1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "%s: " fmt, __func__
3
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/wait.h>
7 #include <linux/slab.h>
8 #include <linux/mm.h>
9 #include <linux/percpu-refcount.h>
10
11 /*
12 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
13 * don't try to detect the ref hitting 0 - which means that get/put can just
14 * increment or decrement the local counter. Note that the counter on a
15 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
16 * percpu counters will all sum to the correct value
17 *
18 * (More precisely: because modular arithmetic is commutative the sum of all the
19 * percpu_count vars will be equal to what it would have been if all the gets
20 * and puts were done to a single integer, even if some of the percpu integers
21 * overflow or underflow).
22 *
23 * The real trick to implementing percpu refcounts is shutdown. We can't detect
24 * the ref hitting 0 on every put - this would require global synchronization
25 * and defeat the whole purpose of using percpu refs.
26 *
27 * What we do is require the user to keep track of the initial refcount; we know
28 * the ref can't hit 0 before the user drops the initial ref, so as long as we
29 * convert to non percpu mode before the initial ref is dropped everything
30 * works.
31 *
32 * Converting to non percpu mode is done with some RCUish stuff in
33 * percpu_ref_kill. Additionally, we need a bias value so that the
34 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
35 */
36
37 #define PERCPU_COUNT_BIAS (1LU << (BITS_PER_LONG - 1))
38
39 static DEFINE_SPINLOCK(percpu_ref_switch_lock);
40 static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
41
percpu_count_ptr(struct percpu_ref * ref)42 static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
43 {
44 return (unsigned long __percpu *)
45 (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
46 }
47
48 /**
49 * percpu_ref_init - initialize a percpu refcount
50 * @ref: percpu_ref to initialize
51 * @release: function which will be called when refcount hits 0
52 * @flags: PERCPU_REF_INIT_* flags
53 * @gfp: allocation mask to use
54 *
55 * Initializes @ref. @ref starts out in percpu mode with a refcount of 1 unless
56 * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD. These flags
57 * change the start state to atomic with the latter setting the initial refcount
58 * to 0. See the definitions of PERCPU_REF_INIT_* flags for flag behaviors.
59 *
60 * Note that @release must not sleep - it may potentially be called from RCU
61 * callback context by percpu_ref_kill().
62 */
percpu_ref_init(struct percpu_ref * ref,percpu_ref_func_t * release,unsigned int flags,gfp_t gfp)63 int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
64 unsigned int flags, gfp_t gfp)
65 {
66 size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
67 __alignof__(unsigned long));
68 unsigned long start_count = 0;
69 struct percpu_ref_data *data;
70
71 ref->percpu_count_ptr = (unsigned long)
72 __alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
73 if (!ref->percpu_count_ptr)
74 return -ENOMEM;
75
76 data = kzalloc(sizeof(*ref->data), gfp);
77 if (!data) {
78 free_percpu((void __percpu *)ref->percpu_count_ptr);
79 ref->percpu_count_ptr = 0;
80 return -ENOMEM;
81 }
82
83 data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
84 data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT;
85
86 if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) {
87 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
88 data->allow_reinit = true;
89 } else {
90 start_count += PERCPU_COUNT_BIAS;
91 }
92
93 if (flags & PERCPU_REF_INIT_DEAD)
94 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
95 else
96 start_count++;
97
98 atomic_long_set(&data->count, start_count);
99
100 data->release = release;
101 data->confirm_switch = NULL;
102 data->ref = ref;
103 ref->data = data;
104 return 0;
105 }
106 EXPORT_SYMBOL_GPL(percpu_ref_init);
107
__percpu_ref_exit(struct percpu_ref * ref)108 static void __percpu_ref_exit(struct percpu_ref *ref)
109 {
110 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
111
112 if (percpu_count) {
113 /* non-NULL confirm_switch indicates switching in progress */
114 WARN_ON_ONCE(ref->data && ref->data->confirm_switch);
115 free_percpu(percpu_count);
116 ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
117 }
118 }
119
120 /**
121 * percpu_ref_exit - undo percpu_ref_init()
122 * @ref: percpu_ref to exit
123 *
124 * This function exits @ref. The caller is responsible for ensuring that
125 * @ref is no longer in active use. The usual places to invoke this
126 * function from are the @ref->release() callback or in init failure path
127 * where percpu_ref_init() succeeded but other parts of the initialization
128 * of the embedding object failed.
