6255
perf_event_fasync(struct perf_event * event)6256 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6257 {
6258 /* only the parent has fasync state */
6259 if (event->parent)
6260 event = event->parent;
6261 return &event->fasync;
6262 }
6263
perf_event_wakeup(struct perf_event * event)6264 void perf_event_wakeup(struct perf_event *event)
6265 {
6266 ring_buffer_wakeup(event);
6267
6268 if (event->pending_kill) {
6269 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6270 event->pending_kill = 0;
6271 }
6272 }
6273
perf_pending_event_disable(struct perf_event * event)6274 static void perf_pending_event_disable(struct perf_event *event)
6275 {
6276 int cpu = READ_ONCE(event->pending_disable);
6277
6278 if (cpu < 0)
6279 return;
6280
6281 if (cpu == smp_processor_id()) {
6282 WRITE_ONCE(event->pending_disable, -1);
6283 perf_event_disable_local(event);
6284 return;
6285 }
6286
6287 /*
6288 * CPU-A CPU-B
6289 *
6290 * perf_event_disable_inatomic()
6291 * @pending_disable = CPU-A;
6292 * irq_work_queue();
6293 *
6294 * sched-out
6295 * @pending_disable = -1;
6296 *
6297 * sched-in
6298 * perf_event_disable_inatomic()
6299 * @pending_disable = CPU-B;
6300 * irq_work_queue(); // FAILS
6301 *
6302 * irq_work_run()
6303 * perf_pending_event()
6304 *
6305 * But the event runs on CPU-B and wants disabling there.
6306 */
6307 irq_work_queue_on(&event->pending, cpu);
6308 }
6309
perf_pending_event(struct irq_work * entry)6310 static void perf_pending_event(struct irq_work *entry)
6311 {
6312 struct perf_event *event = container_of(entry, struct perf_event, pending);
6313 int rctx;
6314
6315 rctx = perf_swevent_get_recursion_context();
6316 /*
6317 * If we 'fail' here, that's OK, it means recursion is already disabled
6318 * and we won't recurse 'further'.
6319 */
6320
6321 perf_pending_event_disable(event);
6322
6323 if (event->pending_wakeup) {
6324 event->pending_wakeup = 0;
6325 perf_event_wakeup(event);
6326 }
6327
6328 if (rctx >= 0)
6329 perf_swevent_put_recursion_context(rctx);
6330 }
6331
6332 /*
6333 * We assume there is only KVM supporting the callbacks.
6334 * Later on, we might change it to a list if there is
6335 * another virtualization implementation supporting the callbacks.
6336 */
6337 struct perf_guest_info_callbacks *perf_guest_cbs;
6338
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6339 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6340 {
6341 perf_guest_cbs = cbs;
6342 return 0;
6343 }
6344 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6345
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6346 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6347 {
6348 perf_guest_cbs = NULL;
6349 return 0;
6350 }
6351 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6352
6353 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6354 perf_output_sample_regs(struct perf_output_handle *handle,
6355 struct pt_regs *regs, u64 mask)
6356 {
6357 int bit;
6358 DECLARE_BITMAP(_mask, 64);
6359
6360 bitmap_from_u64(_mask, mask);
6361 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6362 u64 val;
6363
6364 val = perf_reg_value(regs, bit);
6365 perf_output_put(handle, val);
6366 }
6367 }
6368
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6369 static void perf_sample_regs_user(struct perf_regs *regs_user,
6370 struct pt_regs *regs)
6371 {
6372 if (user_mode(regs)) {
6373 regs_user->abi = perf_reg_abi(current);
6374 regs_user->regs = regs;
6375 } else if (!(current->flags & PF_KTHREAD)) {
6376 perf_get_regs_user(regs_user, regs);
6377 } else {
6378 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6379 regs_user->regs = NULL;
6380 }
6381 }
6382
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6383 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6384 struct pt_regs *regs)
6385 {
6386 regs_intr->regs = regs;
6387 regs_intr->abi = perf_reg_abi(current);
6388 }
6389
6390
6391 /*
6392 * Get remaining task size from user stack pointer.
6393 *
6394 * It'd be better to take stack vma map and limit this more
6395 * precisely, but there's no way to get it safely under interrupt,
6396 * so using TASK_SIZE as limit.
6397 */
perf_ustack_task_size(struct pt_regs * regs)6398 static u64 perf_ustack_task_size(struct pt_regs *regs)
6399 {
6400 unsigned long addr = perf_user_stack_pointer(regs);
6401
6402 if (!addr || addr >= TASK_SIZE)
6403 return 0;
6404
6405 return TASK_SIZE - addr;
6406 }
6407
6408 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6409 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6410 struct pt_regs *regs)
6411 {
6412 u64 task_size;
6413
6414 /* No regs, no stack pointer, no dump. */
6415 if (!regs)
6416 return 0;
6417
6418 /*
6419 * Check if we fit in with the requested stack size into the:
6420 * - TASK_SIZE
6421 * If we don't, we limit the size to the TASK_SIZE.
6422 *
6423 * - remaining sample size
6424 * If we don't, we customize the stack size to
6425 * fit in to the remaining sample size.
6426 */
6427
6428 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6429 stack_size = min(stack_size, (u16) task_size);
6430
6431 /* Current header size plus static size and dynamic size. */
6432 header_size += 2 * sizeof(u64);
6433
6434 /* Do we fit in with the current stack dump size? */
6435 if ((u16) (header_size + stack_size) < header_size) {
6436 /*
6437 * If we overflow the maximum size for the sample,
6438 * we customize the stack dump size to fit in.
6439 */
6440 stack_size = USHRT_MAX - header_size - sizeof(u64);
6441 stack_size = round_up(stack_size, sizeof(u64));
6442 }
6443
6444 return stack_size;
6445 }
6446
6447 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6448 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6449 struct pt_regs *regs)
6450 {
6451 /* Case of a kernel thread, nothing to dump */
6452 if (!regs) {
6453 u64 size = 0;
6454 perf_output_put(handle, size);
6455 } else {
6456 unsigned long sp;
6457 unsigned int rem;
6458 u64 dyn_size;
6459 mm_segment_t fs;
6460
6461 /*
6462 * We dump:
6463 * static size
6464 * - the size requested by user or the best one we can fit
6465 * in to the sample max size
6466 * data
6467 * - user stack dump data
6468 * dynamic size
6469 * - the actual dumped size
6470 */
6471
6472 /* Static size. */
6473 perf_output_put(handle, dump_size);
6474
6475 /* Data. */
6476 sp = perf_user_stack_pointer(regs);
6477 fs = force_uaccess_begin();
6478 rem = __output_copy_user(handle, (void *) sp, dump_size);
6479 force_uaccess_end(fs);
6480 dyn_size = dump_size - rem;
6481
6482 perf_output_skip(handle, rem);
6483
6484 /* Dynamic size. */
6485 perf_output_put(handle, dyn_size);
6486 }
6487 }
6488
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6489 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6490 struct perf_sample_data *data,
6491 size_t size)
6492 {
6493 struct perf_event *sampler = event->aux_event;
6494 struct perf_buffer *rb;
6495
6496 data->aux_size = 0;
6497
6498 if (!sampler)
6499 goto out;
6500
6501 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6502 goto out;
6503
6504 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6505 goto out;
6506
6507 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6508 if (!rb)
6509 goto out;
6510
6511 /*
6512 * If this is an NMI hit inside sampling code, don't take
6513 * the sample. See also perf_aux_sample_output().
6514 */
6515 if (READ_ONCE(rb->aux_in_sampling)) {
6516 data->aux_size = 0;
6517 } else {
6518 size = min_t(size_t, size, perf_aux_size(rb));
6519 data->aux_size = ALIGN(size, sizeof(u64));
6520 }
6521 ring_buffer_put(rb);
6522
6523 out:
6524 return data->aux_size;
6525 }
6526
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)6527 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6528 struct perf_event *event,
6529 struct perf_output_handle *handle,
6530 unsigned long size)
6531 {
6532 unsigned long flags;
6533 long ret;
6534
6535 /*
6536 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6537 * paths. If we start calling them in NMI context, they may race with
6538 * the IRQ ones, that is, for example, re-starting an event that's just
6539 * been stopped, which is why we're using a separate callback that
6540 * doesn't change the event state.
6541 *
6542 * IRQs need to be disabled to prevent IPIs from racing with us.
6543 */
6544 local_irq_save(flags);
6545 /*
6546 * Guard against NMI hits inside the critical section;
6547 * see also perf_prepare_sample_aux().
6548 */
6549 WRITE_ONCE(rb->aux_in_sampling, 1);
6550 barrier();
6551
6552 ret = event->pmu->snapshot_aux(event, handle, size);
6553
6554 barrier();
6555 WRITE_ONCE(rb->aux_in_sampling, 0);
6556 local_irq_restore(flags);
6557
6558 return ret;
6559 }
6560
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)6561 static void perf_aux_sample_output(struct perf_event *event,
6562 struct perf_output_handle *handle,
6563 struct perf_sample_data *data)
6564 {
6565 struct perf_event *sampler = event->aux_event;
6566 struct perf_buffer *rb;
6567 unsigned long pad;
6568 long size;
6569
6570 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6571 return;
6572
6573 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6574 if (!rb)
6575 return;
6576
6577 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6578
6579 /*
6580 * An error here means that perf_output_copy() failed (returned a
6581 * non-zero surplus that it didn't copy), which in its current
6582 * enlightened implementation is not possible. If that changes, we'd
6583 * like to know.
6584 */
6585 if (WARN_ON_ONCE(size < 0))
6586 goto out_put;
6587
6588 /*
6589 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6590 * perf_prepare_sample_aux(), so should not be more than that.
6591 */
6592 pad = data->aux_size - size;
6593 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6594 pad = 8;
6595
6596 if (pad) {
6597 u64 zero = 0;
6598 perf_output_copy(handle, &zero, pad);
6599 }
6600
6601 out_put:
6602 ring_buffer_put(rb);
6603 }
6604
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6605 static void __perf_event_header__init_id(struct perf_event_header *header,
6606 struct perf_sample_data *data,
6607 struct perf_event *event)
6608 {
6609 u64 sample_type = event->attr.sample_type;
6610
6611 data->type = sample_type;
6612 header->size += event->id_header_size;
6613
6614 if (sample_type & PERF_SAMPLE_TID) {
6615 /* namespace issues */
6616 data->tid_entry.pid = perf_event_pid(event, current);
6617 data->tid_entry.tid = perf_event_tid(event, current);
6618 }
6619
6620 if (sample_type & PERF_SAMPLE_TIME)
6621 data->time = perf_event_clock(event);
6622
6623 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6624 data->id = primary_event_id(event);
6625
6626 if (sample_type & PERF_SAMPLE_STREAM_ID)
6627 data->stream_id = event->id;
6628
6629 if (sample_type & PERF_SAMPLE_CPU) {
6630 data->cpu_entry.cpu = raw_smp_processor_id();
6631 data->cpu_entry.reserved = 0;
6632 }
6633 }
6634
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6635 void perf_event_header__init_id(struct perf_event_header *header,
6636 struct perf_sample_data *data,
6637 struct perf_event *event)
6638 {
6639 if (event->attr.sample_id_all)
6640 __perf_event_header__init_id(header, data, event);
6641 }
6642
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6643 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6644 struct perf_sample_data *data)
6645 {
6646 u64 sample_type = data->type;
6647
6648 if (sample_type & PERF_SAMPLE_TID)
6649 perf_output_put(handle, data->tid_entry);
6650
6651 if (sample_type & PERF_SAMPLE_TIME)
6652 perf_output_put(handle, data->time);
6653
6654 if (sample_type & PERF_SAMPLE_ID)
6655 perf_output_put(handle, data->id);
6656
6657 if (sample_type & PERF_SAMPLE_STREAM_ID)
6658 perf_output_put(handle, data->stream_id);
6659
6660 if (sample_type & PERF_SAMPLE_CPU)
6661 perf_output_put(handle, data->cpu_entry);
6662
6663 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6664 perf_output_put(handle, data->id);
6665 }
6666
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6667 void perf_event__output_id_sample(struct perf_event *event,
6668 struct perf_output_handle *handle,
6669 struct perf_sample_data *sample)
6670 {
6671 if (event->attr.sample_id_all)
6672 __perf_event__output_id_sample(handle, sample);
6673 }
6674
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6675 static void perf_output_read_one(struct perf_output_handle *handle,
6676 struct perf_event *event,
6677 u64 enabled, u64 running)
6678 {
6679 u64 read_format = event->attr.read_format;
6680 u64 values[4];
6681 int n = 0;
6682
6683 values[n++] = perf_event_count(event);
6684 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6685 values[n++] = enabled +
6686 atomic64_read(&event->child_total_time_enabled);
6687 }
6688 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6689 values[n++] = running +
6690 atomic64_read(&event->child_total_time_running);
6691 }
6692 if (read_format & PERF_FORMAT_ID)
6693 values[n++] = primary_event_id(event);
6694
6695 __output_copy(handle, values, n * sizeof(u64));
6696 }
6697
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6698 static void perf_output_read_group(struct perf_output_handle *handle,
6699 struct perf_event *event,
6700 u64 enabled, u64 running)
6701 {
6702 struct perf_event *leader = event->group_leader, *sub;
6703 u64 read_format = event->attr.read_format;
6704 u64 values[5];
6705 int n = 0;
6706
6707 values[n++] = 1 + leader->nr_siblings;
6708
6709 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6710 values[n++] = enabled;
6711
6712 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6713 values[n++] = running;
6714
6715 if ((leader != event) &&
6716 (leader->state == PERF_EVENT_STATE_ACTIVE))
6717 leader->pmu->read(leader);
6718
6719 values[n++] = perf_event_count(leader);
6720 if (read_format & PERF_FORMAT_ID)
6721 values[n++] = primary_event_id(leader);
6722
6723 __output_copy(handle, values, n * sizeof(u64));
6724
6725 for_each_sibling_event(sub, leader) {
6726 n = 0;
6727
6728 if ((sub != event) &&
6729 (sub->state == PERF_EVENT_STATE_ACTIVE))
6730 sub->pmu->read(sub);
6731
6732 values[n++] = perf_event_count(sub);
6733 if (read_format & PERF_FORMAT_ID)
6734 values[n++] = primary_event_id(sub);
6735
6736 __output_copy(handle, values, n * sizeof(u64));
6737 }
6738 }
6739
6740 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6741 PERF_FORMAT_TOTAL_TIME_RUNNING)
6742
6743 /*
6744 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6745 *
6746 * The problem is that its both hard and excessively expensive to iterate the
6747 * child list, not to mention that its impossible to IPI the children running
6748 * on another CPU, from interrupt/NMI context.
6749 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6750 static void perf_output_read(struct perf_output_handle *handle,
6751 struct perf_event *event)
6752 {
6753 u64 enabled = 0, running = 0, now;
6754 u64 read_format = event->attr.read_format;
6755
6756 /*
6757 * compute total_time_enabled, total_time_running
6758 * based on snapshot values taken when the event
6759 * was last scheduled in.
6760 *
6761 * we cannot simply called update_context_time()
6762 * because of locking issue as we are called in
6763 * NMI context
6764 */
6765 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6766 calc_timer_values(event, &now, &enabled, &running);
6767
6768 if (event->attr.read_format & PERF_FORMAT_GROUP)
6769 perf_output_read_group(handle, event, enabled, running);
6770 else
6771 perf_output_read_one(handle, event, enabled, running);
6772 }
6773
perf_sample_save_hw_index(struct perf_event * event)6774 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6775 {
6776 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6777 }
6778
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6779 void perf_output_sample(struct perf_output_handle *handle,
6780 struct perf_event_header *header,
6781 struct perf_sample_data *data,
6782 struct perf_event *event)
6783 {
6784 u64 sample_type = data->type;
6785
6786 perf_output_put(handle, *header);
6787
6788 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6789 perf_output_put(handle, data->id);
6790
6791 if (sample_type & PERF_SAMPLE_IP)
6792 perf_output_put(handle, data->ip);
6793
6794 if (sample_type & PERF_SAMPLE_TID)
6795 perf_output_put(handle, data->tid_entry);
6796
6797 if (sample_type & PERF_SAMPLE_TIME)
6798 perf_output_put(handle, data->time);
6799
6800 if (sample_type & PERF_SAMPLE_ADDR)
6801 perf_output_put(handle, data->addr);
6802
6803 if (sample_type & PERF_SAMPLE_ID)
6804 perf_output_put(handle, data->id);
6805
6806 if (sample_type & PERF_SAMPLE_STREAM_ID)
6807 perf_output_put(handle, data->stream_id);
6808
6809 if (sample_type & PERF_SAMPLE_CPU)
6810 perf_output_put(handle, data->cpu_entry);
6811
6812 if (sample_type & PERF_SAMPLE_PERIOD)
6813 perf_output_put(handle, data->period);
6814
6815 if (sample_type & PERF_SAMPLE_READ)
6816 perf_output_read(handle, event);
6817
6818 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6819 int size = 1;
6820
6821 size += data->callchain->nr;
6822 size *= sizeof(u64);
6823 __output_copy(handle, data->callchain, size);
6824 }
6825
6826 if (sample_type & PERF_SAMPLE_RAW) {
6827 struct perf_raw_record *raw = data->raw;
6828
6829 if (raw) {
6830 struct perf_raw_frag *frag = &raw->frag;
6831
6832 perf_output_put(handle, raw->size);
6833 do {
6834 if (frag->copy) {
6835 __output_custom(handle, frag->copy,
6836 frag->data, frag->size);
6837 } else {
6838 __output_copy(handle, frag->data,
6839 frag->size);
6840 }
6841 if (perf_raw_frag_last(frag))
6842 break;
6843 frag = frag->next;
6844 } while (1);
6845 if (frag->pad)
6846 __output_skip(handle, NULL, frag->pad);
6847 } else {
6848 struct {
6849 u32 size;
6850 u32 data;
6851 } raw = {
6852 .size = sizeof(u32),
6853 .data = 0,
6854 };
6855 perf_output_put(handle, raw);
6856 }
6857 }
6858
6859 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6860 if (data->br_stack) {
6861 size_t size;
6862
6863 size = data->br_stack->nr
6864 * sizeof(struct perf_branch_entry);
6865
6866 perf_output_put(handle, data->br_stack->nr);
6867 if (perf_sample_save_hw_index(event))
6868 perf_output_put(handle, data->br_stack->hw_idx);
6869 perf_output_copy(handle, data->br_stack->entries, size);
6870 } else {
6871 /*
6872 * we always store at least the value of nr
6873 */
6874 u64 nr = 0;
6875 perf_output_put(handle, nr);
6876 }
6877 }
6878
6879 if (sample_type & PERF_SAMPLE_REGS_USER) {
6880 u64 abi = data->regs_user.abi;
6881
6882 /*
6883 * If there are no regs to dump, notice it through
6884 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6885 */
6886 perf_output_put(handle, abi);
6887
6888 if (abi) {
6889 u64 mask = event->attr.sample_regs_user;
6890 perf_output_sample_regs(handle,
6891 data->regs_user.regs,
6892 mask);
6893 }
6894 }
6895
6896 if (sample_type & PERF_SAMPLE_STACK_USER) {
6897 perf_output_sample_ustack(handle,
6898 data->stack_user_size,
6899 data->regs_user.regs);
6900 }
6901
6902 if (sample_type & PERF_SAMPLE_WEIGHT)
6903 perf_output_put(handle, data->weight);
6904
6905 if (sample_type & PERF_SAMPLE_DATA_SRC)
6906 perf_output_put(handle, data->data_src.val);
6907
6908 if (sample_type & PERF_SAMPLE_TRANSACTION)
6909 perf_output_put(handle, data->txn);
6910
6911 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6912 u64 abi = data->regs_intr.abi;
6913 /*
6914 * If there are no regs to dump, notice it through
6915 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6916 */
6917 perf_output_put(handle, abi);
6918
6919 if (abi) {
6920 u64 mask = event->attr.sample_regs_intr;
6921
6922 perf_output_sample_regs(handle,
6923 data->regs_intr.regs,
6924 mask);
6925 }
6926 }
6927
6928 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6929 perf_output_put(handle, data->phys_addr);
6930
6931 if (sample_type & PERF_SAMPLE_CGROUP)
6932 perf_output_put(handle, data->cgroup);
6933
6934 if (sample_type & PERF_SAMPLE_AUX) {
6935 perf_output_put(handle, data->aux_size);
6936
6937 if (data->aux_size)
6938 perf_aux_sample_output(event, handle, data);
6939 }
6940
6941 if (!event->attr.watermark) {
6942 int wakeup_events = event->attr.wakeup_events;
6943
6944 if (wakeup_events) {
6945 struct perf_buffer *rb = handle->rb;
6946 int events = local_inc_return(&rb->events);
6947
6948 if (events >= wakeup_events) {
6949 local_sub(wakeup_events, &rb->events);
6950 local_inc(&rb->wakeup);
6951 }
6952 }
6953 }
6954 }
6955
perf_virt_to_phys(u64 virt)6956 static u64 perf_virt_to_phys(u64 virt)
6957 {
6958 u64 phys_addr = 0;
6959 struct page *p = NULL;
6960
6961 if (!virt)
6962 return 0;
6963
6964 if (virt >= TASK_SIZE) {
6965 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6966 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6967 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6968 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6969 } else {
6970 /*
6971 * Walking the pages tables for user address.
6972 * Interrupts are disabled, so it prevents any tear down
6973 * of the page tables.
6974 * Try IRQ-safe get_user_page_fast_only first.
6975 * If failed, leave phys_addr as 0.
6976 */
6977 if (current->mm != NULL) {
6978 pagefault_disable();
6979 if (get_user_page_fast_only(virt, 0, &p))
6980 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6981 pagefault_enable();
6982 }
6983
6984 if (p)
6985 put_page(p);
6986 }
6987
6988 return phys_addr;
6989 }
6990
6991 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6992
6993 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)6994 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6995 {
6996 bool kernel = !event->attr.exclude_callchain_kernel;
6997 bool user = !event->attr.exclude_callchain_user;
6998 /* Disallow cross-task user callchains. */
6999 bool crosstask = event->ctx->task && event->ctx->task != current;
7000 const u32 max_stack = event->attr.sample_max_stack;
7001 struct perf_callchain_entry *callchain;
7002
7003 if (!kernel && !user)
7004 return &__empty_callchain;
7005
7006 callchain = get_perf_callchain(regs, 0, kernel, user,
7007 max_stack, crosstask, true);
7008 return callchain ?: &__empty_callchain;
7009 }
7010
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7011 void perf_prepare_sample(struct perf_event_header *header,
7012 struct perf_sample_data *data,
7013 struct perf_event *event,
7014 struct pt_regs *regs)
7015 {
7016 u64 sample_type = event->attr.sample_type;
7017
7018 header->type = PERF_RECORD_SAMPLE;
7019 header->size = sizeof(*header) + event->header_size;
7020
7021 header->misc = 0;
7022 header->misc |= perf_misc_flags(regs);
7023
7024 __perf_event_header__init_id(header, data, event);
7025
7026 if (sample_type & PERF_SAMPLE_IP)
7027 data->ip = perf_instruction_pointer(regs);
7028
7029 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7030 int size = 1;
7031
7032 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7033 data->callchain = perf_callchain(event, regs);
7034
7035 size += data->callchain->nr;
7036
7037 header->size += size * sizeof(u64);
7038 }
7039
7040 if (sample_type & PERF_SAMPLE_RAW) {
7041 struct perf_raw_record *raw = data->raw;
7042 int size;
7043
7044 if (raw) {
7045 struct perf_raw_frag *frag = &raw->frag;
7046 u32 sum = 0;
7047
7048 do {
7049 sum += frag->size;
7050 if (perf_raw_frag_last(frag))
7051 break;
7052 frag = frag->next;
7053 } while (1);
7054
7055 size = round_up(sum + sizeof(u32), sizeof(u64));
7056 raw->size = size - sizeof(u32);
7057 frag->pad = raw->size - sum;
7058 } else {
7059 size = sizeof(u64);
7060 }
7061
7062 header->size += size;
7063 }
7064
7065 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7066 int size = sizeof(u64); /* nr */
7067 if (data->br_stack) {
7068 if (perf_sample_save_hw_index(event))
7069 size += sizeof(u64);
7070
7071 size += data->br_stack->nr
7072 * sizeof(struct perf_branch_entry);
7073 }
7074 header->size += size;
7075 }
7076
7077 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7078 perf_sample_regs_user(&data->regs_user, regs);
7079
7080 if (sample_type & PERF_SAMPLE_REGS_USER) {
7081 /* regs dump ABI info */
7082 int size = sizeof(u64);
7083
7084 if (data->regs_user.regs) {
7085 u64 mask = event->attr.sample_regs_user;
7086 size += hweight64(mask) * sizeof(u64);
7087 }
7088
7089 header->size += size;
7090 }
7091
7092 if (sample_type & PERF_SAMPLE_STACK_USER) {
7093 /*
7094 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7095 * processed as the last one or have additional check added
7096 * in case new sample type is added, because we could eat
7097 * up the rest of the sample size.
