1 /******************************************************************************
2 *
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5 *
6 * See the file "skfddi.c" for further information.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 ******************************************************************************/
16
17 /*
18 PCM
19 Physical Connection Management
20 */
21
22 /*
23 * Hardware independent state machine implemantation
24 * The following external SMT functions are referenced :
25 *
26 * queue_event()
27 * smt_timer_start()
28 * smt_timer_stop()
29 *
30 * The following external HW dependent functions are referenced :
31 * sm_pm_control()
32 * sm_ph_linestate()
33 * sm_pm_ls_latch()
34 *
35 * The following HW dependent events are required :
36 * PC_QLS
37 * PC_ILS
38 * PC_HLS
39 * PC_MLS
40 * PC_NSE
41 * PC_LEM
42 *
43 */
44
45
46 #include "h/types.h"
47 #include "h/fddi.h"
48 #include "h/smc.h"
49 #include "h/supern_2.h"
50 #define KERNEL
51 #include "h/smtstate.h"
52
53 #ifndef lint
54 static const char ID_sccs[] = "@(#)pcmplc.c 2.55 99/08/05 (C) SK " ;
55 #endif
56
57 #ifdef FDDI_MIB
58 extern int snmp_fddi_trap(
59 #ifdef ANSIC
60 struct s_smc * smc, int type, int index
61 #endif
62 );
63 #endif
64 #ifdef CONCENTRATOR
65 extern int plc_is_installed(
66 #ifdef ANSIC
67 struct s_smc *smc ,
68 int p
69 #endif
70 ) ;
71 #endif
72 /*
73 * FSM Macros
74 */
75 #define AFLAG (0x20)
76 #define GO_STATE(x) (mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE() (mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x) (x|AFLAG)
79
80 /*
81 * PCM states
82 */
83 #define PC0_OFF 0
84 #define PC1_BREAK 1
85 #define PC2_TRACE 2
86 #define PC3_CONNECT 3
87 #define PC4_NEXT 4
88 #define PC5_SIGNAL 5
89 #define PC6_JOIN 6
90 #define PC7_VERIFY 7
91 #define PC8_ACTIVE 8
92 #define PC9_MAINT 9
93
94 /*
95 * symbolic state names
96 */
97 static const char * const pcm_states[] = {
98 "PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
99 "PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
100 } ;
101
102 /*
103 * symbolic event names
104 */
105 static const char * const pcm_events[] = {
106 "NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
107 "PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
108 "PC_ENABLE","PC_DISABLE",
109 "PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
110 "PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
111 "PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
112 "PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
113 "PC_NSE","PC_LEM"
114 } ;
115
116 #ifdef MOT_ELM
117 /*
118 * PCL-S control register
119 * this register in the PLC-S controls the scrambling parameters
120 */
121 #define PLCS_CONTROL_C_U 0
122 #define PLCS_CONTROL_C_S (PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
123 PL_C_CIPHER_ENABLE)
124 #define PLCS_FASSERT_U 0
125 #define PLCS_FASSERT_S 0xFd76 /* 52.0 us */
126 #define PLCS_FDEASSERT_U 0
127 #define PLCS_FDEASSERT_S 0
128 #else /* nMOT_ELM */
129 /*
130 * PCL-S control register
131 * this register in the PLC-S controls the scrambling parameters
132 * can be patched for ANSI compliance if standard changes
133 */
134 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
135 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
136
137 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
138 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
139 #endif /* nMOT_ELM */
140
141 /*
142 * external vars
143 */
144 /* struct definition see 'cmtdef.h' (also used by CFM) */
145
146 #define PS_OFF 0
147 #define PS_BIT3 1
148 #define PS_BIT4 2
149 #define PS_BIT7 3
150 #define PS_LCT 4
151 #define PS_BIT8 5
152 #define PS_JOIN 6
153 #define PS_ACTIVE 7
154
155 #define LCT_LEM_MAX 255
156
157 /*
158 * PLC timing parameter
159 */
160
161 #define PLC_MS(m) ((int)((0x10000L-(m*100000L/2048))))
162 #define SLOW_TL_MIN PLC_MS(6)
163 #define SLOW_C_MIN PLC_MS(10)
164
165 static const struct plt {
166 int timer ; /* relative plc timer address */
167 int para ; /* default timing parameters */
168 } pltm[] = {
169 { PL_C_MIN, SLOW_C_MIN }, /* min t. to remain Connect State */
170 { PL_TL_MIN, SLOW_TL_MIN }, /* min t. to transmit a Line State */
171 { PL_TB_MIN, TP_TB_MIN }, /* min break time */
172 { PL_T_OUT, TP_T_OUT }, /* Signaling timeout */
173 { PL_LC_LENGTH, TP_LC_LENGTH }, /* Link Confidence Test Time */
174 { PL_T_SCRUB, TP_T_SCRUB }, /* Scrub Time == MAC TVX time ! */
175 { PL_NS_MAX, TP_NS_MAX }, /* max t. that noise is tolerated */
176 { 0,0 }
177 } ;
178
179 /*
180 * interrupt mask
181 */
182 #ifdef SUPERNET_3
183 /*
184 * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
185 * PLL bug?
186 */
187 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
188 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
189 #else /* SUPERNET_3 */
190 /*
191 * We do NOT need the elasticity buffer error during signaling.
192 */
193 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
194 PL_PCM_ENABLED | PL_SELF_TEST ;
195 #endif /* SUPERNET_3 */
196 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
197 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
198
199 /* internal functions */
200 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
201 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
202 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
203 static void reset_lem_struct(struct s_phy *phy);
204 static void plc_init(struct s_smc *smc, int p);
205 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
206 static void sm_ph_lem_stop(struct s_smc *smc, int np);
207 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
208 static void real_init_plc(struct s_smc *smc);
209
210 /*
211 * SMT timer interface
212 * start PCM timer 0
213 */
start_pcm_timer0(struct s_smc * smc,u_long value,int event,struct s_phy * phy)214 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
215 struct s_phy *phy)
216 {
217 phy->timer0_exp = FALSE ; /* clear timer event flag */
218 smt_timer_start(smc,&phy->pcm_timer0,value,
219 EV_TOKEN(EVENT_PCM+phy->np,event)) ;
220 }
221 /*
222 * SMT timer interface
223 * stop PCM timer 0
224 */
stop_pcm_timer0(struct s_smc * smc,struct s_phy * phy)225 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
226 {
227 if (phy->pcm_timer0.tm_active)
228 smt_timer_stop(smc,&phy->pcm_timer0) ;
229 }
230
231 /*
232 init PCM state machine (called by driver)
233 clear all PCM vars and flags
234 */
pcm_init(struct s_smc * smc)235 void pcm_init(struct s_smc *smc)
236 {
237 int i ;
238 int np ;
239 struct s_phy *phy ;
240 struct fddi_mib_p *mib ;
241
242 for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
243 /* Indicates the type of PHY being used */
244 mib = phy->mib ;
245 mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
246 phy->np = np ;
247 switch (smc->s.sas) {
248 #ifdef CONCENTRATOR
249 case SMT_SAS :
250 mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
251 break ;
252 case SMT_DAS :
253 mib->fddiPORTMy_Type = (np == PA) ? TA :
254 (np == PB) ? TB : TM ;
255 break ;
256 case SMT_NAC :
257 mib->fddiPORTMy_Type = TM ;
258 break;
259 #else
260 case SMT_SAS :
261 mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
262 mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
263 FALSE ;
264 #ifndef SUPERNET_3
265 smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
266 #else
267 smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
268 #endif
269 break ;
270 case SMT_DAS :
271 mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
272 break ;
273 #endif
274 }
275 /*
276 * set PMD-type
277 */
278 phy->pmd_scramble = 0 ;
279 switch (phy->pmd_type[PMD_SK_PMD]) {
280 case 'P' :
281 mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
