1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49
50 unsigned int pci_pm_d3hot_delay;
51
52 static void pci_pme_list_scan(struct work_struct *work);
53
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58 struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61 };
62
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64
pci_dev_d3_sleep(struct pci_dev * dev)65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 unsigned int delay = dev->d3hot_delay;
68
69 if (delay < pci_pm_d3hot_delay)
70 delay = pci_pm_d3hot_delay;
71
72 if (delay)
73 msleep(delay);
74 }
75
pci_reset_supported(struct pci_dev * dev)76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 return dev->reset_methods[0] != 0;
79 }
80
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84
85 #define DEFAULT_CARDBUS_IO_SIZE (256)
86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90
91 #define DEFAULT_HOTPLUG_IO_SIZE (256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99 * pci=hpmemsize=nnM overrides both
100 */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103
104 #define DEFAULT_HOTPLUG_BUS_SIZE 1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106
107
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120
121 /*
122 * The default CLS is used if arch didn't set CLS explicitly and not
123 * all pci devices agree on the same value. Arch can override either
124 * the dfl or actual value as it sees fit. Don't forget this is
125 * measured in 32-bit words, not bytes.
126 */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129
130 /*
131 * If we set up a device for bus mastering, we need to check the latency
132 * timer as certain BIOSes forget to set it properly.
133 */
134 unsigned int pcibios_max_latency = 255;
135
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144
pci_ats_disabled(void)145 bool pci_ats_disabled(void)
146 {
147 return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155
pcie_port_pm_setup(char * str)156 static int __init pcie_port_pm_setup(char *str)
157 {
158 if (!strcmp(str, "off"))
159 pci_bridge_d3_disable = true;
160 else if (!strcmp(str, "force"))
161 pci_bridge_d3_force = true;
162 return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168
169 /**
170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171 * @bus: pointer to PCI bus structure to search
172 *
173 * Given a PCI bus, returns the highest PCI bus number present in the set
174 * including the given PCI bus and its list of child PCI buses.
175 */
pci_bus_max_busnr(struct pci_bus * bus)176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 {
178 struct pci_bus *tmp;
179 unsigned char max, n;
180
181 max = bus->busn_res.end;
182 list_for_each_entry(tmp, &bus->children, node) {
183 n = pci_bus_max_busnr(tmp);
184 if (n > max)
185 max = n;
186 }
187 return max;
188 }
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190
191 /**
192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193 * @pdev: the PCI device
194 *
195 * Returns error bits set in PCI_STATUS and clears them.
196 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 {
199 u16 status;
200 int ret;
201
202 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 if (ret != PCIBIOS_SUCCESSFUL)
204 return -EIO;
205
206 status &= PCI_STATUS_ERROR_BITS;
207 if (status)
208 pci_write_config_word(pdev, PCI_STATUS, status);
209
210 return status;
211 }
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213
214 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 bool write_combine)
217 {
218 struct resource *res = &pdev->resource[bar];
219 resource_size_t start = res->start;
220 resource_size_t size = resource_size(res);
221
222 /*
223 * Make sure the BAR is actually a memory resource, not an IO resource
224 */
225 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 return NULL;
228 }
229
230 if (write_combine)
231 return ioremap_wc(start, size);
232
233 return ioremap(start, size);
234 }
235
pci_ioremap_bar(struct pci_dev * pdev,int bar)236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 {
238 return __pci_ioremap_resource(pdev, bar, false);
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 {
244 return __pci_ioremap_resource(pdev, bar, true);
245 }
246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 #endif
248
249 /**
250 * pci_dev_str_match_path - test if a path string matches a device
251 * @dev: the PCI device to test
252 * @path: string to match the device against
253 * @endptr: pointer to the string after the match
254 *
255 * Test if a string (typically from a kernel parameter) formatted as a
256 * path of device/function addresses matches a PCI device. The string must
257 * be of the form:
258 *
259 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260 *
261 * A path for a device can be obtained using 'lspci -t'. Using a path
262 * is more robust against bus renumbering than using only a single bus,
263 * device and function address.
264 *
265 * Returns 1 if the string matches the device, 0 if it does not and
266 * a negative error code if it fails to parse the string.
267 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 const char **endptr)
270 {
271 int ret;
272 int seg, bus, slot, func;
273 char *wpath, *p;
274 char end;
275
276 *endptr = strchrnul(path, ';');
277
278 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 if (!wpath)
280 return -ENOMEM;
281
282 while (1) {
283 p = strrchr(wpath, '/');
284 if (!p)
285 break;
286 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 if (ret != 2) {
288 ret = -EINVAL;
289 goto free_and_exit;
290 }
291
292 if (dev->devfn != PCI_DEVFN(slot, func)) {
293 ret = 0;
294 goto free_and_exit;
295 }
296
297 /*
298 * Note: we don't need to get a reference to the upstream
299 * bridge because we hold a reference to the top level
300 * device which should hold a reference to the bridge,
301 * and so on.
302 */
303 dev = pci_upstream_bridge(dev);
304 if (!dev) {
305 ret = 0;
306 goto free_and_exit;
307 }
308
309 *p = 0;
310 }
311
312 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 &func, &end);
314 if (ret != 4) {
315 seg = 0;
316 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 if (ret != 3) {
318 ret = -EINVAL;
319 goto free_and_exit;
320 }
321 }
322
323 ret = (seg == pci_domain_nr(dev->bus) &&
324 bus == dev->bus->number &&
325 dev->devfn == PCI_DEVFN(slot, func));
326
327 free_and_exit:
328 kfree(wpath);
329 return ret;
330 }
331
332 /**
333 * pci_dev_str_match - test if a string matches a device
334 * @dev: the PCI device to test
335 * @p: string to match the device against
336 * @endptr: pointer to the string after the match
337 *
338 * Test if a string (typically from a kernel parameter) matches a specified
339 * PCI device. The string may be of one of the following formats:
340 *
341 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343 *
344 * The first format specifies a PCI bus/device/function address which
345 * may change if new hardware is inserted, if motherboard firmware changes,
346 * or due to changes caused in kernel parameters. If the domain is
347 * left unspecified, it is taken to be 0. In order to be robust against
348 * bus renumbering issues, a path of PCI device/function numbers may be used
349 * to address the specific device. The path for a device can be determined
350 * through the use of 'lspci -t'.
351 *
352 * The second format matches devices using IDs in the configuration
353 * space which may match multiple devices in the system. A value of 0
354 * for any field will match all devices. (Note: this differs from
355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356 * legacy reasons and convenience so users don't have to specify
357 * FFFFFFFFs on the command line.)
358 *
359 * Returns 1 if the string matches the device, 0 if it does not and
360 * a negative error code if the string cannot be parsed.
