1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61
62 struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73 };
74
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78 struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86 } __packed;
87
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91 };
92
93 /*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113 struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117 };
118
119 struct task_struct;
120
121 /*
122 * extra PMU register associated with an event
123 */
124 struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129 };
130
131 /**
132 * struct hw_perf_event - performance event hardware details:
133 */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171 #endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195 /*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 union {
216 struct { /* Sampling */
217 /*
218 * The period we started this sample with.
219 */
220 u64 last_period;
221
222 /*
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
227 */
228 local64_t period_left;
229 };
230 struct { /* Topdown events counting for context switch */
231 u64 saved_metric;
232 u64 saved_slots;
233 };
234 };
235
236 /*
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
239 */
240 u64 interrupts_seq;
241 u64 interrupts;
242
243 /*
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
246 */
247 u64 freq_time_stamp;
248 u64 freq_count_stamp;
249 #endif
250 };
251
252 struct perf_event;
253
254 /*
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
256 */
257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259
260 /**
261 * pmu::capabilities flags
262 */
263 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
264 #define PERF_PMU_CAP_NO_NMI 0x0002
265 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
266 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
267 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
268 #define PERF_PMU_CAP_ITRACE 0x0020
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040
270 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080
271 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100
272 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200
273
274 struct perf_output_handle;
275
276 /**
277 * struct pmu - generic performance monitoring unit
278 */
279 struct pmu {
280 struct list_head entry;
281
282 struct module *module;
283 struct device *dev;
284 const struct attribute_group **attr_groups;
285 const struct attribute_group **attr_update;
286 const char *name;
287 int type;
288
289 /*
290 * various common per-pmu feature flags
291 */
292 int capabilities;
293
294 int __percpu *pmu_disable_count;
295 struct perf_cpu_context __percpu *pmu_cpu_context;
296 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
297 int task_ctx_nr;
298 int hrtimer_interval_ms;
299
300 /* number of address filters this PMU can do */
301 unsigned int nr_addr_filters;
302
303 /*
304 * Fully disable/enable this PMU, can be used to protect from the PMI
305 * as well as for lazy/batch writing of the MSRs.
306 */
307 void (*pmu_enable) (struct pmu *pmu); /* optional */
308 void (*pmu_disable) (struct pmu *pmu); /* optional */
309
310 /*
311 * Try and initialize the event for this PMU.
312 *
313 * Returns:
314 * -ENOENT -- @event is not for this PMU
315 *
316 * -ENODEV -- @event is for this PMU but PMU not present
317 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
318 * -EINVAL -- @event is for this PMU but @event is not valid
319 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
320 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
321 *
322 * 0 -- @event is for this PMU and valid
323 *
324 * Other error return values are allowed.
325 */
326 int (*event_init) (struct perf_event *event);
327
328 /*
329 * Notification that the event was mapped or unmapped. Called
330 * in the context of the mapping task.
331 */
332 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
334
335 /*
336 * Flags for ->add()/->del()/ ->start()/->stop(). There are
337 * matching hw_perf_event::state flags.
338 */
339 #define PERF_EF_START 0x01 /* start the counter when adding */
340 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
341 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
342
343 /*
344 * Adds/Removes a counter to/from the PMU, can be done inside a
345 * transaction, see the ->*_txn() methods.
346 *
347 * The add/del callbacks will reserve all hardware resources required
348 * to service the event, this includes any counter constraint
349 * scheduling etc.
350 *
351 * Called with IRQs disabled and the PMU disabled on the CPU the event
352 * is on.
353 *
354 * ->add() called without PERF_EF_START should result in the same state
355 * as ->add() followed by ->stop().
356 *
357 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
358 * ->stop() that must deal with already being stopped without
359 * PERF_EF_UPDATE.
360 */
361 int (*add) (struct perf_event *event, int flags);
362 void (*del) (struct perf_event *event, int flags);
363
364 /*
365 * Starts/Stops a counter present on the PMU.
366 *
367 * The PMI handler should stop the counter when perf_event_overflow()
368 * returns !0. ->start() will be used to continue.
369 *
370 * Also used to change the sample period.
371 *
372 * Called with IRQs disabled and the PMU disabled on the CPU the event
373 * is on -- will be called from NMI context with the PMU generates
374 * NMIs.
375 *
376 * ->stop() with PERF_EF_UPDATE will read the counter and update
377 * period/count values like ->read() would.
378 *
379 * ->start() with PERF_EF_RELOAD will reprogram the counter
380 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
381 */
382 void (*start) (struct perf_event *event, int flags);
383 void (*stop) (struct perf_event *event, int flags);
384
385 /*
386 * Updates the counter value of the event.
387 *
388 * For sampling capable PMUs this will also update the software period
389 * hw_perf_event::period_left field.
390 */
391 void (*read) (struct perf_event *event);
392
393 /*
394 * Group events scheduling is treated as a transaction, add
395 * group events as a whole and perform one schedulability test.
396 * If the test fails, roll back the whole group
397 *
398 * Start the transaction, after this ->add() doesn't need to
399 * do schedulability tests.
400 *
401 * Optional.
402 */
403 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
404 /*
405 * If ->start_txn() disabled the ->add() schedulability test
406 * then ->commit_txn() is required to perform one. On success
407 * the transaction is closed. On error the transaction is kept
408 * open until ->cancel_txn() is called.
409 *
410 * Optional.
