1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "pmus.h"
14 #include "strbuf.h"
15
16 struct perf_env perf_env;
17
18 #ifdef HAVE_LIBBPF_SUPPORT
19 #include "bpf-event.h"
20 #include "bpf-utils.h"
21 #include <bpf/libbpf.h>
22
perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)23 void perf_env__insert_bpf_prog_info(struct perf_env *env,
24 struct bpf_prog_info_node *info_node)
25 {
26 __u32 prog_id = info_node->info_linear->info.id;
27 struct bpf_prog_info_node *node;
28 struct rb_node *parent = NULL;
29 struct rb_node **p;
30
31 down_write(&env->bpf_progs.lock);
32 p = &env->bpf_progs.infos.rb_node;
33
34 while (*p != NULL) {
35 parent = *p;
36 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
37 if (prog_id < node->info_linear->info.id) {
38 p = &(*p)->rb_left;
39 } else if (prog_id > node->info_linear->info.id) {
40 p = &(*p)->rb_right;
41 } else {
42 pr_debug("duplicated bpf prog info %u\n", prog_id);
43 goto out;
44 }
45 }
46
47 rb_link_node(&info_node->rb_node, parent, p);
48 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
49 env->bpf_progs.infos_cnt++;
50 out:
51 up_write(&env->bpf_progs.lock);
52 }
53
perf_env__find_bpf_prog_info(struct perf_env * env,__u32 prog_id)54 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
55 __u32 prog_id)
56 {
57 struct bpf_prog_info_node *node = NULL;
58 struct rb_node *n;
59
60 down_read(&env->bpf_progs.lock);
61 n = env->bpf_progs.infos.rb_node;
62
63 while (n) {
64 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
65 if (prog_id < node->info_linear->info.id)
66 n = n->rb_left;
67 else if (prog_id > node->info_linear->info.id)
68 n = n->rb_right;
69 else
70 goto out;
71 }
72 node = NULL;
73
74 out:
75 up_read(&env->bpf_progs.lock);
76 return node;
77 }
78
perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)79 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
80 {
81 struct rb_node *parent = NULL;
82 __u32 btf_id = btf_node->id;
83 struct btf_node *node;
84 struct rb_node **p;
85 bool ret = true;
86
87 down_write(&env->bpf_progs.lock);
88 p = &env->bpf_progs.btfs.rb_node;
89
90 while (*p != NULL) {
91 parent = *p;
92 node = rb_entry(parent, struct btf_node, rb_node);
93 if (btf_id < node->id) {
94 p = &(*p)->rb_left;
95 } else if (btf_id > node->id) {
96 p = &(*p)->rb_right;
97 } else {
98 pr_debug("duplicated btf %u\n", btf_id);
99 ret = false;
100 goto out;
101 }
102 }
103
104 rb_link_node(&btf_node->rb_node, parent, p);
105 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
106 env->bpf_progs.btfs_cnt++;
107 out:
108 up_write(&env->bpf_progs.lock);
109 return ret;
110 }
111
perf_env__find_btf(struct perf_env * env,__u32 btf_id)112 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
113 {
114 struct btf_node *node = NULL;
115 struct rb_node *n;
116
117 down_read(&env->bpf_progs.lock);
118 n = env->bpf_progs.btfs.rb_node;
119
120 while (n) {
121 node = rb_entry(n, struct btf_node, rb_node);
122 if (btf_id < node->id)
123 n = n->rb_left;
124 else if (btf_id > node->id)
125 n = n->rb_right;
126 else
127 goto out;
128 }
129 node = NULL;
130
131 out:
132 up_read(&env->bpf_progs.lock);
133 return node;
134 }
135
136 /* purge data in bpf_progs.infos tree */
perf_env__purge_bpf(struct perf_env * env)137 static void perf_env__purge_bpf(struct perf_env *env)
138 {
139 struct rb_root *root;
140 struct rb_node *next;
141
142 down_write(&env->bpf_progs.lock);
143
144 root = &env->bpf_progs.infos;
145 next = rb_first(root);
146
147 while (next) {
148 struct bpf_prog_info_node *node;
149