361 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)362 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 const char **endptr)
364 {
365 int ret;
366 int count;
367 unsigned short vendor, device, subsystem_vendor, subsystem_device;
368
369 if (strncmp(p, "pci:", 4) == 0) {
370 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 p += 4;
372 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 &subsystem_vendor, &subsystem_device, &count);
374 if (ret != 4) {
375 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 if (ret != 2)
377 return -EINVAL;
378
379 subsystem_vendor = 0;
380 subsystem_device = 0;
381 }
382
383 p += count;
384
385 if ((!vendor || vendor == dev->vendor) &&
386 (!device || device == dev->device) &&
387 (!subsystem_vendor ||
388 subsystem_vendor == dev->subsystem_vendor) &&
389 (!subsystem_device ||
390 subsystem_device == dev->subsystem_device))
391 goto found;
392 } else {
393 /*
394 * PCI Bus, Device, Function IDs are specified
395 * (optionally, may include a path of devfns following it)
396 */
397 ret = pci_dev_str_match_path(dev, p, &p);
398 if (ret < 0)
399 return ret;
400 else if (ret)
401 goto found;
402 }
403
404 *endptr = p;
405 return 0;
406
407 found:
408 *endptr = p;
409 return 1;
410 }
411
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 u8 pos, int cap, int *ttl)
414 {
415 u8 id;
416 u16 ent;
417
418 pci_bus_read_config_byte(bus, devfn, pos, &pos);
419
420 while ((*ttl)--) {
421 if (pos < 0x40)
422 break;
423 pos &= ~3;
424 pci_bus_read_config_word(bus, devfn, pos, &ent);
425
426 id = ent & 0xff;
427 if (id == 0xff)
428 break;
429 if (id == cap)
430 return pos;
431 pos = (ent >> 8);
432 }
433 return 0;
434 }
435
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 u8 pos, int cap)
438 {
439 int ttl = PCI_FIND_CAP_TTL;
440
441 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 }
443
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 {
446 return __pci_find_next_cap(dev->bus, dev->devfn,
447 pos + PCI_CAP_LIST_NEXT, cap);
448 }
449 EXPORT_SYMBOL_GPL(pci_find_next_capability);
450
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 unsigned int devfn, u8 hdr_type)
453 {
454 u16 status;
455
456 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 if (!(status & PCI_STATUS_CAP_LIST))
458 return 0;
459
460 switch (hdr_type) {
461 case PCI_HEADER_TYPE_NORMAL:
462 case PCI_HEADER_TYPE_BRIDGE:
463 return PCI_CAPABILITY_LIST;
464 case PCI_HEADER_TYPE_CARDBUS:
465 return PCI_CB_CAPABILITY_LIST;
466 }
467
468 return 0;
469 }
470
471 /**
472 * pci_find_capability - query for devices' capabilities
473 * @dev: PCI device to query
474 * @cap: capability code
475 *
476 * Tell if a device supports a given PCI capability.
477 * Returns the address of the requested capability structure within the
478 * device's PCI configuration space or 0 in case the device does not
479 * support it. Possible values for @cap include:
480 *
481 * %PCI_CAP_ID_PM Power Management
482 * %PCI_CAP_ID_AGP Accelerated Graphics Port
483 * %PCI_CAP_ID_VPD Vital Product Data
484 * %PCI_CAP_ID_SLOTID Slot Identification
485 * %PCI_CAP_ID_MSI Message Signalled Interrupts
486 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
487 * %PCI_CAP_ID_PCIX PCI-X
488 * %PCI_CAP_ID_EXP PCI Express
489 */
pci_find_capability(struct pci_dev * dev,int cap)490 u8 pci_find_capability(struct pci_dev *dev, int cap)
491 {
492 u8 pos;
493
494 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 if (pos)
496 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497
498 return pos;
499 }
500 EXPORT_SYMBOL(pci_find_capability);
501
502 /**
503 * pci_bus_find_capability - query for devices' capabilities
504 * @bus: the PCI bus to query
505 * @devfn: PCI device to query
506 * @cap: capability code
507 *
508 * Like pci_find_capability() but works for PCI devices that do not have a
509 * pci_dev structure set up yet.
510 *
511 * Returns the address of the requested capability structure within the
512 * device's PCI configuration space or 0 in case the device does not
513 * support it.
514 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 {
517 u8 hdr_type, pos;
518
519 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520
521 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 if (pos)
523 pos = __pci_find_next_cap(bus, devfn, pos, cap);
524
525 return pos;
526 }
527 EXPORT_SYMBOL(pci_bus_find_capability);
528
529 /**
530 * pci_find_next_ext_capability - Find an extended capability
531 * @dev: PCI device to query
532 * @start: address at which to start looking (0 to start at beginning of list)
533 * @cap: capability code
534 *
535 * Returns the address of the next matching extended capability structure
536 * within the device's PCI configuration space or 0 if the device does
537 * not support it. Some capabilities can occur several times, e.g., the
538 * vendor-specific capability, and this provides a way to find them all.
539 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 {
542 u32 header;
543 int ttl;
544 u16 pos = PCI_CFG_SPACE_SIZE;
545
546 /* minimum 8 bytes per capability */
547 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548
549 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 return 0;
551
552 if (start)
553 pos = start;
554
555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 return 0;
557
558 /*
559 * If we have no capabilities, this is indicated by cap ID,
560 * cap version and next pointer all being 0.
561 */
562 if (header == 0)
563 return 0;
564
565 while (ttl-- > 0) {
566 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 return pos;
568
569 pos = PCI_EXT_CAP_NEXT(header);
570 if (pos < PCI_CFG_SPACE_SIZE)
571 break;
572
573 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 break;
575 }
576
577 return 0;
578 }
579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580
581 /**
582 * pci_find_ext_capability - Find an extended capability
583 * @dev: PCI device to query
584 * @cap: capability code
585 *
586 * Returns the address of the requested extended capability structure
587 * within the device's PCI configuration space or 0 if the device does
588 * not support it. Possible values for @cap include:
589 *
590 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
591 * %PCI_EXT_CAP_ID_VC Virtual Channel
592 * %PCI_EXT_CAP_ID_DSN Device Serial Number
593 * %PCI_EXT_CAP_ID_PWR Power Budgeting
594 */
pci_find_ext_capability(struct pci_dev * dev,int cap)595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 {
597 return pci_find_next_ext_capability(dev, 0, cap);
598 }
599 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600
601 /**
602 * pci_get_dsn - Read and return the 8-byte Device Serial Number
603 * @dev: PCI device to query
604 *
605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606 * Number.
607 *
608 * Returns the DSN, or zero if the capability does not exist.
609 */
pci_get_dsn(struct pci_dev * dev)610 u64 pci_get_dsn(struct pci_dev *dev)
611 {
612 u32 dword;
613 u64 dsn;
614 int pos;
615
616 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 if (!pos)
618 return 0;
619
620 /*
621 * The Device Serial Number is two dwords offset 4 bytes from the
622 * capability position. The specification says that the first dword is
623 * the lower half, and the second dword is the upper half.