282 break ;
283 case 'L' :
284 mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
285 break ;
286 case 'D' :
287 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
288 break ;
289 case 'S' :
290 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
291 phy->pmd_scramble = TRUE ;
292 break ;
293 case 'U' :
294 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
295 phy->pmd_scramble = TRUE ;
296 break ;
297 case '1' :
298 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
299 break ;
300 case '2' :
301 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
302 break ;
303 case '3' :
304 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
305 break ;
306 case '4' :
307 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
308 break ;
309 case 'H' :
310 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
311 break ;
312 case 'I' :
313 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
314 break ;
315 case 'G' :
316 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
317 break ;
318 default:
319 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
320 break ;
321 }
322 /*
323 * A and B port can be on primary and secondary path
324 */
325 switch (mib->fddiPORTMy_Type) {
326 case TA :
327 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
328 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
329 mib->fddiPORTRequestedPaths[2] =
330 MIB_P_PATH_LOCAL |
331 MIB_P_PATH_CON_ALTER |
332 MIB_P_PATH_SEC_PREFER ;
333 mib->fddiPORTRequestedPaths[3] =
334 MIB_P_PATH_LOCAL |
335 MIB_P_PATH_CON_ALTER |
336 MIB_P_PATH_SEC_PREFER |
337 MIB_P_PATH_THRU ;
338 break ;
339 case TB :
340 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
341 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
342 mib->fddiPORTRequestedPaths[2] =
343 MIB_P_PATH_LOCAL |
344 MIB_P_PATH_PRIM_PREFER ;
345 mib->fddiPORTRequestedPaths[3] =
346 MIB_P_PATH_LOCAL |
347 MIB_P_PATH_PRIM_PREFER |
348 MIB_P_PATH_CON_PREFER |
349 MIB_P_PATH_THRU ;
350 break ;
351 case TS :
352 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
353 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
354 mib->fddiPORTRequestedPaths[2] =
355 MIB_P_PATH_LOCAL |
356 MIB_P_PATH_CON_ALTER |
357 MIB_P_PATH_PRIM_PREFER ;
358 mib->fddiPORTRequestedPaths[3] =
359 MIB_P_PATH_LOCAL |
360 MIB_P_PATH_CON_ALTER |
361 MIB_P_PATH_PRIM_PREFER ;
362 break ;
363 case TM :
364 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
365 mib->fddiPORTRequestedPaths[2] =
366 MIB_P_PATH_LOCAL |
367 MIB_P_PATH_SEC_ALTER |
368 MIB_P_PATH_PRIM_ALTER ;
369 mib->fddiPORTRequestedPaths[3] = 0 ;
370 break ;
371 }
372
373 phy->pc_lem_fail = FALSE ;
374 mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
375 mib->fddiPORTLCTFail_Ct = 0 ;
376 mib->fddiPORTBS_Flag = 0 ;
377 mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
378 mib->fddiPORTNeighborType = TNONE ;
379 phy->ls_flag = 0 ;
380 phy->rc_flag = 0 ;
381 phy->tc_flag = 0 ;
382 phy->td_flag = 0 ;
383 if (np >= PM)
384 phy->phy_name = '0' + np - PM ;
385 else
386 phy->phy_name = 'A' + np ;
387 phy->wc_flag = FALSE ; /* set by SMT */
388 memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
389 reset_lem_struct(phy) ;
390 memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
391 phy->plc.p_state = PS_OFF ;
392 for (i = 0 ; i < NUMBITS ; i++) {
393 phy->t_next[i] = 0 ;
394 }
395 }
396 real_init_plc(smc) ;
397 }
398
init_plc(struct s_smc * smc)399 void init_plc(struct s_smc *smc)
400 {
401 SK_UNUSED(smc) ;
402
403 /*
404 * dummy
405 * this is an obsolete public entry point that has to remain
406 * for compat. It is used by various drivers.
407 * the work is now done in real_init_plc()
408 * which is called from pcm_init() ;
409 */
410 }
411
real_init_plc(struct s_smc * smc)412 static void real_init_plc(struct s_smc *smc)
413 {
414 int p ;
415
416 for (p = 0 ; p < NUMPHYS ; p++)
417 plc_init(smc,p) ;
418 }
419
plc_init(struct s_smc * smc,int p)420 static void plc_init(struct s_smc *smc, int p)
421 {
422 int i ;
423 #ifndef MOT_ELM
424 int rev ; /* Revision of PLC-x */
425 #endif /* MOT_ELM */
426
427 /* transit PCM state machine to MAINT state */
428 outpw(PLC(p,PL_CNTRL_B),0) ;
429 outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
430 outpw(PLC(p,PL_CNTRL_A),0) ;
431
432 /*
433 * if PLC-S then set control register C
434 */
435 #ifndef MOT_ELM
436 rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
437 if (rev != PLC_REVISION_A)
438 #endif /* MOT_ELM */
439 {
440 if (smc->y[p].pmd_scramble) {
441 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
442 #ifdef MOT_ELM
443 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
444 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
445 #endif /* MOT_ELM */
446 }
447 else {
448 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
449 #ifdef MOT_ELM
450 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
451 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
452 #endif /* MOT_ELM */
453 }
454 }
455
456 /*
457 * set timer register
458 */
459 for ( i = 0 ; pltm[i].timer; i++) /* set timer parameter reg */
460 outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
461
462 (void)inpw(PLC(p,PL_INTR_EVENT)) ; /* clear interrupt event reg */
463 plc_clear_irq(smc,p) ;
464 outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
465
466 /*
467 * if PCM is configured for class s, it will NOT go to the
468 * REMOVE state if offline (page 3-36;)
469 * in the concentrator, all inactive PHYS always must be in
470 * the remove state
471 * there's no real need to use this feature at all ..
472 */
473 #ifndef CONCENTRATOR
474 if ((smc->s.sas == SMT_SAS) && (p == PS)) {
475 outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
476 }
477 #endif
478 }
479
480 /*
481 * control PCM state machine
482 */
plc_go_state(struct s_smc * smc,int p,int state)483 static void plc_go_state(struct s_smc *smc, int p, int state)
484 {
485 HW_PTR port ;
486 int val ;
487
488 SK_UNUSED(smc) ;
489
490 port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
491 val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
492 outpw(port,val) ;
493 outpw(port,val | state) ;
494 }
495
496 /*
497 * read current line state (called by ECM & PCM)
498 */
sm_pm_get_ls(struct s_smc * smc,int phy)499 int sm_pm_get_ls(struct s_smc *smc, int phy)
500 {
501 int state ;
502
503 #ifdef CONCENTRATOR
504 if (!plc_is_installed(smc,phy))
505 return PC_QLS;
506 #endif
507
508 state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
509 switch(state) {
510 case PL_L_QLS:
511 state = PC_QLS ;
512 break ;
513 case PL_L_MLS:
514 state = PC_MLS ;
515 break ;
516 case PL_L_HLS:
517 state = PC_HLS ;
518 break ;
519 case PL_L_ILS4:
520 case PL_L_ILS16:
521 state = PC_ILS ;
522 break ;
523 case PL_L_ALS:
524 state = PC_LS_PDR ;
525 break ;
526 default :
527 state = PC_LS_NONE ;
528 }
529 return state;
530 }
531
plc_send_bits(struct s_smc * smc,struct s_phy * phy,int len)532 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
533 {
534 int np = phy->np ; /* PHY index */
535 int n ;
536 int i ;
537
538 SK_UNUSED(smc) ;
539
540 /* create bit vector */
541 for (i = len-1,n = 0 ; i >= 0 ; i--) {
542 n = (n<<1) | phy->t_val[phy->bitn+i] ;
543 }
544 if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
545 #if 0
546 printf("PL_PCM_SIGNAL is set\n") ;
547 #endif
548 return 1;
549 }
550 /* write bit[n] & length = 1 to regs */
551 outpw(PLC(np,PL_VECTOR_LEN),len-1) ; /* len=nr-1 */
552 outpw(PLC(np,PL_XMIT_VECTOR),n) ;
553 #ifdef DEBUG
554 #if 1
555 #ifdef DEBUG_BRD
556 if (smc->debug.d_plc & 0x80)
557 #else
558 if (debug.d_plc & 0x80)
559 #endif
560 printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
561 #endif
562 #endif
563 return 0;
564 }
565
566 /*
567 * config plc muxes