411 */
412 int (*commit_txn) (struct pmu *pmu);
413 /*
414 * Will cancel the transaction, assumes ->del() is called
415 * for each successful ->add() during the transaction.
416 *
417 * Optional.
418 */
419 void (*cancel_txn) (struct pmu *pmu);
420
421 /*
422 * Will return the value for perf_event_mmap_page::index for this event,
423 * if no implementation is provided it will default to: event->hw.idx + 1.
424 */
425 int (*event_idx) (struct perf_event *event); /*optional */
426
427 /*
428 * context-switches callback
429 */
430 void (*sched_task) (struct perf_event_context *ctx,
431 bool sched_in);
432
433 /*
434 * Kmem cache of PMU specific data
435 */
436 struct kmem_cache *task_ctx_cache;
437
438 /*
439 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
440 * can be synchronized using this function. See Intel LBR callstack support
441 * implementation and Perf core context switch handling callbacks for usage
442 * examples.
443 */
444 void (*swap_task_ctx) (struct perf_event_context *prev,
445 struct perf_event_context *next);
446 /* optional */
447
448 /*
449 * Set up pmu-private data structures for an AUX area
450 */
451 void *(*setup_aux) (struct perf_event *event, void **pages,
452 int nr_pages, bool overwrite);
453 /* optional */
454
455 /*
456 * Free pmu-private AUX data structures
457 */
458 void (*free_aux) (void *aux); /* optional */
459
460 /*
461 * Take a snapshot of the AUX buffer without touching the event
462 * state, so that preempting ->start()/->stop() callbacks does
463 * not interfere with their logic. Called in PMI context.
464 *
465 * Returns the size of AUX data copied to the output handle.
466 *
467 * Optional.
468 */
469 long (*snapshot_aux) (struct perf_event *event,
470 struct perf_output_handle *handle,
471 unsigned long size);
472
473 /*
474 * Validate address range filters: make sure the HW supports the
475 * requested configuration and number of filters; return 0 if the
476 * supplied filters are valid, -errno otherwise.
477 *
478 * Runs in the context of the ioctl()ing process and is not serialized
479 * with the rest of the PMU callbacks.
480 */
481 int (*addr_filters_validate) (struct list_head *filters);
482 /* optional */
483
484 /*
485 * Synchronize address range filter configuration:
486 * translate hw-agnostic filters into hardware configuration in
487 * event::hw::addr_filters.
488 *
489 * Runs as a part of filter sync sequence that is done in ->start()
490 * callback by calling perf_event_addr_filters_sync().
491 *
492 * May (and should) traverse event::addr_filters::list, for which its
493 * caller provides necessary serialization.
494 */
495 void (*addr_filters_sync) (struct perf_event *event);
496 /* optional */
497
498 /*
499 * Check if event can be used for aux_output purposes for
500 * events of this PMU.
501 *
502 * Runs from perf_event_open(). Should return 0 for "no match"
503 * or non-zero for "match".
504 */
505 int (*aux_output_match) (struct perf_event *event);
506 /* optional */
507
508 /*
509 * Filter events for PMU-specific reasons.
510 */
511 int (*filter_match) (struct perf_event *event); /* optional */
512
513 /*
514 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
515 */
516 int (*check_period) (struct perf_event *event, u64 value); /* optional */
517 };
518
519 enum perf_addr_filter_action_t {
520 PERF_ADDR_FILTER_ACTION_STOP = 0,
521 PERF_ADDR_FILTER_ACTION_START,
522 PERF_ADDR_FILTER_ACTION_FILTER,
523 };
524
525 /**
526 * struct perf_addr_filter - address range filter definition
527 * @entry: event's filter list linkage
528 * @path: object file's path for file-based filters
529 * @offset: filter range offset
530 * @size: filter range size (size==0 means single address trigger)
531 * @action: filter/start/stop
532 *
533 * This is a hardware-agnostic filter configuration as specified by the user.
534 */
535 struct perf_addr_filter {
536 struct list_head entry;
537 struct path path;
538 unsigned long offset;
539 unsigned long size;
540 enum perf_addr_filter_action_t action;
541 };
542
543 /**
544 * struct perf_addr_filters_head - container for address range filters
545 * @list: list of filters for this event
546 * @lock: spinlock that serializes accesses to the @list and event's
547 * (and its children's) filter generations.
548 * @nr_file_filters: number of file-based filters
549 *
550 * A child event will use parent's @list (and therefore @lock), so they are
551 * bundled together; see perf_event_addr_filters().
552 */
553 struct perf_addr_filters_head {
554 struct list_head list;
555 raw_spinlock_t lock;
556 unsigned int nr_file_filters;
557 };
558
559 struct perf_addr_filter_range {
560 unsigned long start;
561 unsigned long size;
562 };
563
564 /**
565 * enum perf_event_state - the states of an event:
566 */
567 enum perf_event_state {
568 PERF_EVENT_STATE_DEAD = -4,
569 PERF_EVENT_STATE_EXIT = -3,
570 PERF_EVENT_STATE_ERROR = -2,
571 PERF_EVENT_STATE_OFF = -1,
572 PERF_EVENT_STATE_INACTIVE = 0,
573 PERF_EVENT_STATE_ACTIVE = 1,
574 };
575
576 struct file;
577 struct perf_sample_data;
578
579 typedef void (*perf_overflow_handler_t)(struct perf_event *,
580 struct perf_sample_data *,
581 struct pt_regs *regs);
582
583 /*
584 * Event capabilities. For event_caps and groups caps.