129 */
percpu_ref_exit(struct percpu_ref * ref)130 void percpu_ref_exit(struct percpu_ref *ref)
131 {
132 struct percpu_ref_data *data = ref->data;
133 unsigned long flags;
134
135 __percpu_ref_exit(ref);
136
137 if (!data)
138 return;
139
140 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
141 ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) <<
142 __PERCPU_REF_FLAG_BITS;
143 ref->data = NULL;
144 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
145
146 kfree(data);
147 }
148 EXPORT_SYMBOL_GPL(percpu_ref_exit);
149
percpu_ref_call_confirm_rcu(struct rcu_head * rcu)150 static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
151 {
152 struct percpu_ref_data *data = container_of(rcu,
153 struct percpu_ref_data, rcu);
154 struct percpu_ref *ref = data->ref;
155
156 data->confirm_switch(ref);
157 data->confirm_switch = NULL;
158 wake_up_all(&percpu_ref_switch_waitq);
159
160 if (!data->allow_reinit)
161 __percpu_ref_exit(ref);
162
163 /* drop ref from percpu_ref_switch_to_atomic() */
164 percpu_ref_put(ref);
165 }
166
percpu_ref_switch_to_atomic_rcu(struct rcu_head * rcu)167 static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
168 {
169 struct percpu_ref_data *data = container_of(rcu,
170 struct percpu_ref_data, rcu);
171 struct percpu_ref *ref = data->ref;
172 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
173 static atomic_t underflows;
174 unsigned long count = 0;
175 int cpu;
176
177 for_each_possible_cpu(cpu)
178 count += *per_cpu_ptr(percpu_count, cpu);
179
180 pr_debug("global %lu percpu %lu\n",
181 atomic_long_read(&data->count), count);
182
183 /*
184 * It's crucial that we sum the percpu counters _before_ adding the sum
185 * to &ref->count; since gets could be happening on one cpu while puts
186 * happen on another, adding a single cpu's count could cause
187 * @ref->count to hit 0 before we've got a consistent value - but the
188 * sum of all the counts will be consistent and correct.
189 *
190 * Subtracting the bias value then has to happen _after_ adding count to
191 * &ref->count; we need the bias value to prevent &ref->count from
192 * reaching 0 before we add the percpu counts. But doing it at the same
193 * time is equivalent and saves us atomic operations:
194 */
195 atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count);
196
197 if (WARN_ONCE(atomic_long_read(&data->count) <= 0,
198 "percpu ref (%ps) <= 0 (%ld) after switching to atomic",
199 data->release, atomic_long_read(&data->count)) &&
200 atomic_inc_return(&underflows) < 4) {
201 pr_err("%s(): percpu_ref underflow", __func__);
202 mem_dump_obj(data);
203 }
204
205 /* @ref is viewed as dead on all CPUs, send out switch confirmation */
206 percpu_ref_call_confirm_rcu(rcu);
207 }
208
percpu_ref_noop_confirm_switch(struct percpu_ref * ref)209 static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
210 {
211 }
212
__percpu_ref_switch_to_atomic(struct percpu_ref * ref,percpu_ref_func_t * confirm_switch)213 static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
214 percpu_ref_func_t *confirm_switch)
215 {
216 if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
217 if (confirm_switch)
218 confirm_switch(ref);
219 return;
220 }
221
222 /* switching from percpu to atomic */
223 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
224
225 /*
226 * Non-NULL ->confirm_switch is used to indicate that switching is
227 * in progress. Use noop one if unspecified.