568 */
plc_config_mux(struct s_smc * smc,int mux)569 void plc_config_mux(struct s_smc *smc, int mux)
570 {
571 if (smc->s.sas != SMT_DAS)
572 return ;
573 if (mux == MUX_WRAPB) {
574 SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
575 SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
576 }
577 else {
578 CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
579 CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
580 }
581 CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
582 CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
583 }
584
585 /*
586 PCM state machine
587 called by dispatcher & fddi_init() (driver)
588 do
589 display state change
590 process event
591 until SM is stable
592 */
pcm(struct s_smc * smc,const int np,int event)593 void pcm(struct s_smc *smc, const int np, int event)
594 {
595 int state ;
596 int oldstate ;
597 struct s_phy *phy ;
598 struct fddi_mib_p *mib ;
599
600 #ifndef CONCENTRATOR
601 /*
602 * ignore 2nd PHY if SAS
603 */
604 if ((np != PS) && (smc->s.sas == SMT_SAS))
605 return ;
606 #endif
607 phy = &smc->y[np] ;
608 mib = phy->mib ;
609 oldstate = mib->fddiPORTPCMState ;
610 do {
611 DB_PCM("PCM %c: state %s%s, event %s",
612 phy->phy_name,
613 mib->fddiPORTPCMState & AFLAG ? "ACTIONS " : "",
614 pcm_states[mib->fddiPORTPCMState & ~AFLAG],
615 pcm_events[event]);
616 state = mib->fddiPORTPCMState ;
617 pcm_fsm(smc,phy,event) ;
618 event = 0 ;
619 } while (state != mib->fddiPORTPCMState) ;
620 /*
621 * because the PLC does the bit signaling for us,
622 * we're always in SIGNAL state
623 * the MIB want's to see CONNECT
624 * we therefore fake an entry in the MIB
625 */
626 if (state == PC5_SIGNAL)
627 mib->fddiPORTPCMStateX = PC3_CONNECT ;
628 else
629 mib->fddiPORTPCMStateX = state ;
630
631 #ifndef SLIM_SMT
632 /*
633 * path change
634 */
635 if ( mib->fddiPORTPCMState != oldstate &&
636 ((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
637 smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
638 (int) (INDEX_PORT+ phy->np),0) ;
639 }
640 #endif
641
642 #ifdef FDDI_MIB
643 /* check whether a snmp-trap has to be sent */
644
645 if ( mib->fddiPORTPCMState != oldstate ) {
646 /* a real state change took place */
647 DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
648 if ( mib->fddiPORTPCMState == PC0_OFF ) {
649 /* send first trap */
650 snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
651 } else if ( oldstate == PC0_OFF ) {
652 /* send second trap */
653 snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
654 } else if ( mib->fddiPORTPCMState != PC2_TRACE &&
655 oldstate == PC8_ACTIVE ) {
656 /* send third trap */
657 snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
658 } else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
659 /* send fourth trap */
660 snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
661 }
662 }
663 #endif
664
665 pcm_state_change(smc,np,state) ;
666 }
667
668 /*
669 * PCM state machine
670 */
pcm_fsm(struct s_smc * smc,struct s_phy * phy,int cmd)671 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
672 {
673 int i ;
674 int np = phy->np ; /* PHY index */
675 struct s_plc *plc ;
676 struct fddi_mib_p *mib ;
677 #ifndef MOT_ELM
678 u_short plc_rev ; /* Revision of the plc */
679 #endif /* nMOT_ELM */
680
681 plc = &phy->plc ;
682 mib = phy->mib ;
683
684 /*
685 * general transitions independent of state
686 */
687 switch (cmd) {
688 case PC_STOP :
689 /*PC00-PC80*/
690 if (mib->fddiPORTPCMState != PC9_MAINT) {
691 GO_STATE(PC0_OFF) ;
692 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
693 FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
694 smt_get_port_event_word(smc));
695 }
696 return ;
697 case PC_START :
698 /*PC01-PC81*/
699 if (mib->fddiPORTPCMState != PC9_MAINT)
700 GO_STATE(PC1_BREAK) ;
701 return ;
702 case PC_DISABLE :
703 /* PC09-PC99 */
704 GO_STATE(PC9_MAINT) ;
705 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
706 FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
707 smt_get_port_event_word(smc));
708 return ;
709 case PC_TIMEOUT_LCT :
710 /* if long or extended LCT */
711 stop_pcm_timer0(smc,phy) ;
712 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
713 /* end of LCT is indicate by PCM_CODE (initiate PCM event) */
714 return ;
715 }
716
717 switch(mib->fddiPORTPCMState) {
718 case ACTIONS(PC0_OFF) :
719 stop_pcm_timer0(smc,phy) ;
720 outpw(PLC(np,PL_CNTRL_A),0) ;
721 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
722 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
723 sm_ph_lem_stop(smc,np) ; /* disable LEM */
724 phy->cf_loop = FALSE ;
725 phy->cf_join = FALSE ;
726 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
727 plc_go_state(smc,np,PL_PCM_STOP) ;
728 mib->fddiPORTConnectState = PCM_DISABLED ;
729 ACTIONS_DONE() ;
730 break ;
731 case PC0_OFF:
732 /*PC09*/
733 if (cmd == PC_MAINT) {
734 GO_STATE(PC9_MAINT) ;
735 break ;
736 }
737 break ;
738 case ACTIONS(PC1_BREAK) :
739 /* Stop the LCT timer if we came from Signal state */
740 stop_pcm_timer0(smc,phy) ;
741 ACTIONS_DONE() ;
742 plc_go_state(smc,np,0) ;
743 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
744 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
745 sm_ph_lem_stop(smc,np) ; /* disable LEM */
746 /*
747 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
748 */
749 #if 0
750 if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
751 plc_go_state(smc,np,PL_PCM_STOP) ;
752 /* TB_MIN ? */
753 }
754 #endif
755 /*
756 * Go to OFF state in any case.
757 */
758 plc_go_state(smc,np,PL_PCM_STOP) ;
759
760 if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
761 mib->fddiPORTConnectState = PCM_CONNECTING ;
762 phy->cf_loop = FALSE ;
763 phy->cf_join = FALSE ;
764 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
765 phy->ls_flag = FALSE ;
766 phy->pc_mode = PM_NONE ; /* needed by CFM */
767 phy->bitn = 0 ; /* bit signaling start bit */
768 for (i = 0 ; i < 3 ; i++)
769 pc_tcode_actions(smc,i,phy) ;
770
771 /* Set the non-active interrupt mask register */
772 outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
773
774 /*
775 * If the LCT was stopped. There might be a
776 * PCM_CODE interrupt event present.
777 * This must be cleared.
778 */
779 (void)inpw(PLC(np,PL_INTR_EVENT)) ;
780 #ifndef MOT_ELM
781 /* Get the plc revision for revision dependent code */
782 plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
783
784 if (plc_rev != PLC_REV_SN3)
785 #endif /* MOT_ELM */
786 {
787 /*
788 * No supernet III PLC, so set Xmit verctor and
789 * length BEFORE starting the state machine.
790 */
791 if (plc_send_bits(smc,phy,3)) {
792 return ;
793 }
794 }
795
796 /*
797 * Now give the Start command.
798 * - The start command shall be done before setting the bits
799 * to be signaled. (In PLC-S description and PLCS in SN3.
800 * - The start command shall be issued AFTER setting the
801 * XMIT vector and the XMIT length register.
802 *
803 * We do it exactly according this specs for the old PLC and
804 * the new PLCS inside the SN3.
805 * For the usual PLCS we try it the way it is done for the
806 * old PLC and set the XMIT registers again, if the PLC is
807 * not in SIGNAL state. This is done according to an PLCS
808 * errata workaround.
809 */
810
811 plc_go_state(smc,np,PL_PCM_START) ;
812
813 /*
814 * workaround for PLC-S eng. sample errata
815 */
816 #ifdef MOT_ELM
817 if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
818 #else /* nMOT_ELM */
819 if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
820 PLC_REVISION_A) &&
821 !(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
822 #endif /* nMOT_ELM */
823 {
824 /*
825 * Set register again (PLCS errata) or the first time
826 * (new SN3 PLCS).