624 */
625 pos += 4;
626 pci_read_config_dword(dev, pos, &dword);
627 dsn = (u64)dword;
628 pci_read_config_dword(dev, pos + 4, &dword);
629 dsn |= ((u64)dword) << 32;
630
631 return dsn;
632 }
633 EXPORT_SYMBOL_GPL(pci_get_dsn);
634
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 {
637 int rc, ttl = PCI_FIND_CAP_TTL;
638 u8 cap, mask;
639
640 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 mask = HT_3BIT_CAP_MASK;
642 else
643 mask = HT_5BIT_CAP_MASK;
644
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 PCI_CAP_ID_HT, &ttl);
647 while (pos) {
648 rc = pci_read_config_byte(dev, pos + 3, &cap);
649 if (rc != PCIBIOS_SUCCESSFUL)
650 return 0;
651
652 if ((cap & mask) == ht_cap)
653 return pos;
654
655 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 pos + PCI_CAP_LIST_NEXT,
657 PCI_CAP_ID_HT, &ttl);
658 }
659
660 return 0;
661 }
662
663 /**
664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665 * @dev: PCI device to query
666 * @pos: Position from which to continue searching
667 * @ht_cap: HyperTransport capability code
668 *
669 * To be used in conjunction with pci_find_ht_capability() to search for
670 * all capabilities matching @ht_cap. @pos should always be a value returned
671 * from pci_find_ht_capability().
672 *
673 * NB. To be 100% safe against broken PCI devices, the caller should take
674 * steps to avoid an infinite loop.
675 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 {
678 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 }
680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681
682 /**
683 * pci_find_ht_capability - query a device's HyperTransport capabilities
684 * @dev: PCI device to query
685 * @ht_cap: HyperTransport capability code
686 *
687 * Tell if a device supports a given HyperTransport capability.
688 * Returns an address within the device's PCI configuration space
689 * or 0 in case the device does not support the request capability.
690 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691 * which has a HyperTransport capability matching @ht_cap.
692 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 {
695 u8 pos;
696
697 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 if (pos)
699 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700
701 return pos;
702 }
703 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704
705 /**
706 * pci_find_vsec_capability - Find a vendor-specific extended capability
707 * @dev: PCI device to query
708 * @vendor: Vendor ID for which capability is defined
709 * @cap: Vendor-specific capability ID
710 *
711 * If @dev has Vendor ID @vendor, search for a VSEC capability with
712 * VSEC ID @cap. If found, return the capability offset in
713 * config space; otherwise return 0.
714 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 {
717 u16 vsec = 0;
718 u32 header;
719
720 if (vendor != dev->vendor)
721 return 0;
722
723 while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 PCI_EXT_CAP_ID_VNDR))) {
725 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 &header) == PCIBIOS_SUCCESSFUL &&
727 PCI_VNDR_HEADER_ID(header) == cap)
728 return vsec;
729 }
730
731 return 0;
732 }
733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734
735 /**
736 * pci_find_parent_resource - return resource region of parent bus of given
737 * region
738 * @dev: PCI device structure contains resources to be searched
739 * @res: child resource record for which parent is sought
740 *
741 * For given resource region of given device, return the resource region of
742 * parent bus the given region is contained in.
743 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)744 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
745 struct resource *res)
746 {
747 const struct pci_bus *bus = dev->bus;
748 struct resource *r;
749 int i;
750
751 pci_bus_for_each_resource(bus, r, i) {
752 if (!r)
753 continue;
754 if (resource_contains(r, res)) {
755
756 /*
757 * If the window is prefetchable but the BAR is
758 * not, the allocator made a mistake.
759 */
760 if (r->flags & IORESOURCE_PREFETCH &&
761 !(res->flags & IORESOURCE_PREFETCH))
762 return NULL;
763
764 /*
765 * If we're below a transparent bridge, there may
766 * be both a positively-decoded aperture and a
767 * subtractively-decoded region that contain the BAR.
768 * We want the positively-decoded one, so this depends
769 * on pci_bus_for_each_resource() giving us those
770 * first.
771 */
772 return r;
773 }
774 }
775 return NULL;
776 }
777 EXPORT_SYMBOL(pci_find_parent_resource);
778
779 /**
780 * pci_find_resource - Return matching PCI device resource
781 * @dev: PCI device to query
782 * @res: Resource to look for
783 *
784 * Goes over standard PCI resources (BARs) and checks if the given resource
785 * is partially or fully contained in any of them. In that case the
786 * matching resource is returned, %NULL otherwise.
787 */
pci_find_resource(struct pci_dev * dev,struct resource * res)788 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
789 {
790 int i;
791
792 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
793 struct resource *r = &dev->resource[i];
794
795 if (r->start && resource_contains(r, res))
796 return r;
797 }
798
799 return NULL;
800 }
801 EXPORT_SYMBOL(pci_find_resource);
802
803 /**
804 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
805 * @dev: the PCI device to operate on
806 * @pos: config space offset of status word
807 * @mask: mask of bit(s) to care about in status word
808 *
809 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
810 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)811 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
812 {
813 int i;
814
815 /* Wait for Transaction Pending bit clean */
816 for (i = 0; i < 4; i++) {
817 u16 status;
818 if (i)
819 msleep((1 << (i - 1)) * 100);
820
821 pci_read_config_word(dev, pos, &status);
822 if (!(status & mask))
823 return 1;
824 }
825
826 return 0;
827 }
828
829 static int pci_acs_enable;
830
831 /**
832 * pci_request_acs - ask for ACS to be enabled if supported
833 */
pci_request_acs(void)834 void pci_request_acs(void)
835 {
836 pci_acs_enable = 1;
837 }
838
839 static const char *disable_acs_redir_param;
840
841 /**
842 * pci_disable_acs_redir - disable ACS redirect capabilities
843 * @dev: the PCI device
844 *
845 * For only devices specified in the disable_acs_redir parameter.
846 */
pci_disable_acs_redir(struct pci_dev * dev)847 static void pci_disable_acs_redir(struct pci_dev *dev)
848 {
849 int ret = 0;
850 const char *p;
851 int pos;
852 u16 ctrl;
853
854 if (!disable_acs_redir_param)
855 return;
856
857 p = disable_acs_redir_param;
858 while (*p) {
859 ret = pci_dev_str_match(dev, p, &p);
860 if (ret < 0) {
861 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
862 disable_acs_redir_param);
863
864 break;
865 } else if (ret == 1) {
866 /* Found a match */
867 break;
868 }
869
870 if (*p != ';' && *p != ',') {
871 /* End of param or invalid format */
872 break;
873 }
874 p++;
875 }
876
877 if (ret != 1)
878 return;
879
880 if (!pci_dev_specific_disable_acs_redir(dev))
881 return;
882
883 pos = dev->acs_cap;
884 if (!pos) {
885 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
886 return;
887 }
888
889 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
890
891 /* P2P Request & Completion Redirect */
892 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
893
894 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
895
896 pci_info(dev, "disabled ACS redirect\n");
897 }
898
899 /**
900 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
901 * @dev: the PCI device
902 */
pci_std_enable_acs(struct pci_dev * dev)903 static void pci_std_enable_acs(struct pci_dev *dev)
904 {
905 int pos;
906 u16 cap;
907 u16 ctrl;
908
909 pos = dev->acs_cap;
910 if (!pos)
911 return;
912
913 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
914 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
915
916 /* Source Validation */
917 ctrl |= (cap & PCI_ACS_SV);
918
919 /* P2P Request Redirect */
920 ctrl |= (cap & PCI_ACS_RR);
921
922 /* P2P Completion Redirect */
923 ctrl |= (cap & PCI_ACS_CR);
924
925 /* Upstream Forwarding */
926 ctrl |= (cap & PCI_ACS_UF);
927
928 /* Enable Translation Blocking for external devices and noats */
929 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
930 ctrl |= (cap & PCI_ACS_TB);
931
932 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
933 }
934
935 /**
936 * pci_enable_acs - enable ACS if hardware support it
937 * @dev: the PCI device
938 */
pci_enable_acs(struct pci_dev * dev)939 static void pci_enable_acs(struct pci_dev *dev)
940 {
941 if (!pci_acs_enable)
942 goto disable_acs_redir;
943
944 if (!pci_dev_specific_enable_acs(dev))
945 goto disable_acs_redir;
946
947 pci_std_enable_acs(dev);
948
949 disable_acs_redir:
950 /*
951 * Note: pci_disable_acs_redir() must be called even if ACS was not
952 * enabled by the kernel because it may have been enabled by
953 * platform firmware. So if we are told to disable it, we should
954 * always disable it after setting the kernel's default
955 * preferences.