150 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
151 next = rb_next(&node->rb_node);
152 rb_erase(&node->rb_node, root);
153 zfree(&node->info_linear);
154 free(node);
155 }
156
157 env->bpf_progs.infos_cnt = 0;
158
159 root = &env->bpf_progs.btfs;
160 next = rb_first(root);
161
162 while (next) {
163 struct btf_node *node;
164
165 node = rb_entry(next, struct btf_node, rb_node);
166 next = rb_next(&node->rb_node);
167 rb_erase(&node->rb_node, root);
168 free(node);
169 }
170
171 env->bpf_progs.btfs_cnt = 0;
172
173 up_write(&env->bpf_progs.lock);
174 }
175 #else // HAVE_LIBBPF_SUPPORT
perf_env__purge_bpf(struct perf_env * env __maybe_unused)176 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
177 {
178 }
179 #endif // HAVE_LIBBPF_SUPPORT
180
perf_env__exit(struct perf_env * env)181 void perf_env__exit(struct perf_env *env)
182 {
183 int i, j;
184
185 perf_env__purge_bpf(env);
186 perf_env__purge_cgroups(env);
187 zfree(&env->hostname);
188 zfree(&env->os_release);
189 zfree(&env->version);
190 zfree(&env->arch);
191 zfree(&env->cpu_desc);
192 zfree(&env->cpuid);
193 zfree(&env->cmdline);
194 zfree(&env->cmdline_argv);
195 zfree(&env->sibling_dies);
196 zfree(&env->sibling_cores);
197 zfree(&env->sibling_threads);
198 zfree(&env->pmu_mappings);
199 zfree(&env->cpu);
200 for (i = 0; i < env->nr_cpu_pmu_caps; i++)
201 zfree(&env->cpu_pmu_caps[i]);
202 zfree(&env->cpu_pmu_caps);
203 zfree(&env->numa_map);
204
205 for (i = 0; i < env->nr_numa_nodes; i++)
206 perf_cpu_map__put(env->numa_nodes[i].map);
207 zfree(&env->numa_nodes);
208
209 for (i = 0; i < env->caches_cnt; i++)
210 cpu_cache_level__free(&env->caches[i]);
211 zfree(&env->caches);
212
213 for (i = 0; i < env->nr_memory_nodes; i++)
214 zfree(&env->memory_nodes[i].set);
215 zfree(&env->memory_nodes);
216
217 for (i = 0; i < env->nr_hybrid_nodes; i++) {
218 zfree(&env->hybrid_nodes[i].pmu_name);
219 zfree(&env->hybrid_nodes[i].cpus);
220 }
221 zfree(&env->hybrid_nodes);
222
223 for (i = 0; i < env->nr_pmus_with_caps; i++) {
224 for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
225 zfree(&env->pmu_caps[i].caps[j]);
226 zfree(&env->pmu_caps[i].caps);
227 zfree(&env->pmu_caps[i].pmu_name);
228 }
229 zfree(&env->pmu_caps);
230 }
231
perf_env__init(struct perf_env * env)232 void perf_env__init(struct perf_env *env)
233 {
234 #ifdef HAVE_LIBBPF_SUPPORT
235 env->bpf_progs.infos = RB_ROOT;
236 env->bpf_progs.btfs = RB_ROOT;
237 init_rwsem(&env->bpf_progs.lock);
238 #endif
239 env->kernel_is_64_bit = -1;
240 }
241
perf_env__init_kernel_mode(struct perf_env * env)242 static void perf_env__init_kernel_mode(struct perf_env *env)
243 {
244 const char *arch = perf_env__raw_arch(env);
245
246 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
247 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
248 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
249 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
250 env->kernel_is_64_bit = 1;
251 else
252 env->kernel_is_64_bit = 0;
253 }
254
perf_env__kernel_is_64_bit(struct perf_env * env)255 int perf_env__kernel_is_64_bit(struct perf_env *env)
256 {
257 if (env->kernel_is_64_bit == -1)
258 perf_env__init_kernel_mode(env);
259
260 return env->kernel_is_64_bit;
261 }
262
perf_env__set_cmdline(struct perf_env * env,int argc,const char * argv[])263 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
264 {
265 int i;
266
267 /* do not include NULL termination */
268 env->cmdline_argv = calloc(argc, sizeof(char *));
269 if (env->cmdline_argv == NULL)