827 */
828 (void) plc_send_bits(smc,phy,3) ;
829 }
830 /*
831 * end of workaround
832 */
833
834 GO_STATE(PC5_SIGNAL) ;
835 plc->p_state = PS_BIT3 ;
836 plc->p_bits = 3 ;
837 plc->p_start = 0 ;
838
839 break ;
840 case PC1_BREAK :
841 break ;
842 case ACTIONS(PC2_TRACE) :
843 plc_go_state(smc,np,PL_PCM_TRACE) ;
844 ACTIONS_DONE() ;
845 break ;
846 case PC2_TRACE :
847 break ;
848
849 case PC3_CONNECT : /* these states are done by hardware */
850 case PC4_NEXT :
851 break ;
852
853 case ACTIONS(PC5_SIGNAL) :
854 ACTIONS_DONE() ;
855 case PC5_SIGNAL :
856 if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
857 break ;
858 switch (plc->p_state) {
859 case PS_BIT3 :
860 for (i = 0 ; i <= 2 ; i++)
861 pc_rcode_actions(smc,i,phy) ;
862 pc_tcode_actions(smc,3,phy) ;
863 plc->p_state = PS_BIT4 ;
864 plc->p_bits = 1 ;
865 plc->p_start = 3 ;
866 phy->bitn = 3 ;
867 if (plc_send_bits(smc,phy,1)) {
868 return ;
869 }
870 break ;
871 case PS_BIT4 :
872 pc_rcode_actions(smc,3,phy) ;
873 for (i = 4 ; i <= 6 ; i++)
874 pc_tcode_actions(smc,i,phy) ;
875 plc->p_state = PS_BIT7 ;
876 plc->p_bits = 3 ;
877 plc->p_start = 4 ;
878 phy->bitn = 4 ;
879 if (plc_send_bits(smc,phy,3)) {
880 return ;
881 }
882 break ;
883 case PS_BIT7 :
884 for (i = 3 ; i <= 6 ; i++)
885 pc_rcode_actions(smc,i,phy) ;
886 plc->p_state = PS_LCT ;
887 plc->p_bits = 0 ;
888 plc->p_start = 7 ;
889 phy->bitn = 7 ;
890 sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
891 /* start LCT */
892 i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
893 outpw(PLC(np,PL_CNTRL_B),i) ; /* must be cleared */
894 outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
895 break ;
896 case PS_LCT :
897 /* check for local LCT failure */
898 pc_tcode_actions(smc,7,phy) ;
899 /*
900 * set tval[7]
901 */
902 plc->p_state = PS_BIT8 ;
903 plc->p_bits = 1 ;
904 plc->p_start = 7 ;
905 phy->bitn = 7 ;
906 if (plc_send_bits(smc,phy,1)) {
907 return ;
908 }
909 break ;
910 case PS_BIT8 :
911 /* check for remote LCT failure */
912 pc_rcode_actions(smc,7,phy) ;
913 if (phy->t_val[7] || phy->r_val[7]) {
914 plc_go_state(smc,np,PL_PCM_STOP) ;
915 GO_STATE(PC1_BREAK) ;
916 break ;
917 }
918 for (i = 8 ; i <= 9 ; i++)
919 pc_tcode_actions(smc,i,phy) ;
920 plc->p_state = PS_JOIN ;
921 plc->p_bits = 2 ;
922 plc->p_start = 8 ;
923 phy->bitn = 8 ;
924 if (plc_send_bits(smc,phy,2)) {
925 return ;
926 }
927 break ;
928 case PS_JOIN :
929 for (i = 8 ; i <= 9 ; i++)
930 pc_rcode_actions(smc,i,phy) ;
931 plc->p_state = PS_ACTIVE ;
932 GO_STATE(PC6_JOIN) ;
933 break ;
934 }
935 break ;
936
937 case ACTIONS(PC6_JOIN) :
938 /*
939 * prevent mux error when going from WRAP_A to WRAP_B
940 */
941 if (smc->s.sas == SMT_DAS && np == PB &&
942 (smc->y[PA].pc_mode == PM_TREE ||
943 smc->y[PB].pc_mode == PM_TREE)) {
944 SETMASK(PLC(np,PL_CNTRL_A),
945 PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
946 SETMASK(PLC(np,PL_CNTRL_B),
947 PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
948 }
949 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
950 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
951 ACTIONS_DONE() ;
952 cmd = 0 ;
953 /* fall thru */
954 case PC6_JOIN :
955 switch (plc->p_state) {
956 case PS_ACTIVE:
957 /*PC88b*/
958 if (!phy->cf_join) {
959 phy->cf_join = TRUE ;
960 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
961 }
962 if (cmd == PC_JOIN)
963 GO_STATE(PC8_ACTIVE) ;
964 /*PC82*/
965 if (cmd == PC_TRACE) {
966 GO_STATE(PC2_TRACE) ;
967 break ;
968 }
969 break ;
970 }
971 break ;
972
973 case PC7_VERIFY :
974 break ;
975
976 case ACTIONS(PC8_ACTIVE) :
977 /*
978 * start LEM for SMT
979 */
980 sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
981
982 phy->tr_flag = FALSE ;
983 mib->fddiPORTConnectState = PCM_ACTIVE ;
984
985 /* Set the active interrupt mask register */
986 outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
987
988 ACTIONS_DONE() ;
989 break ;
990 case PC8_ACTIVE :
991 /*PC81 is done by PL_TNE_EXPIRED irq */
992 /*PC82*/
993 if (cmd == PC_TRACE) {
994 GO_STATE(PC2_TRACE) ;
995 break ;
996 }
997 /*PC88c: is done by TRACE_PROP irq */
998
999 break ;
1000 case ACTIONS(PC9_MAINT) :
1001 stop_pcm_timer0(smc,phy) ;
1002 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
1003 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1004 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ; /* disable LEM int. */
1005 sm_ph_lem_stop(smc,np) ; /* disable LEM */
1006 phy->cf_loop = FALSE ;
1007 phy->cf_join = FALSE ;
1008 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1009 plc_go_state(smc,np,PL_PCM_STOP) ;
1010 mib->fddiPORTConnectState = PCM_DISABLED ;
1011 SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1012 sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1013 outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1014 ACTIONS_DONE() ;
1015 break ;
1016 case PC9_MAINT :
1017 DB_PCMN(1, "PCM %c : MAINT", phy->phy_name);
1018 /*PC90*/
1019 if (cmd == PC_ENABLE) {
1020 GO_STATE(PC0_OFF) ;
1021 break ;
1022 }
1023 break ;
1024
1025 default:
1026 SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1027 break ;
1028 }
1029 }
1030
1031 /*
1032 * force line state on a PHY output (only in MAINT state)
1033 */
sm_ph_linestate(struct s_smc * smc,int phy,int ls)1034 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1035 {
1036 int cntrl ;
1037
1038 SK_UNUSED(smc) ;
1039
1040 cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1041 PL_PCM_STOP | PL_MAINT ;
1042 switch(ls) {
1043 case PC_QLS: /* Force Quiet */
1044 cntrl |= PL_M_QUI0 ;
1045 break ;
1046 case PC_MLS: /* Force Master */
1047 cntrl |= PL_M_MASTR ;
1048 break ;
1049 case PC_HLS: /* Force Halt */
1050 cntrl |= PL_M_HALT ;
1051 break ;
1052 default :
1053 case PC_ILS: /* Force Idle */
1054 cntrl |= PL_M_IDLE ;
1055 break ;
1056 case PC_LS_PDR: /* Enable repeat filter */
1057 cntrl |= PL_M_TPDR ;
1058 break ;
1059 }
1060 outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1061 }
1062
reset_lem_struct(struct s_phy * phy)1063 static void reset_lem_struct(struct s_phy *phy)
1064 {
1065 struct lem_counter *lem = &phy->lem ;
1066
1067 phy->mib->fddiPORTLer_Estimate = 15 ;
1068 lem->lem_float_ber = 15 * 100 ;
1069 }
1070
1071 /*
1072 * link error monitor
1073 */
lem_evaluate(struct s_smc * smc,struct s_phy * phy)1074 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1075 {
1076 int ber ;
1077 u_long errors ;
1078 struct lem_counter *lem = &phy->lem ;
1079 struct fddi_mib_p *mib ;
1080 int cond ;
1081
1082 mib = phy->mib ;
1083
1084 if (!lem->lem_on)
1085 return ;
1086
1087 errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1088 lem->lem_errors += errors ;
1089 mib->fddiPORTLem_Ct += errors ;
1090
1091 errors = lem->lem_errors ;
1092 /*
1093 * calculation is called on a intervall of 8 seconds
1094 * -> this means, that one error in 8 sec. is one of 8*125*10E6
1095 * the same as BER = 10E-9
1096 * Please note:
1097 * -> 9 errors in 8 seconds mean:
1098 * BER = 9 * 10E-9 and this is
1099 * < 10E-8, so the limit of 10E-8 is not reached!