956 */
957 pci_disable_acs_redir(dev);
958 }
959
960 /**
961 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
962 * @dev: PCI device to have its BARs restored
963 *
964 * Restore the BAR values for a given device, so as to make it
965 * accessible by its driver.
966 */
pci_restore_bars(struct pci_dev * dev)967 static void pci_restore_bars(struct pci_dev *dev)
968 {
969 int i;
970
971 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
972 pci_update_resource(dev, i);
973 }
974
975 static const struct pci_platform_pm_ops *pci_platform_pm;
976
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)977 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
978 {
979 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
980 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
981 return -EINVAL;
982 pci_platform_pm = ops;
983 return 0;
984 }
985
platform_pci_power_manageable(struct pci_dev * dev)986 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
987 {
988 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
989 }
990
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)991 static inline int platform_pci_set_power_state(struct pci_dev *dev,
992 pci_power_t t)
993 {
994 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
995 }
996
platform_pci_get_power_state(struct pci_dev * dev)997 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
998 {
999 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
1000 }
1001
platform_pci_refresh_power_state(struct pci_dev * dev)1002 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1003 {
1004 if (pci_platform_pm && pci_platform_pm->refresh_state)
1005 pci_platform_pm->refresh_state(dev);
1006 }
1007
platform_pci_choose_state(struct pci_dev * dev)1008 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1009 {
1010 return pci_platform_pm ?
1011 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1012 }
1013
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1014 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1015 {
1016 return pci_platform_pm ?
1017 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1018 }
1019
platform_pci_need_resume(struct pci_dev * dev)1020 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1021 {
1022 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1023 }
1024
platform_pci_bridge_d3(struct pci_dev * dev)1025 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1026 {
1027 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1028 return pci_platform_pm->bridge_d3(dev);
1029 return false;
1030 }
1031
1032 /**
1033 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1034 * given PCI device
1035 * @dev: PCI device to handle.
1036 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1037 *
1038 * RETURN VALUE:
1039 * -EINVAL if the requested state is invalid.
1040 * -EIO if device does not support PCI PM or its PM capabilities register has a
1041 * wrong version, or device doesn't support the requested state.
1042 * 0 if device already is in the requested state.
1043 * 0 if device's power state has been successfully changed.
1044 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1045 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1046 {
1047 u16 pmcsr;
1048 bool need_restore = false;
1049
1050 /* Check if we're already there */
1051 if (dev->current_state == state)
1052 return 0;
1053
1054 if (!dev->pm_cap)
1055 return -EIO;
1056
1057 if (state < PCI_D0 || state > PCI_D3hot)
1058 return -EINVAL;
1059
1060 /*
1061 * Validate transition: We can enter D0 from any state, but if
1062 * we're already in a low-power state, we can only go deeper. E.g.,
1063 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1064 * we'd have to go from D3 to D0, then to D1.
1065 */
1066 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1067 && dev->current_state > state) {
1068 pci_err(dev, "invalid power transition (from %s to %s)\n",
1069 pci_power_name(dev->current_state),
1070 pci_power_name(state));
1071 return -EINVAL;
1072 }
1073
1074 /* Check if this device supports the desired state */
1075 if ((state == PCI_D1 && !dev->d1_support)
1076 || (state == PCI_D2 && !dev->d2_support))
1077 return -EIO;
1078
1079 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1080 if (pmcsr == (u16) ~0) {
1081 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1082 pci_power_name(dev->current_state),
1083 pci_power_name(state));
1084 return -EIO;
1085 }
1086
1087 /*
1088 * If we're (effectively) in D3, force entire word to 0.
1089 * This doesn't affect PME_Status, disables PME_En, and
1090 * sets PowerState to 0.
1091 */
1092 switch (dev->current_state) {
1093 case PCI_D0:
1094 case PCI_D1:
1095 case PCI_D2:
1096 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1097 pmcsr |= state;
1098 break;
1099 case PCI_D3hot:
1100 case PCI_D3cold:
1101 case PCI_UNKNOWN: /* Boot-up */
1102 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1103 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1104 need_restore = true;
1105 fallthrough; /* force to D0 */
1106 default:
1107 pmcsr = 0;
1108 break;
1109 }
1110
1111 /* Enter specified state */
1112 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1113
1114 /*
1115 * Mandatory power management transition delays; see PCI PM 1.1
1116 * 5.6.1 table 18
1117 */
1118 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1119 pci_dev_d3_sleep(dev);
1120 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1121 udelay(PCI_PM_D2_DELAY);
1122
1123 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1124 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1125 if (dev->current_state != state)
1126 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1127 pci_power_name(dev->current_state),
1128 pci_power_name(state));
1129
1130 /*
1131 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1132 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1133 * from D3hot to D0 _may_ perform an internal reset, thereby
1134 * going to "D0 Uninitialized" rather than "D0 Initialized".
1135 * For example, at least some versions of the 3c905B and the
1136 * 3c556B exhibit this behaviour.
1137 *
1138 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1139 * devices in a D3hot state at boot. Consequently, we need to
1140 * restore at least the BARs so that the device will be
1141 * accessible to its driver.
1142 */
1143 if (need_restore)
1144 pci_restore_bars(dev);
1145
1146 if (dev->bus->self)
1147 pcie_aspm_pm_state_change(dev->bus->self);
1148
1149 return 0;
1150 }
1151
1152 /**
1153 * pci_update_current_state - Read power state of given device and cache it
1154 * @dev: PCI device to handle.
1155 * @state: State to cache in case the device doesn't have the PM capability
1156 *
1157 * The power state is read from the PMCSR register, which however is
1158 * inaccessible in D3cold. The platform firmware is therefore queried first
1159 * to detect accessibility of the register. In case the platform firmware
1160 * reports an incorrect state or the device isn't power manageable by the
1161 * platform at all, we try to detect D3cold by testing accessibility of the
1162 * vendor ID in config space.
1163 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1164 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1165 {
1166 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1167 !pci_device_is_present(dev)) {
1168 dev->current_state = PCI_D3cold;
1169 } else if (dev->pm_cap) {
1170 u16 pmcsr;
1171
1172 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1173 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1174 } else {
1175 dev->current_state = state;
1176 }
1177 }
1178
1179 /**
1180 * pci_refresh_power_state - Refresh the given device's power state data
1181 * @dev: Target PCI device.