228 */
229 ref->data->confirm_switch = confirm_switch ?:
230 percpu_ref_noop_confirm_switch;
231
232 percpu_ref_get(ref); /* put after confirmation */
233 call_rcu(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu);
234 }
235
__percpu_ref_switch_to_percpu(struct percpu_ref * ref)236 static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
237 {
238 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
239 int cpu;
240
241 BUG_ON(!percpu_count);
242
243 if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
244 return;
245
246 if (WARN_ON_ONCE(!ref->data->allow_reinit))
247 return;
248
249 atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count);
250
251 /*
252 * Restore per-cpu operation. smp_store_release() is paired
253 * with READ_ONCE() in __ref_is_percpu() and guarantees that the
254 * zeroing is visible to all percpu accesses which can see the
255 * following __PERCPU_REF_ATOMIC clearing.
256 */
257 for_each_possible_cpu(cpu)
258 *per_cpu_ptr(percpu_count, cpu) = 0;
259
260 smp_store_release(&ref->percpu_count_ptr,
261 ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
262 }
263
__percpu_ref_switch_mode(struct percpu_ref * ref,percpu_ref_func_t * confirm_switch)264 static void __percpu_ref_switch_mode(struct percpu_ref *ref,
265 percpu_ref_func_t *confirm_switch)
266 {
267 struct percpu_ref_data *data = ref->data;
268
269 lockdep_assert_held(&percpu_ref_switch_lock);
270
271 /*
272 * If the previous ATOMIC switching hasn't finished yet, wait for
273 * its completion. If the caller ensures that ATOMIC switching
274 * isn't in progress, this function can be called from any context.
275 */
276 wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch,
277 percpu_ref_switch_lock);
278
279 if (data->force_atomic || percpu_ref_is_dying(ref))
280 __percpu_ref_switch_to_atomic(ref, confirm_switch);
281 else
282 __percpu_ref_switch_to_percpu(ref);
283 }
284
285 /**
286 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
287 * @ref: percpu_ref to switch to atomic mode
288 * @confirm_switch: optional confirmation callback
289 *
290 * There's no reason to use this function for the usual reference counting.
291 * Use percpu_ref_kill[_and_confirm]().
292 *
293 * Schedule switching of @ref to atomic mode. All its percpu counts will
294 * be collected to the main atomic counter. On completion, when all CPUs
295 * are guaraneed to be in atomic mode, @confirm_switch, which may not
296 * block, is invoked. This function may be invoked concurrently with all
297 * the get/put operations and can safely be mixed with kill and reinit
298 * operations. Note that @ref will stay in atomic mode across kill/reinit
299 * cycles until percpu_ref_switch_to_percpu() is called.
300 *
301 * This function may block if @ref is in the process of switching to atomic
302 * mode. If the caller ensures that @ref is not in the process of
303 * switching to atomic mode, this function can be called from any context.
304 */
percpu_ref_switch_to_atomic(struct percpu_ref * ref,percpu_ref_func_t * confirm_switch)305 void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
306 percpu_ref_func_t *confirm_switch)
307 {
308 unsigned long flags;
309
310 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
311
312 ref->data->force_atomic = true;
313 __percpu_ref_switch_mode(ref, confirm_switch);
314
315 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);
318
319 /**
320 * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
321 * @ref: percpu_ref to switch to atomic mode
322 *
323 * Schedule switching the ref to atomic mode, and wait for the
324 * switch to complete. Caller must ensure that no other thread
325 * will switch back to percpu mode.
326 */
percpu_ref_switch_to_atomic_sync(struct percpu_ref * ref)327 void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
328 {
329 percpu_ref_switch_to_atomic(ref, NULL);
330 wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch);
331 }
332 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);
333
334 /**
335 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
336 * @ref: percpu_ref to switch to percpu mode
337 *
338 * There's no reason to use this function for the usual reference counting.
339 * To re-use an expired ref, use percpu_ref_reinit().
340 *
341 * Switch @ref to percpu mode. This function may be invoked concurrently
342 * with all the get/put operations and can safely be mixed with kill and
343 * reinit operations. This function reverses the sticky atomic state set
344 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic(). If @ref is
345 * dying or dead, the actual switching takes place on the following
346 * percpu_ref_reinit().
347 *
348 * This function may block if @ref is in the process of switching to atomic
349 * mode. If the caller ensures that @ref is not in the process of
350 * switching to atomic mode, this function can be called from any context.