585 *
586 * PERF_EV_CAP_SOFTWARE: Is a software event.
587 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
588 * from any CPU in the package where it is active.
589 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
590 * cannot be a group leader. If an event with this flag is detached from the
591 * group it is scheduled out and moved into an unrecoverable ERROR state.
592 */
593 #define PERF_EV_CAP_SOFTWARE BIT(0)
594 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
595 #define PERF_EV_CAP_SIBLING BIT(2)
596
597 #define SWEVENT_HLIST_BITS 8
598 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
599
600 struct swevent_hlist {
601 struct hlist_head heads[SWEVENT_HLIST_SIZE];
602 struct rcu_head rcu_head;
603 };
604
605 #define PERF_ATTACH_CONTEXT 0x01
606 #define PERF_ATTACH_GROUP 0x02
607 #define PERF_ATTACH_TASK 0x04
608 #define PERF_ATTACH_TASK_DATA 0x08
609 #define PERF_ATTACH_ITRACE 0x10
610 #define PERF_ATTACH_SCHED_CB 0x20
611 #define PERF_ATTACH_CHILD 0x40
612
613 struct perf_cgroup;
614 struct perf_buffer;
615
616 struct pmu_event_list {
617 raw_spinlock_t lock;
618 struct list_head list;
619 };
620
621 #define for_each_sibling_event(sibling, event) \
622 if ((event)->group_leader == (event)) \
623 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
624
625 /**
626 * struct perf_event - performance event kernel representation:
627 */
628 struct perf_event {
629 #ifdef CONFIG_PERF_EVENTS
630 /*
631 * entry onto perf_event_context::event_list;
632 * modifications require ctx->lock
633 * RCU safe iterations.
634 */
635 struct list_head event_entry;
636
637 /*
638 * Locked for modification by both ctx->mutex and ctx->lock; holding
639 * either sufficies for read.
640 */
641 struct list_head sibling_list;
642 struct list_head active_list;
643 /*
644 * Node on the pinned or flexible tree located at the event context;
645 */
646 struct rb_node group_node;
647 u64 group_index;
648 /*
649 * We need storage to track the entries in perf_pmu_migrate_context; we
650 * cannot use the event_entry because of RCU and we want to keep the
651 * group in tact which avoids us using the other two entries.
652 */
653 struct list_head migrate_entry;
654
655 struct hlist_node hlist_entry;
656 struct list_head active_entry;
657 int nr_siblings;
658
659 /* Not serialized. Only written during event initialization. */
660 int event_caps;
661 /* The cumulative AND of all event_caps for events in this group. */
662 int group_caps;
663
664 struct perf_event *group_leader;
665 struct pmu *pmu;
666 void *pmu_private;
667
668 enum perf_event_state state;
669 unsigned int attach_state;
670 local64_t count;
671 atomic64_t child_count;
672
673 /*
674 * These are the total time in nanoseconds that the event
675 * has been enabled (i.e. eligible to run, and the task has
676 * been scheduled in, if this is a per-task event)
677 * and running (scheduled onto the CPU), respectively.
678 */
679 u64 total_time_enabled;
680 u64 total_time_running;
681 u64 tstamp;
682
683 /*
684 * timestamp shadows the actual context timing but it can
685 * be safely used in NMI interrupt context. It reflects the
686 * context time as it was when the event was last scheduled in,
687 * or when ctx_sched_in failed to schedule the event because we
688 * run out of PMC.
689 *
690 * ctx_time already accounts for ctx->timestamp. Therefore to
691 * compute ctx_time for a sample, simply add perf_clock().
692 */
693 u64 shadow_ctx_time;
694
695 struct perf_event_attr attr;
696 u16 header_size;
697 u16 id_header_size;
698 u16 read_size;
699 struct hw_perf_event hw;
700
701 struct perf_event_context *ctx;
702 atomic_long_t refcount;
703
704 /*
705 * These accumulate total time (in nanoseconds) that children
706 * events have been enabled and running, respectively.