7098 */
7099 u16 stack_size = event->attr.sample_stack_user;
7100 u16 size = sizeof(u64);
7101
7102 stack_size = perf_sample_ustack_size(stack_size, header->size,
7103 data->regs_user.regs);
7104
7105 /*
7106 * If there is something to dump, add space for the dump
7107 * itself and for the field that tells the dynamic size,
7108 * which is how many have been actually dumped.
7109 */
7110 if (stack_size)
7111 size += sizeof(u64) + stack_size;
7112
7113 data->stack_user_size = stack_size;
7114 header->size += size;
7115 }
7116
7117 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7118 /* regs dump ABI info */
7119 int size = sizeof(u64);
7120
7121 perf_sample_regs_intr(&data->regs_intr, regs);
7122
7123 if (data->regs_intr.regs) {
7124 u64 mask = event->attr.sample_regs_intr;
7125
7126 size += hweight64(mask) * sizeof(u64);
7127 }
7128
7129 header->size += size;
7130 }
7131
7132 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7133 data->phys_addr = perf_virt_to_phys(data->addr);
7134
7135 #ifdef CONFIG_CGROUP_PERF
7136 if (sample_type & PERF_SAMPLE_CGROUP) {
7137 struct cgroup *cgrp;
7138
7139 /* protected by RCU */
7140 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7141 data->cgroup = cgroup_id(cgrp);
7142 }
7143 #endif
7144
7145 if (sample_type & PERF_SAMPLE_AUX) {
7146 u64 size;
7147
7148 header->size += sizeof(u64); /* size */
7149
7150 /*
7151 * Given the 16bit nature of header::size, an AUX sample can
7152 * easily overflow it, what with all the preceding sample bits.
7153 * Make sure this doesn't happen by using up to U16_MAX bytes
7154 * per sample in total (rounded down to 8 byte boundary).
7155 */
7156 size = min_t(size_t, U16_MAX - header->size,
7157 event->attr.aux_sample_size);
7158 size = rounddown(size, 8);
7159 size = perf_prepare_sample_aux(event, data, size);
7160
7161 WARN_ON_ONCE(size + header->size > U16_MAX);
7162 header->size += size;
7163 }
7164 /*
7165 * If you're adding more sample types here, you likely need to do
7166 * something about the overflowing header::size, like repurpose the
7167 * lowest 3 bits of size, which should be always zero at the moment.
7168 * This raises a more important question, do we really need 512k sized
7169 * samples and why, so good argumentation is in order for whatever you
7170 * do here next.
7171 */
7172 WARN_ON_ONCE(header->size & 7);
7173 }
7174
7175 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7176 __perf_event_output(struct perf_event *event,
7177 struct perf_sample_data *data,
7178 struct pt_regs *regs,
7179 int (*output_begin)(struct perf_output_handle *,
7180 struct perf_sample_data *,
7181 struct perf_event *,
7182 unsigned int))
7183 {
7184 struct perf_output_handle handle;
7185 struct perf_event_header header;
7186 int err;
7187
7188 /* protect the callchain buffers */
7189 rcu_read_lock();
7190
7191 perf_prepare_sample(&header, data, event, regs);
7192
7193 err = output_begin(&handle, data, event, header.size);
7194 if (err)
7195 goto exit;
7196
7197 perf_output_sample(&handle, &header, data, event);
7198
7199 perf_output_end(&handle);
7200
7201 exit:
7202 rcu_read_unlock();
7203 return err;
7204 }
7205
7206 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7207 perf_event_output_forward(struct perf_event *event,
7208 struct perf_sample_data *data,
7209 struct pt_regs *regs)
7210 {
7211 __perf_event_output(event, data, regs, perf_output_begin_forward);
7212 }
7213
7214 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7215 perf_event_output_backward(struct perf_event *event,
7216 struct perf_sample_data *data,
7217 struct pt_regs *regs)
7218 {
7219 __perf_event_output(event, data, regs, perf_output_begin_backward);
7220 }
7221
7222 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7223 perf_event_output(struct perf_event *event,
7224 struct perf_sample_data *data,
7225 struct pt_regs *regs)
7226 {
7227 return __perf_event_output(event, data, regs, perf_output_begin);
7228 }
7229
7230 /*
7231 * read event_id
7232 */
7233
7234 struct perf_read_event {
7235 struct perf_event_header header;
7236
7237 u32 pid;
7238 u32 tid;
7239 };
7240
7241 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7242 perf_event_read_event(struct perf_event *event,
7243 struct task_struct *task)
7244 {
7245 struct perf_output_handle handle;
7246 struct perf_sample_data sample;
7247 struct perf_read_event read_event = {
7248 .header = {
7249 .type = PERF_RECORD_READ,
7250 .misc = 0,
7251 .size = sizeof(read_event) + event->read_size,
7252 },
7253 .pid = perf_event_pid(event, task),
7254 .tid = perf_event_tid(event, task),
7255 };
7256 int ret;
7257
7258 perf_event_header__init_id(&read_event.header, &sample, event);
7259 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7260 if (ret)
7261 return;
7262
7263 perf_output_put(&handle, read_event);
7264 perf_output_read(&handle, event);
7265 perf_event__output_id_sample(event, &handle, &sample);
7266
7267 perf_output_end(&handle);
7268 }
7269
7270 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7271
7272 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7273 perf_iterate_ctx(struct perf_event_context *ctx,
7274 perf_iterate_f output,
7275 void *data, bool all)
7276 {
7277 struct perf_event *event;
7278
7279 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7280 if (!all) {
7281 if (event->state < PERF_EVENT_STATE_INACTIVE)
7282 continue;
7283 if (!event_filter_match(event))
7284 continue;
7285 }
7286
7287 output(event, data);
7288 }
7289 }
7290
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7291 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7292 {
7293 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7294 struct perf_event *event;
7295
7296 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7297 /*
7298 * Skip events that are not fully formed yet; ensure that
7299 * if we observe event->ctx, both event and ctx will be
7300 * complete enough. See perf_install_in_context().
7301 */
7302 if (!smp_load_acquire(&event->ctx))
7303 continue;
7304
7305 if (event->state < PERF_EVENT_STATE_INACTIVE)
7306 continue;
7307 if (!event_filter_match(event))
7308 continue;
7309 output(event, data);
7310 }
7311 }
7312
7313 /*
7314 * Iterate all events that need to receive side-band events.
7315 *
7316 * For new callers; ensure that account_pmu_sb_event() includes
7317 * your event, otherwise it might not get delivered.
7318 */
7319 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7320 perf_iterate_sb(perf_iterate_f output, void *data,
7321 struct perf_event_context *task_ctx)
7322 {
7323 struct perf_event_context *ctx;
7324 int ctxn;
7325
7326 rcu_read_lock();
7327 preempt_disable();
7328
7329 /*
7330 * If we have task_ctx != NULL we only notify the task context itself.
7331 * The task_ctx is set only for EXIT events before releasing task
7332 * context.
7333 */
7334 if (task_ctx) {
7335 perf_iterate_ctx(task_ctx, output, data, false);
7336 goto done;
7337 }
7338
7339 perf_iterate_sb_cpu(output, data);
7340
7341 for_each_task_context_nr(ctxn) {
7342 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7343 if (ctx)
7344 perf_iterate_ctx(ctx, output, data, false);
7345 }
7346 done:
7347 preempt_enable();
7348 rcu_read_unlock();
7349 }
7350
7351 /*
7352 * Clear all file-based filters at exec, they'll have to be
7353 * re-instated when/if these objects are mmapped again.
7354 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)7355 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7356 {
7357 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7358 struct perf_addr_filter *filter;
7359 unsigned int restart = 0, count = 0;
7360 unsigned long flags;
7361
7362 if (!has_addr_filter(event))
7363 return;
7364
7365 raw_spin_lock_irqsave(&ifh->lock, flags);
7366 list_for_each_entry(filter, &ifh->list, entry) {
7367 if (filter->path.dentry) {
7368 event->addr_filter_ranges[count].start = 0;
7369 event->addr_filter_ranges[count].size = 0;
7370 restart++;
7371 }
7372
7373 count++;
7374 }
7375
7376 if (restart)
7377 event->addr_filters_gen++;
7378 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7379
7380 if (restart)
7381 perf_event_stop(event, 1);
7382 }
7383
perf_event_exec(void)7384 void perf_event_exec(void)
7385 {
7386 struct perf_event_context *ctx;
7387 int ctxn;
7388
7389 rcu_read_lock();
7390 for_each_task_context_nr(ctxn) {
7391 ctx = current->perf_event_ctxp[ctxn];
7392 if (!ctx)
7393 continue;
7394
7395 perf_event_enable_on_exec(ctxn);
7396
7397 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7398 true);
7399 }
7400 rcu_read_unlock();
7401 }
7402
7403 struct remote_output {
7404 struct perf_buffer *rb;
7405 int err;
7406 };
7407
__perf_event_output_stop(struct perf_event * event,void * data)7408 static void __perf_event_output_stop(struct perf_event *event, void *data)
7409 {
7410 struct perf_event *parent = event->parent;
7411 struct remote_output *ro = data;
7412 struct perf_buffer *rb = ro->rb;
7413 struct stop_event_data sd = {
7414 .event = event,
7415 };
7416
7417 if (!has_aux(event))
7418 return;
7419
7420 if (!parent)
7421 parent = event;
7422
7423 /*
7424 * In case of inheritance, it will be the parent that links to the
7425 * ring-buffer, but it will be the child that's actually using it.
7426 *
7427 * We are using event::rb to determine if the event should be stopped,
7428 * however this may race with ring_buffer_attach() (through set_output),
7429 * which will make us skip the event that actually needs to be stopped.
7430 * So ring_buffer_attach() has to stop an aux event before re-assigning
7431 * its rb pointer.
7432 */
7433 if (rcu_dereference(parent->rb) == rb)
7434 ro->err = __perf_event_stop(&sd);
7435 }
7436
__perf_pmu_output_stop(void * info)7437 static int __perf_pmu_output_stop(void *info)
7438 {
7439 struct perf_event *event = info;
7440 struct pmu *pmu = event->ctx->pmu;
7441 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7442 struct remote_output ro = {
7443 .rb = event->rb,
7444 };
7445
7446 rcu_read_lock();
7447 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7448 if (cpuctx->task_ctx)
7449 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7450 &ro, false);
7451 rcu_read_unlock();
7452
7453 return ro.err;
7454 }
7455
perf_pmu_output_stop(struct perf_event * event)7456 static void perf_pmu_output_stop(struct perf_event *event)
7457 {
7458 struct perf_event *iter;
7459 int err, cpu;
7460
7461 restart:
7462 rcu_read_lock();
7463 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7464 /*
7465 * For per-CPU events, we need to make sure that neither they
7466 * nor their children are running; for cpu==-1 events it's
7467 * sufficient to stop the event itself if it's active, since
7468 * it can't have children.
7469 */
7470 cpu = iter->cpu;
7471 if (cpu == -1)
7472 cpu = READ_ONCE(iter->oncpu);
7473
7474 if (cpu == -1)
7475 continue;
7476
7477 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7478 if (err == -EAGAIN) {
7479 rcu_read_unlock();
7480 goto restart;
7481 }
7482 }
7483 rcu_read_unlock();
7484 }
7485
7486 /*
7487 * task tracking -- fork/exit
7488 *
7489 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7490 */
7491
7492 struct perf_task_event {
7493 struct task_struct *task;
7494 struct perf_event_context *task_ctx;
7495
7496 struct {
7497 struct perf_event_header header;
7498
7499 u32 pid;
7500 u32 ppid;
7501 u32 tid;
7502 u32 ptid;
7503 u64 time;
7504 } event_id;
7505 };
7506
perf_event_task_match(struct perf_event * event)7507 static int perf_event_task_match(struct perf_event *event)
7508 {
7509 return event->attr.comm || event->attr.mmap ||
7510 event->attr.mmap2 || event->attr.mmap_data ||
7511 event->attr.task;
7512 }
7513
perf_event_task_output(struct perf_event * event,void * data)7514 static void perf_event_task_output(struct perf_event *event,
7515 void *data)
7516 {
7517 struct perf_task_event *task_event = data;
7518 struct perf_output_handle handle;
7519 struct perf_sample_data sample;
7520 struct task_struct *task = task_event->task;
7521 int ret, size = task_event->event_id.header.size;
7522
7523 if (!perf_event_task_match(event))
7524 return;
7525
7526 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7527
7528 ret = perf_output_begin(&handle, &sample, event,
7529 task_event->event_id.header.size);
7530 if (ret)
7531 goto out;
7532
7533 task_event->event_id.pid = perf_event_pid(event, task);
7534 task_event->event_id.tid = perf_event_tid(event, task);
7535
7536 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7537 task_event->event_id.ppid = perf_event_pid(event,
7538 task->real_parent);
7539 task_event->event_id.ptid = perf_event_pid(event,
7540 task->real_parent);
7541 } else { /* PERF_RECORD_FORK */
7542 task_event->event_id.ppid = perf_event_pid(event, current);
7543 task_event->event_id.ptid = perf_event_tid(event, current);
7544 }
7545
7546 task_event->event_id.time = perf_event_clock(event);
7547
7548 perf_output_put(&handle, task_event->event_id);
7549
7550 perf_event__output_id_sample(event, &handle, &sample);
7551
7552 perf_output_end(&handle);
7553 out:
7554 task_event->event_id.header.size = size;
7555 }
7556
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7557 static void perf_event_task(struct task_struct *task,
7558 struct perf_event_context *task_ctx,
7559 int new)
7560 {
7561 struct perf_task_event task_event;
7562
7563 if (!atomic_read(&nr_comm_events) &&
7564 !atomic_read(&nr_mmap_events) &&
7565 !atomic_read(&nr_task_events))
7566 return;
7567
7568 task_event = (struct perf_task_event){
7569 .task = task,
7570 .task_ctx = task_ctx,
7571 .event_id = {
7572 .header = {
7573 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7574 .misc = 0,
7575 .size = sizeof(task_event.event_id),
7576 },
7577 /* .pid */
7578 /* .ppid */
7579 /* .tid */
7580 /* .ptid */
7581 /* .time */
7582 },
7583 };
7584
7585 perf_iterate_sb(perf_event_task_output,
7586 &task_event,
7587 task_ctx);
7588 }
7589
perf_event_fork(struct task_struct * task)7590 void perf_event_fork(struct task_struct *task)
7591 {
7592 perf_event_task(task, NULL, 1);
7593 perf_event_namespaces(task);
7594 }
7595
7596 /*
7597 * comm tracking
7598 */
7599
7600 struct perf_comm_event {
7601 struct task_struct *task;
7602 char *comm;
7603 int comm_size;
7604
7605 struct {
7606 struct perf_event_header header;
7607
7608 u32 pid;
7609 u32 tid;
7610 } event_id;
7611 };
7612
perf_event_comm_match(struct perf_event * event)7613 static int perf_event_comm_match(struct perf_event *event)
7614 {
7615 return event->attr.comm;
7616 }
7617
perf_event_comm_output(struct perf_event * event,void * data)7618 static void perf_event_comm_output(struct perf_event *event,
7619 void *data)
7620 {
7621 struct perf_comm_event *comm_event = data;
7622 struct perf_output_handle handle;
7623 struct perf_sample_data sample;
7624 int size = comm_event->event_id.header.size;
7625 int ret;
7626
7627 if (!perf_event_comm_match(event))
7628 return;
7629
7630 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7631 ret = perf_output_begin(&handle, &sample, event,
7632 comm_event->event_id.header.size);
7633
7634 if (ret)
7635 goto out;
7636
7637 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7638 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7639
7640 perf_output_put(&handle, comm_event->event_id);
7641 __output_copy(&handle, comm_event->comm,
7642 comm_event->comm_size);
7643
7644 perf_event__output_id_sample(event, &handle, &sample);
7645
7646 perf_output_end(&handle);
7647 out:
7648 comm_event->event_id.header.size = size;
7649 }
7650
perf_event_comm_event(struct perf_comm_event * comm_event)7651 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7652 {
7653 char comm[TASK_COMM_LEN];
7654 unsigned int size;
7655
7656 memset(comm, 0, sizeof(comm));
7657 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7658 size = ALIGN(strlen(comm)+1, sizeof(u64));
7659
7660 comm_event->comm = comm;
7661 comm_event->comm_size = size;
7662
7663 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7664
7665 perf_iterate_sb(perf_event_comm_output,
7666 comm_event,
7667 NULL);
7668 }
7669
perf_event_comm(struct task_struct * task,bool exec)7670 void perf_event_comm(struct task_struct *task, bool exec)
7671 {
7672 struct perf_comm_event comm_event;
7673
7674 if (!atomic_read(&nr_comm_events))
7675 return;
7676
7677 comm_event = (struct perf_comm_event){
7678 .task = task,
7679 /* .comm */
7680 /* .comm_size */
7681 .event_id = {
7682 .header = {
7683 .type = PERF_RECORD_COMM,
7684 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7685 /* .size */
7686 },
7687 /* .pid */
7688 /* .tid */
7689 },
7690 };
7691
7692 perf_event_comm_event(&comm_event);
7693 }
7694
7695 /*
7696 * namespaces tracking
7697 */
7698
7699 struct perf_namespaces_event {
7700 struct task_struct *task;
7701
7702 struct {
7703 struct perf_event_header header;
7704
7705 u32 pid;
7706 u32 tid;
7707 u64 nr_namespaces;
7708 struct perf_ns_link_info link_info[NR_NAMESPACES];
7709 } event_id;
7710 };
7711
perf_event_namespaces_match(struct perf_event * event)7712 static int perf_event_namespaces_match(struct perf_event *event)
7713 {
7714 return event->attr.namespaces;
7715 }
7716
perf_event_namespaces_output(struct perf_event * event,void * data)7717 static void perf_event_namespaces_output(struct perf_event *event,
7718 void *data)
7719 {
7720 struct perf_namespaces_event *namespaces_event = data;
7721 struct perf_output_handle handle;
7722 struct perf_sample_data sample;
7723 u16 header_size = namespaces_event->event_id.header.size;
7724 int ret;
7725
7726 if (!perf_event_namespaces_match(event))
7727 return;
7728
7729 perf_event_header__init_id(&namespaces_event->event_id.header,
7730 &sample, event);
7731 ret = perf_output_begin(&handle, &sample, event,
7732 namespaces_event->event_id.header.size);
7733 if (ret)
7734 goto out;
7735
7736 namespaces_event->event_id.pid = perf_event_pid(event,
7737 namespaces_event->task);
7738 namespaces_event->event_id.tid = perf_event_tid(event,
7739 namespaces_event->task);
7740
7741 perf_output_put(&handle, namespaces_event->event_id);
7742
7743 perf_event__output_id_sample(event, &handle, &sample);
7744
7745 perf_output_end(&handle);
7746 out:
7747 namespaces_event->event_id.header.size = header_size;
7748 }
7749
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7750 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7751 struct task_struct *task,
7752 const struct proc_ns_operations *ns_ops)
7753 {
7754 struct path ns_path;
7755 struct inode *ns_inode;
7756 int error;
7757
7758 error = ns_get_path(&ns_path, task, ns_ops);
7759 if (!error) {
7760 ns_inode = ns_path.dentry->d_inode;
7761 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7762 ns_link_info->ino = ns_inode->i_ino;
7763 path_put(&ns_path);
7764 }
7765 }
7766
perf_event_namespaces(struct task_struct * task)7767 void perf_event_namespaces(struct task_struct *task)
7768 {
7769 struct perf_namespaces_event namespaces_event;
7770 struct perf_ns_link_info *ns_link_info;
7771
7772 if (!atomic_read(&nr_namespaces_events))
7773 return;
7774
7775 namespaces_event = (struct perf_namespaces_event){
7776 .task = task,
7777 .event_id = {
7778 .header = {
7779 .type = PERF_RECORD_NAMESPACES,
7780 .misc = 0,
7781 .size = sizeof(namespaces_event.event_id),
7782 },
7783 /* .pid */
7784 /* .tid */
7785 .nr_namespaces = NR_NAMESPACES,
7786 /* .link_info[NR_NAMESPACES] */
7787 },
7788 };
7789
7790 ns_link_info = namespaces_event.event_id.link_info;
7791
7792 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7793 task, &mntns_operations);
7794
7795 #ifdef CONFIG_USER_NS
7796 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7797 task, &userns_operations);
7798 #endif
7799 #ifdef CONFIG_NET_NS
7800 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7801 task, &netns_operations);
7802 #endif
7803 #ifdef CONFIG_UTS_NS
7804 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7805 task, &utsns_operations);
7806 #endif
7807 #ifdef CONFIG_IPC_NS
7808 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7809 task, &ipcns_operations);
7810 #endif
7811 #ifdef CONFIG_PID_NS
7812 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7813 task, &pidns_operations);
7814 #endif
7815 #ifdef CONFIG_CGROUPS
7816 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7817 task, &cgroupns_operations);
7818 #endif
7819
7820 perf_iterate_sb(perf_event_namespaces_output,
7821 &namespaces_event,
7822 NULL);
7823 }
7824
7825 /*
7826 * cgroup tracking
7827 */
7828 #ifdef CONFIG_CGROUP_PERF
7829
7830 struct perf_cgroup_event {
7831 char *path;
7832 int path_size;
7833 struct {
7834 struct perf_event_header header;
7835 u64 id;
7836 char path[];
7837 } event_id;
7838 };
7839
perf_event_cgroup_match(struct perf_event * event)7840 static int perf_event_cgroup_match(struct perf_event *event)
7841 {
7842 return event->attr.cgroup;
7843 }
7844
perf_event_cgroup_output(struct perf_event * event,void * data)7845 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7846 {
7847 struct perf_cgroup_event *cgroup_event = data;
7848 struct perf_output_handle handle;
7849 struct perf_sample_data sample;
7850 u16 header_size = cgroup_event->event_id.header.size;
7851 int ret;
7852
7853 if (!perf_event_cgroup_match(event))
7854 return;
7855
7856 perf_event_header__init_id(&cgroup_event->event_id.header,
7857 &sample, event);
7858 ret = perf_output_begin(&handle, &sample, event,
7859 cgroup_event->event_id.header.size);
7860 if (ret)
7861 goto out;
7862
7863 perf_output_put(&handle, cgroup_event->event_id);
7864 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7865
7866 perf_event__output_id_sample(event, &handle, &sample);
7867
7868 perf_output_end(&handle);
7869 out:
7870 cgroup_event->event_id.header.size = header_size;
7871 }
7872
perf_event_cgroup(struct cgroup * cgrp)7873 static void perf_event_cgroup(struct cgroup *cgrp)
7874 {
7875 struct perf_cgroup_event cgroup_event;
7876 char path_enomem[16] = "//enomem";
7877 char *pathname;
7878 size_t size;
7879
7880 if (!atomic_read(&nr_cgroup_events))
7881 return;
7882
7883 cgroup_event = (struct perf_cgroup_event){
7884 .event_id = {
7885 .header = {
7886 .type = PERF_RECORD_CGROUP,
7887 .misc = 0,
7888 .size = sizeof(cgroup_event.event_id),
7889 },
7890 .id = cgroup_id(cgrp),
7891 },
7892 };
7893
7894 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7895 if (pathname == NULL) {
7896 cgroup_event.path = path_enomem;
7897 } else {
7898 /* just to be sure to have enough space for alignment */
7899 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7900 cgroup_event.path = pathname;
7901 }
7902
7903 /*
7904 * Since our buffer works in 8 byte units we need to align our string
7905 * size to a multiple of 8. However, we must guarantee the tail end is
7906 * zero'd out to avoid leaking random bits to userspace.