1100 */
1101
1102 if (!errors) ber = 15 ;
1103 else if (errors <= 9) ber = 9 ;
1104 else if (errors <= 99) ber = 8 ;
1105 else if (errors <= 999) ber = 7 ;
1106 else if (errors <= 9999) ber = 6 ;
1107 else if (errors <= 99999) ber = 5 ;
1108 else if (errors <= 999999) ber = 4 ;
1109 else if (errors <= 9999999) ber = 3 ;
1110 else if (errors <= 99999999) ber = 2 ;
1111 else if (errors <= 999999999) ber = 1 ;
1112 else ber = 0 ;
1113
1114 /*
1115 * weighted average
1116 */
1117 ber *= 100 ;
1118 lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1119 lem->lem_float_ber /= 10 ;
1120 mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1121 if (mib->fddiPORTLer_Estimate < 4) {
1122 mib->fddiPORTLer_Estimate = 4 ;
1123 }
1124
1125 if (lem->lem_errors) {
1126 DB_PCMN(1, "LEM %c :", phy->np == PB ? 'B' : 'A');
1127 DB_PCMN(1, "errors : %ld", lem->lem_errors);
1128 DB_PCMN(1, "sum_errors : %ld", mib->fddiPORTLem_Ct);
1129 DB_PCMN(1, "current BER : 10E-%d", ber / 100);
1130 DB_PCMN(1, "float BER : 10E-(%d/100)", lem->lem_float_ber);
1131 DB_PCMN(1, "avg. BER : 10E-%d", mib->fddiPORTLer_Estimate);
1132 }
1133
1134 lem->lem_errors = 0L ;
1135
1136 #ifndef SLIM_SMT
1137 cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1138 TRUE : FALSE ;
1139 #ifdef SMT_EXT_CUTOFF
1140 smt_ler_alarm_check(smc,phy,cond) ;
1141 #endif /* nSMT_EXT_CUTOFF */
1142 if (cond != mib->fddiPORTLerFlag) {
1143 smt_srf_event(smc,SMT_COND_PORT_LER,
1144 (int) (INDEX_PORT+ phy->np) ,cond) ;
1145 }
1146 #endif
1147
1148 if ( mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1149 phy->pc_lem_fail = TRUE ; /* flag */
1150 mib->fddiPORTLem_Reject_Ct++ ;
1151 /*
1152 * "forgive 10e-2" if we cutoff so we can come
1153 * up again ..
1154 */
1155 lem->lem_float_ber += 2*100 ;
1156
1157 /*PC81b*/
1158 #ifdef CONCENTRATOR
1159 DB_PCMN(1, "PCM: LER cutoff on port %d cutoff %d",
1160 phy->np, mib->fddiPORTLer_Cutoff);
1161 #endif
1162 #ifdef SMT_EXT_CUTOFF
1163 smt_port_off_event(smc,phy->np);
1164 #else /* nSMT_EXT_CUTOFF */
1165 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1166 #endif /* nSMT_EXT_CUTOFF */
1167 }
1168 }
1169
1170 /*
1171 * called by SMT to calculate LEM bit error rate
1172 */
sm_lem_evaluate(struct s_smc * smc)1173 void sm_lem_evaluate(struct s_smc *smc)
1174 {
1175 int np ;
1176
1177 for (np = 0 ; np < NUMPHYS ; np++)
1178 lem_evaluate(smc,&smc->y[np]) ;
1179 }
1180
lem_check_lct(struct s_smc * smc,struct s_phy * phy)1181 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1182 {
1183 struct lem_counter *lem = &phy->lem ;
1184 struct fddi_mib_p *mib ;
1185 int errors ;
1186
1187 mib = phy->mib ;
1188
1189 phy->pc_lem_fail = FALSE ; /* flag */
1190 errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1191 lem->lem_errors += errors ;
1192 mib->fddiPORTLem_Ct += errors ;
1193 if (lem->lem_errors) {
1194 switch(phy->lc_test) {
1195 case LC_SHORT:
1196 if (lem->lem_errors >= smc->s.lct_short)
1197 phy->pc_lem_fail = TRUE ;
1198 break ;
1199 case LC_MEDIUM:
1200 if (lem->lem_errors >= smc->s.lct_medium)
1201 phy->pc_lem_fail = TRUE ;
1202 break ;
1203 case LC_LONG:
1204 if (lem->lem_errors >= smc->s.lct_long)
1205 phy->pc_lem_fail = TRUE ;
1206 break ;
1207 case LC_EXTENDED:
1208 if (lem->lem_errors >= smc->s.lct_extended)
1209 phy->pc_lem_fail = TRUE ;
1210 break ;
1211 }
1212 DB_PCMN(1, " >>errors : %lu", lem->lem_errors);
1213 }
1214 if (phy->pc_lem_fail) {
1215 mib->fddiPORTLCTFail_Ct++ ;
1216 mib->fddiPORTLem_Reject_Ct++ ;
1217 }
1218 else
1219 mib->fddiPORTLCTFail_Ct = 0 ;
1220 }
1221
1222 /*
1223 * LEM functions
1224 */
sm_ph_lem_start(struct s_smc * smc,int np,int threshold)1225 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1226 {
1227 struct lem_counter *lem = &smc->y[np].lem ;
1228
1229 lem->lem_on = 1 ;
1230 lem->lem_errors = 0L ;
1231
1232 /* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1233 * often.