1182 *
1183 * Ask the platform to refresh the devices power state information and invoke
1184 * pci_update_current_state() to update its current PCI power state.
1185 */
pci_refresh_power_state(struct pci_dev * dev)1186 void pci_refresh_power_state(struct pci_dev *dev)
1187 {
1188 if (platform_pci_power_manageable(dev))
1189 platform_pci_refresh_power_state(dev);
1190
1191 pci_update_current_state(dev, dev->current_state);
1192 }
1193
1194 /**
1195 * pci_platform_power_transition - Use platform to change device power state
1196 * @dev: PCI device to handle.
1197 * @state: State to put the device into.
1198 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1199 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1200 {
1201 int error;
1202
1203 if (platform_pci_power_manageable(dev)) {
1204 error = platform_pci_set_power_state(dev, state);
1205 if (!error)
1206 pci_update_current_state(dev, state);
1207 } else
1208 error = -ENODEV;
1209
1210 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1211 dev->current_state = PCI_D0;
1212
1213 return error;
1214 }
1215 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1216
pci_resume_one(struct pci_dev * pci_dev,void * ign)1217 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1218 {
1219 pm_request_resume(&pci_dev->dev);
1220 return 0;
1221 }
1222
1223 /**
1224 * pci_resume_bus - Walk given bus and runtime resume devices on it
1225 * @bus: Top bus of the subtree to walk.
1226 */
pci_resume_bus(struct pci_bus * bus)1227 void pci_resume_bus(struct pci_bus *bus)
1228 {
1229 if (bus)
1230 pci_walk_bus(bus, pci_resume_one, NULL);
1231 }
1232
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1233 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1234 {
1235 int delay = 1;
1236 u32 id;
1237
1238 /*
1239 * After reset, the device should not silently discard config
1240 * requests, but it may still indicate that it needs more time by
1241 * responding to them with CRS completions. The Root Port will
1242 * generally synthesize ~0 data to complete the read (except when
1243 * CRS SV is enabled and the read was for the Vendor ID; in that
1244 * case it synthesizes 0x0001 data).
1245 *
1246 * Wait for the device to return a non-CRS completion. Read the
1247 * Command register instead of Vendor ID so we don't have to
1248 * contend with the CRS SV value.
1249 */
1250 pci_read_config_dword(dev, PCI_COMMAND, &id);
1251 while (id == ~0) {
1252 if (delay > timeout) {
1253 pci_warn(dev, "not ready %dms after %s; giving up\n",
1254 delay - 1, reset_type);
1255 return -ENOTTY;
1256 }
1257
1258 if (delay > 1000)
1259 pci_info(dev, "not ready %dms after %s; waiting\n",
1260 delay - 1, reset_type);
1261
1262 msleep(delay);
1263 delay *= 2;
1264 pci_read_config_dword(dev, PCI_COMMAND, &id);
1265 }
1266
1267 if (delay > 1000)
1268 pci_info(dev, "ready %dms after %s\n", delay - 1,
1269 reset_type);
1270
1271 return 0;
1272 }
1273
1274 /**
1275 * pci_power_up - Put the given device into D0
1276 * @dev: PCI device to power up
1277 */
pci_power_up(struct pci_dev * dev)1278 int pci_power_up(struct pci_dev *dev)
1279 {
1280 pci_platform_power_transition(dev, PCI_D0);
1281
1282 /*
1283 * Mandatory power management transition delays are handled in
1284 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1285 * corresponding bridge.
1286 */
1287 if (dev->runtime_d3cold) {
1288 /*
1289 * When powering on a bridge from D3cold, the whole hierarchy
1290 * may be powered on into D0uninitialized state, resume them to
1291 * give them a chance to suspend again
1292 */
1293 pci_resume_bus(dev->subordinate);
1294 }
1295
1296 return pci_raw_set_power_state(dev, PCI_D0);
1297 }
1298
1299 /**
1300 * __pci_dev_set_current_state - Set current state of a PCI device
1301 * @dev: Device to handle
1302 * @data: pointer to state to be set
1303 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1304 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1305 {
1306 pci_power_t state = *(pci_power_t *)data;
1307
1308 dev->current_state = state;
1309 return 0;
1310 }
1311
1312 /**
1313 * pci_bus_set_current_state - Walk given bus and set current state of devices
1314 * @bus: Top bus of the subtree to walk.
1315 * @state: state to be set
1316 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1317 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1318 {
1319 if (bus)
1320 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1321 }
1322
1323 /**
1324 * pci_set_power_state - Set the power state of a PCI device
1325 * @dev: PCI device to handle.
1326 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1327 *
1328 * Transition a device to a new power state, using the platform firmware and/or
1329 * the device's PCI PM registers.
1330 *
1331 * RETURN VALUE:
1332 * -EINVAL if the requested state is invalid.
1333 * -EIO if device does not support PCI PM or its PM capabilities register has a
1334 * wrong version, or device doesn't support the requested state.
1335 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1336 * 0 if device already is in the requested state.
1337 * 0 if the transition is to D3 but D3 is not supported.
1338 * 0 if device's power state has been successfully changed.
1339 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1340 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1341 {
1342 int error;
1343
1344 /* Bound the state we're entering */
1345 if (state > PCI_D3cold)
1346 state = PCI_D3cold;
1347 else if (state < PCI_D0)
1348 state = PCI_D0;
1349 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1350
1351 /*
1352 * If the device or the parent bridge do not support PCI
1353 * PM, ignore the request if we're doing anything other
1354 * than putting it into D0 (which would only happen on
1355 * boot).
1356 */
1357 return 0;
1358
1359 /* Check if we're already there */
1360 if (dev->current_state == state)
1361 return 0;
1362
1363 if (state == PCI_D0)
1364 return pci_power_up(dev);
1365
1366 /*
1367 * This device is quirked not to be put into D3, so don't put it in
1368 * D3
1369 */
1370 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1371 return 0;
1372
1373 /*
1374 * To put device in D3cold, we put device into D3hot in native
1375 * way, then put device into D3cold with platform ops
1376 */
1377 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1378 PCI_D3hot : state);
1379
1380 if (pci_platform_power_transition(dev, state))
1381 return error;
1382
1383 /* Powering off a bridge may power off the whole hierarchy */
1384 if (state == PCI_D3cold)
1385 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1386
1387 return 0;
1388 }
1389 EXPORT_SYMBOL(pci_set_power_state);
1390
1391 /**
1392 * pci_choose_state - Choose the power state of a PCI device
1393 * @dev: PCI device to be suspended
1394 * @state: target sleep state for the whole system. This is the value
1395 * that is passed to suspend() function.
1396 *
1397 * Returns PCI power state suitable for given device and given system
1398 * message.