7907 */
7908 size = strlen(cgroup_event.path) + 1;
7909 while (!IS_ALIGNED(size, sizeof(u64)))
7910 cgroup_event.path[size++] = '\0';
7911
7912 cgroup_event.event_id.header.size += size;
7913 cgroup_event.path_size = size;
7914
7915 perf_iterate_sb(perf_event_cgroup_output,
7916 &cgroup_event,
7917 NULL);
7918
7919 kfree(pathname);
7920 }
7921
7922 #endif
7923
7924 /*
7925 * mmap tracking
7926 */
7927
7928 struct perf_mmap_event {
7929 struct vm_area_struct *vma;
7930
7931 const char *file_name;
7932 int file_size;
7933 int maj, min;
7934 u64 ino;
7935 u64 ino_generation;
7936 u32 prot, flags;
7937
7938 struct {
7939 struct perf_event_header header;
7940
7941 u32 pid;
7942 u32 tid;
7943 u64 start;
7944 u64 len;
7945 u64 pgoff;
7946 } event_id;
7947 };
7948
perf_event_mmap_match(struct perf_event * event,void * data)7949 static int perf_event_mmap_match(struct perf_event *event,
7950 void *data)
7951 {
7952 struct perf_mmap_event *mmap_event = data;
7953 struct vm_area_struct *vma = mmap_event->vma;
7954 int executable = vma->vm_flags & VM_EXEC;
7955
7956 return (!executable && event->attr.mmap_data) ||
7957 (executable && (event->attr.mmap || event->attr.mmap2));
7958 }
7959
perf_event_mmap_output(struct perf_event * event,void * data)7960 static void perf_event_mmap_output(struct perf_event *event,
7961 void *data)
7962 {
7963 struct perf_mmap_event *mmap_event = data;
7964 struct perf_output_handle handle;
7965 struct perf_sample_data sample;
7966 int size = mmap_event->event_id.header.size;
7967 u32 type = mmap_event->event_id.header.type;
7968 int ret;
7969
7970 if (!perf_event_mmap_match(event, data))
7971 return;
7972
7973 if (event->attr.mmap2) {
7974 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7975 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7976 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7977 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7978 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7979 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7980 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7981 }
7982
7983 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7984 ret = perf_output_begin(&handle, &sample, event,
7985 mmap_event->event_id.header.size);
7986 if (ret)
7987 goto out;
7988
7989 mmap_event->event_id.pid = perf_event_pid(event, current);
7990 mmap_event->event_id.tid = perf_event_tid(event, current);
7991
7992 perf_output_put(&handle, mmap_event->event_id);
7993
7994 if (event->attr.mmap2) {
7995 perf_output_put(&handle, mmap_event->maj);
7996 perf_output_put(&handle, mmap_event->min);
7997 perf_output_put(&handle, mmap_event->ino);
7998 perf_output_put(&handle, mmap_event->ino_generation);
7999 perf_output_put(&handle, mmap_event->prot);
8000 perf_output_put(&handle, mmap_event->flags);
8001 }
8002
8003 __output_copy(&handle, mmap_event->file_name,
8004 mmap_event->file_size);
8005
8006 perf_event__output_id_sample(event, &handle, &sample);
8007
8008 perf_output_end(&handle);
8009 out:
8010 mmap_event->event_id.header.size = size;
8011 mmap_event->event_id.header.type = type;
8012 }
8013
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8014 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8015 {
8016 struct vm_area_struct *vma = mmap_event->vma;
8017 struct file *file = vma->vm_file;
8018 int maj = 0, min = 0;
8019 u64 ino = 0, gen = 0;
8020 u32 prot = 0, flags = 0;
8021 unsigned int size;
8022 char tmp[16];
8023 char *buf = NULL;
8024 char *name;
8025
8026 if (vma->vm_flags & VM_READ)
8027 prot |= PROT_READ;
8028 if (vma->vm_flags & VM_WRITE)
8029 prot |= PROT_WRITE;
8030 if (vma->vm_flags & VM_EXEC)
8031 prot |= PROT_EXEC;
8032
8033 if (vma->vm_flags & VM_MAYSHARE)
8034 flags = MAP_SHARED;
8035 else
8036 flags = MAP_PRIVATE;
8037
8038 if (vma->vm_flags & VM_DENYWRITE)
8039 flags |= MAP_DENYWRITE;
8040 if (vma->vm_flags & VM_MAYEXEC)
8041 flags |= MAP_EXECUTABLE;
8042 if (vma->vm_flags & VM_LOCKED)
8043 flags |= MAP_LOCKED;
8044 if (is_vm_hugetlb_page(vma))
8045 flags |= MAP_HUGETLB;
8046
8047 if (file) {
8048 struct inode *inode;
8049 dev_t dev;
8050
8051 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8052 if (!buf) {
8053 name = "//enomem";
8054 goto cpy_name;
8055 }
8056 /*
8057 * d_path() works from the end of the rb backwards, so we
8058 * need to add enough zero bytes after the string to handle
8059 * the 64bit alignment we do later.
8060 */
8061 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8062 if (IS_ERR(name)) {
8063 name = "//toolong";
8064 goto cpy_name;
8065 }
8066 inode = file_inode(vma->vm_file);
8067 dev = inode->i_sb->s_dev;
8068 ino = inode->i_ino;
8069 gen = inode->i_generation;
8070 maj = MAJOR(dev);
8071 min = MINOR(dev);
8072
8073 goto got_name;
8074 } else {
8075 if (vma->vm_ops && vma->vm_ops->name) {
8076 name = (char *) vma->vm_ops->name(vma);
8077 if (name)
8078 goto cpy_name;
8079 }
8080
8081 name = (char *)arch_vma_name(vma);
8082 if (name)
8083 goto cpy_name;
8084
8085 if (vma->vm_start <= vma->vm_mm->start_brk &&
8086 vma->vm_end >= vma->vm_mm->brk) {
8087 name = "[heap]";
8088 goto cpy_name;
8089 }
8090 if (vma->vm_start <= vma->vm_mm->start_stack &&
8091 vma->vm_end >= vma->vm_mm->start_stack) {
8092 name = "[stack]";
8093 goto cpy_name;
8094 }
8095
8096 name = "//anon";
8097 goto cpy_name;
8098 }
8099
8100 cpy_name:
8101 strlcpy(tmp, name, sizeof(tmp));
8102 name = tmp;
8103 got_name:
8104 /*
8105 * Since our buffer works in 8 byte units we need to align our string
8106 * size to a multiple of 8. However, we must guarantee the tail end is
8107 * zero'd out to avoid leaking random bits to userspace.
8108 */
8109 size = strlen(name)+1;
8110 while (!IS_ALIGNED(size, sizeof(u64)))
8111 name[size++] = '\0';
8112
8113 mmap_event->file_name = name;
8114 mmap_event->file_size = size;
8115 mmap_event->maj = maj;
8116 mmap_event->min = min;
8117 mmap_event->ino = ino;
8118 mmap_event->ino_generation = gen;
8119 mmap_event->prot = prot;
8120 mmap_event->flags = flags;
8121
8122 if (!(vma->vm_flags & VM_EXEC))
8123 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8124
8125 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8126
8127 perf_iterate_sb(perf_event_mmap_output,
8128 mmap_event,
8129 NULL);
8130
8131 kfree(buf);
8132 }
8133
8134 /*
8135 * Check whether inode and address range match filter criteria.
8136 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8137 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8138 struct file *file, unsigned long offset,
8139 unsigned long size)
8140 {
8141 /* d_inode(NULL) won't be equal to any mapped user-space file */
8142 if (!filter->path.dentry)
8143 return false;
8144
8145 if (d_inode(filter->path.dentry) != file_inode(file))
8146 return false;
8147
8148 if (filter->offset > offset + size)
8149 return false;
8150
8151 if (filter->offset + filter->size < offset)
8152 return false;
8153
8154 return true;
8155 }
8156
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8157 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8158 struct vm_area_struct *vma,
8159 struct perf_addr_filter_range *fr)
8160 {
8161 unsigned long vma_size = vma->vm_end - vma->vm_start;
8162 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8163 struct file *file = vma->vm_file;
8164
8165 if (!perf_addr_filter_match(filter, file, off, vma_size))
8166 return false;
8167
8168 if (filter->offset < off) {
8169 fr->start = vma->vm_start;
8170 fr->size = min(vma_size, filter->size - (off - filter->offset));
8171 } else {
8172 fr->start = vma->vm_start + filter->offset - off;
8173 fr->size = min(vma->vm_end - fr->start, filter->size);
8174 }
8175
8176 return true;
8177 }
8178
__perf_addr_filters_adjust(struct perf_event * event,void * data)8179 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8180 {
8181 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8182 struct vm_area_struct *vma = data;
8183 struct perf_addr_filter *filter;
8184 unsigned int restart = 0, count = 0;
8185 unsigned long flags;
8186
8187 if (!has_addr_filter(event))
8188 return;
8189
8190 if (!vma->vm_file)
8191 return;
8192
8193 raw_spin_lock_irqsave(&ifh->lock, flags);
8194 list_for_each_entry(filter, &ifh->list, entry) {
8195 if (perf_addr_filter_vma_adjust(filter, vma,
8196 &event->addr_filter_ranges[count]))
8197 restart++;
8198
8199 count++;
8200 }
8201
8202 if (restart)
8203 event->addr_filters_gen++;
8204 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8205
8206 if (restart)
8207 perf_event_stop(event, 1);
8208 }
8209
8210 /*
8211 * Adjust all task's events' filters to the new vma
8212 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8213 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8214 {
8215 struct perf_event_context *ctx;
8216 int ctxn;
8217
8218 /*
8219 * Data tracing isn't supported yet and as such there is no need
8220 * to keep track of anything that isn't related to executable code:
8221 */
8222 if (!(vma->vm_flags & VM_EXEC))
8223 return;
8224
8225 rcu_read_lock();
8226 for_each_task_context_nr(ctxn) {
8227 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8228 if (!ctx)
8229 continue;
8230
8231 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8232 }
8233 rcu_read_unlock();
8234 }
8235
perf_event_mmap(struct vm_area_struct * vma)8236 void perf_event_mmap(struct vm_area_struct *vma)
8237 {
8238 struct perf_mmap_event mmap_event;
8239
8240 if (!atomic_read(&nr_mmap_events))
8241 return;
8242
8243 mmap_event = (struct perf_mmap_event){
8244 .vma = vma,
8245 /* .file_name */
8246 /* .file_size */
8247 .event_id = {
8248 .header = {
8249 .type = PERF_RECORD_MMAP,
8250 .misc = PERF_RECORD_MISC_USER,
8251 /* .size */
8252 },
8253 /* .pid */
8254 /* .tid */
8255 .start = vma->vm_start,
8256 .len = vma->vm_end - vma->vm_start,
8257 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8258 },
8259 /* .maj (attr_mmap2 only) */
8260 /* .min (attr_mmap2 only) */
8261 /* .ino (attr_mmap2 only) */
8262 /* .ino_generation (attr_mmap2 only) */
8263 /* .prot (attr_mmap2 only) */
8264 /* .flags (attr_mmap2 only) */
8265 };
8266
8267 perf_addr_filters_adjust(vma);
8268 perf_event_mmap_event(&mmap_event);
8269 }
8270
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8271 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8272 unsigned long size, u64 flags)
8273 {
8274 struct perf_output_handle handle;
8275 struct perf_sample_data sample;
8276 struct perf_aux_event {
8277 struct perf_event_header header;
8278 u64 offset;
8279 u64 size;
8280 u64 flags;
8281 } rec = {
8282 .header = {
8283 .type = PERF_RECORD_AUX,
8284 .misc = 0,
8285 .size = sizeof(rec),
8286 },
8287 .offset = head,
8288 .size = size,
8289 .flags = flags,
8290 };
8291 int ret;
8292
8293 perf_event_header__init_id(&rec.header, &sample, event);
8294 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8295
8296 if (ret)
8297 return;
8298
8299 perf_output_put(&handle, rec);
8300 perf_event__output_id_sample(event, &handle, &sample);
8301
8302 perf_output_end(&handle);
8303 }
8304
8305 /*
8306 * Lost/dropped samples logging
8307 */
perf_log_lost_samples(struct perf_event * event,u64 lost)8308 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8309 {
8310 struct perf_output_handle handle;
8311 struct perf_sample_data sample;
8312 int ret;
8313
8314 struct {
8315 struct perf_event_header header;
8316 u64 lost;
8317 } lost_samples_event = {
8318 .header = {
8319 .type = PERF_RECORD_LOST_SAMPLES,
8320 .misc = 0,
8321 .size = sizeof(lost_samples_event),
8322 },
8323 .lost = lost,
8324 };
8325
8326 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8327
8328 ret = perf_output_begin(&handle, &sample, event,
8329 lost_samples_event.header.size);
8330 if (ret)
8331 return;
8332
8333 perf_output_put(&handle, lost_samples_event);
8334 perf_event__output_id_sample(event, &handle, &sample);
8335 perf_output_end(&handle);
8336 }
8337
8338 /*
8339 * context_switch tracking
8340 */
8341
8342 struct perf_switch_event {
8343 struct task_struct *task;
8344 struct task_struct *next_prev;
8345
8346 struct {
8347 struct perf_event_header header;
8348 u32 next_prev_pid;
8349 u32 next_prev_tid;
8350 } event_id;
8351 };
8352
perf_event_switch_match(struct perf_event * event)8353 static int perf_event_switch_match(struct perf_event *event)
8354 {
8355 return event->attr.context_switch;
8356 }
8357
perf_event_switch_output(struct perf_event * event,void * data)8358 static void perf_event_switch_output(struct perf_event *event, void *data)
8359 {
8360 struct perf_switch_event *se = data;
8361 struct perf_output_handle handle;
8362 struct perf_sample_data sample;
8363 int ret;
8364
8365 if (!perf_event_switch_match(event))
8366 return;
8367
8368 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8369 if (event->ctx->task) {
8370 se->event_id.header.type = PERF_RECORD_SWITCH;
8371 se->event_id.header.size = sizeof(se->event_id.header);
8372 } else {
8373 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8374 se->event_id.header.size = sizeof(se->event_id);
8375 se->event_id.next_prev_pid =
8376 perf_event_pid(event, se->next_prev);
8377 se->event_id.next_prev_tid =
8378 perf_event_tid(event, se->next_prev);
8379 }
8380
8381 perf_event_header__init_id(&se->event_id.header, &sample, event);
8382
8383 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8384 if (ret)
8385 return;
8386
8387 if (event->ctx->task)
8388 perf_output_put(&handle, se->event_id.header);
8389 else
8390 perf_output_put(&handle, se->event_id);
8391
8392 perf_event__output_id_sample(event, &handle, &sample);
8393
8394 perf_output_end(&handle);
8395 }
8396
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)8397 static void perf_event_switch(struct task_struct *task,
8398 struct task_struct *next_prev, bool sched_in)
8399 {
8400 struct perf_switch_event switch_event;
8401
8402 /* N.B. caller checks nr_switch_events != 0 */
8403
8404 switch_event = (struct perf_switch_event){
8405 .task = task,
8406 .next_prev = next_prev,
8407 .event_id = {
8408 .header = {
8409 /* .type */
8410 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8411 /* .size */
8412 },
8413 /* .next_prev_pid */
8414 /* .next_prev_tid */
8415 },
8416 };
8417
8418 if (!sched_in && task->state == TASK_RUNNING)
8419 switch_event.event_id.header.misc |=
8420 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8421
8422 perf_iterate_sb(perf_event_switch_output,
8423 &switch_event,
8424 NULL);
8425 }
8426
8427 /*
8428 * IRQ throttle logging
8429 */
8430
perf_log_throttle(struct perf_event * event,int enable)8431 static void perf_log_throttle(struct perf_event *event, int enable)
8432 {
8433 struct perf_output_handle handle;
8434 struct perf_sample_data sample;
8435 int ret;
8436
8437 struct {
8438 struct perf_event_header header;
8439 u64 time;
8440 u64 id;
8441 u64 stream_id;
8442 } throttle_event = {
8443 .header = {
8444 .type = PERF_RECORD_THROTTLE,
8445 .misc = 0,
8446 .size = sizeof(throttle_event),
8447 },
8448 .time = perf_event_clock(event),
8449 .id = primary_event_id(event),
8450 .stream_id = event->id,
8451 };
8452
8453 if (enable)
8454 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8455
8456 perf_event_header__init_id(&throttle_event.header, &sample, event);
8457
8458 ret = perf_output_begin(&handle, &sample, event,
8459 throttle_event.header.size);
8460 if (ret)
8461 return;
8462
8463 perf_output_put(&handle, throttle_event);
8464 perf_event__output_id_sample(event, &handle, &sample);
8465 perf_output_end(&handle);
8466 }
8467
8468 /*
8469 * ksymbol register/unregister tracking
8470 */
8471
8472 struct perf_ksymbol_event {
8473 const char *name;
8474 int name_len;
8475 struct {
8476 struct perf_event_header header;
8477 u64 addr;
8478 u32 len;
8479 u16 ksym_type;
8480 u16 flags;
8481 } event_id;
8482 };
8483
perf_event_ksymbol_match(struct perf_event * event)8484 static int perf_event_ksymbol_match(struct perf_event *event)
8485 {
8486 return event->attr.ksymbol;
8487 }
8488
perf_event_ksymbol_output(struct perf_event * event,void * data)8489 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8490 {
8491 struct perf_ksymbol_event *ksymbol_event = data;
8492 struct perf_output_handle handle;
8493 struct perf_sample_data sample;
8494 int ret;
8495
8496 if (!perf_event_ksymbol_match(event))
8497 return;
8498
8499 perf_event_header__init_id(&ksymbol_event->event_id.header,
8500 &sample, event);
8501 ret = perf_output_begin(&handle, &sample, event,
8502 ksymbol_event->event_id.header.size);
8503 if (ret)
8504 return;
8505
8506 perf_output_put(&handle, ksymbol_event->event_id);
8507 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8508 perf_event__output_id_sample(event, &handle, &sample);
8509
8510 perf_output_end(&handle);
8511 }
8512
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)8513 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8514 const char *sym)
8515 {
8516 struct perf_ksymbol_event ksymbol_event;
8517 char name[KSYM_NAME_LEN];
8518 u16 flags = 0;
8519 int name_len;
8520
8521 if (!atomic_read(&nr_ksymbol_events))
8522 return;
8523
8524 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8525 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8526 goto err;
8527
8528 strlcpy(name, sym, KSYM_NAME_LEN);
8529 name_len = strlen(name) + 1;
8530 while (!IS_ALIGNED(name_len, sizeof(u64)))
8531 name[name_len++] = '\0';
8532 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8533
8534 if (unregister)
8535 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8536
8537 ksymbol_event = (struct perf_ksymbol_event){
8538 .name = name,
8539 .name_len = name_len,
8540 .event_id = {
8541 .header = {
8542 .type = PERF_RECORD_KSYMBOL,
8543 .size = sizeof(ksymbol_event.event_id) +
8544 name_len,
8545 },
8546 .addr = addr,
8547 .len = len,
8548 .ksym_type = ksym_type,
8549 .flags = flags,
8550 },
8551 };
8552
8553 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8554 return;
8555 err:
8556 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8557 }
8558
8559 /*
8560 * bpf program load/unload tracking
8561 */
8562
8563 struct perf_bpf_event {
8564 struct bpf_prog *prog;
8565 struct {
8566 struct perf_event_header header;
8567 u16 type;
8568 u16 flags;
8569 u32 id;
8570 u8 tag[BPF_TAG_SIZE];
8571 } event_id;
8572 };
8573
perf_event_bpf_match(struct perf_event * event)8574 static int perf_event_bpf_match(struct perf_event *event)
8575 {
8576 return event->attr.bpf_event;
8577 }
8578
perf_event_bpf_output(struct perf_event * event,void * data)8579 static void perf_event_bpf_output(struct perf_event *event, void *data)
8580 {
8581 struct perf_bpf_event *bpf_event = data;
8582 struct perf_output_handle handle;
8583 struct perf_sample_data sample;
8584 int ret;
8585
8586 if (!perf_event_bpf_match(event))
8587 return;
8588
8589 perf_event_header__init_id(&bpf_event->event_id.header,
8590 &sample, event);
8591 ret = perf_output_begin(&handle, data, event,
8592 bpf_event->event_id.header.size);
8593 if (ret)
8594 return;
8595
8596 perf_output_put(&handle, bpf_event->event_id);
8597 perf_event__output_id_sample(event, &handle, &sample);
8598
8599 perf_output_end(&handle);
8600 }
8601
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8602 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8603 enum perf_bpf_event_type type)
8604 {
8605 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8606 int i;
8607
8608 if (prog->aux->func_cnt == 0) {
8609 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8610 (u64)(unsigned long)prog->bpf_func,
8611 prog->jited_len, unregister,
8612 prog->aux->ksym.name);
8613 } else {
8614 for (i = 0; i < prog->aux->func_cnt; i++) {
8615 struct bpf_prog *subprog = prog->aux->func[i];
8616
8617 perf_event_ksymbol(
8618 PERF_RECORD_KSYMBOL_TYPE_BPF,
8619 (u64)(unsigned long)subprog->bpf_func,
8620 subprog->jited_len, unregister,
8621 prog->aux->ksym.name);
8622 }
8623 }
8624 }
8625
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8626 void perf_event_bpf_event(struct bpf_prog *prog,
8627 enum perf_bpf_event_type type,
8628 u16 flags)
8629 {
8630 struct perf_bpf_event bpf_event;
8631
8632 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8633 type >= PERF_BPF_EVENT_MAX)
8634 return;
8635
8636 switch (type) {
8637 case PERF_BPF_EVENT_PROG_LOAD:
8638 case PERF_BPF_EVENT_PROG_UNLOAD:
8639 if (atomic_read(&nr_ksymbol_events))
8640 perf_event_bpf_emit_ksymbols(prog, type);
8641 break;
8642 default:
8643 break;
8644 }
8645
8646 if (!atomic_read(&nr_bpf_events))
8647 return;
8648
8649 bpf_event = (struct perf_bpf_event){
8650 .prog = prog,
8651 .event_id = {
8652 .header = {
8653 .type = PERF_RECORD_BPF_EVENT,
8654 .size = sizeof(bpf_event.event_id),
8655 },
8656 .type = type,
8657 .flags = flags,
8658 .id = prog->aux->id,
8659 },
8660 };
8661
8662 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8663
8664 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8665 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8666 }
8667
8668 struct perf_text_poke_event {
8669 const void *old_bytes;
8670 const void *new_bytes;
8671 size_t pad;
8672 u16 old_len;
8673 u16 new_len;
8674
8675 struct {
8676 struct perf_event_header header;
8677
8678 u64 addr;
8679 } event_id;
8680 };
8681
perf_event_text_poke_match(struct perf_event * event)8682 static int perf_event_text_poke_match(struct perf_event *event)
8683 {
8684 return event->attr.text_poke;
8685 }
8686
perf_event_text_poke_output(struct perf_event * event,void * data)8687 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8688 {
8689 struct perf_text_poke_event *text_poke_event = data;
8690 struct perf_output_handle handle;
8691 struct perf_sample_data sample;
8692 u64 padding = 0;
8693 int ret;
8694
8695 if (!perf_event_text_poke_match(event))
8696 return;
8697
8698 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8699
8700 ret = perf_output_begin(&handle, &sample, event,
8701 text_poke_event->event_id.header.size);
8702 if (ret)
8703 return;
8704
8705 perf_output_put(&handle, text_poke_event->event_id);
8706 perf_output_put(&handle, text_poke_event->old_len);
8707 perf_output_put(&handle, text_poke_event->new_len);
8708
8709 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8710 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8711
8712 if (text_poke_event->pad)
8713 __output_copy(&handle, &padding, text_poke_event->pad);
8714
8715 perf_event__output_id_sample(event, &handle, &sample);
8716
8717 perf_output_end(&handle);
8718 }
8719
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)8720 void perf_event_text_poke(const void *addr, const void *old_bytes,
8721 size_t old_len, const void *new_bytes, size_t new_len)
8722 {
8723 struct perf_text_poke_event text_poke_event;
8724 size_t tot, pad;
8725
8726 if (!atomic_read(&nr_text_poke_events))
8727 return;
8728
8729 tot = sizeof(text_poke_event.old_len) + old_len;
8730 tot += sizeof(text_poke_event.new_len) + new_len;
8731 pad = ALIGN(tot, sizeof(u64)) - tot;
8732
8733 text_poke_event = (struct perf_text_poke_event){
8734 .old_bytes = old_bytes,
8735 .new_bytes = new_bytes,
8736 .pad = pad,
8737 .old_len = old_len,
8738 .new_len = new_len,
8739 .event_id = {
8740 .header = {
8741 .type = PERF_RECORD_TEXT_POKE,
8742 .misc = PERF_RECORD_MISC_KERNEL,
8743 .size = sizeof(text_poke_event.event_id) + tot + pad,
8744 },
8745 .addr = (unsigned long)addr,
8746 },
8747 };
8748
8749 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8750 }
8751
perf_event_itrace_started(struct perf_event * event)8752 void perf_event_itrace_started(struct perf_event *event)
8753 {
8754 event->attach_state |= PERF_ATTACH_ITRACE;
8755 }
8756
perf_log_itrace_start(struct perf_event * event)8757 static void perf_log_itrace_start(struct perf_event *event)
8758 {
8759 struct perf_output_handle handle;
8760 struct perf_sample_data sample;
8761 struct perf_aux_event {
8762 struct perf_event_header header;
8763 u32 pid;
8764 u32 tid;
8765 } rec;
8766 int ret;
8767
8768 if (event->parent)
8769 event = event->parent;
8770
8771 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8772 event->attach_state & PERF_ATTACH_ITRACE)
8773 return;
8774
8775 rec.header.type = PERF_RECORD_ITRACE_START;
8776 rec.header.misc = 0;
8777 rec.header.size = sizeof(rec);
8778 rec.pid = perf_event_pid(event, current);
8779 rec.tid = perf_event_tid(event, current);
8780
8781 perf_event_header__init_id(&rec.header, &sample, event);
8782 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8783
8784 if (ret)
8785 return;
8786
8787 perf_output_put(&handle, rec);
8788 perf_event__output_id_sample(event, &handle, &sample);
8789
8790 perf_output_end(&handle);
8791 }
8792
8793 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8794 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8795 {
8796 struct hw_perf_event *hwc = &event->hw;
8797 int ret = 0;
8798 u64 seq;
8799
8800 seq = __this_cpu_read(perf_throttled_seq);
8801 if (seq != hwc->interrupts_seq) {
8802 hwc->interrupts_seq = seq;
8803 hwc->interrupts = 1;
8804 } else {
8805 hwc->interrupts++;
8806 if (unlikely(throttle
8807 && hwc->interrupts >= max_samples_per_tick)) {
8808 __this_cpu_inc(perf_throttled_count);
8809 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8810 hwc->interrupts = MAX_INTERRUPTS;
8811 perf_log_throttle(event, 0);
8812 ret = 1;
8813 }
8814 }
8815
8816 if (event->attr.freq) {
8817 u64 now = perf_clock();
8818 s64 delta = now - hwc->freq_time_stamp;
8819
8820 hwc->freq_time_stamp = now;
8821
8822 if (delta > 0 && delta < 2*TICK_NSEC)
8823 perf_adjust_period(event, delta, hwc->last_period, true);
8824 }
8825
8826 return ret;
8827 }
8828
perf_event_account_interrupt(struct perf_event * event)8829 int perf_event_account_interrupt(struct perf_event *event)
8830 {
8831 return __perf_event_account_interrupt(event, 1);
8832 }
8833
8834 /*
8835 * Generic event overflow handling, sampling.