707 */
708 atomic64_t child_total_time_enabled;
709 atomic64_t child_total_time_running;
710
711 /*
712 * Protect attach/detach and child_list:
713 */
714 struct mutex child_mutex;
715 struct list_head child_list;
716 struct perf_event *parent;
717
718 int oncpu;
719 int cpu;
720
721 struct list_head owner_entry;
722 struct task_struct *owner;
723
724 /* mmap bits */
725 struct mutex mmap_mutex;
726 atomic_t mmap_count;
727
728 struct perf_buffer *rb;
729 struct list_head rb_entry;
730 unsigned long rcu_batches;
731 int rcu_pending;
732
733 /* poll related */
734 wait_queue_head_t waitq;
735 struct fasync_struct *fasync;
736
737 /* delayed work for NMIs and such */
738 int pending_wakeup;
739 int pending_kill;
740 int pending_disable;
741 unsigned long pending_addr; /* SIGTRAP */
742 struct irq_work pending;
743
744 atomic_t event_limit;
745
746 /* address range filters */
747 struct perf_addr_filters_head addr_filters;
748 /* vma address array for file-based filders */
749 struct perf_addr_filter_range *addr_filter_ranges;
750 unsigned long addr_filters_gen;
751
752 /* for aux_output events */
753 struct perf_event *aux_event;
754
755 void (*destroy)(struct perf_event *);
756 struct rcu_head rcu_head;
757
758 struct pid_namespace *ns;
759 u64 id;
760
761 u64 (*clock)(void);
762 perf_overflow_handler_t overflow_handler;
763 void *overflow_handler_context;
764 #ifdef CONFIG_BPF_SYSCALL
765 perf_overflow_handler_t orig_overflow_handler;
766 struct bpf_prog *prog;
767 u64 bpf_cookie;
768 #endif
769
770 #ifdef CONFIG_EVENT_TRACING
771 struct trace_event_call *tp_event;
772 struct event_filter *filter;
773 #ifdef CONFIG_FUNCTION_TRACER
774 struct ftrace_ops ftrace_ops;
775 #endif
776 #endif
777
778 #ifdef CONFIG_CGROUP_PERF
779 struct perf_cgroup *cgrp; /* cgroup event is attach to */
780 #endif
781
782 #ifdef CONFIG_SECURITY
783 void *security;
784 #endif
785 struct list_head sb_list;
786 #endif /* CONFIG_PERF_EVENTS */
787 };
788
789
790 struct perf_event_groups {
791 struct rb_root tree;
792 u64 index;
793 };
794
795 /**
796 * struct perf_event_context - event context structure
797 *
798 * Used as a container for task events and CPU events as well:
799 */
800 struct perf_event_context {
801 struct pmu *pmu;
802 /*
803 * Protect the states of the events in the list,
804 * nr_active, and the list:
805 */
806 raw_spinlock_t lock;
807 /*
808 * Protect the list of events. Locking either mutex or lock
809 * is sufficient to ensure the list doesn't change; to change
810 * the list you need to lock both the mutex and the spinlock.
811 */
812 struct mutex mutex;
813
814 struct list_head active_ctx_list;
815 struct perf_event_groups pinned_groups;
816 struct perf_event_groups flexible_groups;
817 struct list_head event_list;
818
819 struct list_head pinned_active;
820 struct list_head flexible_active;
821
822 int nr_events;
823 int nr_active;
824 int is_active;
825 int nr_stat;
826 int nr_freq;
827 int rotate_disable;
828 /*
829 * Set when nr_events != nr_active, except tolerant to events not
830 * necessary to be active due to scheduling constraints, such as cgroups.
831 */
832 int rotate_necessary;
833 refcount_t refcount;
834 struct task_struct *task;
835
836 /*
837 * Context clock, runs when context enabled.
838 */
839 u64 time;
840 u64 timestamp;
841
842 /*
843 * These fields let us detect when two contexts have both
844 * been cloned (inherited) from a common ancestor.
845 */
846 struct perf_event_context *parent_ctx;
847 u64 parent_gen;
848 u64 generation;
849 int pin_count;
850 #ifdef CONFIG_CGROUP_PERF
851 int nr_cgroups; /* cgroup evts */
852 #endif
853 void *task_ctx_data; /* pmu specific data */
854 struct rcu_head rcu_head;
855 };
856
857 /*
858 * Number of contexts where an event can trigger:
859 * task, softirq, hardirq, nmi.
860 */
861 #define PERF_NR_CONTEXTS 4
862
863 /**
864 * struct perf_event_cpu_context - per cpu event context structure
865 */
866 struct perf_cpu_context {
867 struct perf_event_context ctx;
868 struct perf_event_context *task_ctx;
869 int active_oncpu;
870 int exclusive;
871
872 raw_spinlock_t hrtimer_lock;
873 struct hrtimer hrtimer;
874 ktime_t hrtimer_interval;
875 unsigned int hrtimer_active;
876
877 #ifdef CONFIG_CGROUP_PERF
878 struct perf_cgroup *cgrp;
879 struct list_head cgrp_cpuctx_entry;
880 #endif
881
882 struct list_head sched_cb_entry;
883 int sched_cb_usage;
884
885 int online;
886 /*
887 * Per-CPU storage for iterators used in visit_groups_merge. The default
888 * storage is of size 2 to hold the CPU and any CPU event iterators.
889 */
890 int heap_size;
891 struct perf_event **heap;
892 struct perf_event *heap_default[2];
893 };
894
895 struct perf_output_handle {
896 struct perf_event *event;
897 struct perf_buffer *rb;
898 unsigned long wakeup;
899 unsigned long size;
900 u64 aux_flags;
901 union {
902 void *addr;
903 unsigned long head;
904 };
905 int page;
906 };
907
908 struct bpf_perf_event_data_kern {
909 bpf_user_pt_regs_t *regs;
910 struct perf_sample_data *data;
911 struct perf_event *event;
912 };
913
914 #ifdef CONFIG_CGROUP_PERF
915
916 /*
917 * perf_cgroup_info keeps track of time_enabled for a cgroup.
918 * This is a per-cpu dynamically allocated data structure.
919 */
920 struct perf_cgroup_info {
921 u64 time;
922 u64 timestamp;
923 };
924
925 struct perf_cgroup {
926 struct cgroup_subsys_state css;
927 struct perf_cgroup_info __percpu *info;
928 };
929
930 /*
931 * Must ensure cgroup is pinned (css_get) before calling
932 * this function. In other words, we cannot call this function
933 * if there is no cgroup event for the current CPU context.