1399 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1400 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1401 {
1402 pci_power_t ret;
1403
1404 if (!dev->pm_cap)
1405 return PCI_D0;
1406
1407 ret = platform_pci_choose_state(dev);
1408 if (ret != PCI_POWER_ERROR)
1409 return ret;
1410
1411 switch (state.event) {
1412 case PM_EVENT_ON:
1413 return PCI_D0;
1414 case PM_EVENT_FREEZE:
1415 case PM_EVENT_PRETHAW:
1416 /* REVISIT both freeze and pre-thaw "should" use D0 */
1417 case PM_EVENT_SUSPEND:
1418 case PM_EVENT_HIBERNATE:
1419 return PCI_D3hot;
1420 default:
1421 pci_info(dev, "unrecognized suspend event %d\n",
1422 state.event);
1423 BUG();
1424 }
1425 return PCI_D0;
1426 }
1427 EXPORT_SYMBOL(pci_choose_state);
1428
1429 #define PCI_EXP_SAVE_REGS 7
1430
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1431 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1432 u16 cap, bool extended)
1433 {
1434 struct pci_cap_saved_state *tmp;
1435
1436 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1437 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1438 return tmp;
1439 }
1440 return NULL;
1441 }
1442
pci_find_saved_cap(struct pci_dev * dev,char cap)1443 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1444 {
1445 return _pci_find_saved_cap(dev, cap, false);
1446 }
1447
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1448 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1449 {
1450 return _pci_find_saved_cap(dev, cap, true);
1451 }
1452
pci_save_pcie_state(struct pci_dev * dev)1453 static int pci_save_pcie_state(struct pci_dev *dev)
1454 {
1455 int i = 0;
1456 struct pci_cap_saved_state *save_state;
1457 u16 *cap;
1458
1459 if (!pci_is_pcie(dev))
1460 return 0;
1461
1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1463 if (!save_state) {
1464 pci_err(dev, "buffer not found in %s\n", __func__);
1465 return -ENOMEM;
1466 }
1467
1468 cap = (u16 *)&save_state->cap.data[0];
1469 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1470 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1471 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1472 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1473 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1474 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1475 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1476
1477 return 0;
1478 }
1479
pci_restore_pcie_state(struct pci_dev * dev)1480 static void pci_restore_pcie_state(struct pci_dev *dev)
1481 {
1482 int i = 0;
1483 struct pci_cap_saved_state *save_state;
1484 u16 *cap;
1485
1486 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1487 if (!save_state)
1488 return;
1489
1490 cap = (u16 *)&save_state->cap.data[0];
1491 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1492 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1493 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1494 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1495 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1496 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1497 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1498 }
1499
pci_save_pcix_state(struct pci_dev * dev)1500 static int pci_save_pcix_state(struct pci_dev *dev)
1501 {
1502 int pos;
1503 struct pci_cap_saved_state *save_state;
1504
1505 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1506 if (!pos)
1507 return 0;
1508
1509 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1510 if (!save_state) {
1511 pci_err(dev, "buffer not found in %s\n", __func__);
1512 return -ENOMEM;
1513 }
1514
1515 pci_read_config_word(dev, pos + PCI_X_CMD,
1516 (u16 *)save_state->cap.data);
1517
1518 return 0;
1519 }
1520
pci_restore_pcix_state(struct pci_dev * dev)1521 static void pci_restore_pcix_state(struct pci_dev *dev)
1522 {
1523 int i = 0, pos;
1524 struct pci_cap_saved_state *save_state;
1525 u16 *cap;
1526
1527 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1528 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1529 if (!save_state || !pos)
1530 return;
1531 cap = (u16 *)&save_state->cap.data[0];
1532
1533 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1534 }
1535
pci_save_ltr_state(struct pci_dev * dev)1536 static void pci_save_ltr_state(struct pci_dev *dev)
1537 {
1538 int ltr;
1539 struct pci_cap_saved_state *save_state;
1540 u16 *cap;
1541
1542 if (!pci_is_pcie(dev))
1543 return;
1544
1545 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1546 if (!ltr)
1547 return;
1548
1549 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1550 if (!save_state) {
1551 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1552 return;
1553 }
1554
1555 cap = (u16 *)&save_state->cap.data[0];
1556 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1557 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1558 }
1559
pci_restore_ltr_state(struct pci_dev * dev)1560 static void pci_restore_ltr_state(struct pci_dev *dev)
1561 {
1562 struct pci_cap_saved_state *save_state;
1563 int ltr;
1564 u16 *cap;
1565
1566 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1567 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1568 if (!save_state || !ltr)
1569 return;
1570
1571 cap = (u16 *)&save_state->cap.data[0];
1572 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1573 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1574 }
1575
1576 /**
1577 * pci_save_state - save the PCI configuration space of a device before
1578 * suspending
1579 * @dev: PCI device that we're dealing with
1580 */
pci_save_state(struct pci_dev * dev)1581 int pci_save_state(struct pci_dev *dev)
1582 {
1583 int i;
1584 /* XXX: 100% dword access ok here? */
1585 for (i = 0; i < 16; i++) {
1586 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1587 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1588 i * 4, dev->saved_config_space[i]);
1589 }
1590 dev->state_saved = true;
1591
1592 i = pci_save_pcie_state(dev);
1593 if (i != 0)
1594 return i;
1595
1596 i = pci_save_pcix_state(dev);
1597 if (i != 0)
1598 return i;
1599
1600 pci_save_ltr_state(dev);
1601 pci_save_dpc_state(dev);
1602 pci_save_aer_state(dev);
1603 pci_save_ptm_state(dev);
1604 return pci_save_vc_state(dev);
1605 }
1606 EXPORT_SYMBOL(pci_save_state);
1607
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1608 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1609 u32 saved_val, int retry, bool force)
1610 {
1611 u32 val;
1612
1613 pci_read_config_dword(pdev, offset, &val);
1614 if (!force && val == saved_val)
1615 return;
1616
1617 for (;;) {
1618 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1619 offset, val, saved_val);
1620 pci_write_config_dword(pdev, offset, saved_val);
1621 if (retry-- <= 0)
1622 return;
1623
1624 pci_read_config_dword(pdev, offset, &val);
1625 if (val == saved_val)
1626 return;
1627
1628 mdelay(1);
1629 }
1630 }
1631
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1632 static void pci_restore_config_space_range(struct pci_dev *pdev,
1633 int start, int end, int retry,
1634 bool force)
1635 {
1636 int index;
1637
1638 for (index = end; index >= start; index--)
1639 pci_restore_config_dword(pdev, 4 * index,
1640 pdev->saved_config_space[index],
1641 retry, force);
1642 }
1643
pci_restore_config_space(struct pci_dev * pdev)1644 static void pci_restore_config_space(struct pci_dev *pdev)
1645 {
1646 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1647 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1648 /* Restore BARs before the command register. */
1649 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1650 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1651 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1652 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1653
1654 /*
1655 * Force rewriting of prefetch registers to avoid S3 resume
1656 * issues on Intel PCI bridges that occur when these
1657 * registers are not explicitly written.