270 goto out_enomem;
271
272 /*
273 * Must copy argv contents because it gets moved around during option
274 * parsing:
275 */
276 for (i = 0; i < argc ; i++) {
277 env->cmdline_argv[i] = argv[i];
278 if (env->cmdline_argv[i] == NULL)
279 goto out_free;
280 }
281
282 env->nr_cmdline = argc;
283
284 return 0;
285 out_free:
286 zfree(&env->cmdline_argv);
287 out_enomem:
288 return -ENOMEM;
289 }
290
perf_env__read_cpu_topology_map(struct perf_env * env)291 int perf_env__read_cpu_topology_map(struct perf_env *env)
292 {
293 int idx, nr_cpus;
294
295 if (env->cpu != NULL)
296 return 0;
297
298 if (env->nr_cpus_avail == 0)
299 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
300
301 nr_cpus = env->nr_cpus_avail;
302 if (nr_cpus == -1)
303 return -EINVAL;
304
305 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
306 if (env->cpu == NULL)
307 return -ENOMEM;
308
309 for (idx = 0; idx < nr_cpus; ++idx) {
310 struct perf_cpu cpu = { .cpu = idx };
311
312 env->cpu[idx].core_id = cpu__get_core_id(cpu);
313 env->cpu[idx].socket_id = cpu__get_socket_id(cpu);
314 env->cpu[idx].die_id = cpu__get_die_id(cpu);
315 }
316
317 env->nr_cpus_avail = nr_cpus;
318 return 0;
319 }
320
perf_env__read_pmu_mappings(struct perf_env * env)321 int perf_env__read_pmu_mappings(struct perf_env *env)
322 {
323 struct perf_pmu *pmu = NULL;
324 u32 pmu_num = 0;
325 struct strbuf sb;
326
327 while ((pmu = perf_pmus__scan(pmu)))
328 pmu_num++;
329
330 if (!pmu_num) {
331 pr_debug("pmu mappings not available\n");
332 return -ENOENT;
333 }
334 env->nr_pmu_mappings = pmu_num;
335
336 if (strbuf_init(&sb, 128 * pmu_num) < 0)
337 return -ENOMEM;
338
339 while ((pmu = perf_pmus__scan(pmu))) {
340 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
341 goto error;
342 /* include a NULL character at the end */
343 if (strbuf_add(&sb, "", 1) < 0)
344 goto error;
345 }
346
347 env->pmu_mappings = strbuf_detach(&sb, NULL);
348
349 return 0;
350
351 error:
352 strbuf_release(&sb);
353 return -1;
354 }
355
perf_env__read_cpuid(struct perf_env * env)356 int perf_env__read_cpuid(struct perf_env *env)
357 {
358 char cpuid[128];
359 int err = get_cpuid(cpuid, sizeof(cpuid));
360
361 if (err)
362 return err;
363
364 free(env->cpuid);
365 env->cpuid = strdup(cpuid);
366 if (env->cpuid == NULL)
367 return ENOMEM;
368 return 0;
369 }
370
perf_env__read_arch(struct perf_env * env)371 static int perf_env__read_arch(struct perf_env *env)
372 {
373 struct utsname uts;
374
375 if (env->arch)
376 return 0;
377
378 if (!uname(&uts))
379 env->arch = strdup(uts.machine);
380
381 return env->arch ? 0 : -ENOMEM;
382 }
383
perf_env__read_nr_cpus_avail(struct perf_env * env)384 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
385 {
386 if (env->nr_cpus_avail == 0)
387 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
388
389 return env->nr_cpus_avail ? 0 : -ENOENT;
390 }
391
perf_env__raw_arch(struct perf_env * env)392 const char *perf_env__raw_arch(struct perf_env *env)
393 {
394 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
395 }
396
perf_env__nr_cpus_avail(struct perf_env * env)397 int perf_env__nr_cpus_avail(struct perf_env *env)
398 {
399 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
400 }
401
cpu_cache_level__free(struct cpu_cache_level * cache)402 void cpu_cache_level__free(struct cpu_cache_level *cache)
403 {
404 zfree(&cache->type);
405 zfree(&cache->map);
406 zfree(&cache->size);
407 }
408
409 /*
410 * Return architecture name in a normalized form.
411 * The conversion logic comes from the Makefile.