934 */
935 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)936 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
937 {
938 return container_of(task_css_check(task, perf_event_cgrp_id,
939 ctx ? lockdep_is_held(&ctx->lock)
940 : true),
941 struct perf_cgroup, css);
942 }
943 #endif /* CONFIG_CGROUP_PERF */
944
945 #ifdef CONFIG_PERF_EVENTS
946
947 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
948 struct perf_event *event);
949 extern void perf_aux_output_end(struct perf_output_handle *handle,
950 unsigned long size);
951 extern int perf_aux_output_skip(struct perf_output_handle *handle,
952 unsigned long size);
953 extern void *perf_get_aux(struct perf_output_handle *handle);
954 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
955 extern void perf_event_itrace_started(struct perf_event *event);
956
957 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
958 extern void perf_pmu_unregister(struct pmu *pmu);
959
960 extern void __perf_event_task_sched_in(struct task_struct *prev,
961 struct task_struct *task);
962 extern void __perf_event_task_sched_out(struct task_struct *prev,
963 struct task_struct *next);
964 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
965 extern void perf_event_exit_task(struct task_struct *child);
966 extern void perf_event_free_task(struct task_struct *task);
967 extern void perf_event_delayed_put(struct task_struct *task);
968 extern struct file *perf_event_get(unsigned int fd);
969 extern const struct perf_event *perf_get_event(struct file *file);
970 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
971 extern void perf_event_print_debug(void);
972 extern void perf_pmu_disable(struct pmu *pmu);
973 extern void perf_pmu_enable(struct pmu *pmu);
974 extern void perf_sched_cb_dec(struct pmu *pmu);
975 extern void perf_sched_cb_inc(struct pmu *pmu);
976 extern int perf_event_task_disable(void);
977 extern int perf_event_task_enable(void);
978
979 extern void perf_pmu_resched(struct pmu *pmu);
980
981 extern int perf_event_refresh(struct perf_event *event, int refresh);
982 extern void perf_event_update_userpage(struct perf_event *event);
983 extern int perf_event_release_kernel(struct perf_event *event);
984 extern struct perf_event *
985 perf_event_create_kernel_counter(struct perf_event_attr *attr,
986 int cpu,
987 struct task_struct *task,
988 perf_overflow_handler_t callback,
989 void *context);
990 extern void perf_pmu_migrate_context(struct pmu *pmu,
991 int src_cpu, int dst_cpu);
992 int perf_event_read_local(struct perf_event *event, u64 *value,
993 u64 *enabled, u64 *running);
994 extern u64 perf_event_read_value(struct perf_event *event,
995 u64 *enabled, u64 *running);
996
997
998 struct perf_sample_data {
999 /*
1000 * Fields set by perf_sample_data_init(), group so as to
1001 * minimize the cachelines touched.
1002 */
1003 u64 addr;
1004 struct perf_raw_record *raw;
1005 struct perf_branch_stack *br_stack;
1006 u64 period;
1007 union perf_sample_weight weight;
1008 u64 txn;
1009 union perf_mem_data_src data_src;
1010
1011 /*
1012 * The other fields, optionally {set,used} by
1013 * perf_{prepare,output}_sample().
1014 */
1015 u64 type;
1016 u64 ip;
1017 struct {
1018 u32 pid;
1019 u32 tid;
1020 } tid_entry;
1021 u64 time;
1022 u64 id;
1023 u64 stream_id;
1024 struct {
1025 u32 cpu;
1026 u32 reserved;
1027 } cpu_entry;
1028 struct perf_callchain_entry *callchain;
1029 u64 aux_size;
1030
1031 struct perf_regs regs_user;
1032 struct perf_regs regs_intr;
1033 u64 stack_user_size;
1034
1035 u64 phys_addr;
1036 u64 cgroup;
1037 u64 data_page_size;
1038 u64 code_page_size;
1039 } ____cacheline_aligned;
1040
1041 /* default value for data source */
1042 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1043 PERF_MEM_S(LVL, NA) |\
1044 PERF_MEM_S(SNOOP, NA) |\
1045 PERF_MEM_S(LOCK, NA) |\
1046 PERF_MEM_S(TLB, NA))
1047
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1048 static inline void perf_sample_data_init(struct perf_sample_data *data,
1049 u64 addr, u64 period)
1050 {
1051 /* remaining struct members initialized in perf_prepare_sample() */
1052 data->addr = addr;
1053 data->raw = NULL;
1054 data->br_stack = NULL;
1055 data->period = period;
1056 data->weight.full = 0;
1057 data->data_src.val = PERF_MEM_NA;
1058 data->txn = 0;
1059 }
1060
1061 extern void perf_output_sample(struct perf_output_handle *handle,
1062 struct perf_event_header *header,
1063 struct perf_sample_data *data,
1064 struct perf_event *event);
1065 extern void perf_prepare_sample(struct perf_event_header *header,
1066 struct perf_sample_data *data,
1067 struct perf_event *event,
1068 struct pt_regs *regs);
1069
1070 extern int perf_event_overflow(struct perf_event *event,
1071 struct perf_sample_data *data,
1072 struct pt_regs *regs);
1073
1074 extern void perf_event_output_forward(struct perf_event *event,
1075 struct perf_sample_data *data,
1076 struct pt_regs *regs);
1077 extern void perf_event_output_backward(struct perf_event *event,
1078 struct perf_sample_data *data,
1079 struct pt_regs *regs);
1080 extern int perf_event_output(struct perf_event *event,
1081 struct perf_sample_data *data,
1082 struct pt_regs *regs);
1083
1084 static inline bool
is_default_overflow_handler(struct perf_event * event)1085 is_default_overflow_handler(struct perf_event *event)
1086 {
1087 if (likely(event->overflow_handler == perf_event_output_forward))
1088 return true;
1089 if (unlikely(event->overflow_handler == perf_event_output_backward))
1090 return true;
1091 return false;
1092 }
1093
1094 extern void
1095 perf_event_header__init_id(struct perf_event_header *header,
1096 struct perf_sample_data *data,
1097 struct perf_event *event);
1098 extern void
1099 perf_event__output_id_sample(struct perf_event *event,
1100 struct perf_output_handle *handle,
1101 struct perf_sample_data *sample);
1102
1103 extern void
1104 perf_log_lost_samples(struct perf_event *event, u64 lost);
1105
event_has_any_exclude_flag(struct perf_event * event)1106 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1107 {
1108 struct perf_event_attr *attr = &event->attr;
1109
1110 return attr->exclude_idle || attr->exclude_user ||
1111 attr->exclude_kernel || attr->exclude_hv ||
1112 attr->exclude_guest || attr->exclude_host;
1113 }
1114