8836 */
8837
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)8838 static int __perf_event_overflow(struct perf_event *event,
8839 int throttle, struct perf_sample_data *data,
8840 struct pt_regs *regs)
8841 {
8842 int events = atomic_read(&event->event_limit);
8843 int ret = 0;
8844
8845 /*
8846 * Non-sampling counters might still use the PMI to fold short
8847 * hardware counters, ignore those.
8848 */
8849 if (unlikely(!is_sampling_event(event)))
8850 return 0;
8851
8852 ret = __perf_event_account_interrupt(event, throttle);
8853
8854 /*
8855 * XXX event_limit might not quite work as expected on inherited
8856 * events
8857 */
8858
8859 event->pending_kill = POLL_IN;
8860 if (events && atomic_dec_and_test(&event->event_limit)) {
8861 ret = 1;
8862 event->pending_kill = POLL_HUP;
8863
8864 perf_event_disable_inatomic(event);
8865 }
8866
8867 READ_ONCE(event->overflow_handler)(event, data, regs);
8868
8869 if (*perf_event_fasync(event) && event->pending_kill) {
8870 event->pending_wakeup = 1;
8871 irq_work_queue(&event->pending);
8872 }
8873
8874 return ret;
8875 }
8876
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8877 int perf_event_overflow(struct perf_event *event,
8878 struct perf_sample_data *data,
8879 struct pt_regs *regs)
8880 {
8881 return __perf_event_overflow(event, 1, data, regs);
8882 }
8883
8884 /*
8885 * Generic software event infrastructure
8886 */
8887
8888 struct swevent_htable {
8889 struct swevent_hlist *swevent_hlist;
8890 struct mutex hlist_mutex;
8891 int hlist_refcount;
8892
8893 /* Recursion avoidance in each contexts */
8894 int recursion[PERF_NR_CONTEXTS];
8895 };
8896
8897 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8898
8899 /*
8900 * We directly increment event->count and keep a second value in
8901 * event->hw.period_left to count intervals. This period event
8902 * is kept in the range [-sample_period, 0] so that we can use the
8903 * sign as trigger.
8904 */
8905
perf_swevent_set_period(struct perf_event * event)8906 u64 perf_swevent_set_period(struct perf_event *event)
8907 {
8908 struct hw_perf_event *hwc = &event->hw;
8909 u64 period = hwc->last_period;
8910 u64 nr, offset;
8911 s64 old, val;
8912
8913 hwc->last_period = hwc->sample_period;
8914
8915 again:
8916 old = val = local64_read(&hwc->period_left);
8917 if (val < 0)
8918 return 0;
8919
8920 nr = div64_u64(period + val, period);
8921 offset = nr * period;
8922 val -= offset;
8923 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8924 goto again;
8925
8926 return nr;
8927 }
8928
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)8929 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8930 struct perf_sample_data *data,
8931 struct pt_regs *regs)
8932 {
8933 struct hw_perf_event *hwc = &event->hw;
8934 int throttle = 0;
8935
8936 if (!overflow)
8937 overflow = perf_swevent_set_period(event);
8938
8939 if (hwc->interrupts == MAX_INTERRUPTS)
8940 return;
8941
8942 for (; overflow; overflow--) {
8943 if (__perf_event_overflow(event, throttle,
8944 data, regs)) {
8945 /*
8946 * We inhibit the overflow from happening when
8947 * hwc->interrupts == MAX_INTERRUPTS.
8948 */
8949 break;
8950 }
8951 throttle = 1;
8952 }
8953 }
8954
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)8955 static void perf_swevent_event(struct perf_event *event, u64 nr,
8956 struct perf_sample_data *data,
8957 struct pt_regs *regs)
8958 {
8959 struct hw_perf_event *hwc = &event->hw;
8960
8961 local64_add(nr, &event->count);
8962
8963 if (!regs)
8964 return;
8965
8966 if (!is_sampling_event(event))
8967 return;
8968
8969 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8970 data->period = nr;
8971 return perf_swevent_overflow(event, 1, data, regs);
8972 } else
8973 data->period = event->hw.last_period;
8974
8975 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8976 return perf_swevent_overflow(event, 1, data, regs);
8977
8978 if (local64_add_negative(nr, &hwc->period_left))
8979 return;
8980
8981 perf_swevent_overflow(event, 0, data, regs);
8982 }
8983
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)8984 static int perf_exclude_event(struct perf_event *event,
8985 struct pt_regs *regs)
8986 {
8987 if (event->hw.state & PERF_HES_STOPPED)
8988 return 1;
8989
8990 if (regs) {
8991 if (event->attr.exclude_user && user_mode(regs))
8992 return 1;
8993
8994 if (event->attr.exclude_kernel && !user_mode(regs))
8995 return 1;
8996 }
8997
8998 return 0;
8999 }
9000
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9001 static int perf_swevent_match(struct perf_event *event,
9002 enum perf_type_id type,
9003 u32 event_id,
9004 struct perf_sample_data *data,
9005 struct pt_regs *regs)
9006 {
9007 if (event->attr.type != type)
9008 return 0;
9009
9010 if (event->attr.config != event_id)
9011 return 0;
9012
9013 if (perf_exclude_event(event, regs))
9014 return 0;
9015
9016 return 1;
9017 }
9018
swevent_hash(u64 type,u32 event_id)9019 static inline u64 swevent_hash(u64 type, u32 event_id)
9020 {
9021 u64 val = event_id | (type << 32);
9022
9023 return hash_64(val, SWEVENT_HLIST_BITS);
9024 }
9025
9026 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9027 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9028 {
9029 u64 hash = swevent_hash(type, event_id);
9030
9031 return &hlist->heads[hash];
9032 }
9033
9034 /* For the read side: events when they trigger */
9035 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9036 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9037 {
9038 struct swevent_hlist *hlist;
9039
9040 hlist = rcu_dereference(swhash->swevent_hlist);
9041 if (!hlist)
9042 return NULL;
9043
9044 return __find_swevent_head(hlist, type, event_id);
9045 }
9046
9047 /* For the event head insertion and removal in the hlist */
9048 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9049 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9050 {
9051 struct swevent_hlist *hlist;
9052 u32 event_id = event->attr.config;
9053 u64 type = event->attr.type;
9054
9055 /*
9056 * Event scheduling is always serialized against hlist allocation
9057 * and release. Which makes the protected version suitable here.
9058 * The context lock guarantees that.
9059 */
9060 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9061 lockdep_is_held(&event->ctx->lock));
9062 if (!hlist)
9063 return NULL;
9064
9065 return __find_swevent_head(hlist, type, event_id);
9066 }
9067
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9068 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9069 u64 nr,
9070 struct perf_sample_data *data,
9071 struct pt_regs *regs)
9072 {
9073 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9074 struct perf_event *event;
9075 struct hlist_head *head;
9076
9077 rcu_read_lock();
9078 head = find_swevent_head_rcu(swhash, type, event_id);
9079 if (!head)
9080 goto end;
9081
9082 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9083 if (perf_swevent_match(event, type, event_id, data, regs))
9084 perf_swevent_event(event, nr, data, regs);
9085 }
9086 end:
9087 rcu_read_unlock();
9088 }
9089
9090 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9091
perf_swevent_get_recursion_context(void)9092 int perf_swevent_get_recursion_context(void)
9093 {
9094 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9095
9096 return get_recursion_context(swhash->recursion);
9097 }
9098 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9099
perf_swevent_put_recursion_context(int rctx)9100 void perf_swevent_put_recursion_context(int rctx)
9101 {
9102 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9103
9104 put_recursion_context(swhash->recursion, rctx);
9105 }
9106
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9107 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9108 {
9109 struct perf_sample_data data;
9110
9111 if (WARN_ON_ONCE(!regs))
9112 return;
9113
9114 perf_sample_data_init(&data, addr, 0);
9115 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9116 }
9117
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9118 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9119 {
9120 int rctx;
9121
9122 preempt_disable_notrace();
9123 rctx = perf_swevent_get_recursion_context();
9124 if (unlikely(rctx < 0))
9125 goto fail;
9126
9127 ___perf_sw_event(event_id, nr, regs, addr);
9128
9129 perf_swevent_put_recursion_context(rctx);
9130 fail:
9131 preempt_enable_notrace();
9132 }
9133
perf_swevent_read(struct perf_event * event)9134 static void perf_swevent_read(struct perf_event *event)
9135 {
9136 }
9137
perf_swevent_add(struct perf_event * event,int flags)9138 static int perf_swevent_add(struct perf_event *event, int flags)
9139 {
9140 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9141 struct hw_perf_event *hwc = &event->hw;
9142 struct hlist_head *head;
9143
9144 if (is_sampling_event(event)) {
9145 hwc->last_period = hwc->sample_period;
9146 perf_swevent_set_period(event);
9147 }
9148
9149 hwc->state = !(flags & PERF_EF_START);
9150
9151 head = find_swevent_head(swhash, event);
9152 if (WARN_ON_ONCE(!head))
9153 return -EINVAL;
9154
9155 hlist_add_head_rcu(&event->hlist_entry, head);
9156 perf_event_update_userpage(event);
9157
9158 return 0;
9159 }
9160
perf_swevent_del(struct perf_event * event,int flags)9161 static void perf_swevent_del(struct perf_event *event, int flags)
9162 {
9163 hlist_del_rcu(&event->hlist_entry);
9164 }
9165
perf_swevent_start(struct perf_event * event,int flags)9166 static void perf_swevent_start(struct perf_event *event, int flags)
9167 {
9168 event->hw.state = 0;
9169 }
9170
perf_swevent_stop(struct perf_event * event,int flags)9171 static void perf_swevent_stop(struct perf_event *event, int flags)
9172 {
9173 event->hw.state = PERF_HES_STOPPED;
9174 }
9175
9176 /* Deref the hlist from the update side */
9177 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9178 swevent_hlist_deref(struct swevent_htable *swhash)
9179 {
9180 return rcu_dereference_protected(swhash->swevent_hlist,
9181 lockdep_is_held(&swhash->hlist_mutex));
9182 }
9183
swevent_hlist_release(struct swevent_htable * swhash)9184 static void swevent_hlist_release(struct swevent_htable *swhash)
9185 {
9186 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9187
9188 if (!hlist)
9189 return;
9190
9191 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9192 kfree_rcu(hlist, rcu_head);
9193 }
9194
swevent_hlist_put_cpu(int cpu)9195 static void swevent_hlist_put_cpu(int cpu)
9196 {
9197 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9198
9199 mutex_lock(&swhash->hlist_mutex);
9200
9201 if (!--swhash->hlist_refcount)
9202 swevent_hlist_release(swhash);
9203
9204 mutex_unlock(&swhash->hlist_mutex);
9205 }
9206
swevent_hlist_put(void)9207 static void swevent_hlist_put(void)
9208 {
9209 int cpu;
9210
9211 for_each_possible_cpu(cpu)
9212 swevent_hlist_put_cpu(cpu);
9213 }
9214
swevent_hlist_get_cpu(int cpu)9215 static int swevent_hlist_get_cpu(int cpu)
9216 {
9217 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9218 int err = 0;
9219
9220 mutex_lock(&swhash->hlist_mutex);
9221 if (!swevent_hlist_deref(swhash) &&
9222 cpumask_test_cpu(cpu, perf_online_mask)) {
9223 struct swevent_hlist *hlist;
9224
9225 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9226 if (!hlist) {
9227 err = -ENOMEM;
9228 goto exit;
9229 }
9230 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9231 }
9232 swhash->hlist_refcount++;
9233 exit:
9234 mutex_unlock(&swhash->hlist_mutex);
9235
9236 return err;
9237 }
9238
swevent_hlist_get(void)9239 static int swevent_hlist_get(void)
9240 {
9241 int err, cpu, failed_cpu;
9242
9243 mutex_lock(&pmus_lock);
9244 for_each_possible_cpu(cpu) {
9245 err = swevent_hlist_get_cpu(cpu);
9246 if (err) {
9247 failed_cpu = cpu;
9248 goto fail;
9249 }
9250 }
9251 mutex_unlock(&pmus_lock);
9252 return 0;
9253 fail:
9254 for_each_possible_cpu(cpu) {
9255 if (cpu == failed_cpu)
9256 break;
9257 swevent_hlist_put_cpu(cpu);
9258 }
9259 mutex_unlock(&pmus_lock);
9260 return err;
9261 }
9262
9263 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9264
sw_perf_event_destroy(struct perf_event * event)9265 static void sw_perf_event_destroy(struct perf_event *event)
9266 {
9267 u64 event_id = event->attr.config;
9268
9269 WARN_ON(event->parent);
9270
9271 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9272 swevent_hlist_put();
9273 }
9274
perf_swevent_init(struct perf_event * event)9275 static int perf_swevent_init(struct perf_event *event)
9276 {
9277 u64 event_id = event->attr.config;
9278
9279 if (event->attr.type != PERF_TYPE_SOFTWARE)
9280 return -ENOENT;
9281
9282 /*
9283 * no branch sampling for software events
9284 */
9285 if (has_branch_stack(event))
9286 return -EOPNOTSUPP;
9287
9288 switch (event_id) {
9289 case PERF_COUNT_SW_CPU_CLOCK:
9290 case PERF_COUNT_SW_TASK_CLOCK:
9291 return -ENOENT;
9292
9293 default:
9294 break;
9295 }
9296
9297 if (event_id >= PERF_COUNT_SW_MAX)
9298 return -ENOENT;
9299
9300 if (!event->parent) {
9301 int err;
9302
9303 err = swevent_hlist_get();
9304 if (err)
9305 return err;
9306
9307 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9308 event->destroy = sw_perf_event_destroy;
9309 }
9310
9311 return 0;
9312 }
9313
9314 static struct pmu perf_swevent = {
9315 .task_ctx_nr = perf_sw_context,
9316
9317 .capabilities = PERF_PMU_CAP_NO_NMI,
9318
9319 .event_init = perf_swevent_init,
9320 .add = perf_swevent_add,
9321 .del = perf_swevent_del,
9322 .start = perf_swevent_start,
9323 .stop = perf_swevent_stop,
9324 .read = perf_swevent_read,
9325 };
9326
9327 #ifdef CONFIG_EVENT_TRACING
9328
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)9329 static int perf_tp_filter_match(struct perf_event *event,
9330 struct perf_sample_data *data)
9331 {
9332 void *record = data->raw->frag.data;
9333
9334 /* only top level events have filters set */
9335 if (event->parent)
9336 event = event->parent;
9337
9338 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9339 return 1;
9340 return 0;
9341 }
9342
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9343 static int perf_tp_event_match(struct perf_event *event,
9344 struct perf_sample_data *data,
9345 struct pt_regs *regs)
9346 {
9347 if (event->hw.state & PERF_HES_STOPPED)
9348 return 0;
9349 /*
9350 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9351 */
9352 if (event->attr.exclude_kernel && !user_mode(regs))
9353 return 0;
9354
9355 if (!perf_tp_filter_match(event, data))
9356 return 0;
9357
9358 return 1;
9359 }
9360
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)9361 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9362 struct trace_event_call *call, u64 count,
9363 struct pt_regs *regs, struct hlist_head *head,
9364 struct task_struct *task)
9365 {
9366 if (bpf_prog_array_valid(call)) {
9367 *(struct pt_regs **)raw_data = regs;
9368 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9369 perf_swevent_put_recursion_context(rctx);
9370 return;
9371 }
9372 }
9373 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9374 rctx, task);
9375 }
9376 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9377
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)9378 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9379 struct pt_regs *regs, struct hlist_head *head, int rctx,
9380 struct task_struct *task)
9381 {
9382 struct perf_sample_data data;
9383 struct perf_event *event;
9384
9385 struct perf_raw_record raw = {
9386 .frag = {
9387 .size = entry_size,
9388 .data = record,
9389 },
9390 };
9391
9392 perf_sample_data_init(&data, 0, 0);
9393 data.raw = &raw;
9394
9395 perf_trace_buf_update(record, event_type);
9396
9397 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9398 if (perf_tp_event_match(event, &data, regs))
9399 perf_swevent_event(event, count, &data, regs);
9400 }
9401
9402 /*
9403 * If we got specified a target task, also iterate its context and
9404 * deliver this event there too.
9405 */
9406 if (task && task != current) {
9407 struct perf_event_context *ctx;
9408 struct trace_entry *entry = record;
9409
9410 rcu_read_lock();
9411 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9412 if (!ctx)
9413 goto unlock;
9414
9415 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9416 if (event->cpu != smp_processor_id())
9417 continue;
9418 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9419 continue;
9420 if (event->attr.config != entry->type)
9421 continue;
9422 if (perf_tp_event_match(event, &data, regs))
9423 perf_swevent_event(event, count, &data, regs);
9424 }
9425 unlock:
9426 rcu_read_unlock();
9427 }
9428
9429 perf_swevent_put_recursion_context(rctx);
9430 }
9431 EXPORT_SYMBOL_GPL(perf_tp_event);
9432
tp_perf_event_destroy(struct perf_event * event)9433 static void tp_perf_event_destroy(struct perf_event *event)
9434 {
9435 perf_trace_destroy(event);
9436 }
9437
perf_tp_event_init(struct perf_event * event)9438 static int perf_tp_event_init(struct perf_event *event)
9439 {
9440 int err;
9441
9442 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9443 return -ENOENT;
9444
9445 /*
9446 * no branch sampling for tracepoint events
9447 */
9448 if (has_branch_stack(event))
9449 return -EOPNOTSUPP;
9450
9451 err = perf_trace_init(event);
9452 if (err)
9453 return err;
9454
9455 event->destroy = tp_perf_event_destroy;
9456
9457 return 0;
9458 }
9459
9460 static struct pmu perf_tracepoint = {
9461 .task_ctx_nr = perf_sw_context,
9462
9463 .event_init = perf_tp_event_init,
9464 .add = perf_trace_add,
9465 .del = perf_trace_del,
9466 .start = perf_swevent_start,
9467 .stop = perf_swevent_stop,
9468 .read = perf_swevent_read,
9469 };
9470
9471 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9472 /*
9473 * Flags in config, used by dynamic PMU kprobe and uprobe
9474 * The flags should match following PMU_FORMAT_ATTR().
9475 *
9476 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9477 * if not set, create kprobe/uprobe
9478 *
9479 * The following values specify a reference counter (or semaphore in the
9480 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9481 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9482 *
9483 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9484 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9485 */
9486 enum perf_probe_config {
9487 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9488 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9489 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9490 };
9491
9492 PMU_FORMAT_ATTR(retprobe, "config:0");
9493 #endif
9494
9495 #ifdef CONFIG_KPROBE_EVENTS
9496 static struct attribute *kprobe_attrs[] = {
9497 &format_attr_retprobe.attr,
9498 NULL,
9499 };
9500
9501 static struct attribute_group kprobe_format_group = {
9502 .name = "format",
9503 .attrs = kprobe_attrs,
9504 };
9505
9506 static const struct attribute_group *kprobe_attr_groups[] = {
9507 &kprobe_format_group,
9508 NULL,
9509 };
9510
9511 static int perf_kprobe_event_init(struct perf_event *event);
9512 static struct pmu perf_kprobe = {
9513 .task_ctx_nr = perf_sw_context,
9514 .event_init = perf_kprobe_event_init,
9515 .add = perf_trace_add,
9516 .del = perf_trace_del,
9517 .start = perf_swevent_start,
9518 .stop = perf_swevent_stop,
9519 .read = perf_swevent_read,
9520 .attr_groups = kprobe_attr_groups,
9521 };
9522
perf_kprobe_event_init(struct perf_event * event)9523 static int perf_kprobe_event_init(struct perf_event *event)
9524 {
9525 int err;
9526 bool is_retprobe;
9527
9528 if (event->attr.type != perf_kprobe.type)
9529 return -ENOENT;
9530
9531 if (!perfmon_capable())
9532 return -EACCES;
9533
9534 /*
9535 * no branch sampling for probe events
9536 */
9537 if (has_branch_stack(event))
9538 return -EOPNOTSUPP;
9539
9540 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9541 err = perf_kprobe_init(event, is_retprobe);
9542 if (err)
9543 return err;
9544
9545 event->destroy = perf_kprobe_destroy;
9546
9547 return 0;
9548 }
9549 #endif /* CONFIG_KPROBE_EVENTS */
9550
9551 #ifdef CONFIG_UPROBE_EVENTS
9552 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9553
9554 static struct attribute *uprobe_attrs[] = {
9555 &format_attr_retprobe.attr,
9556 &format_attr_ref_ctr_offset.attr,
9557 NULL,
9558 };
9559
9560 static struct attribute_group uprobe_format_group = {
9561 .name = "format",
9562 .attrs = uprobe_attrs,
9563 };
9564
9565 static const struct attribute_group *uprobe_attr_groups[] = {
9566 &uprobe_format_group,
9567 NULL,
9568 };
9569
9570 static int perf_uprobe_event_init(struct perf_event *event);
9571 static struct pmu perf_uprobe = {
9572 .task_ctx_nr = perf_sw_context,
9573 .event_init = perf_uprobe_event_init,
9574 .add = perf_trace_add,
9575 .del = perf_trace_del,
9576 .start = perf_swevent_start,
9577 .stop = perf_swevent_stop,
9578 .read = perf_swevent_read,
9579 .attr_groups = uprobe_attr_groups,
9580 };
9581
perf_uprobe_event_init(struct perf_event * event)9582 static int perf_uprobe_event_init(struct perf_event *event)
9583 {
9584 int err;
9585 unsigned long ref_ctr_offset;
9586 bool is_retprobe;
9587
9588 if (event->attr.type != perf_uprobe.type)
9589 return -ENOENT;
9590
9591 if (!perfmon_capable())
9592 return -EACCES;
9593
9594 /*
9595 * no branch sampling for probe events
9596 */
9597 if (has_branch_stack(event))
9598 return -EOPNOTSUPP;
9599
9600 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9601 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9602 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9603 if (err)
9604 return err;
9605
9606 event->destroy = perf_uprobe_destroy;
9607
9608 return 0;
9609 }
9610 #endif /* CONFIG_UPROBE_EVENTS */
9611
perf_tp_register(void)9612 static inline void perf_tp_register(void)
9613 {
9614 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9615 #ifdef CONFIG_KPROBE_EVENTS
9616 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9617 #endif
9618 #ifdef CONFIG_UPROBE_EVENTS
9619 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9620 #endif
9621 }
9622
perf_event_free_filter(struct perf_event * event)9623 static void perf_event_free_filter(struct perf_event *event)
9624 {
9625 ftrace_profile_free_filter(event);
9626 }
9627
9628 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9629 static void bpf_overflow_handler(struct perf_event *event,
9630 struct perf_sample_data *data,
9631 struct pt_regs *regs)
9632 {
9633 struct bpf_perf_event_data_kern ctx = {
9634 .data = data,
9635 .event = event,
9636 };
9637 int ret = 0;
9638
9639 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9640 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9641 goto out;
9642 rcu_read_lock();
9643 ret = BPF_PROG_RUN(event->prog, &ctx);
9644 rcu_read_unlock();
9645 out:
9646 __this_cpu_dec(bpf_prog_active);
9647 if (!ret)
9648 return;
9649
9650 event->orig_overflow_handler(event, data, regs);
9651 }
9652
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9653 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9654 {
9655 struct bpf_prog *prog;
9656
9657 if (event->overflow_handler_context)
9658 /* hw breakpoint or kernel counter */
9659 return -EINVAL;
9660
9661 if (event->prog)
9662 return -EEXIST;
9663
9664 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9665 if (IS_ERR(prog))
9666 return PTR_ERR(prog);
9667
9668 if (event->attr.precise_ip &&
9669 prog->call_get_stack &&
9670 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9671 event->attr.exclude_callchain_kernel ||
9672 event->attr.exclude_callchain_user)) {
9673 /*
9674 * On perf_event with precise_ip, calling bpf_get_stack()
9675 * may trigger unwinder warnings and occasional crashes.
9676 * bpf_get_[stack|stackid] works around this issue by using
9677 * callchain attached to perf_sample_data. If the
9678 * perf_event does not full (kernel and user) callchain
9679 * attached to perf_sample_data, do not allow attaching BPF
9680 * program that calls bpf_get_[stack|stackid].