1234 */
1235
1236 outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1237 (void)inpw(PLC(np,PL_LINK_ERR_CTR)) ; /* clear error counter */
1238
1239 /* enable LE INT */
1240 SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1241 }
1242
sm_ph_lem_stop(struct s_smc * smc,int np)1243 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1244 {
1245 struct lem_counter *lem = &smc->y[np].lem ;
1246
1247 lem->lem_on = 0 ;
1248 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1249 }
1250
1251 /* ARGSUSED */
sm_pm_ls_latch(struct s_smc * smc,int phy,int on_off)1252 void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
1253 /* int on_off; en- or disable ident. ls */
1254 {
1255 SK_UNUSED(smc) ;
1256
1257 phy = phy ; on_off = on_off ;
1258 }
1259
1260
1261 /*
1262 * PCM pseudo code
1263 * receive actions are called AFTER the bit n is received,
1264 * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1265 */
1266
1267 /*
1268 * PCM pseudo code 5.1 .. 6.1
1269 */
pc_rcode_actions(struct s_smc * smc,int bit,struct s_phy * phy)1270 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1271 {
1272 struct fddi_mib_p *mib ;
1273
1274 mib = phy->mib ;
1275
1276 DB_PCMN(1, "SIG rec %x %x:", bit, phy->r_val[bit]);
1277 bit++ ;
1278
1279 switch(bit) {
1280 case 0:
1281 case 1:
1282 case 2:
1283 break ;
1284 case 3 :
1285 if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1286 mib->fddiPORTNeighborType = TA ;
1287 else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1288 mib->fddiPORTNeighborType = TB ;
1289 else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1290 mib->fddiPORTNeighborType = TS ;
1291 else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1292 mib->fddiPORTNeighborType = TM ;
1293 break ;
1294 case 4:
1295 if (mib->fddiPORTMy_Type == TM &&
1296 mib->fddiPORTNeighborType == TM) {
1297 DB_PCMN(1, "PCM %c : E100 withhold M-M",
1298 phy->phy_name);
1299 mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1300 RS_SET(smc,RS_EVENT) ;
1301 }
1302 else if (phy->t_val[3] || phy->r_val[3]) {
1303 mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1304 if (mib->fddiPORTMy_Type == TM ||
1305 mib->fddiPORTNeighborType == TM)
1306 phy->pc_mode = PM_TREE ;
1307 else
1308 phy->pc_mode = PM_PEER ;
1309
1310 /* reevaluate the selection criteria (wc_flag) */
1311 all_selection_criteria (smc);
1312
1313 if (phy->wc_flag) {
1314 mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1315 }
1316 }
1317 else {
1318 mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1319 RS_SET(smc,RS_EVENT) ;
1320 DB_PCMN(1, "PCM %c : E101 withhold other",
1321 phy->phy_name);
1322 }
1323 phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1324 (mib->fddiPORTMy_Type != TM) &&
1325 (mib->fddiPORTNeighborType ==
1326 mib->fddiPORTMy_Type)) ;
1327 if (phy->twisted) {
1328 DB_PCMN(1, "PCM %c : E102 !!! TWISTED !!!",
1329 phy->phy_name);
1330 }
1331 break ;
1332 case 5 :
1333 break ;
1334 case 6:
1335 if (phy->t_val[4] || phy->r_val[4]) {
1336 if ((phy->t_val[4] && phy->t_val[5]) ||
1337 (phy->r_val[4] && phy->r_val[5]) )
1338 phy->lc_test = LC_EXTENDED ;
1339 else
1340 phy->lc_test = LC_LONG ;
1341 }
1342 else if (phy->t_val[5] || phy->r_val[5])
1343 phy->lc_test = LC_MEDIUM ;
1344 else
1345 phy->lc_test = LC_SHORT ;
1346 switch (phy->lc_test) {
1347 case LC_SHORT : /* 50ms */
1348 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1349 phy->t_next[7] = smc->s.pcm_lc_short ;
1350 break ;
1351 case LC_MEDIUM : /* 500ms */
1352 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1353 phy->t_next[7] = smc->s.pcm_lc_medium ;
1354 break ;
1355 case LC_LONG :
1356 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1357 phy->t_next[7] = smc->s.pcm_lc_long ;
1358 break ;
1359 case LC_EXTENDED :
1360 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1361 phy->t_next[7] = smc->s.pcm_lc_extended ;
1362 break ;
1363 }
1364 if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1365 start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1366 }
1367 DB_PCMN(1, "LCT timer = %ld us", phy->t_next[7]);
1368 phy->t_next[9] = smc->s.pcm_t_next_9 ;
1369 break ;
1370 case 7:
1371 if (phy->t_val[6]) {
1372 phy->cf_loop = TRUE ;
1373 }
1374 phy->td_flag = TRUE ;
1375 break ;
1376 case 8:
1377 if (phy->t_val[7] || phy->r_val[7]) {
1378 DB_PCMN(1, "PCM %c : E103 LCT fail %s",
1379 phy->phy_name,
1380 phy->t_val[7] ? "local" : "remote");
1381 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1382 }
1383 break ;
1384 case 9:
1385 if (phy->t_val[8] || phy->r_val[8]) {
1386 if (phy->t_val[8])
1387 phy->cf_loop = TRUE ;
1388 phy->td_flag = TRUE ;
1389 }
1390 break ;
1391 case 10:
1392 if (phy->r_val[9]) {
1393 /* neighbor intends to have MAC on output */ ;
1394 mib->fddiPORTMacIndicated.R_val = TRUE ;
1395 }
1396 else {
1397 /* neighbor does not intend to have MAC on output */ ;
1398 mib->fddiPORTMacIndicated.R_val = FALSE ;
1399 }
1400 break ;
1401 }
1402 }
1403
1404 /*
1405 * PCM pseudo code 5.1 .. 6.1
1406 */
pc_tcode_actions(struct s_smc * smc,const int bit,struct s_phy * phy)1407 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1408 {
1409 int np = phy->np ;
1410 struct fddi_mib_p *mib ;
1411
1412 mib = phy->mib ;
1413
1414 switch(bit) {
1415 case 0:
1416 phy->t_val[0] = 0 ; /* no escape used */
1417 break ;
1418 case 1:
1419 if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1420 phy->t_val[1] = 1 ;
1421 else
1422 phy->t_val[1] = 0 ;
1423 break ;
1424 case 2 :
1425 if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1426 phy->t_val[2] = 1 ;
1427 else
1428 phy->t_val[2] = 0 ;
1429 break ;
1430 case 3:
1431 {
1432 int type,ne ;
1433 int policy ;
1434
1435 type = mib->fddiPORTMy_Type ;
1436 ne = mib->fddiPORTNeighborType ;
1437 policy = smc->mib.fddiSMTConnectionPolicy ;
1438
1439 phy->t_val[3] = 1 ; /* Accept connection */
1440 switch (type) {
1441 case TA :
1442 if (
1443 ((policy & POLICY_AA) && ne == TA) ||
1444 ((policy & POLICY_AB) && ne == TB) ||
1445 ((policy & POLICY_AS) && ne == TS) ||
1446 ((policy & POLICY_AM) && ne == TM) )
1447 phy->t_val[3] = 0 ; /* Reject */
1448 break ;
1449 case TB :
1450 if (
1451 ((policy & POLICY_BA) && ne == TA) ||
1452 ((policy & POLICY_BB) && ne == TB) ||
1453 ((policy & POLICY_BS) && ne == TS) ||
1454 ((policy & POLICY_BM) && ne == TM) )
1455 phy->t_val[3] = 0 ; /* Reject */
1456 break ;
1457 case TS :
1458 if (
1459 ((policy & POLICY_SA) && ne == TA) ||
1460 ((policy & POLICY_SB) && ne == TB) ||
1461 ((policy & POLICY_SS) && ne == TS) ||
1462 ((policy & POLICY_SM) && ne == TM) )
1463 phy->t_val[3] = 0 ; /* Reject */
1464 break ;
1465 case TM :
1466 if ( ne == TM ||
1467 ((policy & POLICY_MA) && ne == TA) ||
1468 ((policy & POLICY_MB) && ne == TB) ||
1469 ((policy & POLICY_MS) && ne == TS) ||
1470 ((policy & POLICY_MM) && ne == TM) )
1471 phy->t_val[3] = 0 ; /* Reject */
1472 break ;
1473 }
1474 #ifndef SLIM_SMT
1475 /*
1476 * detect undesirable connection attempt event
1477 */
1478 if ( (type == TA && ne == TA ) ||
1479 (type == TA && ne == TS ) ||
1480 (type == TB && ne == TB ) ||
1481 (type == TB && ne == TS ) ||
1482 (type == TS && ne == TA ) ||
1483 (type == TS && ne == TB ) ) {
1484 smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1485 (int) (INDEX_PORT+ phy->np) ,0) ;
1486 }
1487 #endif
1488 }
1489 break ;
1490 case 4:
1491 if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1492 if (phy->pc_lem_fail) {
1493 phy->t_val[4] = 1 ; /* long */
1494 phy->t_val[5] = 0 ;
1495 }
1496 else {
1497 phy->t_val[4] = 0 ;
1498 if (mib->fddiPORTLCTFail_Ct > 0)
1499 phy->t_val[5] = 1 ; /* medium */
1500 else
1501 phy->t_val[5] = 0 ; /* short */
1502
1503 /*
1504 * Implementers choice: use medium
1505 * instead of short when undesired
1506 * connection attempt is made.