is_sampling_event(struct perf_event * event)1115 static inline bool is_sampling_event(struct perf_event *event)
1116 {
1117 return event->attr.sample_period != 0;
1118 }
1119
1120 /*
1121 * Return 1 for a software event, 0 for a hardware event
1122 */
is_software_event(struct perf_event * event)1123 static inline int is_software_event(struct perf_event *event)
1124 {
1125 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1126 }
1127
1128 /*
1129 * Return 1 for event in sw context, 0 for event in hw context
1130 */
in_software_context(struct perf_event * event)1131 static inline int in_software_context(struct perf_event *event)
1132 {
1133 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1134 }
1135
is_exclusive_pmu(struct pmu * pmu)1136 static inline int is_exclusive_pmu(struct pmu *pmu)
1137 {
1138 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1139 }
1140
1141 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1142
1143 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1144 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1145
1146 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1147 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1148 #endif
1149
1150 /*
1151 * When generating a perf sample in-line, instead of from an interrupt /
1152 * exception, we lack a pt_regs. This is typically used from software events
1153 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1154 *
1155 * We typically don't need a full set, but (for x86) do require:
1156 * - ip for PERF_SAMPLE_IP
1157 * - cs for user_mode() tests
1158 * - sp for PERF_SAMPLE_CALLCHAIN
1159 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1160 *
1161 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1162 * things like PERF_SAMPLE_REGS_INTR.
1163 */
perf_fetch_caller_regs(struct pt_regs * regs)1164 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1165 {
1166 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1167 }
1168
1169 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1170 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1171 {
1172 if (static_key_false(&perf_swevent_enabled[event_id]))
1173 __perf_sw_event(event_id, nr, regs, addr);
1174 }
1175
1176 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1177
1178 /*
1179 * 'Special' version for the scheduler, it hard assumes no recursion,
1180 * which is guaranteed by us not actually scheduling inside other swevents
1181 * because those disable preemption.
1182 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1183 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1184 {
1185 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1186
1187 perf_fetch_caller_regs(regs);
1188 ___perf_sw_event(event_id, nr, regs, addr);
1189 }
1190
1191 extern struct static_key_false perf_sched_events;
1192
__perf_sw_enabled(int swevt)1193 static __always_inline bool __perf_sw_enabled(int swevt)
1194 {
1195 return static_key_false(&perf_swevent_enabled[swevt]);
1196 }
1197
perf_event_task_migrate(struct task_struct * task)1198 static inline void perf_event_task_migrate(struct task_struct *task)
1199 {
1200 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1201 task->sched_migrated = 1;
1202 }
1203
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1204 static inline void perf_event_task_sched_in(struct task_struct *prev,
1205 struct task_struct *task)
1206 {
1207 if (static_branch_unlikely(&perf_sched_events))
1208 __perf_event_task_sched_in(prev, task);
1209
1210 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1211 task->sched_migrated) {
1212 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1213 task->sched_migrated = 0;
1214 }
1215 }
1216
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1217 static inline void perf_event_task_sched_out(struct task_struct *prev,
1218 struct task_struct *next)
1219 {
1220 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1221 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1222
1223 #ifdef CONFIG_CGROUP_PERF
1224 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1225 perf_cgroup_from_task(prev, NULL) !=
1226 perf_cgroup_from_task(next, NULL))
1227 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1228 #endif
1229
1230 if (static_branch_unlikely(&perf_sched_events))
1231 __perf_event_task_sched_out(prev, next);
1232 }
1233
1234 extern void perf_event_mmap(struct vm_area_struct *vma);
1235
1236 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1237 bool unregister, const char *sym);
1238 extern void perf_event_bpf_event(struct bpf_prog *prog,
1239 enum perf_bpf_event_type type,
1240 u16 flags);
1241
1242 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1243 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1244 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1245
1246 extern void perf_event_exec(void);
1247 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1248 extern void perf_event_namespaces(struct task_struct *tsk);
1249 extern void perf_event_fork(struct task_struct *tsk);
1250 extern void perf_event_text_poke(const void *addr,
1251 const void *old_bytes, size_t old_len,
1252 const void *new_bytes, size_t new_len);
1253
1254 /* Callchains */
1255 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1256
1257 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1258 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1259 extern struct perf_callchain_entry *
1260 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1261 u32 max_stack, bool crosstask, bool add_mark);
1262 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1263 extern int get_callchain_buffers(int max_stack);
1264 extern void put_callchain_buffers(void);
1265 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1266 extern void put_callchain_entry(int rctx);
1267
1268 extern int sysctl_perf_event_max_stack;
1269 extern int sysctl_perf_event_max_contexts_per_stack;
1270
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1271 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1272 {
1273 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1274 struct perf_callchain_entry *entry = ctx->entry;
1275 entry->ip[entry->nr++] = ip;
1276 ++ctx->contexts;
1277 return 0;
1278 } else {
1279 ctx->contexts_maxed = true;
1280 return -1; /* no more room, stop walking the stack */
1281 }