9681 */
9682 bpf_prog_put(prog);
9683 return -EPROTO;
9684 }
9685
9686 event->prog = prog;
9687 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9688 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9689 return 0;
9690 }
9691
perf_event_free_bpf_handler(struct perf_event * event)9692 static void perf_event_free_bpf_handler(struct perf_event *event)
9693 {
9694 struct bpf_prog *prog = event->prog;
9695
9696 if (!prog)
9697 return;
9698
9699 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9700 event->prog = NULL;
9701 bpf_prog_put(prog);
9702 }
9703 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9704 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9705 {
9706 return -EOPNOTSUPP;
9707 }
perf_event_free_bpf_handler(struct perf_event * event)9708 static void perf_event_free_bpf_handler(struct perf_event *event)
9709 {
9710 }
9711 #endif
9712
9713 /*
9714 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9715 * with perf_event_open()
9716 */
perf_event_is_tracing(struct perf_event * event)9717 static inline bool perf_event_is_tracing(struct perf_event *event)
9718 {
9719 if (event->pmu == &perf_tracepoint)
9720 return true;
9721 #ifdef CONFIG_KPROBE_EVENTS
9722 if (event->pmu == &perf_kprobe)
9723 return true;
9724 #endif
9725 #ifdef CONFIG_UPROBE_EVENTS
9726 if (event->pmu == &perf_uprobe)
9727 return true;
9728 #endif
9729 return false;
9730 }
9731
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9732 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9733 {
9734 bool is_kprobe, is_tracepoint, is_syscall_tp;
9735 struct bpf_prog *prog;
9736 int ret;
9737
9738 if (!perf_event_is_tracing(event))
9739 return perf_event_set_bpf_handler(event, prog_fd);
9740
9741 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9742 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9743 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9744 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9745 /* bpf programs can only be attached to u/kprobe or tracepoint */
9746 return -EINVAL;
9747
9748 prog = bpf_prog_get(prog_fd);
9749 if (IS_ERR(prog))
9750 return PTR_ERR(prog);
9751
9752 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9753 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9754 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9755 /* valid fd, but invalid bpf program type */
9756 bpf_prog_put(prog);
9757 return -EINVAL;
9758 }
9759
9760 /* Kprobe override only works for kprobes, not uprobes. */
9761 if (prog->kprobe_override &&
9762 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9763 bpf_prog_put(prog);
9764 return -EINVAL;
9765 }
9766
9767 if (is_tracepoint || is_syscall_tp) {
9768 int off = trace_event_get_offsets(event->tp_event);
9769
9770 if (prog->aux->max_ctx_offset > off) {
9771 bpf_prog_put(prog);
9772 return -EACCES;
9773 }
9774 }
9775
9776 ret = perf_event_attach_bpf_prog(event, prog);
9777 if (ret)
9778 bpf_prog_put(prog);
9779 return ret;
9780 }
9781
perf_event_free_bpf_prog(struct perf_event * event)9782 static void perf_event_free_bpf_prog(struct perf_event *event)
9783 {
9784 if (!perf_event_is_tracing(event)) {
9785 perf_event_free_bpf_handler(event);
9786 return;
9787 }
9788 perf_event_detach_bpf_prog(event);
9789 }
9790
9791 #else
9792
perf_tp_register(void)9793 static inline void perf_tp_register(void)
9794 {
9795 }
9796
perf_event_free_filter(struct perf_event * event)9797 static void perf_event_free_filter(struct perf_event *event)
9798 {
9799 }
9800
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9801 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9802 {
9803 return -ENOENT;
9804 }
9805
perf_event_free_bpf_prog(struct perf_event * event)9806 static void perf_event_free_bpf_prog(struct perf_event *event)
9807 {
9808 }
9809 #endif /* CONFIG_EVENT_TRACING */
9810
9811 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9812 void perf_bp_event(struct perf_event *bp, void *data)
9813 {
9814 struct perf_sample_data sample;
9815 struct pt_regs *regs = data;
9816
9817 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9818
9819 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9820 perf_swevent_event(bp, 1, &sample, regs);
9821 }
9822 #endif
9823
9824 /*
9825 * Allocate a new address filter
9826 */
9827 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)9828 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9829 {
9830 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9831 struct perf_addr_filter *filter;
9832
9833 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9834 if (!filter)
9835 return NULL;
9836
9837 INIT_LIST_HEAD(&filter->entry);
9838 list_add_tail(&filter->entry, filters);
9839
9840 return filter;
9841 }
9842
free_filters_list(struct list_head * filters)9843 static void free_filters_list(struct list_head *filters)
9844 {
9845 struct perf_addr_filter *filter, *iter;
9846
9847 list_for_each_entry_safe(filter, iter, filters, entry) {
9848 path_put(&filter->path);
9849 list_del(&filter->entry);
9850 kfree(filter);
9851 }
9852 }
9853
9854 /*
9855 * Free existing address filters and optionally install new ones
9856 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)9857 static void perf_addr_filters_splice(struct perf_event *event,
9858 struct list_head *head)
9859 {
9860 unsigned long flags;
9861 LIST_HEAD(list);
9862
9863 if (!has_addr_filter(event))
9864 return;
9865
9866 /* don't bother with children, they don't have their own filters */
9867 if (event->parent)
9868 return;
9869
9870 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9871
9872 list_splice_init(&event->addr_filters.list, &list);
9873 if (head)
9874 list_splice(head, &event->addr_filters.list);
9875
9876 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9877
9878 free_filters_list(&list);
9879 }
9880
9881 /*
9882 * Scan through mm's vmas and see if one of them matches the
9883 * @filter; if so, adjust filter's address range.
9884 * Called with mm::mmap_lock down for reading.
9885 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)9886 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9887 struct mm_struct *mm,
9888 struct perf_addr_filter_range *fr)
9889 {
9890 struct vm_area_struct *vma;
9891
9892 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9893 if (!vma->vm_file)
9894 continue;
9895
9896 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9897 return;
9898 }
9899 }
9900
9901 /*
9902 * Update event's address range filters based on the
9903 * task's existing mappings, if any.
9904 */
perf_event_addr_filters_apply(struct perf_event * event)9905 static void perf_event_addr_filters_apply(struct perf_event *event)
9906 {
9907 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9908 struct task_struct *task = READ_ONCE(event->ctx->task);
9909 struct perf_addr_filter *filter;
9910 struct mm_struct *mm = NULL;
9911 unsigned int count = 0;
9912 unsigned long flags;
9913
9914 /*
9915 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9916 * will stop on the parent's child_mutex that our caller is also holding
9917 */
9918 if (task == TASK_TOMBSTONE)
9919 return;
9920
9921 if (ifh->nr_file_filters) {
9922 mm = get_task_mm(event->ctx->task);
9923 if (!mm)
9924 goto restart;
9925
9926 mmap_read_lock(mm);
9927 }
9928
9929 raw_spin_lock_irqsave(&ifh->lock, flags);
9930 list_for_each_entry(filter, &ifh->list, entry) {
9931 if (filter->path.dentry) {
9932 /*
9933 * Adjust base offset if the filter is associated to a
9934 * binary that needs to be mapped:
9935 */
9936 event->addr_filter_ranges[count].start = 0;
9937 event->addr_filter_ranges[count].size = 0;
9938
9939 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9940 } else {
9941 event->addr_filter_ranges[count].start = filter->offset;
9942 event->addr_filter_ranges[count].size = filter->size;
9943 }
9944
9945 count++;
9946 }
9947
9948 event->addr_filters_gen++;
9949 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9950
9951 if (ifh->nr_file_filters) {
9952 mmap_read_unlock(mm);
9953
9954 mmput(mm);
9955 }
9956
9957 restart:
9958 perf_event_stop(event, 1);
9959 }
9960
9961 /*
9962 * Address range filtering: limiting the data to certain
9963 * instruction address ranges. Filters are ioctl()ed to us from
9964 * userspace as ascii strings.
9965 *
9966 * Filter string format:
9967 *
9968 * ACTION RANGE_SPEC
9969 * where ACTION is one of the
9970 * * "filter": limit the trace to this region
9971 * * "start": start tracing from this address
9972 * * "stop": stop tracing at this address/region;
9973 * RANGE_SPEC is
9974 * * for kernel addresses: <start address>[/<size>]
9975 * * for object files: <start address>[/<size>]@</path/to/object/file>
9976 *
9977 * if <size> is not specified or is zero, the range is treated as a single
9978 * address; not valid for ACTION=="filter".
9979 */
9980 enum {
9981 IF_ACT_NONE = -1,
9982 IF_ACT_FILTER,
9983 IF_ACT_START,
9984 IF_ACT_STOP,
9985 IF_SRC_FILE,
9986 IF_SRC_KERNEL,
9987 IF_SRC_FILEADDR,
9988 IF_SRC_KERNELADDR,
9989 };
9990
9991 enum {
9992 IF_STATE_ACTION = 0,
9993 IF_STATE_SOURCE,
9994 IF_STATE_END,
9995 };
9996
9997 static const match_table_t if_tokens = {
9998 { IF_ACT_FILTER, "filter" },
9999 { IF_ACT_START, "start" },
10000 { IF_ACT_STOP, "stop" },
10001 { IF_SRC_FILE, "%u/%u@%s" },
10002 { IF_SRC_KERNEL, "%u/%u" },
10003 { IF_SRC_FILEADDR, "%u@%s" },
10004 { IF_SRC_KERNELADDR, "%u" },
10005 { IF_ACT_NONE, NULL },
10006 };
10007
10008 /*
10009 * Address filter string parser
10010 */
10011 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10012 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10013 struct list_head *filters)
10014 {
10015 struct perf_addr_filter *filter = NULL;
10016 char *start, *orig, *filename = NULL;
10017 substring_t args[MAX_OPT_ARGS];
10018 int state = IF_STATE_ACTION, token;
10019 unsigned int kernel = 0;
10020 int ret = -EINVAL;
10021
10022 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10023 if (!fstr)
10024 return -ENOMEM;
10025
10026 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10027 static const enum perf_addr_filter_action_t actions[] = {
10028 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10029 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10030 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10031 };
10032 ret = -EINVAL;
10033
10034 if (!*start)
10035 continue;
10036
10037 /* filter definition begins */
10038 if (state == IF_STATE_ACTION) {
10039 filter = perf_addr_filter_new(event, filters);
10040 if (!filter)
10041 goto fail;
10042 }
10043
10044 token = match_token(start, if_tokens, args);
10045 switch (token) {
10046 case IF_ACT_FILTER:
10047 case IF_ACT_START:
10048 case IF_ACT_STOP:
10049 if (state != IF_STATE_ACTION)
10050 goto fail;
10051
10052 filter->action = actions[token];
10053 state = IF_STATE_SOURCE;
10054 break;
10055
10056 case IF_SRC_KERNELADDR:
10057 case IF_SRC_KERNEL:
10058 kernel = 1;
10059 fallthrough;
10060
10061 case IF_SRC_FILEADDR:
10062 case IF_SRC_FILE:
10063 if (state != IF_STATE_SOURCE)
10064 goto fail;
10065
10066 *args[0].to = 0;
10067 ret = kstrtoul(args[0].from, 0, &filter->offset);
10068 if (ret)
10069 goto fail;
10070
10071 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10072 *args[1].to = 0;
10073 ret = kstrtoul(args[1].from, 0, &filter->size);
10074 if (ret)
10075 goto fail;
10076 }
10077
10078 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10079 int fpos = token == IF_SRC_FILE ? 2 : 1;
10080
10081 kfree(filename);
10082 filename = match_strdup(&args[fpos]);
10083 if (!filename) {
10084 ret = -ENOMEM;
10085 goto fail;
10086 }
10087 }
10088
10089 state = IF_STATE_END;
10090 break;
10091
10092 default:
10093 goto fail;
10094 }
10095
10096 /*
10097 * Filter definition is fully parsed, validate and install it.
10098 * Make sure that it doesn't contradict itself or the event's
10099 * attribute.
10100 */
10101 if (state == IF_STATE_END) {
10102 ret = -EINVAL;
10103 if (kernel && event->attr.exclude_kernel)
10104 goto fail;
10105
10106 /*
10107 * ACTION "filter" must have a non-zero length region
10108 * specified.
10109 */
10110 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10111 !filter->size)
10112 goto fail;
10113
10114 if (!kernel) {
10115 if (!filename)
10116 goto fail;
10117
10118 /*
10119 * For now, we only support file-based filters
10120 * in per-task events; doing so for CPU-wide
10121 * events requires additional context switching
10122 * trickery, since same object code will be
10123 * mapped at different virtual addresses in
10124 * different processes.
10125 */
10126 ret = -EOPNOTSUPP;
10127 if (!event->ctx->task)
10128 goto fail;
10129
10130 /* look up the path and grab its inode */
10131 ret = kern_path(filename, LOOKUP_FOLLOW,
10132 &filter->path);
10133 if (ret)
10134 goto fail;
10135
10136 ret = -EINVAL;
10137 if (!filter->path.dentry ||
10138 !S_ISREG(d_inode(filter->path.dentry)
10139 ->i_mode))
10140 goto fail;
10141
10142 event->addr_filters.nr_file_filters++;
10143 }
10144
10145 /* ready to consume more filters */
10146 state = IF_STATE_ACTION;
10147 filter = NULL;
10148 }
10149 }
10150
10151 if (state != IF_STATE_ACTION)
10152 goto fail;
10153
10154 kfree(filename);
10155 kfree(orig);
10156
10157 return 0;
10158
10159 fail:
10160 kfree(filename);
10161 free_filters_list(filters);
10162 kfree(orig);
10163
10164 return ret;
10165 }
10166
10167 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10168 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10169 {
10170 LIST_HEAD(filters);
10171 int ret;
10172
10173 /*
10174 * Since this is called in perf_ioctl() path, we're already holding
10175 * ctx::mutex.
10176 */
10177 lockdep_assert_held(&event->ctx->mutex);
10178
10179 if (WARN_ON_ONCE(event->parent))
10180 return -EINVAL;
10181
10182 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10183 if (ret)
10184 goto fail_clear_files;
10185
10186 ret = event->pmu->addr_filters_validate(&filters);
10187 if (ret)
10188 goto fail_free_filters;
10189
10190 /* remove existing filters, if any */
10191 perf_addr_filters_splice(event, &filters);
10192
10193 /* install new filters */
10194 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10195
10196 return ret;
10197
10198 fail_free_filters:
10199 free_filters_list(&filters);
10200
10201 fail_clear_files:
10202 event->addr_filters.nr_file_filters = 0;
10203
10204 return ret;
10205 }
10206
perf_event_set_filter(struct perf_event * event,void __user * arg)10207 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10208 {
10209 int ret = -EINVAL;
10210 char *filter_str;
10211
10212 filter_str = strndup_user(arg, PAGE_SIZE);
10213 if (IS_ERR(filter_str))
10214 return PTR_ERR(filter_str);
10215
10216 #ifdef CONFIG_EVENT_TRACING
10217 if (perf_event_is_tracing(event)) {
10218 struct perf_event_context *ctx = event->ctx;
10219
10220 /*
10221 * Beware, here be dragons!!
10222 *
10223 * the tracepoint muck will deadlock against ctx->mutex, but
10224 * the tracepoint stuff does not actually need it. So
10225 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10226 * already have a reference on ctx.
10227 *
10228 * This can result in event getting moved to a different ctx,
10229 * but that does not affect the tracepoint state.
10230 */
10231 mutex_unlock(&ctx->mutex);
10232 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10233 mutex_lock(&ctx->mutex);
10234 } else
10235 #endif
10236 if (has_addr_filter(event))
10237 ret = perf_event_set_addr_filter(event, filter_str);
10238
10239 kfree(filter_str);
10240 return ret;
10241 }
10242
10243 /*
10244 * hrtimer based swevent callback
10245 */
10246
perf_swevent_hrtimer(struct hrtimer * hrtimer)10247 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10248 {
10249 enum hrtimer_restart ret = HRTIMER_RESTART;
10250 struct perf_sample_data data;
10251 struct pt_regs *regs;
10252 struct perf_event *event;
10253 u64 period;
10254
10255 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10256
10257 if (event->state != PERF_EVENT_STATE_ACTIVE)
10258 return HRTIMER_NORESTART;
10259
10260 event->pmu->read(event);
10261
10262 perf_sample_data_init(&data, 0, event->hw.last_period);
10263 regs = get_irq_regs();
10264
10265 if (regs && !perf_exclude_event(event, regs)) {
10266 if (!(event->attr.exclude_idle && is_idle_task(current)))
10267 if (__perf_event_overflow(event, 1, &data, regs))
10268 ret = HRTIMER_NORESTART;
10269 }
10270
10271 period = max_t(u64, 10000, event->hw.sample_period);
10272 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10273
10274 return ret;
10275 }
10276
perf_swevent_start_hrtimer(struct perf_event * event)10277 static void perf_swevent_start_hrtimer(struct perf_event *event)
10278 {
10279 struct hw_perf_event *hwc = &event->hw;
10280 s64 period;
10281
10282 if (!is_sampling_event(event))
10283 return;
10284
10285 period = local64_read(&hwc->period_left);
10286 if (period) {
10287 if (period < 0)
10288 period = 10000;
10289
10290 local64_set(&hwc->period_left, 0);
10291 } else {
10292 period = max_t(u64, 10000, hwc->sample_period);
10293 }
10294 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10295 HRTIMER_MODE_REL_PINNED_HARD);
10296 }
10297
perf_swevent_cancel_hrtimer(struct perf_event * event)10298 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10299 {
10300 struct hw_perf_event *hwc = &event->hw;
10301
10302 if (is_sampling_event(event)) {
10303 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10304 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10305
10306 hrtimer_cancel(&hwc->hrtimer);
10307 }
10308 }
10309
perf_swevent_init_hrtimer(struct perf_event * event)10310 static void perf_swevent_init_hrtimer(struct perf_event *event)
10311 {
10312 struct hw_perf_event *hwc = &event->hw;
10313
10314 if (!is_sampling_event(event))
10315 return;
10316
10317 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10318 hwc->hrtimer.function = perf_swevent_hrtimer;
10319
10320 /*
10321 * Since hrtimers have a fixed rate, we can do a static freq->period
10322 * mapping and avoid the whole period adjust feedback stuff.
10323 */
10324 if (event->attr.freq) {
10325 long freq = event->attr.sample_freq;
10326
10327 event->attr.sample_period = NSEC_PER_SEC / freq;
10328 hwc->sample_period = event->attr.sample_period;
10329 local64_set(&hwc->period_left, hwc->sample_period);
10330 hwc->last_period = hwc->sample_period;
10331 event->attr.freq = 0;
10332 }
10333 }
10334
10335 /*
10336 * Software event: cpu wall time clock
10337 */
10338
cpu_clock_event_update(struct perf_event * event)10339 static void cpu_clock_event_update(struct perf_event *event)
10340 {
10341 s64 prev;
10342 u64 now;
10343
10344 now = local_clock();
10345 prev = local64_xchg(&event->hw.prev_count, now);
10346 local64_add(now - prev, &event->count);
10347 }
10348
cpu_clock_event_start(struct perf_event * event,int flags)10349 static void cpu_clock_event_start(struct perf_event *event, int flags)
10350 {
10351 local64_set(&event->hw.prev_count, local_clock());
10352 perf_swevent_start_hrtimer(event);
10353 }
10354
cpu_clock_event_stop(struct perf_event * event,int flags)10355 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10356 {
10357 perf_swevent_cancel_hrtimer(event);
10358 cpu_clock_event_update(event);
10359 }
10360
cpu_clock_event_add(struct perf_event * event,int flags)10361 static int cpu_clock_event_add(struct perf_event *event, int flags)
10362 {
10363 if (flags & PERF_EF_START)
10364 cpu_clock_event_start(event, flags);
10365 perf_event_update_userpage(event);
10366
10367 return 0;
10368 }
10369
cpu_clock_event_del(struct perf_event * event,int flags)10370 static void cpu_clock_event_del(struct perf_event *event, int flags)
10371 {
10372 cpu_clock_event_stop(event, flags);
10373 }
10374
cpu_clock_event_read(struct perf_event * event)10375 static void cpu_clock_event_read(struct perf_event *event)
10376 {
10377 cpu_clock_event_update(event);
10378 }
10379
cpu_clock_event_init(struct perf_event * event)10380 static int cpu_clock_event_init(struct perf_event *event)
10381 {
10382 if (event->attr.type != PERF_TYPE_SOFTWARE)
10383 return -ENOENT;
10384
10385 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10386 return -ENOENT;
10387
10388 /*
10389 * no branch sampling for software events
10390 */
10391 if (has_branch_stack(event))
10392 return -EOPNOTSUPP;
10393
10394 perf_swevent_init_hrtimer(event);
10395
10396 return 0;
10397 }
10398
10399 static struct pmu perf_cpu_clock = {
10400 .task_ctx_nr = perf_sw_context,
10401
10402 .capabilities = PERF_PMU_CAP_NO_NMI,
10403
10404 .event_init = cpu_clock_event_init,
10405 .add = cpu_clock_event_add,
10406 .del = cpu_clock_event_del,
10407 .start = cpu_clock_event_start,
10408 .stop = cpu_clock_event_stop,
10409 .read = cpu_clock_event_read,
10410 };
10411
10412 /*
10413 * Software event: task time clock
10414 */
10415
task_clock_event_update(struct perf_event * event,u64 now)10416 static void task_clock_event_update(struct perf_event *event, u64 now)
10417 {
10418 u64 prev;
10419 s64 delta;
10420
10421 prev = local64_xchg(&event->hw.prev_count, now);
10422 delta = now - prev;
10423 local64_add(delta, &event->count);
10424 }
10425
task_clock_event_start(struct perf_event * event,int flags)10426 static void task_clock_event_start(struct perf_event *event, int flags)
10427 {
10428 local64_set(&event->hw.prev_count, event->ctx->time);
10429 perf_swevent_start_hrtimer(event);
10430 }
10431
task_clock_event_stop(struct perf_event * event,int flags)10432 static void task_clock_event_stop(struct perf_event *event, int flags)
10433 {
10434 perf_swevent_cancel_hrtimer(event);
10435 task_clock_event_update(event, event->ctx->time);
10436 }
10437
task_clock_event_add(struct perf_event * event,int flags)10438 static int task_clock_event_add(struct perf_event *event, int flags)
10439 {
10440 if (flags & PERF_EF_START)
10441 task_clock_event_start(event, flags);
10442 perf_event_update_userpage(event);
10443
10444 return 0;
10445 }
10446
task_clock_event_del(struct perf_event * event,int flags)10447 static void task_clock_event_del(struct perf_event *event, int flags)
10448 {
10449 task_clock_event_stop(event, PERF_EF_UPDATE);
10450 }
10451
task_clock_event_read(struct perf_event * event)10452 static void task_clock_event_read(struct perf_event *event)
10453 {
10454 u64 now = perf_clock();
10455 u64 delta = now - event->ctx->timestamp;
10456 u64 time = event->ctx->time + delta;
10457
10458 task_clock_event_update(event, time);
10459 }
10460
task_clock_event_init(struct perf_event * event)10461 static int task_clock_event_init(struct perf_event *event)
10462 {
10463 if (event->attr.type != PERF_TYPE_SOFTWARE)
10464 return -ENOENT;
10465
10466 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10467 return -ENOENT;
10468
10469 /*
10470 * no branch sampling for software events
10471 */
10472 if (has_branch_stack(event))
10473 return -EOPNOTSUPP;
10474
10475 perf_swevent_init_hrtimer(event);
10476
10477 return 0;
10478 }
10479
10480 static struct pmu perf_task_clock = {
10481 .task_ctx_nr = perf_sw_context,
10482
10483 .capabilities = PERF_PMU_CAP_NO_NMI,
10484
10485 .event_init = task_clock_event_init,
10486 .add = task_clock_event_add,
10487 .del = task_clock_event_del,
10488 .start = task_clock_event_start,
10489 .stop = task_clock_event_stop,
10490 .read = task_clock_event_read,
10491 };
10492
perf_pmu_nop_void(struct pmu * pmu)10493 static void perf_pmu_nop_void(struct pmu *pmu)
10494 {
10495 }
10496
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)10497 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10498 {
10499 }
10500
perf_pmu_nop_int(struct pmu * pmu)10501 static int perf_pmu_nop_int(struct pmu *pmu)
10502 {
10503 return 0;
10504 }
10505
perf_event_nop_int(struct perf_event * event,u64 value)10506 static int perf_event_nop_int(struct perf_event *event, u64 value)
10507 {
10508 return 0;
10509 }
10510
10511 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10512
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)10513 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10514 {
10515 __this_cpu_write(nop_txn_flags, flags);
10516
10517 if (flags & ~PERF_PMU_TXN_ADD)
10518 return;
10519
10520 perf_pmu_disable(pmu);
10521 }
10522
perf_pmu_commit_txn(struct pmu * pmu)10523 static int perf_pmu_commit_txn(struct pmu *pmu)
10524 {
10525 unsigned int flags = __this_cpu_read(nop_txn_flags);
10526
10527 __this_cpu_write(nop_txn_flags, 0);
10528
10529 if (flags & ~PERF_PMU_TXN_ADD)
10530 return 0;
10531
10532 perf_pmu_enable(pmu);
10533 return 0;
10534 }
10535
perf_pmu_cancel_txn(struct pmu * pmu)10536 static void perf_pmu_cancel_txn(struct pmu *pmu)
10537 {
10538 unsigned int flags = __this_cpu_read(nop_txn_flags);
10539
10540 __this_cpu_write(nop_txn_flags, 0);
10541
10542 if (flags & ~PERF_PMU_TXN_ADD)
10543 return;
10544
10545 perf_pmu_enable(pmu);
10546 }
10547
perf_event_idx_default(struct perf_event * event)10548 static int perf_event_idx_default(struct perf_event *event)
10549 {
10550 return 0;
10551 }
10552
10553 /*
10554 * Ensures all contexts with the same task_ctx_nr have the same
10555 * pmu_cpu_context too.