1658 */
1659 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1660 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1661 } else {
1662 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1663 }
1664 }
1665
pci_restore_rebar_state(struct pci_dev * pdev)1666 static void pci_restore_rebar_state(struct pci_dev *pdev)
1667 {
1668 unsigned int pos, nbars, i;
1669 u32 ctrl;
1670
1671 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1672 if (!pos)
1673 return;
1674
1675 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1676 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1677 PCI_REBAR_CTRL_NBAR_SHIFT;
1678
1679 for (i = 0; i < nbars; i++, pos += 8) {
1680 struct resource *res;
1681 int bar_idx, size;
1682
1683 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1684 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1685 res = pdev->resource + bar_idx;
1686 size = pci_rebar_bytes_to_size(resource_size(res));
1687 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1688 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1689 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1690 }
1691 }
1692
1693 /**
1694 * pci_restore_state - Restore the saved state of a PCI device
1695 * @dev: PCI device that we're dealing with
1696 */
pci_restore_state(struct pci_dev * dev)1697 void pci_restore_state(struct pci_dev *dev)
1698 {
1699 if (!dev->state_saved)
1700 return;
1701
1702 /*
1703 * Restore max latencies (in the LTR capability) before enabling
1704 * LTR itself (in the PCIe capability).
1705 */
1706 pci_restore_ltr_state(dev);
1707
1708 pci_restore_pcie_state(dev);
1709 pci_restore_pasid_state(dev);
1710 pci_restore_pri_state(dev);
1711 pci_restore_ats_state(dev);
1712 pci_restore_vc_state(dev);
1713 pci_restore_rebar_state(dev);
1714 pci_restore_dpc_state(dev);
1715 pci_restore_ptm_state(dev);
1716
1717 pci_aer_clear_status(dev);
1718 pci_restore_aer_state(dev);
1719
1720 pci_restore_config_space(dev);
1721
1722 pci_restore_pcix_state(dev);
1723 pci_restore_msi_state(dev);
1724
1725 /* Restore ACS and IOV configuration state */
1726 pci_enable_acs(dev);
1727 pci_restore_iov_state(dev);
1728
1729 dev->state_saved = false;
1730 }
1731 EXPORT_SYMBOL(pci_restore_state);
1732
1733 struct pci_saved_state {
1734 u32 config_space[16];
1735 struct pci_cap_saved_data cap[];
1736 };
1737
1738 /**
1739 * pci_store_saved_state - Allocate and return an opaque struct containing
1740 * the device saved state.
1741 * @dev: PCI device that we're dealing with
1742 *
1743 * Return NULL if no state or error.
1744 */
pci_store_saved_state(struct pci_dev * dev)1745 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1746 {
1747 struct pci_saved_state *state;
1748 struct pci_cap_saved_state *tmp;
1749 struct pci_cap_saved_data *cap;
1750 size_t size;
1751
1752 if (!dev->state_saved)
1753 return NULL;
1754
1755 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1756
1757 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1758 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1759
1760 state = kzalloc(size, GFP_KERNEL);
1761 if (!state)
1762 return NULL;
1763
1764 memcpy(state->config_space, dev->saved_config_space,
1765 sizeof(state->config_space));
1766
1767 cap = state->cap;
1768 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1769 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1770 memcpy(cap, &tmp->cap, len);
1771 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1772 }
1773 /* Empty cap_save terminates list */
1774
1775 return state;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1778
1779 /**
1780 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1781 * @dev: PCI device that we're dealing with
1782 * @state: Saved state returned from pci_store_saved_state()
1783 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1784 int pci_load_saved_state(struct pci_dev *dev,
1785 struct pci_saved_state *state)
1786 {
1787 struct pci_cap_saved_data *cap;
1788
1789 dev->state_saved = false;
1790
1791 if (!state)
1792 return 0;
1793
1794 memcpy(dev->saved_config_space, state->config_space,
1795 sizeof(state->config_space));
1796
1797 cap = state->cap;
1798 while (cap->size) {
1799 struct pci_cap_saved_state *tmp;
1800
1801 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1802 if (!tmp || tmp->cap.size != cap->size)
1803 return -EINVAL;
1804
1805 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1806 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1807 sizeof(struct pci_cap_saved_data) + cap->size);
1808 }
1809
1810 dev->state_saved = true;
1811 return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1814
1815 /**
1816 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1817 * and free the memory allocated for it.
1818 * @dev: PCI device that we're dealing with
1819 * @state: Pointer to saved state returned from pci_store_saved_state()
1820 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1821 int pci_load_and_free_saved_state(struct pci_dev *dev,
1822 struct pci_saved_state **state)
1823 {
1824 int ret = pci_load_saved_state(dev, *state);
1825 kfree(*state);
1826 *state = NULL;
1827 return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1830
pcibios_enable_device(struct pci_dev * dev,int bars)1831 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1832 {
1833 return pci_enable_resources(dev, bars);
1834 }
1835
do_pci_enable_device(struct pci_dev * dev,int bars)1836 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1837 {
1838 int err;
1839 struct pci_dev *bridge;
1840 u16 cmd;
1841 u8 pin;
1842
1843 err = pci_set_power_state(dev, PCI_D0);
1844 if (err < 0 && err != -EIO)
1845 return err;
1846
1847 bridge = pci_upstream_bridge(dev);
1848 if (bridge)
1849 pcie_aspm_powersave_config_link(bridge);
1850
1851 err = pcibios_enable_device(dev, bars);
1852 if (err < 0)
1853 return err;
1854 pci_fixup_device(pci_fixup_enable, dev);
1855
1856 if (dev->msi_enabled || dev->msix_enabled)
1857 return 0;
1858
1859 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1860 if (pin) {
1861 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1862 if (cmd & PCI_COMMAND_INTX_DISABLE)
1863 pci_write_config_word(dev, PCI_COMMAND,
1864 cmd & ~PCI_COMMAND_INTX_DISABLE);
1865 }
1866
1867 return 0;
1868 }
1869
1870 /**
1871 * pci_reenable_device - Resume abandoned device
1872 * @dev: PCI device to be resumed
1873 *
1874 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1875 * to be called by normal code, write proper resume handler and use it instead.
1876 */
pci_reenable_device(struct pci_dev * dev)1877 int pci_reenable_device(struct pci_dev *dev)
1878 {
1879 if (pci_is_enabled(dev))
1880 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1881 return 0;
1882 }
1883 EXPORT_SYMBOL(pci_reenable_device);
1884
pci_enable_bridge(struct pci_dev * dev)1885 static void pci_enable_bridge(struct pci_dev *dev)
1886 {
1887 struct pci_dev *bridge;
1888 int retval;
1889
1890 bridge = pci_upstream_bridge(dev);
1891 if (bridge)
1892 pci_enable_bridge(bridge);
1893
1894 if (pci_is_enabled(dev)) {
1895 if (!dev->is_busmaster)
1896 pci_set_master(dev);
1897 return;
1898 }
1899
1900 retval = pci_enable_device(dev);
1901 if (retval)
1902 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1903 retval);
1904 pci_set_master(dev);
1905 }
1906
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1907 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1908 {
1909 struct pci_dev *bridge;
1910 int err;
1911 int i, bars = 0;
1912
1913 /*
1914 * Power state could be unknown at this point, either due to a fresh
1915 * boot or a device removal call. So get the current power state
1916 * so that things like MSI message writing will behave as expected
1917 * (e.g. if the device really is in D0 at enable time).