1282 }
1283
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1284 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1285 {
1286 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1287 struct perf_callchain_entry *entry = ctx->entry;
1288 entry->ip[entry->nr++] = ip;
1289 ++ctx->nr;
1290 return 0;
1291 } else {
1292 return -1; /* no more room, stop walking the stack */
1293 }
1294 }
1295
1296 extern int sysctl_perf_event_paranoid;
1297 extern int sysctl_perf_event_mlock;
1298 extern int sysctl_perf_event_sample_rate;
1299 extern int sysctl_perf_cpu_time_max_percent;
1300
1301 extern void perf_sample_event_took(u64 sample_len_ns);
1302
1303 int perf_proc_update_handler(struct ctl_table *table, int write,
1304 void *buffer, size_t *lenp, loff_t *ppos);
1305 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1306 void *buffer, size_t *lenp, loff_t *ppos);
1307 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1308 void *buffer, size_t *lenp, loff_t *ppos);
1309
1310 /* Access to perf_event_open(2) syscall. */
1311 #define PERF_SECURITY_OPEN 0
1312
1313 /* Finer grained perf_event_open(2) access control. */
1314 #define PERF_SECURITY_CPU 1
1315 #define PERF_SECURITY_KERNEL 2
1316 #define PERF_SECURITY_TRACEPOINT 3
1317
perf_is_paranoid(void)1318 static inline int perf_is_paranoid(void)
1319 {
1320 return sysctl_perf_event_paranoid > -1;
1321 }
1322
perf_allow_kernel(struct perf_event_attr * attr)1323 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1324 {
1325 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1326 return -EACCES;
1327
1328 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1329 }
1330
perf_allow_cpu(struct perf_event_attr * attr)1331 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1332 {
1333 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1334 return -EACCES;
1335
1336 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1337 }
1338
perf_allow_tracepoint(struct perf_event_attr * attr)1339 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1340 {
1341 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1342 return -EPERM;
1343
1344 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1345 }
1346
1347 extern void perf_event_init(void);
1348 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1349 int entry_size, struct pt_regs *regs,
1350 struct hlist_head *head, int rctx,
1351 struct task_struct *task);
1352 extern void perf_bp_event(struct perf_event *event, void *data);
1353
1354 #ifndef perf_misc_flags
1355 # define perf_misc_flags(regs) \
1356 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1357 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1358 #endif
1359 #ifndef perf_arch_bpf_user_pt_regs
1360 # define perf_arch_bpf_user_pt_regs(regs) regs
1361 #endif
1362
has_branch_stack(struct perf_event * event)1363 static inline bool has_branch_stack(struct perf_event *event)
1364 {
1365 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1366 }
1367
needs_branch_stack(struct perf_event * event)1368 static inline bool needs_branch_stack(struct perf_event *event)
1369 {
1370 return event->attr.branch_sample_type != 0;
1371 }
1372
has_aux(struct perf_event * event)1373 static inline bool has_aux(struct perf_event *event)
1374 {
1375 return event->pmu->setup_aux;
1376 }
1377
is_write_backward(struct perf_event * event)1378 static inline bool is_write_backward(struct perf_event *event)
1379 {
1380 return !!event->attr.write_backward;
1381 }
1382
has_addr_filter(struct perf_event * event)1383 static inline bool has_addr_filter(struct perf_event *event)
1384 {
1385 return event->pmu->nr_addr_filters;
1386 }
1387
1388 /*
1389 * An inherited event uses parent's filters
1390 */
1391 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1392 perf_event_addr_filters(struct perf_event *event)
1393 {
1394 struct perf_addr_filters_head *ifh = &event->addr_filters;
1395
1396 if (event->parent)
1397 ifh = &event->parent->addr_filters;
1398
1399 return ifh;
1400 }
1401
1402 extern void perf_event_addr_filters_sync(struct perf_event *event);
1403
1404 extern int perf_output_begin(struct perf_output_handle *handle,
1405 struct perf_sample_data *data,
1406 struct perf_event *event, unsigned int size);
1407 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1408 struct perf_sample_data *data,
1409 struct perf_event *event,
1410 unsigned int size);
1411 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1412 struct perf_sample_data *data,
1413 struct perf_event *event,
1414 unsigned int size);
1415
1416 extern void perf_output_end(struct perf_output_handle *handle);
1417 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1418 const void *buf, unsigned int len);
1419 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1420 unsigned int len);
1421 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1422 struct perf_output_handle *handle,
1423 unsigned long from, unsigned long to);
1424 extern int perf_swevent_get_recursion_context(void);
1425 extern void perf_swevent_put_recursion_context(int rctx);
1426 extern u64 perf_swevent_set_period(struct perf_event *event);
1427 extern void perf_event_enable(struct perf_event *event);
1428 extern void perf_event_disable(struct perf_event *event);
1429 extern void perf_event_disable_local(struct perf_event *event);
1430 extern void perf_event_disable_inatomic(struct perf_event *event);
1431 extern void perf_event_task_tick(void);
1432 extern int perf_event_account_interrupt(struct perf_event *event);
1433 extern int perf_event_period(struct perf_event *event, u64 value);
1434 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1435 #else /* !CONFIG_PERF_EVENTS: */
1436 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1437 perf_aux_output_begin(struct perf_output_handle *handle,
1438 struct perf_event *event) { return NULL; }
1439 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1440 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1441 { }
1442 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1443 perf_aux_output_skip(struct perf_output_handle *handle,
1444 unsigned long size) { return -EINVAL; }
1445 static inline void *
perf_get_aux(struct perf_output_handle * handle)1446 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1447 static inline void