1507 */
1508 if (phy->wc_flag)
1509 phy->t_val[5] = 1 ; /* medium */
1510 }
1511 mib->fddiPORTConnectState = PCM_CONNECTING ;
1512 }
1513 else {
1514 mib->fddiPORTConnectState = PCM_STANDBY ;
1515 phy->t_val[4] = 1 ; /* extended */
1516 phy->t_val[5] = 1 ;
1517 }
1518 break ;
1519 case 5:
1520 break ;
1521 case 6:
1522 /* we do NOT have a MAC for LCT */
1523 phy->t_val[6] = 0 ;
1524 break ;
1525 case 7:
1526 phy->cf_loop = FALSE ;
1527 lem_check_lct(smc,phy) ;
1528 if (phy->pc_lem_fail) {
1529 DB_PCMN(1, "PCM %c : E104 LCT failed", phy->phy_name);
1530 phy->t_val[7] = 1 ;
1531 }
1532 else
1533 phy->t_val[7] = 0 ;
1534 break ;
1535 case 8:
1536 phy->t_val[8] = 0 ; /* Don't request MAC loopback */
1537 break ;
1538 case 9:
1539 phy->cf_loop = 0 ;
1540 if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1541 ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1542 queue_event(smc,EVENT_PCM+np,PC_START) ;
1543 break ;
1544 }
1545 phy->t_val[9] = FALSE ;
1546 switch (smc->s.sas) {
1547 case SMT_DAS :
1548 /*
1549 * MAC intended on output
1550 */
1551 if (phy->pc_mode == PM_TREE) {
1552 if ((np == PB) || ((np == PA) &&
1553 (smc->y[PB].mib->fddiPORTConnectState !=
1554 PCM_ACTIVE)))
1555 phy->t_val[9] = TRUE ;
1556 }
1557 else {
1558 if (np == PB)
1559 phy->t_val[9] = TRUE ;
1560 }
1561 break ;
1562 case SMT_SAS :
1563 if (np == PS)
1564 phy->t_val[9] = TRUE ;
1565 break ;
1566 #ifdef CONCENTRATOR
1567 case SMT_NAC :
1568 /*
1569 * MAC intended on output
1570 */
1571 if (np == PB)
1572 phy->t_val[9] = TRUE ;
1573 break ;
1574 #endif
1575 }
1576 mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1577 break ;
1578 }
1579 DB_PCMN(1, "SIG snd %x %x:", bit, phy->t_val[bit]);
1580 }
1581
1582 /*
1583 * return status twisted (called by SMT)
1584 */
pcm_status_twisted(struct s_smc * smc)1585 int pcm_status_twisted(struct s_smc *smc)
1586 {
1587 int twist = 0 ;
1588 if (smc->s.sas != SMT_DAS)
1589 return 0;
1590 if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1591 twist |= 1 ;
1592 if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1593 twist |= 2 ;
1594 return twist;
1595 }
1596
1597 /*
1598 * return status (called by SMT)
1599 * type
1600 * state
1601 * remote phy type
1602 * remote mac yes/no
1603 */
pcm_status_state(struct s_smc * smc,int np,int * type,int * state,int * remote,int * mac)1604 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1605 int *remote, int *mac)
1606 {
1607 struct s_phy *phy = &smc->y[np] ;
1608 struct fddi_mib_p *mib ;
1609
1610 mib = phy->mib ;
1611
1612 /* remote PHY type and MAC - set only if active */
1613 *mac = 0 ;
1614 *type = mib->fddiPORTMy_Type ; /* our PHY type */
1615 *state = mib->fddiPORTConnectState ;
1616 *remote = mib->fddiPORTNeighborType ;
1617
1618 switch(mib->fddiPORTPCMState) {
1619 case PC8_ACTIVE :
1620 *mac = mib->fddiPORTMacIndicated.R_val ;
1621 break ;
1622 }
1623 }
1624
1625 /*
1626 * return rooted station status (called by SMT)
1627 */
pcm_rooted_station(struct s_smc * smc)1628 int pcm_rooted_station(struct s_smc *smc)
1629 {
1630 int n ;
1631
1632 for (n = 0 ; n < NUMPHYS ; n++) {
1633 if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1634 smc->y[n].mib->fddiPORTNeighborType == TM)
1635 return 0;
1636 }
1637 return 1;
1638 }
1639
1640 /*
1641 * Interrupt actions for PLC & PCM events
1642 */
plc_irq(struct s_smc * smc,int np,unsigned int cmd)1643 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1644 /* int np; PHY index */
1645 {
1646 struct s_phy *phy = &smc->y[np] ;
1647 struct s_plc *plc = &phy->plc ;
1648 int n ;
1649 #ifdef SUPERNET_3
1650 int corr_mask ;
1651 #endif /* SUPERNET_3 */
1652 int i ;
1653
1654 if (np >= smc->s.numphys) {
1655 plc->soft_err++ ;
1656 return ;
1657 }
1658 if (cmd & PL_EBUF_ERR) { /* elastic buff. det. over-|underflow*/
1659 /*
1660 * Check whether the SRF Condition occurred.
1661 */
1662 if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1663 /*
1664 * This is the real Elasticity Error.
1665 * More than one in a row are treated as a
1666 * single one.
1667 * Only count this in the active state.
1668 */
1669 phy->mib->fddiPORTEBError_Ct ++ ;
1670
1671 }
1672
1673 plc->ebuf_err++ ;
1674 if (plc->ebuf_cont <= 1000) {
1675 /*
1676 * Prevent counter from being wrapped after
1677 * hanging years in that interrupt.
1678 */
1679 plc->ebuf_cont++ ; /* Ebuf continuous error */
1680 }
1681
1682 #ifdef SUPERNET_3
1683 if (plc->ebuf_cont == 1000 &&
1684 ((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1685 PLC_REV_SN3)) {
1686 /*
1687 * This interrupt remeained high for at least
1688 * 1000 consecutive interrupt calls.
1689 *
1690 * This is caused by a hardware error of the
1691 * ORION part of the Supernet III chipset.
1692 *
1693 * Disable this bit from the mask.
1694 */
1695 corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1696 outpw(PLC(np,PL_INTR_MASK),corr_mask);
1697
1698 /*
1699 * Disconnect from the ring.
1700 * Call the driver with the reset indication.
1701 */
1702 queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1703
1704 /*
1705 * Make an error log entry.
1706 */
1707 SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1708
1709 /*
1710 * Indicate the Reset.
1711 */
1712 drv_reset_indication(smc) ;
1713 }
1714 #endif /* SUPERNET_3 */
1715 } else {
1716 /* Reset the continuous error variable */
1717 plc->ebuf_cont = 0 ; /* reset Ebuf continuous error */
1718 }
1719 if (cmd & PL_PHYINV) { /* physical layer invalid signal */
1720 plc->phyinv++ ;
1721 }
1722 if (cmd & PL_VSYM_CTR) { /* violation symbol counter has incr.*/
1723 plc->vsym_ctr++ ;
1724 }
1725 if (cmd & PL_MINI_CTR) { /* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1726 plc->mini_ctr++ ;
1727 }
1728 if (cmd & PL_LE_CTR) { /* link error event counter */
1729 int j ;
1730
1731 /*
1732 * note: PL_LINK_ERR_CTR MUST be read to clear it
1733 */
1734 j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1735 i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1736
1737 if (i < j) {
1738 /* wrapped around */
1739 i += 256 ;
1740 }
1741
1742 if (phy->lem.lem_on) {
1743 /* Note: Lem errors shall only be counted when
1744 * link is ACTIVE or LCT is active.
1745 */
1746 phy->lem.lem_errors += i ;
1747 phy->mib->fddiPORTLem_Ct += i ;
1748 }
1749 }
1750 if (cmd & PL_TPC_EXPIRED) { /* TPC timer reached zero */
1751 if (plc->p_state == PS_LCT) {
1752 /*
1753 * end of LCT
1754 */
1755 ;
1756 }
1757 plc->tpc_exp++ ;
1758 }
1759 if (cmd & PL_LS_MATCH) { /* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1760 switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1761 case PL_I_IDLE : phy->curr_ls = PC_ILS ; break ;
1762 case PL_I_HALT : phy->curr_ls = PC_HLS ; break ;
1763 case PL_I_MASTR : phy->curr_ls = PC_MLS ; break ;
1764 case PL_I_QUIET : phy->curr_ls = PC_QLS ; break ;
1765 }
1766 }
1767 if (cmd & PL_PCM_BREAK) { /* PCM has entered the BREAK state */
1768 int reason;
1769
1770 reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1771
1772 switch (reason) {
1773 case PL_B_PCS : plc->b_pcs++ ; break ;
1774 case PL_B_TPC : plc->b_tpc++ ; break ;
1775 case PL_B_TNE : plc->b_tne++ ; break ;
1776 case PL_B_QLS : plc->b_qls++ ; break ;
1777 case PL_B_ILS : plc->b_ils++ ; break ;
1778 case PL_B_HLS : plc->b_hls++ ; break ;
1779 }
1780
1781 /*jd 05-Aug-1999 changed: Bug #10419 */
1782 DB_PCMN(1, "PLC %d: MDcF = %x", np, smc->e.DisconnectFlag);
1783 if (smc->e.DisconnectFlag == FALSE) {
1784 DB_PCMN(1, "PLC %d: restart (reason %x)", np, reason);
1785 queue_event(smc,EVENT_PCM+np,PC_START) ;
1786 }
1787 else {
1788 DB_PCMN(1, "PLC %d: NO!! restart (reason %x)",
1789 np, reason);
1790 }
1791 return ;
1792 }
1793 /*
1794 * If both CODE & ENABLE are set ignore enable
1795 */
1796 if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1797 queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1798 n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1799 for (i = 0 ; i < plc->p_bits ; i++) {
1800 phy->r_val[plc->p_start+i] = n & 1 ;
1801 n >>= 1 ;
1802 }
1803 }
1804 else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1805 queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1806 }
1807 if (cmd & PL_TRACE_PROP) { /* MLS while PC8_ACTIV || PC2_TRACE */
1808 /*PC22b*/
1809 if (!phy->tr_flag) {
1810 DB_PCMN(1, "PCM : irq TRACE_PROP %d %d",
1811 np, smc->mib.fddiSMTECMState);
1812 phy->tr_flag = TRUE ;
1813 smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1814 queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1815 }
1816 }
1817 /*
1818 * filter PLC glitch ???