351 */
percpu_ref_switch_to_percpu(struct percpu_ref * ref)352 void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
353 {
354 unsigned long flags;
355
356 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
357
358 ref->data->force_atomic = false;
359 __percpu_ref_switch_mode(ref, NULL);
360
361 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
362 }
363 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);
364
365 /**
366 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
367 * @ref: percpu_ref to kill
368 * @confirm_kill: optional confirmation callback
369 *
370 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
371 * @confirm_kill is not NULL. @confirm_kill, which may not block, will be
372 * called after @ref is seen as dead from all CPUs at which point all
373 * further invocations of percpu_ref_tryget_live() will fail. See
374 * percpu_ref_tryget_live() for details.
375 *
376 * This function normally doesn't block and can be called from any context
377 * but it may block if @confirm_kill is specified and @ref is in the
378 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
379 *
380 * There are no implied RCU grace periods between kill and release.
381 */
percpu_ref_kill_and_confirm(struct percpu_ref * ref,percpu_ref_func_t * confirm_kill)382 void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
383 percpu_ref_func_t *confirm_kill)
384 {
385 unsigned long flags;
386
387 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
388
389 WARN_ONCE(percpu_ref_is_dying(ref),
390 "%s called more than once on %ps!", __func__,
391 ref->data->release);
392
393 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
394 __percpu_ref_switch_mode(ref, confirm_kill);
395 percpu_ref_put(ref);
396
397 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
398 }
399 EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
400
401 /**
402 * percpu_ref_is_zero - test whether a percpu refcount reached zero
403 * @ref: percpu_ref to test
404 *
405 * Returns %true if @ref reached zero.
406 *
407 * This function is safe to call as long as @ref is between init and exit.
408 */
percpu_ref_is_zero(struct percpu_ref * ref)409 bool percpu_ref_is_zero(struct percpu_ref *ref)
410 {
411 unsigned long __percpu *percpu_count;
412 unsigned long count, flags;
413
414 if (__ref_is_percpu(ref, &percpu_count))
415 return false;
416
417 /* protect us from being destroyed */
418 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
419 if (ref->data)
420 count = atomic_long_read(&ref->data->count);
421 else
422 count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS;
423 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
424
425 return count == 0;
426 }
427 EXPORT_SYMBOL_GPL(percpu_ref_is_zero);
428
429 /**
430 * percpu_ref_reinit - re-initialize a percpu refcount
431 * @ref: perpcu_ref to re-initialize
432 *
433 * Re-initialize @ref so that it's in the same state as when it finished
434 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD. @ref must have been
435 * initialized successfully and reached 0 but not exited.
436 *
437 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
438 * this function is in progress.
439 */
percpu_ref_reinit(struct percpu_ref * ref)440 void percpu_ref_reinit(struct percpu_ref *ref)
441 {
442 WARN_ON_ONCE(!percpu_ref_is_zero(ref));
443
444 percpu_ref_resurrect(ref);
445 }
446 EXPORT_SYMBOL_GPL(percpu_ref_reinit);
447
448 /**
449 * percpu_ref_resurrect - modify a percpu refcount from dead to live
450 * @ref: perpcu_ref to resurrect
451 *
452 * Modify @ref so that it's in the same state as before percpu_ref_kill() was
453 * called. @ref must be dead but must not yet have exited.
454 *
455 * If @ref->release() frees @ref then the caller is responsible for
456 * guaranteeing that @ref->release() does not get called while this
457 * function is in progress.
458 *
459 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
460 * this function is in progress.
461 */
percpu_ref_resurrect(struct percpu_ref * ref)462 void percpu_ref_resurrect(struct percpu_ref *ref)
463 {
464 unsigned long __percpu *percpu_count;
465 unsigned long flags;
466
467 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
468
469 WARN_ON_ONCE(!percpu_ref_is_dying(ref));
470 WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count));
471
472 ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
473 percpu_ref_get(ref);
474 __percpu_ref_switch_mode(ref, NULL);
475
476 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
477 }
478 EXPORT_SYMBOL_GPL(percpu_ref_resurrect);
479