10556 */
find_pmu_context(int ctxn)10557 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10558 {
10559 struct pmu *pmu;
10560
10561 if (ctxn < 0)
10562 return NULL;
10563
10564 list_for_each_entry(pmu, &pmus, entry) {
10565 if (pmu->task_ctx_nr == ctxn)
10566 return pmu->pmu_cpu_context;
10567 }
10568
10569 return NULL;
10570 }
10571
free_pmu_context(struct pmu * pmu)10572 static void free_pmu_context(struct pmu *pmu)
10573 {
10574 /*
10575 * Static contexts such as perf_sw_context have a global lifetime
10576 * and may be shared between different PMUs. Avoid freeing them
10577 * when a single PMU is going away.
10578 */
10579 if (pmu->task_ctx_nr > perf_invalid_context)
10580 return;
10581
10582 free_percpu(pmu->pmu_cpu_context);
10583 }
10584
10585 /*
10586 * Let userspace know that this PMU supports address range filtering:
10587 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)10588 static ssize_t nr_addr_filters_show(struct device *dev,
10589 struct device_attribute *attr,
10590 char *page)
10591 {
10592 struct pmu *pmu = dev_get_drvdata(dev);
10593
10594 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10595 }
10596 DEVICE_ATTR_RO(nr_addr_filters);
10597
10598 static struct idr pmu_idr;
10599
10600 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)10601 type_show(struct device *dev, struct device_attribute *attr, char *page)
10602 {
10603 struct pmu *pmu = dev_get_drvdata(dev);
10604
10605 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10606 }
10607 static DEVICE_ATTR_RO(type);
10608
10609 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)10610 perf_event_mux_interval_ms_show(struct device *dev,
10611 struct device_attribute *attr,
10612 char *page)
10613 {
10614 struct pmu *pmu = dev_get_drvdata(dev);
10615
10616 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10617 }
10618
10619 static DEFINE_MUTEX(mux_interval_mutex);
10620
10621 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)10622 perf_event_mux_interval_ms_store(struct device *dev,
10623 struct device_attribute *attr,
10624 const char *buf, size_t count)
10625 {
10626 struct pmu *pmu = dev_get_drvdata(dev);
10627 int timer, cpu, ret;
10628
10629 ret = kstrtoint(buf, 0, &timer);
10630 if (ret)
10631 return ret;
10632
10633 if (timer < 1)
10634 return -EINVAL;
10635
10636 /* same value, noting to do */
10637 if (timer == pmu->hrtimer_interval_ms)
10638 return count;
10639
10640 mutex_lock(&mux_interval_mutex);
10641 pmu->hrtimer_interval_ms = timer;
10642
10643 /* update all cpuctx for this PMU */
10644 cpus_read_lock();
10645 for_each_online_cpu(cpu) {
10646 struct perf_cpu_context *cpuctx;
10647 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10648 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10649
10650 cpu_function_call(cpu,
10651 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10652 }
10653 cpus_read_unlock();
10654 mutex_unlock(&mux_interval_mutex);
10655
10656 return count;
10657 }
10658 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10659
10660 static struct attribute *pmu_dev_attrs[] = {
10661 &dev_attr_type.attr,
10662 &dev_attr_perf_event_mux_interval_ms.attr,
10663 NULL,
10664 };
10665 ATTRIBUTE_GROUPS(pmu_dev);
10666
10667 static int pmu_bus_running;
10668 static struct bus_type pmu_bus = {
10669 .name = "event_source",
10670 .dev_groups = pmu_dev_groups,
10671 };
10672
pmu_dev_release(struct device * dev)10673 static void pmu_dev_release(struct device *dev)
10674 {
10675 kfree(dev);
10676 }
10677
pmu_dev_alloc(struct pmu * pmu)10678 static int pmu_dev_alloc(struct pmu *pmu)
10679 {
10680 int ret = -ENOMEM;
10681
10682 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10683 if (!pmu->dev)
10684 goto out;
10685
10686 pmu->dev->groups = pmu->attr_groups;
10687 device_initialize(pmu->dev);
10688 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10689 if (ret)
10690 goto free_dev;
10691
10692 dev_set_drvdata(pmu->dev, pmu);
10693 pmu->dev->bus = &pmu_bus;
10694 pmu->dev->release = pmu_dev_release;
10695 ret = device_add(pmu->dev);
10696 if (ret)
10697 goto free_dev;
10698
10699 /* For PMUs with address filters, throw in an extra attribute: */
10700 if (pmu->nr_addr_filters)
10701 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10702
10703 if (ret)
10704 goto del_dev;
10705
10706 if (pmu->attr_update)
10707 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10708
10709 if (ret)
10710 goto del_dev;
10711
10712 out:
10713 return ret;
10714
10715 del_dev:
10716 device_del(pmu->dev);
10717
10718 free_dev:
10719 put_device(pmu->dev);
10720 goto out;
10721 }
10722
10723 static struct lock_class_key cpuctx_mutex;
10724 static struct lock_class_key cpuctx_lock;
10725
perf_pmu_register(struct pmu * pmu,const char * name,int type)10726 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10727 {
10728 int cpu, ret, max = PERF_TYPE_MAX;
10729
10730 mutex_lock(&pmus_lock);
10731 ret = -ENOMEM;
10732 pmu->pmu_disable_count = alloc_percpu(int);
10733 if (!pmu->pmu_disable_count)
10734 goto unlock;
10735
10736 pmu->type = -1;
10737 if (!name)
10738 goto skip_type;
10739 pmu->name = name;
10740
10741 if (type != PERF_TYPE_SOFTWARE) {
10742 if (type >= 0)
10743 max = type;
10744
10745 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10746 if (ret < 0)
10747 goto free_pdc;
10748
10749 WARN_ON(type >= 0 && ret != type);
10750
10751 type = ret;
10752 }
10753 pmu->type = type;
10754
10755 if (pmu_bus_running) {
10756 ret = pmu_dev_alloc(pmu);
10757 if (ret)
10758 goto free_idr;
10759 }
10760
10761 skip_type:
10762 if (pmu->task_ctx_nr == perf_hw_context) {
10763 static int hw_context_taken = 0;
10764
10765 /*
10766 * Other than systems with heterogeneous CPUs, it never makes
10767 * sense for two PMUs to share perf_hw_context. PMUs which are
10768 * uncore must use perf_invalid_context.
10769 */
10770 if (WARN_ON_ONCE(hw_context_taken &&
10771 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10772 pmu->task_ctx_nr = perf_invalid_context;
10773
10774 hw_context_taken = 1;
10775 }
10776
10777 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10778 if (pmu->pmu_cpu_context)
10779 goto got_cpu_context;
10780
10781 ret = -ENOMEM;
10782 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10783 if (!pmu->pmu_cpu_context)
10784 goto free_dev;
10785
10786 for_each_possible_cpu(cpu) {
10787 struct perf_cpu_context *cpuctx;
10788
10789 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10790 __perf_event_init_context(&cpuctx->ctx);
10791 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10792 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10793 cpuctx->ctx.pmu = pmu;
10794 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10795
10796 __perf_mux_hrtimer_init(cpuctx, cpu);
10797
10798 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10799 cpuctx->heap = cpuctx->heap_default;
10800 }
10801
10802 got_cpu_context:
10803 if (!pmu->start_txn) {
10804 if (pmu->pmu_enable) {
10805 /*
10806 * If we have pmu_enable/pmu_disable calls, install
10807 * transaction stubs that use that to try and batch
10808 * hardware accesses.
10809 */
10810 pmu->start_txn = perf_pmu_start_txn;
10811 pmu->commit_txn = perf_pmu_commit_txn;
10812 pmu->cancel_txn = perf_pmu_cancel_txn;
10813 } else {
10814 pmu->start_txn = perf_pmu_nop_txn;
10815 pmu->commit_txn = perf_pmu_nop_int;
10816 pmu->cancel_txn = perf_pmu_nop_void;
10817 }
10818 }
10819
10820 if (!pmu->pmu_enable) {
10821 pmu->pmu_enable = perf_pmu_nop_void;
10822 pmu->pmu_disable = perf_pmu_nop_void;
10823 }
10824
10825 if (!pmu->check_period)
10826 pmu->check_period = perf_event_nop_int;
10827
10828 if (!pmu->event_idx)
10829 pmu->event_idx = perf_event_idx_default;
10830
10831 /*
10832 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10833 * since these cannot be in the IDR. This way the linear search
10834 * is fast, provided a valid software event is provided.
10835 */
10836 if (type == PERF_TYPE_SOFTWARE || !name)
10837 list_add_rcu(&pmu->entry, &pmus);
10838 else
10839 list_add_tail_rcu(&pmu->entry, &pmus);
10840
10841 atomic_set(&pmu->exclusive_cnt, 0);
10842 ret = 0;
10843 unlock:
10844 mutex_unlock(&pmus_lock);
10845
10846 return ret;
10847
10848 free_dev:
10849 device_del(pmu->dev);
10850 put_device(pmu->dev);
10851
10852 free_idr:
10853 if (pmu->type != PERF_TYPE_SOFTWARE)
10854 idr_remove(&pmu_idr, pmu->type);
10855
10856 free_pdc:
10857 free_percpu(pmu->pmu_disable_count);
10858 goto unlock;
10859 }
10860 EXPORT_SYMBOL_GPL(perf_pmu_register);
10861
perf_pmu_unregister(struct pmu * pmu)10862 void perf_pmu_unregister(struct pmu *pmu)
10863 {
10864 mutex_lock(&pmus_lock);
10865 list_del_rcu(&pmu->entry);
10866
10867 /*
10868 * We dereference the pmu list under both SRCU and regular RCU, so
10869 * synchronize against both of those.
10870 */
10871 synchronize_srcu(&pmus_srcu);
10872 synchronize_rcu();
10873
10874 free_percpu(pmu->pmu_disable_count);
10875 if (pmu->type != PERF_TYPE_SOFTWARE)
10876 idr_remove(&pmu_idr, pmu->type);
10877 if (pmu_bus_running) {
10878 if (pmu->nr_addr_filters)
10879 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10880 device_del(pmu->dev);
10881 put_device(pmu->dev);
10882 }
10883 free_pmu_context(pmu);
10884 mutex_unlock(&pmus_lock);
10885 }
10886 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10887
has_extended_regs(struct perf_event * event)10888 static inline bool has_extended_regs(struct perf_event *event)
10889 {
10890 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10891 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10892 }
10893
perf_try_init_event(struct pmu * pmu,struct perf_event * event)10894 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10895 {
10896 struct perf_event_context *ctx = NULL;
10897 int ret;
10898
10899 if (!try_module_get(pmu->module))
10900 return -ENODEV;
10901
10902 /*
10903 * A number of pmu->event_init() methods iterate the sibling_list to,
10904 * for example, validate if the group fits on the PMU. Therefore,
10905 * if this is a sibling event, acquire the ctx->mutex to protect
10906 * the sibling_list.
10907 */
10908 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10909 /*
10910 * This ctx->mutex can nest when we're called through
10911 * inheritance. See the perf_event_ctx_lock_nested() comment.
10912 */
10913 ctx = perf_event_ctx_lock_nested(event->group_leader,
10914 SINGLE_DEPTH_NESTING);
10915 BUG_ON(!ctx);
10916 }
10917
10918 event->pmu = pmu;
10919 ret = pmu->event_init(event);
10920
10921 if (ctx)
10922 perf_event_ctx_unlock(event->group_leader, ctx);
10923
10924 if (!ret) {
10925 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10926 has_extended_regs(event))
10927 ret = -EOPNOTSUPP;
10928
10929 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10930 event_has_any_exclude_flag(event))
10931 ret = -EINVAL;
10932
10933 if (ret && event->destroy)
10934 event->destroy(event);
10935 }
10936
10937 if (ret)
10938 module_put(pmu->module);
10939
10940 return ret;
10941 }
10942
perf_init_event(struct perf_event * event)10943 static struct pmu *perf_init_event(struct perf_event *event)
10944 {
10945 int idx, type, ret;
10946 struct pmu *pmu;
10947
10948 idx = srcu_read_lock(&pmus_srcu);
10949
10950 /* Try parent's PMU first: */
10951 if (event->parent && event->parent->pmu) {
10952 pmu = event->parent->pmu;
10953 ret = perf_try_init_event(pmu, event);
10954 if (!ret)
10955 goto unlock;
10956 }
10957
10958 /*
10959 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10960 * are often aliases for PERF_TYPE_RAW.
10961 */
10962 type = event->attr.type;
10963 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10964 type = PERF_TYPE_RAW;
10965
10966 again:
10967 rcu_read_lock();
10968 pmu = idr_find(&pmu_idr, type);
10969 rcu_read_unlock();
10970 if (pmu) {
10971 ret = perf_try_init_event(pmu, event);
10972 if (ret == -ENOENT && event->attr.type != type) {
10973 type = event->attr.type;
10974 goto again;
10975 }
10976
10977 if (ret)
10978 pmu = ERR_PTR(ret);
10979
10980 goto unlock;
10981 }
10982
10983 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10984 ret = perf_try_init_event(pmu, event);
10985 if (!ret)
10986 goto unlock;
10987
10988 if (ret != -ENOENT) {
10989 pmu = ERR_PTR(ret);
10990 goto unlock;
10991 }
10992 }
10993 pmu = ERR_PTR(-ENOENT);
10994 unlock:
10995 srcu_read_unlock(&pmus_srcu, idx);
10996
10997 return pmu;
10998 }
10999
attach_sb_event(struct perf_event * event)11000 static void attach_sb_event(struct perf_event *event)
11001 {
11002 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11003
11004 raw_spin_lock(&pel->lock);
11005 list_add_rcu(&event->sb_list, &pel->list);
11006 raw_spin_unlock(&pel->lock);
11007 }
11008
11009 /*
11010 * We keep a list of all !task (and therefore per-cpu) events
11011 * that need to receive side-band records.
11012 *
11013 * This avoids having to scan all the various PMU per-cpu contexts
11014 * looking for them.
11015 */
account_pmu_sb_event(struct perf_event * event)11016 static void account_pmu_sb_event(struct perf_event *event)
11017 {
11018 if (is_sb_event(event))
11019 attach_sb_event(event);
11020 }
11021
account_event_cpu(struct perf_event * event,int cpu)11022 static void account_event_cpu(struct perf_event *event, int cpu)
11023 {
11024 if (event->parent)
11025 return;
11026
11027 if (is_cgroup_event(event))
11028 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11029 }
11030
11031 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11032 static void account_freq_event_nohz(void)
11033 {
11034 #ifdef CONFIG_NO_HZ_FULL
11035 /* Lock so we don't race with concurrent unaccount */
11036 spin_lock(&nr_freq_lock);
11037 if (atomic_inc_return(&nr_freq_events) == 1)
11038 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11039 spin_unlock(&nr_freq_lock);
11040 #endif
11041 }
11042
account_freq_event(void)11043 static void account_freq_event(void)
11044 {
11045 if (tick_nohz_full_enabled())
11046 account_freq_event_nohz();
11047 else
11048 atomic_inc(&nr_freq_events);
11049 }
11050
11051
account_event(struct perf_event * event)11052 static void account_event(struct perf_event *event)
11053 {
11054 bool inc = false;
11055
11056 if (event->parent)
11057 return;
11058
11059 if (event->attach_state & PERF_ATTACH_TASK)
11060 inc = true;
11061 if (event->attr.mmap || event->attr.mmap_data)
11062 atomic_inc(&nr_mmap_events);
11063 if (event->attr.comm)
11064 atomic_inc(&nr_comm_events);
11065 if (event->attr.namespaces)
11066 atomic_inc(&nr_namespaces_events);
11067 if (event->attr.cgroup)
11068 atomic_inc(&nr_cgroup_events);
11069 if (event->attr.task)
11070 atomic_inc(&nr_task_events);
11071 if (event->attr.freq)
11072 account_freq_event();
11073 if (event->attr.context_switch) {
11074 atomic_inc(&nr_switch_events);
11075 inc = true;
11076 }
11077 if (has_branch_stack(event))
11078 inc = true;
11079 if (is_cgroup_event(event))
11080 inc = true;
11081 if (event->attr.ksymbol)
11082 atomic_inc(&nr_ksymbol_events);
11083 if (event->attr.bpf_event)
11084 atomic_inc(&nr_bpf_events);
11085 if (event->attr.text_poke)
11086 atomic_inc(&nr_text_poke_events);
11087
11088 if (inc) {
11089 /*
11090 * We need the mutex here because static_branch_enable()
11091 * must complete *before* the perf_sched_count increment
11092 * becomes visible.
11093 */
11094 if (atomic_inc_not_zero(&perf_sched_count))
11095 goto enabled;
11096
11097 mutex_lock(&perf_sched_mutex);
11098 if (!atomic_read(&perf_sched_count)) {
11099 static_branch_enable(&perf_sched_events);
11100 /*
11101 * Guarantee that all CPUs observe they key change and
11102 * call the perf scheduling hooks before proceeding to
11103 * install events that need them.
11104 */
11105 synchronize_rcu();
11106 }
11107 /*
11108 * Now that we have waited for the sync_sched(), allow further
11109 * increments to by-pass the mutex.
11110 */
11111 atomic_inc(&perf_sched_count);
11112 mutex_unlock(&perf_sched_mutex);
11113 }
11114 enabled:
11115
11116 account_event_cpu(event, event->cpu);
11117
11118 account_pmu_sb_event(event);
11119 }
11120
11121 /*
11122 * Allocate and initialize an event structure
11123 */
11124 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11125 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11126 struct task_struct *task,
11127 struct perf_event *group_leader,
11128 struct perf_event *parent_event,
11129 perf_overflow_handler_t overflow_handler,
11130 void *context, int cgroup_fd)
11131 {
11132 struct pmu *pmu;
11133 struct perf_event *event;
11134 struct hw_perf_event *hwc;
11135 long err = -EINVAL;
11136
11137 if ((unsigned)cpu >= nr_cpu_ids) {
11138 if (!task || cpu != -1)
11139 return ERR_PTR(-EINVAL);
11140 }
11141
11142 event = kzalloc(sizeof(*event), GFP_KERNEL);
11143 if (!event)
11144 return ERR_PTR(-ENOMEM);
11145
11146 /*
11147 * Single events are their own group leaders, with an
11148 * empty sibling list:
11149 */
11150 if (!group_leader)
11151 group_leader = event;
11152
11153 mutex_init(&event->child_mutex);
11154 INIT_LIST_HEAD(&event->child_list);
11155
11156 INIT_LIST_HEAD(&event->event_entry);
11157 INIT_LIST_HEAD(&event->sibling_list);
11158 INIT_LIST_HEAD(&event->active_list);
11159 init_event_group(event);
11160 INIT_LIST_HEAD(&event->rb_entry);
11161 INIT_LIST_HEAD(&event->active_entry);
11162 INIT_LIST_HEAD(&event->addr_filters.list);
11163 INIT_HLIST_NODE(&event->hlist_entry);
11164
11165
11166 init_waitqueue_head(&event->waitq);
11167 event->pending_disable = -1;
11168 init_irq_work(&event->pending, perf_pending_event);
11169
11170 mutex_init(&event->mmap_mutex);
11171 raw_spin_lock_init(&event->addr_filters.lock);
11172
11173 atomic_long_set(&event->refcount, 1);
11174 event->cpu = cpu;
11175 event->attr = *attr;
11176 event->group_leader = group_leader;
11177 event->pmu = NULL;
11178 event->oncpu = -1;
11179
11180 event->parent = parent_event;
11181
11182 event->ns = get_pid_ns(task_active_pid_ns(current));
11183 event->id = atomic64_inc_return(&perf_event_id);
11184
11185 event->state = PERF_EVENT_STATE_INACTIVE;
11186
11187 if (task) {
11188 event->attach_state = PERF_ATTACH_TASK;
11189 /*
11190 * XXX pmu::event_init needs to know what task to account to
11191 * and we cannot use the ctx information because we need the
11192 * pmu before we get a ctx.
11193 */
11194 event->hw.target = get_task_struct(task);
11195 }
11196
11197 event->clock = &local_clock;
11198 if (parent_event)
11199 event->clock = parent_event->clock;
11200
11201 if (!overflow_handler && parent_event) {
11202 overflow_handler = parent_event->overflow_handler;
11203 context = parent_event->overflow_handler_context;
11204 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11205 if (overflow_handler == bpf_overflow_handler) {
11206 struct bpf_prog *prog = parent_event->prog;
11207
11208 bpf_prog_inc(prog);
11209 event->prog = prog;
11210 event->orig_overflow_handler =
11211 parent_event->orig_overflow_handler;
11212 }
11213 #endif
11214 }
11215
11216 if (overflow_handler) {
11217 event->overflow_handler = overflow_handler;
11218 event->overflow_handler_context = context;
11219 } else if (is_write_backward(event)){
11220 event->overflow_handler = perf_event_output_backward;
11221 event->overflow_handler_context = NULL;
11222 } else {
11223 event->overflow_handler = perf_event_output_forward;
11224 event->overflow_handler_context = NULL;
11225 }
11226
11227 perf_event__state_init(event);
11228
11229 pmu = NULL;
11230
11231 hwc = &event->hw;
11232 hwc->sample_period = attr->sample_period;
11233 if (attr->freq && attr->sample_freq)
11234 hwc->sample_period = 1;
11235 hwc->last_period = hwc->sample_period;
11236
11237 local64_set(&hwc->period_left, hwc->sample_period);
11238
11239 /*
11240 * We currently do not support PERF_SAMPLE_READ on inherited events.
11241 * See perf_output_read().
11242 */
11243 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11244 goto err_ns;
11245
11246 if (!has_branch_stack(event))
11247 event->attr.branch_sample_type = 0;
11248
11249 pmu = perf_init_event(event);
11250 if (IS_ERR(pmu)) {
11251 err = PTR_ERR(pmu);
11252 goto err_ns;
11253 }
11254
11255 /*
11256 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11257 * be different on other CPUs in the uncore mask.
11258 */
11259 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11260 err = -EINVAL;
11261 goto err_pmu;
11262 }
11263
11264 if (event->attr.aux_output &&
11265 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11266 err = -EOPNOTSUPP;
11267 goto err_pmu;
11268 }
11269
11270 if (cgroup_fd != -1) {
11271 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11272 if (err)
11273 goto err_pmu;
11274 }
11275
11276 err = exclusive_event_init(event);
11277 if (err)
11278 goto err_pmu;
11279
11280 if (has_addr_filter(event)) {
11281 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11282 sizeof(struct perf_addr_filter_range),
11283 GFP_KERNEL);
11284 if (!event->addr_filter_ranges) {
11285 err = -ENOMEM;
11286 goto err_per_task;
11287 }
11288
11289 /*
11290 * Clone the parent's vma offsets: they are valid until exec()
11291 * even if the mm is not shared with the parent.
11292 */
11293 if (event->parent) {
11294 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11295
11296 raw_spin_lock_irq(&ifh->lock);
11297 memcpy(event->addr_filter_ranges,
11298 event->parent->addr_filter_ranges,
11299 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11300 raw_spin_unlock_irq(&ifh->lock);
11301 }
11302
11303 /* force hw sync on the address filters */
11304 event->addr_filters_gen = 1;
11305 }
11306
11307 if (!event->parent) {
11308 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11309 err = get_callchain_buffers(attr->sample_max_stack);
11310 if (err)
11311 goto err_addr_filters;
11312 }
11313 }
11314
11315 err = security_perf_event_alloc(event);
11316 if (err)
11317 goto err_callchain_buffer;
11318
11319 /* symmetric to unaccount_event() in _free_event() */
11320 account_event(event);
11321
11322 return event;
11323
11324 err_callchain_buffer:
11325 if (!event->parent) {
11326 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11327 put_callchain_buffers();
11328 }
11329 err_addr_filters:
11330 kfree(event->addr_filter_ranges);
11331
11332 err_per_task:
11333 exclusive_event_destroy(event);
11334
11335 err_pmu:
11336 if (is_cgroup_event(event))
11337 perf_detach_cgroup(event);
11338 if (event->destroy)
11339 event->destroy(event);
11340 module_put(pmu->module);
11341 err_ns:
11342 if (event->ns)
11343 put_pid_ns(event->ns);
11344 if (event->hw.target)
11345 put_task_struct(event->hw.target);
11346 kfree(event);
11347
11348 return ERR_PTR(err);
11349 }
11350
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)11351 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11352 struct perf_event_attr *attr)
11353 {
11354 u32 size;
11355 int ret;
11356
11357 /* Zero the full structure, so that a short copy will be nice. */
11358 memset(attr, 0, sizeof(*attr));
11359
11360 ret = get_user(size, &uattr->size);
11361 if (ret)
11362 return ret;
11363
11364 /* ABI compatibility quirk: */
11365 if (!size)
11366 size = PERF_ATTR_SIZE_VER0;
11367 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11368 goto err_size;
11369
11370 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11371 if (ret) {
11372 if (ret == -E2BIG)
11373 goto err_size;
11374 return ret;
11375 }
11376
11377 attr->size = size;
11378
11379 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11380 return -EINVAL;
11381
11382 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11383 return -EINVAL;
11384
11385 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11386 return -EINVAL;
11387
11388 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11389 u64 mask = attr->branch_sample_type;
11390
11391 /* only using defined bits */
11392 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11393 return -EINVAL;
11394
11395 /* at least one branch bit must be set */
11396 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11397 return -EINVAL;
11398
11399 /* propagate priv level, when not set for branch */
11400 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11401
11402 /* exclude_kernel checked on syscall entry */
11403 if (!attr->exclude_kernel)
11404 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11405
11406 if (!attr->exclude_user)
11407 mask |= PERF_SAMPLE_BRANCH_USER;
11408
11409 if (!attr->exclude_hv)
11410 mask |= PERF_SAMPLE_BRANCH_HV;
11411 /*
11412 * adjust user setting (for HW filter setup)
11413 */
11414 attr->branch_sample_type = mask;
11415 }
11416 /* privileged levels capture (kernel, hv): check permissions */
11417 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11418 ret = perf_allow_kernel(attr);
11419 if (ret)
11420 return ret;
11421 }
11422 }
11423
11424 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11425 ret = perf_reg_validate(attr->sample_regs_user);
11426 if (ret)
11427 return ret;
11428 }
11429
11430 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11431 if (!arch_perf_have_user_stack_dump())
11432 return -ENOSYS;
11433
11434 /*
11435 * We have __u32 type for the size, but so far
11436 * we can only use __u16 as maximum due to the
11437 * __u16 sample size limit.