412 */
normalize_arch(char * arch)413 static const char *normalize_arch(char *arch)
414 {
415 if (!strcmp(arch, "x86_64"))
416 return "x86";
417 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
418 return "x86";
419 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
420 return "sparc";
421 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
422 return "arm64";
423 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
424 return "arm";
425 if (!strncmp(arch, "s390", 4))
426 return "s390";
427 if (!strncmp(arch, "parisc", 6))
428 return "parisc";
429 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
430 return "powerpc";
431 if (!strncmp(arch, "mips", 4))
432 return "mips";
433 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
434 return "sh";
435 if (!strncmp(arch, "loongarch", 9))
436 return "loongarch";
437
438 return arch;
439 }
440
perf_env__arch(struct perf_env * env)441 const char *perf_env__arch(struct perf_env *env)
442 {
443 char *arch_name;
444
445 if (!env || !env->arch) { /* Assume local operation */
446 static struct utsname uts = { .machine[0] = '\0', };
447 if (uts.machine[0] == '\0' && uname(&uts) < 0)
448 return NULL;
449 arch_name = uts.machine;
450 } else
451 arch_name = env->arch;
452
453 return normalize_arch(arch_name);
454 }
455
perf_env__cpuid(struct perf_env * env)456 const char *perf_env__cpuid(struct perf_env *env)
457 {
458 int status;
459
460 if (!env || !env->cpuid) { /* Assume local operation */
461 status = perf_env__read_cpuid(env);
462 if (status)
463 return NULL;
464 }
465
466 return env->cpuid;
467 }
468
perf_env__nr_pmu_mappings(struct perf_env * env)469 int perf_env__nr_pmu_mappings(struct perf_env *env)
470 {
471 int status;
472
473 if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
474 status = perf_env__read_pmu_mappings(env);
475 if (status)
476 return 0;
477 }
478
479 return env->nr_pmu_mappings;
480 }
481
perf_env__pmu_mappings(struct perf_env * env)482 const char *perf_env__pmu_mappings(struct perf_env *env)
483 {
484 int status;
485
486 if (!env || !env->pmu_mappings) { /* Assume local operation */
487 status = perf_env__read_pmu_mappings(env);
488 if (status)
489 return NULL;
490 }
491
492 return env->pmu_mappings;
493 }
494
perf_env__numa_node(struct perf_env * env,struct perf_cpu cpu)495 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
496 {
497 if (!env->nr_numa_map) {
498 struct numa_node *nn;
499 int i, nr = 0;
500
501 for (i = 0; i < env->nr_numa_nodes; i++) {
502 nn = &env->numa_nodes[i];
503 nr = max(nr, perf_cpu_map__max(nn->map).cpu);
504 }
505
506 nr++;
507
508 /*
509 * We initialize the numa_map array to prepare
510 * it for missing cpus, which return node -1
511 */
512 env->numa_map = malloc(nr * sizeof(int));
513 if (!env->numa_map)
514 return -1;
515
516 for (i = 0; i < nr; i++)
517 env->numa_map[i] = -1;
518
519 env->nr_numa_map = nr;
520
521 for (i = 0; i < env->nr_numa_nodes; i++) {
522 struct perf_cpu tmp;
523 int j;
524
525 nn = &env->numa_nodes[i];
526 perf_cpu_map__for_each_cpu(tmp, j, nn->map)
527 env->numa_map[tmp.cpu] = i;
528 }
529 }
530
531 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
532 }
533
perf_env__find_pmu_cap(struct perf_env * env,const char * pmu_name,const char * cap)534 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
535 const char *cap)
536 {
537 char *cap_eq;
538 int cap_size;
539 char **ptr;
540 int i, j;
541
542 if (!pmu_name || !cap)
543 return NULL;
544
545 cap_size = strlen(cap);
546 cap_eq = zalloc(cap_size + 2);
547 if (!cap_eq)
548 return NULL;
549
550 memcpy(cap_eq, cap, cap_size);
551 cap_eq[cap_size] = '=';
552
553 if (!strcmp(pmu_name, "cpu")) {
554 for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
555 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
556 free(cap_eq);
557 return &env->cpu_pmu_caps[i][cap_size + 1];
558 }
559 }
560 goto out;
561 }
562
563 for (i = 0; i < env->nr_pmus_with_caps; i++) {
564 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
565 continue;
566
567 ptr = env->pmu_caps[i].caps;
568
569 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
570 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
571 free(cap_eq);
572 return &ptr[j][cap_size + 1];
573 }
574 }
575 }
576
577 out:
578 free(cap_eq);
579 return NULL;
580 }
581