1819 * QLS || HLS only while in PC2_TRACE state
1820 */
1821 if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1822 /*PC22a*/
1823 if (smc->e.path_test == PT_PASSED) {
1824 DB_PCMN(1, "PCM : state = %s %d",
1825 get_pcmstate(smc, np),
1826 phy->mib->fddiPORTPCMState);
1827
1828 smc->e.path_test = PT_PENDING ;
1829 queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1830 }
1831 }
1832 if (cmd & PL_TNE_EXPIRED) { /* TNE: length of noise events */
1833 /* break_required (TNE > NS_Max) */
1834 if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1835 if (!phy->tr_flag) {
1836 DB_PCMN(1, "PCM %c : PC81 %s",
1837 phy->phy_name, "NSE");
1838 queue_event(smc, EVENT_PCM + np, PC_START);
1839 return;
1840 }
1841 }
1842 }
1843 #if 0
1844 if (cmd & PL_NP_ERR) { /* NP has requested to r/w an inv reg*/
1845 /*
1846 * It's a bug by AMD
1847 */
1848 plc->np_err++ ;
1849 }
1850 /* pin inactiv (GND) */
1851 if (cmd & PL_PARITY_ERR) { /* p. error dedected on TX9-0 inp */
1852 plc->parity_err++ ;
1853 }
1854 if (cmd & PL_LSDO) { /* carrier detected */
1855 ;
1856 }
1857 #endif
1858 }
1859
1860 #ifdef DEBUG
1861 /*
1862 * fill state struct
1863 */
pcm_get_state(struct s_smc * smc,struct smt_state * state)1864 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1865 {
1866 struct s_phy *phy ;
1867 struct pcm_state *pcs ;
1868 int i ;
1869 int ii ;
1870 short rbits ;
1871 short tbits ;
1872 struct fddi_mib_p *mib ;
1873
1874 for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1875 i++ , phy++, pcs++ ) {
1876 mib = phy->mib ;
1877 pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1878 pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1879 pcs->pcm_mode = phy->pc_mode ;
1880 pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1881 pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1882 pcs->pcm_lsf = phy->ls_flag ;
1883 pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1884 pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1885 for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1886 rbits <<= 1 ;
1887 tbits <<= 1 ;
1888 if (phy->r_val[NUMBITS-1-ii])
1889 rbits |= 1 ;
1890 if (phy->t_val[NUMBITS-1-ii])
1891 tbits |= 1 ;
1892 }
1893 pcs->pcm_r_val = rbits ;
1894 pcs->pcm_t_val = tbits ;
1895 }
1896 }
1897
get_pcm_state(struct s_smc * smc,int np)1898 int get_pcm_state(struct s_smc *smc, int np)
1899 {
1900 int pcs ;
1901
1902 SK_UNUSED(smc) ;
1903
1904 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1905 case PL_PC0 : pcs = PC_STOP ; break ;
1906 case PL_PC1 : pcs = PC_START ; break ;
1907 case PL_PC2 : pcs = PC_TRACE ; break ;
1908 case PL_PC3 : pcs = PC_SIGNAL ; break ;
1909 case PL_PC4 : pcs = PC_SIGNAL ; break ;
1910 case PL_PC5 : pcs = PC_SIGNAL ; break ;
1911 case PL_PC6 : pcs = PC_JOIN ; break ;
1912 case PL_PC7 : pcs = PC_JOIN ; break ;
1913 case PL_PC8 : pcs = PC_ENABLE ; break ;
1914 case PL_PC9 : pcs = PC_MAINT ; break ;
1915 default : pcs = PC_DISABLE ; break ;
1916 }
1917 return pcs;
1918 }
1919
get_linestate(struct s_smc * smc,int np)1920 char *get_linestate(struct s_smc *smc, int np)
1921 {
1922 char *ls = "" ;
1923
1924 SK_UNUSED(smc) ;
1925
1926 switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1927 case PL_L_NLS : ls = "NOISE" ; break ;
1928 case PL_L_ALS : ls = "ACTIV" ; break ;
1929 case PL_L_UND : ls = "UNDEF" ; break ;
1930 case PL_L_ILS4: ls = "ILS 4" ; break ;
1931 case PL_L_QLS : ls = "QLS" ; break ;
1932 case PL_L_MLS : ls = "MLS" ; break ;
1933 case PL_L_HLS : ls = "HLS" ; break ;
1934 case PL_L_ILS16:ls = "ILS16" ; break ;
1935 #ifdef lint
1936 default: ls = "unknown" ; break ;
1937 #endif
1938 }
1939 return ls;
1940 }
1941
get_pcmstate(struct s_smc * smc,int np)1942 char *get_pcmstate(struct s_smc *smc, int np)
1943 {
1944 char *pcs ;
1945
1946 SK_UNUSED(smc) ;
1947
1948 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1949 case PL_PC0 : pcs = "OFF" ; break ;
1950 case PL_PC1 : pcs = "BREAK" ; break ;
1951 case PL_PC2 : pcs = "TRACE" ; break ;
1952 case PL_PC3 : pcs = "CONNECT"; break ;
1953 case PL_PC4 : pcs = "NEXT" ; break ;
1954 case PL_PC5 : pcs = "SIGNAL" ; break ;
1955 case PL_PC6 : pcs = "JOIN" ; break ;
1956 case PL_PC7 : pcs = "VERIFY" ; break ;
1957 case PL_PC8 : pcs = "ACTIV" ; break ;
1958 case PL_PC9 : pcs = "MAINT" ; break ;
1959 default : pcs = "UNKNOWN" ; break ;
1960 }
1961 return pcs;
1962 }
1963
list_phy(struct s_smc * smc)1964 void list_phy(struct s_smc *smc)
1965 {
1966 struct s_plc *plc ;
1967 int np ;
1968
1969 for (np = 0 ; np < NUMPHYS ; np++) {
1970 plc = &smc->y[np].plc ;
1971 printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1972 printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1973 plc->soft_err,plc->b_pcs);
1974 printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1975 plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1976 printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1977 plc->ebuf_err,plc->b_tne) ;
1978 printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1979 plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1980 printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1981 plc->vsym_ctr,plc->b_ils) ;
1982 printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1983 plc->mini_ctr,plc->b_hls) ;
1984 printf("\tnodepr_err: %ld\n",plc->np_err) ;
1985 printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1986 printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1987 }
1988 }
1989
1990
1991 #ifdef CONCENTRATOR
pcm_lem_dump(struct s_smc * smc)1992 void pcm_lem_dump(struct s_smc *smc)
1993 {
1994 int i ;
1995 struct s_phy *phy ;
1996 struct fddi_mib_p *mib ;
1997
1998 char *entostring() ;
1999
2000 printf("PHY errors BER\n") ;
2001 printf("----------------------\n") ;
2002 for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
2003 if (!plc_is_installed(smc,i))
2004 continue ;
2005 mib = phy->mib ;
2006 printf("%s\t%ld\t10E-%d\n",
2007 entostring(smc,ENTITY_PHY(i)),
2008 mib->fddiPORTLem_Ct,
2009 mib->fddiPORTLer_Estimate) ;
2010 }
2011 }
2012 #endif
2013 #endif
2014