11438 */
11439 if (attr->sample_stack_user >= USHRT_MAX)
11440 return -EINVAL;
11441 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11442 return -EINVAL;
11443 }
11444
11445 if (!attr->sample_max_stack)
11446 attr->sample_max_stack = sysctl_perf_event_max_stack;
11447
11448 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11449 ret = perf_reg_validate(attr->sample_regs_intr);
11450
11451 #ifndef CONFIG_CGROUP_PERF
11452 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11453 return -EINVAL;
11454 #endif
11455
11456 out:
11457 return ret;
11458
11459 err_size:
11460 put_user(sizeof(*attr), &uattr->size);
11461 ret = -E2BIG;
11462 goto out;
11463 }
11464
11465 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)11466 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11467 {
11468 struct perf_buffer *rb = NULL;
11469 int ret = -EINVAL;
11470
11471 if (!output_event)
11472 goto set;
11473
11474 /* don't allow circular references */
11475 if (event == output_event)
11476 goto out;
11477
11478 /*
11479 * Don't allow cross-cpu buffers
11480 */
11481 if (output_event->cpu != event->cpu)
11482 goto out;
11483
11484 /*
11485 * If its not a per-cpu rb, it must be the same task.
11486 */
11487 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11488 goto out;
11489
11490 /*
11491 * Mixing clocks in the same buffer is trouble you don't need.
11492 */
11493 if (output_event->clock != event->clock)
11494 goto out;
11495
11496 /*
11497 * Either writing ring buffer from beginning or from end.
11498 * Mixing is not allowed.
11499 */
11500 if (is_write_backward(output_event) != is_write_backward(event))
11501 goto out;
11502
11503 /*
11504 * If both events generate aux data, they must be on the same PMU
11505 */
11506 if (has_aux(event) && has_aux(output_event) &&
11507 event->pmu != output_event->pmu)
11508 goto out;
11509
11510 set:
11511 mutex_lock(&event->mmap_mutex);
11512 /* Can't redirect output if we've got an active mmap() */
11513 if (atomic_read(&event->mmap_count))
11514 goto unlock;
11515
11516 if (output_event) {
11517 /* get the rb we want to redirect to */
11518 rb = ring_buffer_get(output_event);
11519 if (!rb)
11520 goto unlock;
11521 }
11522
11523 ring_buffer_attach(event, rb);
11524
11525 ret = 0;
11526 unlock:
11527 mutex_unlock(&event->mmap_mutex);
11528
11529 out:
11530 return ret;
11531 }
11532
mutex_lock_double(struct mutex * a,struct mutex * b)11533 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11534 {
11535 if (b < a)
11536 swap(a, b);
11537
11538 mutex_lock(a);
11539 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11540 }
11541
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)11542 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11543 {
11544 bool nmi_safe = false;
11545
11546 switch (clk_id) {
11547 case CLOCK_MONOTONIC:
11548 event->clock = &ktime_get_mono_fast_ns;
11549 nmi_safe = true;
11550 break;
11551
11552 case CLOCK_MONOTONIC_RAW:
11553 event->clock = &ktime_get_raw_fast_ns;
11554 nmi_safe = true;
11555 break;
11556
11557 case CLOCK_REALTIME:
11558 event->clock = &ktime_get_real_ns;
11559 break;
11560
11561 case CLOCK_BOOTTIME:
11562 event->clock = &ktime_get_boottime_ns;
11563 break;
11564
11565 case CLOCK_TAI:
11566 event->clock = &ktime_get_clocktai_ns;
11567 break;
11568
11569 default:
11570 return -EINVAL;
11571 }
11572
11573 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11574 return -EINVAL;
11575
11576 return 0;
11577 }
11578
11579 /*
11580 * Variation on perf_event_ctx_lock_nested(), except we take two context
11581 * mutexes.
11582 */
11583 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)11584 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11585 struct perf_event_context *ctx)
11586 {
11587 struct perf_event_context *gctx;
11588
11589 again:
11590 rcu_read_lock();
11591 gctx = READ_ONCE(group_leader->ctx);
11592 if (!refcount_inc_not_zero(&gctx->refcount)) {
11593 rcu_read_unlock();
11594 goto again;
11595 }
11596 rcu_read_unlock();
11597
11598 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11599
11600 if (group_leader->ctx != gctx) {
11601 mutex_unlock(&ctx->mutex);
11602 mutex_unlock(&gctx->mutex);
11603 put_ctx(gctx);
11604 goto again;
11605 }
11606
11607 return gctx;
11608 }
11609
11610 /**
11611 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11612 *
11613 * @attr_uptr: event_id type attributes for monitoring/sampling
11614 * @pid: target pid
11615 * @cpu: target cpu
11616 * @group_fd: group leader event fd
11617 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)11618 SYSCALL_DEFINE5(perf_event_open,
11619 struct perf_event_attr __user *, attr_uptr,
11620 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11621 {
11622 struct perf_event *group_leader = NULL, *output_event = NULL;
11623 struct perf_event *event, *sibling;
11624 struct perf_event_attr attr;
11625 struct perf_event_context *ctx, *gctx;
11626 struct file *event_file = NULL;
11627 struct fd group = {NULL, 0};
11628 struct task_struct *task = NULL;
11629 struct pmu *pmu;
11630 int event_fd;
11631 int move_group = 0;
11632 int err;
11633 int f_flags = O_RDWR;
11634 int cgroup_fd = -1;
11635
11636 /* for future expandability... */
11637 if (flags & ~PERF_FLAG_ALL)
11638 return -EINVAL;
11639
11640 /* Do we allow access to perf_event_open(2) ? */
11641 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11642 if (err)
11643 return err;
11644
11645 err = perf_copy_attr(attr_uptr, &attr);
11646 if (err)
11647 return err;
11648
11649 if (!attr.exclude_kernel) {
11650 err = perf_allow_kernel(&attr);
11651 if (err)
11652 return err;
11653 }
11654
11655 if (attr.namespaces) {
11656 if (!perfmon_capable())
11657 return -EACCES;
11658 }
11659
11660 if (attr.freq) {
11661 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11662 return -EINVAL;
11663 } else {
11664 if (attr.sample_period & (1ULL << 63))
11665 return -EINVAL;
11666 }
11667
11668 /* Only privileged users can get physical addresses */
11669 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11670 err = perf_allow_kernel(&attr);
11671 if (err)
11672 return err;
11673 }
11674
11675 err = security_locked_down(LOCKDOWN_PERF);
11676 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11677 /* REGS_INTR can leak data, lockdown must prevent this */
11678 return err;
11679
11680 err = 0;
11681
11682 /*
11683 * In cgroup mode, the pid argument is used to pass the fd
11684 * opened to the cgroup directory in cgroupfs. The cpu argument
11685 * designates the cpu on which to monitor threads from that
11686 * cgroup.
11687 */
11688 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11689 return -EINVAL;
11690
11691 if (flags & PERF_FLAG_FD_CLOEXEC)
11692 f_flags |= O_CLOEXEC;
11693
11694 event_fd = get_unused_fd_flags(f_flags);
11695 if (event_fd < 0)
11696 return event_fd;
11697
11698 if (group_fd != -1) {
11699 err = perf_fget_light(group_fd, &group);
11700 if (err)
11701 goto err_fd;
11702 group_leader = group.file->private_data;
11703 if (flags & PERF_FLAG_FD_OUTPUT)
11704 output_event = group_leader;
11705 if (flags & PERF_FLAG_FD_NO_GROUP)
11706 group_leader = NULL;
11707 }
11708
11709 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11710 task = find_lively_task_by_vpid(pid);
11711 if (IS_ERR(task)) {
11712 err = PTR_ERR(task);
11713 goto err_group_fd;
11714 }
11715 }
11716
11717 if (task && group_leader &&
11718 group_leader->attr.inherit != attr.inherit) {
11719 err = -EINVAL;
11720 goto err_task;
11721 }
11722
11723 if (task) {
11724 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11725 if (err)
11726 goto err_task;
11727
11728 /*
11729 * Preserve ptrace permission check for backwards compatibility.
11730 *
11731 * We must hold exec_update_mutex across this and any potential
11732 * perf_install_in_context() call for this new event to
11733 * serialize against exec() altering our credentials (and the
11734 * perf_event_exit_task() that could imply).
11735 */
11736 err = -EACCES;
11737 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11738 goto err_cred;
11739 }
11740
11741 if (flags & PERF_FLAG_PID_CGROUP)
11742 cgroup_fd = pid;
11743
11744 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11745 NULL, NULL, cgroup_fd);
11746 if (IS_ERR(event)) {
11747 err = PTR_ERR(event);
11748 goto err_cred;
11749 }
11750
11751 if (is_sampling_event(event)) {
11752 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11753 err = -EOPNOTSUPP;
11754 goto err_alloc;
11755 }
11756 }
11757
11758 /*
11759 * Special case software events and allow them to be part of
11760 * any hardware group.
11761 */
11762 pmu = event->pmu;
11763
11764 if (attr.use_clockid) {
11765 err = perf_event_set_clock(event, attr.clockid);
11766 if (err)
11767 goto err_alloc;
11768 }
11769
11770 if (pmu->task_ctx_nr == perf_sw_context)
11771 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11772
11773 if (group_leader) {
11774 if (is_software_event(event) &&
11775 !in_software_context(group_leader)) {
11776 /*
11777 * If the event is a sw event, but the group_leader
11778 * is on hw context.
11779 *
11780 * Allow the addition of software events to hw
11781 * groups, this is safe because software events
11782 * never fail to schedule.
11783 */
11784 pmu = group_leader->ctx->pmu;
11785 } else if (!is_software_event(event) &&
11786 is_software_event(group_leader) &&
11787 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11788 /*
11789 * In case the group is a pure software group, and we
11790 * try to add a hardware event, move the whole group to
11791 * the hardware context.
11792 */
11793 move_group = 1;
11794 }
11795 }
11796
11797 /*
11798 * Get the target context (task or percpu):
11799 */
11800 ctx = find_get_context(pmu, task, event);
11801 if (IS_ERR(ctx)) {
11802 err = PTR_ERR(ctx);
11803 goto err_alloc;
11804 }
11805
11806 /*
11807 * Look up the group leader (we will attach this event to it):
11808 */
11809 if (group_leader) {
11810 err = -EINVAL;
11811
11812 /*
11813 * Do not allow a recursive hierarchy (this new sibling
11814 * becoming part of another group-sibling):
11815 */
11816 if (group_leader->group_leader != group_leader)
11817 goto err_context;
11818
11819 /* All events in a group should have the same clock */
11820 if (group_leader->clock != event->clock)
11821 goto err_context;
11822
11823 /*
11824 * Make sure we're both events for the same CPU;
11825 * grouping events for different CPUs is broken; since
11826 * you can never concurrently schedule them anyhow.
11827 */
11828 if (group_leader->cpu != event->cpu)
11829 goto err_context;
11830
11831 /*
11832 * Make sure we're both on the same task, or both
11833 * per-CPU events.
11834 */
11835 if (group_leader->ctx->task != ctx->task)
11836 goto err_context;
11837
11838 /*
11839 * Do not allow to attach to a group in a different task
11840 * or CPU context. If we're moving SW events, we'll fix
11841 * this up later, so allow that.
11842 */
11843 if (!move_group && group_leader->ctx != ctx)
11844 goto err_context;
11845
11846 /*
11847 * Only a group leader can be exclusive or pinned
11848 */
11849 if (attr.exclusive || attr.pinned)
11850 goto err_context;
11851 }
11852
11853 if (output_event) {
11854 err = perf_event_set_output(event, output_event);
11855 if (err)
11856 goto err_context;
11857 }
11858
11859 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11860 f_flags);
11861 if (IS_ERR(event_file)) {
11862 err = PTR_ERR(event_file);
11863 event_file = NULL;
11864 goto err_context;
11865 }
11866
11867 if (move_group) {
11868 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11869
11870 if (gctx->task == TASK_TOMBSTONE) {
11871 err = -ESRCH;
11872 goto err_locked;
11873 }
11874
11875 /*
11876 * Check if we raced against another sys_perf_event_open() call
11877 * moving the software group underneath us.
11878 */
11879 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11880 /*
11881 * If someone moved the group out from under us, check
11882 * if this new event wound up on the same ctx, if so
11883 * its the regular !move_group case, otherwise fail.
11884 */
11885 if (gctx != ctx) {
11886 err = -EINVAL;
11887 goto err_locked;
11888 } else {
11889 perf_event_ctx_unlock(group_leader, gctx);
11890 move_group = 0;
11891 }
11892 }
11893
11894 /*
11895 * Failure to create exclusive events returns -EBUSY.
11896 */
11897 err = -EBUSY;
11898 if (!exclusive_event_installable(group_leader, ctx))
11899 goto err_locked;
11900
11901 for_each_sibling_event(sibling, group_leader) {
11902 if (!exclusive_event_installable(sibling, ctx))
11903 goto err_locked;
11904 }
11905 } else {
11906 mutex_lock(&ctx->mutex);
11907 }
11908
11909 if (ctx->task == TASK_TOMBSTONE) {
11910 err = -ESRCH;
11911 goto err_locked;
11912 }
11913
11914 if (!perf_event_validate_size(event)) {
11915 err = -E2BIG;
11916 goto err_locked;
11917 }
11918
11919 if (!task) {
11920 /*
11921 * Check if the @cpu we're creating an event for is online.
11922 *
11923 * We use the perf_cpu_context::ctx::mutex to serialize against
11924 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11925 */
11926 struct perf_cpu_context *cpuctx =
11927 container_of(ctx, struct perf_cpu_context, ctx);
11928
11929 if (!cpuctx->online) {
11930 err = -ENODEV;
11931 goto err_locked;
11932 }
11933 }
11934
11935 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11936 err = -EINVAL;
11937 goto err_locked;
11938 }
11939
11940 /*
11941 * Must be under the same ctx::mutex as perf_install_in_context(),
11942 * because we need to serialize with concurrent event creation.
11943 */
11944 if (!exclusive_event_installable(event, ctx)) {
11945 err = -EBUSY;
11946 goto err_locked;
11947 }
11948
11949 WARN_ON_ONCE(ctx->parent_ctx);
11950
11951 /*
11952 * This is the point on no return; we cannot fail hereafter. This is
11953 * where we start modifying current state.
11954 */
11955
11956 if (move_group) {
11957 /*
11958 * See perf_event_ctx_lock() for comments on the details
11959 * of swizzling perf_event::ctx.
11960 */
11961 perf_remove_from_context(group_leader, 0);
11962 put_ctx(gctx);
11963
11964 for_each_sibling_event(sibling, group_leader) {
11965 perf_remove_from_context(sibling, 0);
11966 put_ctx(gctx);
11967 }
11968
11969 /*
11970 * Wait for everybody to stop referencing the events through
11971 * the old lists, before installing it on new lists.
11972 */
11973 synchronize_rcu();
11974
11975 /*
11976 * Install the group siblings before the group leader.
11977 *
11978 * Because a group leader will try and install the entire group
11979 * (through the sibling list, which is still in-tact), we can
11980 * end up with siblings installed in the wrong context.
11981 *
11982 * By installing siblings first we NO-OP because they're not
11983 * reachable through the group lists.
11984 */
11985 for_each_sibling_event(sibling, group_leader) {
11986 perf_event__state_init(sibling);
11987 perf_install_in_context(ctx, sibling, sibling->cpu);
11988 get_ctx(ctx);
11989 }
11990
11991 /*
11992 * Removing from the context ends up with disabled
11993 * event. What we want here is event in the initial
11994 * startup state, ready to be add into new context.
11995 */
11996 perf_event__state_init(group_leader);
11997 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11998 get_ctx(ctx);
11999 }
12000
12001 /*
12002 * Precalculate sample_data sizes; do while holding ctx::mutex such
12003 * that we're serialized against further additions and before
12004 * perf_install_in_context() which is the point the event is active and
12005 * can use these values.
12006 */
12007 perf_event__header_size(event);
12008 perf_event__id_header_size(event);
12009
12010 event->owner = current;
12011
12012 perf_install_in_context(ctx, event, event->cpu);
12013 perf_unpin_context(ctx);
12014
12015 if (move_group)
12016 perf_event_ctx_unlock(group_leader, gctx);
12017 mutex_unlock(&ctx->mutex);
12018
12019 if (task) {
12020 mutex_unlock(&task->signal->exec_update_mutex);
12021 put_task_struct(task);
12022 }
12023
12024 mutex_lock(¤t->perf_event_mutex);
12025 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12026 mutex_unlock(¤t->perf_event_mutex);
12027
12028 /*
12029 * Drop the reference on the group_event after placing the
12030 * new event on the sibling_list. This ensures destruction
12031 * of the group leader will find the pointer to itself in
12032 * perf_group_detach().
12033 */
12034 fdput(group);
12035 fd_install(event_fd, event_file);
12036 return event_fd;
12037
12038 err_locked:
12039 if (move_group)
12040 perf_event_ctx_unlock(group_leader, gctx);
12041 mutex_unlock(&ctx->mutex);
12042 /* err_file: */
12043 fput(event_file);
12044 err_context:
12045 perf_unpin_context(ctx);
12046 put_ctx(ctx);
12047 err_alloc:
12048 /*
12049 * If event_file is set, the fput() above will have called ->release()
12050 * and that will take care of freeing the event.
12051 */
12052 if (!event_file)
12053 free_event(event);
12054 err_cred:
12055 if (task)
12056 mutex_unlock(&task->signal->exec_update_mutex);
12057 err_task:
12058 if (task)
12059 put_task_struct(task);
12060 err_group_fd:
12061 fdput(group);
12062 err_fd:
12063 put_unused_fd(event_fd);
12064 return err;
12065 }
12066
12067 /**
12068 * perf_event_create_kernel_counter
12069 *
12070 * @attr: attributes of the counter to create
12071 * @cpu: cpu in which the counter is bound
12072 * @task: task to profile (NULL for percpu)
12073 */
12074 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12075 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12076 struct task_struct *task,
12077 perf_overflow_handler_t overflow_handler,
12078 void *context)
12079 {
12080 struct perf_event_context *ctx;
12081 struct perf_event *event;
12082 int err;
12083
12084 /*
12085 * Grouping is not supported for kernel events, neither is 'AUX',
12086 * make sure the caller's intentions are adjusted.
12087 */
12088 if (attr->aux_output)
12089 return ERR_PTR(-EINVAL);
12090
12091 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12092 overflow_handler, context, -1);
12093 if (IS_ERR(event)) {
12094 err = PTR_ERR(event);
12095 goto err;
12096 }
12097
12098 /* Mark owner so we could distinguish it from user events. */
12099 event->owner = TASK_TOMBSTONE;
12100
12101 /*
12102 * Get the target context (task or percpu):
12103 */
12104 ctx = find_get_context(event->pmu, task, event);
12105 if (IS_ERR(ctx)) {
12106 err = PTR_ERR(ctx);
12107 goto err_free;
12108 }
12109
12110 WARN_ON_ONCE(ctx->parent_ctx);
12111 mutex_lock(&ctx->mutex);
12112 if (ctx->task == TASK_TOMBSTONE) {
12113 err = -ESRCH;
12114 goto err_unlock;
12115 }
12116
12117 if (!task) {
12118 /*
12119 * Check if the @cpu we're creating an event for is online.
12120 *
12121 * We use the perf_cpu_context::ctx::mutex to serialize against
12122 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12123 */
12124 struct perf_cpu_context *cpuctx =
12125 container_of(ctx, struct perf_cpu_context, ctx);
12126 if (!cpuctx->online) {
12127 err = -ENODEV;
12128 goto err_unlock;
12129 }
12130 }
12131
12132 if (!exclusive_event_installable(event, ctx)) {
12133 err = -EBUSY;
12134 goto err_unlock;
12135 }
12136
12137 perf_install_in_context(ctx, event, event->cpu);
12138 perf_unpin_context(ctx);
12139 mutex_unlock(&ctx->mutex);
12140
12141 return event;
12142
12143 err_unlock:
12144 mutex_unlock(&ctx->mutex);
12145 perf_unpin_context(ctx);
12146 put_ctx(ctx);
12147 err_free:
12148 free_event(event);
12149 err:
12150 return ERR_PTR(err);
12151 }
12152 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12153
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12154 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12155 {
12156 struct perf_event_context *src_ctx;
12157 struct perf_event_context *dst_ctx;
12158 struct perf_event *event, *tmp;
12159 LIST_HEAD(events);
12160
12161 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12162 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12163
12164 /*
12165 * See perf_event_ctx_lock() for comments on the details
12166 * of swizzling perf_event::ctx.
12167 */
12168 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12169 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12170 event_entry) {
12171 perf_remove_from_context(event, 0);
12172 unaccount_event_cpu(event, src_cpu);
12173 put_ctx(src_ctx);
12174 list_add(&event->migrate_entry, &events);
12175 }
12176
12177 /*
12178 * Wait for the events to quiesce before re-instating them.
12179 */
12180 synchronize_rcu();
12181
12182 /*
12183 * Re-instate events in 2 passes.
12184 *
12185 * Skip over group leaders and only install siblings on this first
12186 * pass, siblings will not get enabled without a leader, however a
12187 * leader will enable its siblings, even if those are still on the old
12188 * context.
12189 */
12190 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12191 if (event->group_leader == event)
12192 continue;
12193
12194 list_del(&event->migrate_entry);
12195 if (event->state >= PERF_EVENT_STATE_OFF)
12196 event->state = PERF_EVENT_STATE_INACTIVE;
12197 account_event_cpu(event, dst_cpu);
12198 perf_install_in_context(dst_ctx, event, dst_cpu);
12199 get_ctx(dst_ctx);
12200 }
12201
12202 /*
12203 * Once all the siblings are setup properly, install the group leaders
12204 * to make it go.
12205 */
12206 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12207 list_del(&event->migrate_entry);
12208 if (event->state >= PERF_EVENT_STATE_OFF)
12209 event->state = PERF_EVENT_STATE_INACTIVE;
12210 account_event_cpu(event, dst_cpu);
12211 perf_install_in_context(dst_ctx, event, dst_cpu);
12212 get_ctx(dst_ctx);
12213 }
12214 mutex_unlock(&dst_ctx->mutex);
12215 mutex_unlock(&src_ctx->mutex);
12216 }
12217 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12218
sync_child_event(struct perf_event * child_event,struct task_struct * child)12219 static void sync_child_event(struct perf_event *child_event,
12220 struct task_struct *child)
12221 {
12222 struct perf_event *parent_event = child_event->parent;
12223 u64 child_val;
12224
12225 if (child_event->attr.inherit_stat)
12226 perf_event_read_event(child_event, child);
12227
12228 child_val = perf_event_count(child_event);
12229
12230 /*
12231 * Add back the child's count to the parent's count:
12232 */
12233 atomic64_add(child_val, &parent_event->child_count);
12234 atomic64_add(child_event->total_time_enabled,
12235 &parent_event->child_total_time_enabled);
12236 atomic64_add(child_event->total_time_running,
12237 &parent_event->child_total_time_running);
12238 }
12239
12240 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)12241 perf_event_exit_event(struct perf_event *child_event,
12242 struct perf_event_context *child_ctx,
12243 struct task_struct *child)
12244 {
12245 struct perf_event *parent_event = child_event->parent;
12246
12247 /*
12248 * Do not destroy the 'original' grouping; because of the context
12249 * switch optimization the original events could've ended up in a
12250 * random child task.
12251 *
12252 * If we were to destroy the original group, all group related
12253 * operations would cease to function properly after this random
12254 * child dies.
12255 *
12256 * Do destroy all inherited groups, we don't care about those
12257 * and being thorough is better.
12258 */
12259 raw_spin_lock_irq(&child_ctx->lock);
12260 WARN_ON_ONCE(child_ctx->is_active);
12261
12262 if (parent_event)
12263 perf_group_detach(child_event);
12264 list_del_event(child_event, child_ctx);
12265 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12266 raw_spin_unlock_irq(&child_ctx->lock);
12267
12268 /*
12269 * Parent events are governed by their filedesc, retain them.