perf_event_task_migrate(struct task_struct * task)1448 perf_event_task_migrate(struct task_struct *task) { }
1449 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1450 perf_event_task_sched_in(struct task_struct *prev,
1451 struct task_struct *task) { }
1452 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1453 perf_event_task_sched_out(struct task_struct *prev,
1454 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1455 static inline int perf_event_init_task(struct task_struct *child,
1456 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1457 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1458 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1459 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1460 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1461 static inline const struct perf_event *perf_get_event(struct file *file)
1462 {
1463 return ERR_PTR(-EINVAL);
1464 }
perf_event_attrs(struct perf_event * event)1465 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1466 {
1467 return ERR_PTR(-EINVAL);
1468 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1469 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1470 u64 *enabled, u64 *running)
1471 {
1472 return -EINVAL;
1473 }
perf_event_print_debug(void)1474 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1475 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1476 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1477 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1478 {
1479 return -EINVAL;
1480 }
1481
1482 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1483 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1484 static inline void
perf_bp_event(struct perf_event * event,void * data)1485 perf_bp_event(struct perf_event *event, void *data) { }
1486
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1487 static inline int perf_register_guest_info_callbacks
1488 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1489 static inline int perf_unregister_guest_info_callbacks
1490 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1491
perf_event_mmap(struct vm_area_struct * vma)1492 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1493
1494 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1495 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1496 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1497 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1498 enum perf_bpf_event_type type,
1499 u16 flags) { }
perf_event_exec(void)1500 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1501 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1502 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1503 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1504 static inline void perf_event_text_poke(const void *addr,
1505 const void *old_bytes,
1506 size_t old_len,
1507 const void *new_bytes,
1508 size_t new_len) { }
perf_event_init(void)1509 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1510 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1511 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1512 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1513 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1514 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1515 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1516 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1517 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1518 static inline int perf_event_period(struct perf_event *event, u64 value)
1519 {
1520 return -EINVAL;
1521 }
perf_event_pause(struct perf_event * event,bool reset)1522 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1523 {
1524 return 0;
1525 }
1526 #endif
1527
1528 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1529 extern void perf_restore_debug_store(void);
1530 #else
perf_restore_debug_store(void)1531 static inline void perf_restore_debug_store(void) { }
1532 #endif
1533
perf_raw_frag_last(const struct perf_raw_frag * frag)1534 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1535 {
1536 return frag->pad < sizeof(u64);
1537 }
1538
1539 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1540
1541 struct perf_pmu_events_attr {
1542 struct device_attribute attr;
1543 u64 id;
1544 const char *event_str;
1545 };
1546
1547 struct perf_pmu_events_ht_attr {
1548 struct device_attribute attr;
1549 u64 id;
1550 const char *event_str_ht;
1551 const char *event_str_noht;
1552 };
1553
1554 struct perf_pmu_events_hybrid_attr {
1555 struct device_attribute attr;
1556 u64 id;
1557 const char *event_str;
1558 u64 pmu_type;
1559 };
1560
1561 struct perf_pmu_format_hybrid_attr {
1562 struct device_attribute attr;
1563 u64 pmu_type;
1564 };
1565
1566 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1567 char *page);
1568
1569 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1570 static struct perf_pmu_events_attr _var = { \
1571 .attr = __ATTR(_name, 0444, _show, NULL), \
1572 .id = _id, \
1573 };
1574
1575 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1576 static struct perf_pmu_events_attr _var = { \
1577 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1578 .id = 0, \
1579 .event_str = _str, \
1580 };
1581
1582 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1583 (&((struct perf_pmu_events_attr[]) { \
1584 { .attr = __ATTR(_name, 0444, _show, NULL), \
1585 .id = _id, } \
1586 })[0].attr.attr)
1587
1588 #define PMU_FORMAT_ATTR(_name, _format) \
1589 static ssize_t \
1590 _name##_show(struct device *dev, \
1591 struct device_attribute *attr, \
1592 char *page) \
1593 { \
1594 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1595 return sprintf(page, _format "\n"); \
1596 } \
1597 \
1598 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1599
1600 /* Performance counter hotplug functions */
1601 #ifdef CONFIG_PERF_EVENTS
1602 int perf_event_init_cpu(unsigned int cpu);
1603 int perf_event_exit_cpu(unsigned int cpu);
1604 #else
1605 #define perf_event_init_cpu NULL
1606 #define perf_event_exit_cpu NULL
1607 #endif
1608
1609 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1610 struct perf_event_mmap_page *userpg,
1611 u64 now);
1612
1613 #ifdef CONFIG_MMU
1614 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1615 #endif
1616
1617 #endif /* _LINUX_PERF_EVENT_H */
1618