12270 */
12271 if (!parent_event) {
12272 perf_event_wakeup(child_event);
12273 return;
12274 }
12275 /*
12276 * Child events can be cleaned up.
12277 */
12278
12279 sync_child_event(child_event, child);
12280
12281 /*
12282 * Remove this event from the parent's list
12283 */
12284 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12285 mutex_lock(&parent_event->child_mutex);
12286 list_del_init(&child_event->child_list);
12287 mutex_unlock(&parent_event->child_mutex);
12288
12289 /*
12290 * Kick perf_poll() for is_event_hup().
12291 */
12292 perf_event_wakeup(parent_event);
12293 free_event(child_event);
12294 put_event(parent_event);
12295 }
12296
perf_event_exit_task_context(struct task_struct * child,int ctxn)12297 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12298 {
12299 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12300 struct perf_event *child_event, *next;
12301
12302 WARN_ON_ONCE(child != current);
12303
12304 child_ctx = perf_pin_task_context(child, ctxn);
12305 if (!child_ctx)
12306 return;
12307
12308 /*
12309 * In order to reduce the amount of tricky in ctx tear-down, we hold
12310 * ctx::mutex over the entire thing. This serializes against almost
12311 * everything that wants to access the ctx.
12312 *
12313 * The exception is sys_perf_event_open() /
12314 * perf_event_create_kernel_count() which does find_get_context()
12315 * without ctx::mutex (it cannot because of the move_group double mutex
12316 * lock thing). See the comments in perf_install_in_context().
12317 */
12318 mutex_lock(&child_ctx->mutex);
12319
12320 /*
12321 * In a single ctx::lock section, de-schedule the events and detach the
12322 * context from the task such that we cannot ever get it scheduled back
12323 * in.
12324 */
12325 raw_spin_lock_irq(&child_ctx->lock);
12326 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12327
12328 /*
12329 * Now that the context is inactive, destroy the task <-> ctx relation
12330 * and mark the context dead.
12331 */
12332 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12333 put_ctx(child_ctx); /* cannot be last */
12334 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12335 put_task_struct(current); /* cannot be last */
12336
12337 clone_ctx = unclone_ctx(child_ctx);
12338 raw_spin_unlock_irq(&child_ctx->lock);
12339
12340 if (clone_ctx)
12341 put_ctx(clone_ctx);
12342
12343 /*
12344 * Report the task dead after unscheduling the events so that we
12345 * won't get any samples after PERF_RECORD_EXIT. We can however still
12346 * get a few PERF_RECORD_READ events.
12347 */
12348 perf_event_task(child, child_ctx, 0);
12349
12350 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12351 perf_event_exit_event(child_event, child_ctx, child);
12352
12353 mutex_unlock(&child_ctx->mutex);
12354
12355 put_ctx(child_ctx);
12356 }
12357
12358 /*
12359 * When a child task exits, feed back event values to parent events.
12360 *
12361 * Can be called with exec_update_mutex held when called from
12362 * setup_new_exec().
12363 */
perf_event_exit_task(struct task_struct * child)12364 void perf_event_exit_task(struct task_struct *child)
12365 {
12366 struct perf_event *event, *tmp;
12367 int ctxn;
12368
12369 mutex_lock(&child->perf_event_mutex);
12370 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12371 owner_entry) {
12372 list_del_init(&event->owner_entry);
12373
12374 /*
12375 * Ensure the list deletion is visible before we clear
12376 * the owner, closes a race against perf_release() where
12377 * we need to serialize on the owner->perf_event_mutex.
12378 */
12379 smp_store_release(&event->owner, NULL);
12380 }
12381 mutex_unlock(&child->perf_event_mutex);
12382
12383 for_each_task_context_nr(ctxn)
12384 perf_event_exit_task_context(child, ctxn);
12385
12386 /*
12387 * The perf_event_exit_task_context calls perf_event_task
12388 * with child's task_ctx, which generates EXIT events for
12389 * child contexts and sets child->perf_event_ctxp[] to NULL.
12390 * At this point we need to send EXIT events to cpu contexts.
12391 */
12392 perf_event_task(child, NULL, 0);
12393 }
12394
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)12395 static void perf_free_event(struct perf_event *event,
12396 struct perf_event_context *ctx)
12397 {
12398 struct perf_event *parent = event->parent;
12399
12400 if (WARN_ON_ONCE(!parent))
12401 return;
12402
12403 mutex_lock(&parent->child_mutex);
12404 list_del_init(&event->child_list);
12405 mutex_unlock(&parent->child_mutex);
12406
12407 put_event(parent);
12408
12409 raw_spin_lock_irq(&ctx->lock);
12410 perf_group_detach(event);
12411 list_del_event(event, ctx);
12412 raw_spin_unlock_irq(&ctx->lock);
12413 free_event(event);
12414 }
12415
12416 /*
12417 * Free a context as created by inheritance by perf_event_init_task() below,
12418 * used by fork() in case of fail.
12419 *
12420 * Even though the task has never lived, the context and events have been
12421 * exposed through the child_list, so we must take care tearing it all down.
12422 */
perf_event_free_task(struct task_struct * task)12423 void perf_event_free_task(struct task_struct *task)
12424 {
12425 struct perf_event_context *ctx;
12426 struct perf_event *event, *tmp;
12427 int ctxn;
12428
12429 for_each_task_context_nr(ctxn) {
12430 ctx = task->perf_event_ctxp[ctxn];
12431 if (!ctx)
12432 continue;
12433
12434 mutex_lock(&ctx->mutex);
12435 raw_spin_lock_irq(&ctx->lock);
12436 /*
12437 * Destroy the task <-> ctx relation and mark the context dead.
12438 *
12439 * This is important because even though the task hasn't been
12440 * exposed yet the context has been (through child_list).
12441 */
12442 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12443 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12444 put_task_struct(task); /* cannot be last */
12445 raw_spin_unlock_irq(&ctx->lock);
12446
12447 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12448 perf_free_event(event, ctx);
12449
12450 mutex_unlock(&ctx->mutex);
12451
12452 /*
12453 * perf_event_release_kernel() could've stolen some of our
12454 * child events and still have them on its free_list. In that
12455 * case we must wait for these events to have been freed (in
12456 * particular all their references to this task must've been
12457 * dropped).
12458 *
12459 * Without this copy_process() will unconditionally free this
12460 * task (irrespective of its reference count) and
12461 * _free_event()'s put_task_struct(event->hw.target) will be a
12462 * use-after-free.
12463 *
12464 * Wait for all events to drop their context reference.
12465 */
12466 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12467 put_ctx(ctx); /* must be last */
12468 }
12469 }
12470
perf_event_delayed_put(struct task_struct * task)12471 void perf_event_delayed_put(struct task_struct *task)
12472 {
12473 int ctxn;
12474
12475 for_each_task_context_nr(ctxn)
12476 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12477 }
12478
perf_event_get(unsigned int fd)12479 struct file *perf_event_get(unsigned int fd)
12480 {
12481 struct file *file = fget(fd);
12482 if (!file)
12483 return ERR_PTR(-EBADF);
12484
12485 if (file->f_op != &perf_fops) {
12486 fput(file);
12487 return ERR_PTR(-EBADF);
12488 }
12489
12490 return file;
12491 }
12492
perf_get_event(struct file * file)12493 const struct perf_event *perf_get_event(struct file *file)
12494 {
12495 if (file->f_op != &perf_fops)
12496 return ERR_PTR(-EINVAL);
12497
12498 return file->private_data;
12499 }
12500
perf_event_attrs(struct perf_event * event)12501 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12502 {
12503 if (!event)
12504 return ERR_PTR(-EINVAL);
12505
12506 return &event->attr;
12507 }
12508
12509 /*
12510 * Inherit an event from parent task to child task.
12511 *
12512 * Returns:
12513 * - valid pointer on success
12514 * - NULL for orphaned events
12515 * - IS_ERR() on error
12516 */
12517 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)12518 inherit_event(struct perf_event *parent_event,
12519 struct task_struct *parent,
12520 struct perf_event_context *parent_ctx,
12521 struct task_struct *child,
12522 struct perf_event *group_leader,
12523 struct perf_event_context *child_ctx)
12524 {
12525 enum perf_event_state parent_state = parent_event->state;
12526 struct perf_event *child_event;
12527 unsigned long flags;
12528
12529 /*
12530 * Instead of creating recursive hierarchies of events,
12531 * we link inherited events back to the original parent,
12532 * which has a filp for sure, which we use as the reference
12533 * count:
12534 */
12535 if (parent_event->parent)
12536 parent_event = parent_event->parent;
12537
12538 child_event = perf_event_alloc(&parent_event->attr,
12539 parent_event->cpu,
12540 child,
12541 group_leader, parent_event,
12542 NULL, NULL, -1);
12543 if (IS_ERR(child_event))
12544 return child_event;
12545
12546
12547 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12548 !child_ctx->task_ctx_data) {
12549 struct pmu *pmu = child_event->pmu;
12550
12551 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12552 if (!child_ctx->task_ctx_data) {
12553 free_event(child_event);
12554 return ERR_PTR(-ENOMEM);
12555 }
12556 }
12557
12558 /*
12559 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12560 * must be under the same lock in order to serialize against
12561 * perf_event_release_kernel(), such that either we must observe
12562 * is_orphaned_event() or they will observe us on the child_list.
12563 */
12564 mutex_lock(&parent_event->child_mutex);
12565 if (is_orphaned_event(parent_event) ||
12566 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12567 mutex_unlock(&parent_event->child_mutex);
12568 /* task_ctx_data is freed with child_ctx */
12569 free_event(child_event);
12570 return NULL;
12571 }
12572
12573 get_ctx(child_ctx);
12574
12575 /*
12576 * Make the child state follow the state of the parent event,
12577 * not its attr.disabled bit. We hold the parent's mutex,
12578 * so we won't race with perf_event_{en, dis}able_family.
12579 */
12580 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12581 child_event->state = PERF_EVENT_STATE_INACTIVE;
12582 else
12583 child_event->state = PERF_EVENT_STATE_OFF;
12584
12585 if (parent_event->attr.freq) {
12586 u64 sample_period = parent_event->hw.sample_period;
12587 struct hw_perf_event *hwc = &child_event->hw;
12588
12589 hwc->sample_period = sample_period;
12590 hwc->last_period = sample_period;
12591
12592 local64_set(&hwc->period_left, sample_period);
12593 }
12594
12595 child_event->ctx = child_ctx;
12596 child_event->overflow_handler = parent_event->overflow_handler;
12597 child_event->overflow_handler_context
12598 = parent_event->overflow_handler_context;
12599
12600 /*
12601 * Precalculate sample_data sizes
12602 */
12603 perf_event__header_size(child_event);
12604 perf_event__id_header_size(child_event);
12605
12606 /*
12607 * Link it up in the child's context:
12608 */
12609 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12610 add_event_to_ctx(child_event, child_ctx);
12611 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12612
12613 /*
12614 * Link this into the parent event's child list
12615 */
12616 list_add_tail(&child_event->child_list, &parent_event->child_list);
12617 mutex_unlock(&parent_event->child_mutex);
12618
12619 return child_event;
12620 }
12621
12622 /*
12623 * Inherits an event group.
12624 *
12625 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12626 * This matches with perf_event_release_kernel() removing all child events.
12627 *
12628 * Returns:
12629 * - 0 on success
12630 * - <0 on error
12631 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)12632 static int inherit_group(struct perf_event *parent_event,
12633 struct task_struct *parent,
12634 struct perf_event_context *parent_ctx,
12635 struct task_struct *child,
12636 struct perf_event_context *child_ctx)
12637 {
12638 struct perf_event *leader;
12639 struct perf_event *sub;
12640 struct perf_event *child_ctr;
12641
12642 leader = inherit_event(parent_event, parent, parent_ctx,
12643 child, NULL, child_ctx);
12644 if (IS_ERR(leader))
12645 return PTR_ERR(leader);
12646 /*
12647 * @leader can be NULL here because of is_orphaned_event(). In this
12648 * case inherit_event() will create individual events, similar to what
12649 * perf_group_detach() would do anyway.
12650 */
12651 for_each_sibling_event(sub, parent_event) {
12652 child_ctr = inherit_event(sub, parent, parent_ctx,
12653 child, leader, child_ctx);
12654 if (IS_ERR(child_ctr))
12655 return PTR_ERR(child_ctr);
12656
12657 if (sub->aux_event == parent_event && child_ctr &&
12658 !perf_get_aux_event(child_ctr, leader))
12659 return -EINVAL;
12660 }
12661 return 0;
12662 }
12663
12664 /*
12665 * Creates the child task context and tries to inherit the event-group.
12666 *
12667 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12668 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12669 * consistent with perf_event_release_kernel() removing all child events.
12670 *
12671 * Returns:
12672 * - 0 on success
12673 * - <0 on error
12674 */
12675 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)12676 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12677 struct perf_event_context *parent_ctx,
12678 struct task_struct *child, int ctxn,
12679 int *inherited_all)
12680 {
12681 int ret;
12682 struct perf_event_context *child_ctx;
12683
12684 if (!event->attr.inherit) {
12685 *inherited_all = 0;
12686 return 0;
12687 }
12688
12689 child_ctx = child->perf_event_ctxp[ctxn];
12690 if (!child_ctx) {
12691 /*
12692 * This is executed from the parent task context, so
12693 * inherit events that have been marked for cloning.
12694 * First allocate and initialize a context for the
12695 * child.
12696 */
12697 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12698 if (!child_ctx)
12699 return -ENOMEM;
12700
12701 child->perf_event_ctxp[ctxn] = child_ctx;
12702 }
12703
12704 ret = inherit_group(event, parent, parent_ctx,
12705 child, child_ctx);
12706
12707 if (ret)
12708 *inherited_all = 0;
12709
12710 return ret;
12711 }
12712
12713 /*
12714 * Initialize the perf_event context in task_struct
12715 */
perf_event_init_context(struct task_struct * child,int ctxn)12716 static int perf_event_init_context(struct task_struct *child, int ctxn)
12717 {
12718 struct perf_event_context *child_ctx, *parent_ctx;
12719 struct perf_event_context *cloned_ctx;
12720 struct perf_event *event;
12721 struct task_struct *parent = current;
12722 int inherited_all = 1;
12723 unsigned long flags;
12724 int ret = 0;
12725
12726 if (likely(!parent->perf_event_ctxp[ctxn]))
12727 return 0;
12728
12729 /*
12730 * If the parent's context is a clone, pin it so it won't get
12731 * swapped under us.
12732 */
12733 parent_ctx = perf_pin_task_context(parent, ctxn);
12734 if (!parent_ctx)
12735 return 0;
12736
12737 /*
12738 * No need to check if parent_ctx != NULL here; since we saw
12739 * it non-NULL earlier, the only reason for it to become NULL
12740 * is if we exit, and since we're currently in the middle of
12741 * a fork we can't be exiting at the same time.
12742 */
12743
12744 /*
12745 * Lock the parent list. No need to lock the child - not PID
12746 * hashed yet and not running, so nobody can access it.
12747 */
12748 mutex_lock(&parent_ctx->mutex);
12749
12750 /*
12751 * We dont have to disable NMIs - we are only looking at
12752 * the list, not manipulating it:
12753 */
12754 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12755 ret = inherit_task_group(event, parent, parent_ctx,
12756 child, ctxn, &inherited_all);
12757 if (ret)
12758 goto out_unlock;
12759 }
12760
12761 /*
12762 * We can't hold ctx->lock when iterating the ->flexible_group list due
12763 * to allocations, but we need to prevent rotation because
12764 * rotate_ctx() will change the list from interrupt context.
12765 */
12766 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12767 parent_ctx->rotate_disable = 1;
12768 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12769
12770 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12771 ret = inherit_task_group(event, parent, parent_ctx,
12772 child, ctxn, &inherited_all);
12773 if (ret)
12774 goto out_unlock;
12775 }
12776
12777 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12778 parent_ctx->rotate_disable = 0;
12779
12780 child_ctx = child->perf_event_ctxp[ctxn];
12781
12782 if (child_ctx && inherited_all) {
12783 /*
12784 * Mark the child context as a clone of the parent
12785 * context, or of whatever the parent is a clone of.
12786 *
12787 * Note that if the parent is a clone, the holding of
12788 * parent_ctx->lock avoids it from being uncloned.
12789 */
12790 cloned_ctx = parent_ctx->parent_ctx;
12791 if (cloned_ctx) {
12792 child_ctx->parent_ctx = cloned_ctx;
12793 child_ctx->parent_gen = parent_ctx->parent_gen;
12794 } else {
12795 child_ctx->parent_ctx = parent_ctx;
12796 child_ctx->parent_gen = parent_ctx->generation;
12797 }
12798 get_ctx(child_ctx->parent_ctx);
12799 }
12800
12801 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12802 out_unlock:
12803 mutex_unlock(&parent_ctx->mutex);
12804
12805 perf_unpin_context(parent_ctx);
12806 put_ctx(parent_ctx);
12807
12808 return ret;
12809 }
12810
12811 /*
12812 * Initialize the perf_event context in task_struct
12813 */
perf_event_init_task(struct task_struct * child)12814 int perf_event_init_task(struct task_struct *child)
12815 {
12816 int ctxn, ret;
12817
12818 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12819 mutex_init(&child->perf_event_mutex);
12820 INIT_LIST_HEAD(&child->perf_event_list);
12821
12822 for_each_task_context_nr(ctxn) {
12823 ret = perf_event_init_context(child, ctxn);
12824 if (ret) {
12825 perf_event_free_task(child);
12826 return ret;
12827 }
12828 }
12829
12830 return 0;
12831 }
12832
perf_event_init_all_cpus(void)12833 static void __init perf_event_init_all_cpus(void)
12834 {
12835 struct swevent_htable *swhash;
12836 int cpu;
12837
12838 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12839
12840 for_each_possible_cpu(cpu) {
12841 swhash = &per_cpu(swevent_htable, cpu);
12842 mutex_init(&swhash->hlist_mutex);
12843 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12844
12845 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12846 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12847
12848 #ifdef CONFIG_CGROUP_PERF
12849 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12850 #endif
12851 }
12852 }
12853
perf_swevent_init_cpu(unsigned int cpu)12854 static void perf_swevent_init_cpu(unsigned int cpu)
12855 {
12856 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12857
12858 mutex_lock(&swhash->hlist_mutex);
12859 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12860 struct swevent_hlist *hlist;
12861
12862 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12863 WARN_ON(!hlist);
12864 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12865 }
12866 mutex_unlock(&swhash->hlist_mutex);
12867 }
12868
12869 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)12870 static void __perf_event_exit_context(void *__info)
12871 {
12872 struct perf_event_context *ctx = __info;
12873 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12874 struct perf_event *event;
12875
12876 raw_spin_lock(&ctx->lock);
12877 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12878 list_for_each_entry(event, &ctx->event_list, event_entry)
12879 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12880 raw_spin_unlock(&ctx->lock);
12881 }
12882
perf_event_exit_cpu_context(int cpu)12883 static void perf_event_exit_cpu_context(int cpu)
12884 {
12885 struct perf_cpu_context *cpuctx;
12886 struct perf_event_context *ctx;
12887 struct pmu *pmu;
12888
12889 mutex_lock(&pmus_lock);
12890 list_for_each_entry(pmu, &pmus, entry) {
12891 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12892 ctx = &cpuctx->ctx;
12893
12894 mutex_lock(&ctx->mutex);
12895 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12896 cpuctx->online = 0;
12897 mutex_unlock(&ctx->mutex);
12898 }
12899 cpumask_clear_cpu(cpu, perf_online_mask);
12900 mutex_unlock(&pmus_lock);
12901 }
12902 #else
12903
perf_event_exit_cpu_context(int cpu)12904 static void perf_event_exit_cpu_context(int cpu) { }
12905
12906 #endif
12907
perf_event_init_cpu(unsigned int cpu)12908 int perf_event_init_cpu(unsigned int cpu)
12909 {
12910 struct perf_cpu_context *cpuctx;
12911 struct perf_event_context *ctx;
12912 struct pmu *pmu;
12913
12914 perf_swevent_init_cpu(cpu);
12915
12916 mutex_lock(&pmus_lock);
12917 cpumask_set_cpu(cpu, perf_online_mask);
12918 list_for_each_entry(pmu, &pmus, entry) {
12919 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12920 ctx = &cpuctx->ctx;
12921
12922 mutex_lock(&ctx->mutex);
12923 cpuctx->online = 1;
12924 mutex_unlock(&ctx->mutex);
12925 }
12926 mutex_unlock(&pmus_lock);
12927
12928 return 0;
12929 }
12930
perf_event_exit_cpu(unsigned int cpu)12931 int perf_event_exit_cpu(unsigned int cpu)
12932 {
12933 perf_event_exit_cpu_context(cpu);
12934 return 0;
12935 }
12936
12937 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)12938 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12939 {
12940 int cpu;
12941
12942 for_each_online_cpu(cpu)
12943 perf_event_exit_cpu(cpu);
12944
12945 return NOTIFY_OK;
12946 }
12947
12948 /*
12949 * Run the perf reboot notifier at the very last possible moment so that
12950 * the generic watchdog code runs as long as possible.
12951 */
12952 static struct notifier_block perf_reboot_notifier = {
12953 .notifier_call = perf_reboot,
12954 .priority = INT_MIN,
12955 };
12956
perf_event_init(void)12957 void __init perf_event_init(void)
12958 {
12959 int ret;
12960
12961 idr_init(&pmu_idr);
12962
12963 perf_event_init_all_cpus();
12964 init_srcu_struct(&pmus_srcu);
12965 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12966 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12967 perf_pmu_register(&perf_task_clock, NULL, -1);
12968 perf_tp_register();
12969 perf_event_init_cpu(smp_processor_id());
12970 register_reboot_notifier(&perf_reboot_notifier);
12971
12972 ret = init_hw_breakpoint();
12973 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12974
12975 /*
12976 * Build time assertion that we keep the data_head at the intended
12977 * location. IOW, validation we got the __reserved[] size right.
12978 */
12979 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12980 != 1024);
12981 }
12982
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)12983 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12984 char *page)
12985 {
12986 struct perf_pmu_events_attr *pmu_attr =
12987 container_of(attr, struct perf_pmu_events_attr, attr);
12988
12989 if (pmu_attr->event_str)
12990 return sprintf(page, "%s\n", pmu_attr->event_str);
12991
12992 return 0;
12993 }
12994 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12995
perf_event_sysfs_init(void)12996 static int __init perf_event_sysfs_init(void)
12997 {
12998 struct pmu *pmu;
12999 int ret;
13000
13001 mutex_lock(&pmus_lock);
13002
13003 ret = bus_register(&pmu_bus);
13004 if (ret)
13005 goto unlock;
13006
13007 list_for_each_entry(pmu, &pmus, entry) {
13008 if (!pmu->name || pmu->type < 0)
13009 continue;
13010
13011 ret = pmu_dev_alloc(pmu);
13012 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13013 }
13014 pmu_bus_running = 1;
13015 ret = 0;
13016
13017 unlock:
13018 mutex_unlock(&pmus_lock);
13019
13020 return ret;
13021 }
13022 device_initcall(perf_event_sysfs_init);
13023
13024 #ifdef CONFIG_CGROUP_PERF
13025 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13026 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13027 {
13028 struct perf_cgroup *jc;
13029
13030 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13031 if (!jc)
13032 return ERR_PTR(-ENOMEM);
13033
13034 jc->info = alloc_percpu(struct perf_cgroup_info);
13035 if (!jc->info) {
13036 kfree(jc);
13037 return ERR_PTR(-ENOMEM);
13038 }
13039
13040 return &jc->css;
13041 }
13042
perf_cgroup_css_free(struct cgroup_subsys_state * css)13043 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13044 {
13045 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13046
13047 free_percpu(jc->info);
13048 kfree(jc);
13049 }
13050
perf_cgroup_css_online(struct cgroup_subsys_state * css)13051 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13052 {
13053 perf_event_cgroup(css->cgroup);
13054 return 0;
13055 }
13056
__perf_cgroup_move(void * info)13057 static int __perf_cgroup_move(void *info)
13058 {
13059 struct task_struct *task = info;
13060 rcu_read_lock();
13061 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13062 rcu_read_unlock();
13063 return 0;
13064 }
13065
perf_cgroup_attach(struct cgroup_taskset * tset)13066 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13067 {
13068 struct task_struct *task;
13069 struct cgroup_subsys_state *css;
13070
13071 cgroup_taskset_for_each(task, css, tset)
13072 task_function_call(task, __perf_cgroup_move, task);
13073 }
13074
13075 struct cgroup_subsys perf_event_cgrp_subsys = {
13076 .css_alloc = perf_cgroup_css_alloc,
13077 .css_free = perf_cgroup_css_free,
13078 .css_online = perf_cgroup_css_online,
13079 .attach = perf_cgroup_attach,
13080 /*
13081 * Implicitly enable on dfl hierarchy so that perf events can
13082 * always be filtered by cgroup2 path as long as perf_event
13083 * controller is not mounted on a legacy hierarchy.
13084 */
13085 .implicit_on_dfl = true,
13086 .threaded = true,
13087 };
13088 #endif /* CONFIG_CGROUP_PERF */
13089