1918 */
1919 pci_update_current_state(dev, dev->current_state);
1920
1921 if (atomic_inc_return(&dev->enable_cnt) > 1)
1922 return 0; /* already enabled */
1923
1924 bridge = pci_upstream_bridge(dev);
1925 if (bridge)
1926 pci_enable_bridge(bridge);
1927
1928 /* only skip sriov related */
1929 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1930 if (dev->resource[i].flags & flags)
1931 bars |= (1 << i);
1932 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1933 if (dev->resource[i].flags & flags)
1934 bars |= (1 << i);
1935
1936 err = do_pci_enable_device(dev, bars);
1937 if (err < 0)
1938 atomic_dec(&dev->enable_cnt);
1939 return err;
1940 }
1941
1942 /**
1943 * pci_enable_device_io - Initialize a device for use with IO space
1944 * @dev: PCI device to be initialized
1945 *
1946 * Initialize device before it's used by a driver. Ask low-level code
1947 * to enable I/O resources. Wake up the device if it was suspended.
1948 * Beware, this function can fail.
1949 */
pci_enable_device_io(struct pci_dev * dev)1950 int pci_enable_device_io(struct pci_dev *dev)
1951 {
1952 return pci_enable_device_flags(dev, IORESOURCE_IO);
1953 }
1954 EXPORT_SYMBOL(pci_enable_device_io);
1955
1956 /**
1957 * pci_enable_device_mem - Initialize a device for use with Memory space
1958 * @dev: PCI device to be initialized
1959 *
1960 * Initialize device before it's used by a driver. Ask low-level code
1961 * to enable Memory resources. Wake up the device if it was suspended.
1962 * Beware, this function can fail.
1963 */
pci_enable_device_mem(struct pci_dev * dev)1964 int pci_enable_device_mem(struct pci_dev *dev)
1965 {
1966 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1967 }
1968 EXPORT_SYMBOL(pci_enable_device_mem);
1969
1970 /**
1971 * pci_enable_device - Initialize device before it's used by a driver.
1972 * @dev: PCI device to be initialized
1973 *
1974 * Initialize device before it's used by a driver. Ask low-level code
1975 * to enable I/O and memory. Wake up the device if it was suspended.
1976 * Beware, this function can fail.
1977 *
1978 * Note we don't actually enable the device many times if we call
1979 * this function repeatedly (we just increment the count).
1980 */
pci_enable_device(struct pci_dev * dev)1981 int pci_enable_device(struct pci_dev *dev)
1982 {
1983 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1984 }
1985 EXPORT_SYMBOL(pci_enable_device);
1986
1987 /*
1988 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1989 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1990 * there's no need to track it separately. pci_devres is initialized
1991 * when a device is enabled using managed PCI device enable interface.
1992 */
1993 struct pci_devres {
1994 unsigned int enabled:1;
1995 unsigned int pinned:1;
1996 unsigned int orig_intx:1;
1997 unsigned int restore_intx:1;
1998 unsigned int mwi:1;
1999 u32 region_mask;
2000 };
2001
pcim_release(struct device * gendev,void * res)2002 static void pcim_release(struct device *gendev, void *res)
2003 {
2004 struct pci_dev *dev = to_pci_dev(gendev);
2005 struct pci_devres *this = res;
2006 int i;
2007
2008 if (dev->msi_enabled)
2009 pci_disable_msi(dev);
2010 if (dev->msix_enabled)
2011 pci_disable_msix(dev);
2012
2013 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2014 if (this->region_mask & (1 << i))
2015 pci_release_region(dev, i);
2016
2017 if (this->mwi)
2018 pci_clear_mwi(dev);
2019
2020 if (this->restore_intx)
2021 pci_intx(dev, this->orig_intx);
2022
2023 if (this->enabled && !this->pinned)
2024 pci_disable_device(dev);
2025 }
2026
get_pci_dr(struct pci_dev * pdev)2027 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2028 {
2029 struct pci_devres *dr, *new_dr;
2030
2031 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2032 if (dr)
2033 return dr;
2034
2035 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2036 if (!new_dr)
2037 return NULL;
2038 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2039 }
2040
find_pci_dr(struct pci_dev * pdev)2041 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2042 {
2043 if (pci_is_managed(pdev))
2044 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2045 return NULL;
2046 }
2047
2048 /**
2049 * pcim_enable_device - Managed pci_enable_device()
2050 * @pdev: PCI device to be initialized
2051 *
2052 * Managed pci_enable_device().
2053 */
pcim_enable_device(struct pci_dev * pdev)2054 int pcim_enable_device(struct pci_dev *pdev)
2055 {
2056 struct pci_devres *dr;
2057 int rc;
2058
2059 dr = get_pci_dr(pdev);
2060 if (unlikely(!dr))
2061 return -ENOMEM;
2062 if (dr->enabled)
2063 return 0;
2064
2065 rc = pci_enable_device(pdev);
2066 if (!rc) {
2067 pdev->is_managed = 1;
2068 dr->enabled = 1;
2069 }
2070 return rc;
2071 }
2072 EXPORT_SYMBOL(pcim_enable_device);
2073
2074 /**
2075 * pcim_pin_device - Pin managed PCI device
2076 * @pdev: PCI device to pin
2077 *
2078 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2079 * driver detach. @pdev must have been enabled with
2080 * pcim_enable_device().
2081 */
pcim_pin_device(struct pci_dev * pdev)2082 void pcim_pin_device(struct pci_dev *pdev)
2083 {
2084 struct pci_devres *dr;
2085
2086 dr = find_pci_dr(pdev);
2087 WARN_ON(!dr || !dr->enabled);
2088 if (dr)
2089 dr->pinned = 1;
2090 }
2091 EXPORT_SYMBOL(pcim_pin_device);
2092
2093 /*
2094 * pcibios_add_device - provide arch specific hooks when adding device dev
2095 * @dev: the PCI device being added
2096 *
2097 * Permits the platform to provide architecture specific functionality when
2098 * devices are added. This is the default implementation. Architecture
2099 * implementations can override this.
2100 */
pcibios_add_device(struct pci_dev * dev)2101 int __weak pcibios_add_device(struct pci_dev *dev)
2102 {
2103 return 0;
2104 }
2105
2106 /**
2107 * pcibios_release_device - provide arch specific hooks when releasing
2108 * device dev
2109 * @dev: the PCI device being released
2110 *
2111 * Permits the platform to provide architecture specific functionality when
2112 * devices are released. This is the default implementation. Architecture
2113 * implementations can override this.
2114 */
pcibios_release_device(struct pci_dev * dev)2115 void __weak pcibios_release_device(struct pci_dev *dev) {}
2116
2117 /**
2118 * pcibios_disable_device - disable arch specific PCI resources for device dev
2119 * @dev: the PCI device to disable
2120 *
2121 * Disables architecture specific PCI resources for the device. This
2122 * is the default implementation. Architecture implementations can
2123 * override this.
2124 */
pcibios_disable_device(struct pci_dev * dev)2125 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2126
2127 /**
2128 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2129 * @irq: ISA IRQ to penalize
2130 * @active: IRQ active or not
2131 *
2132 * Permits the platform to provide architecture-specific functionality when
2133 * penalizing ISA IRQs. This is the default implementation. Architecture
2134 * implementations can override this.
2135 */
pcibios_penalize_isa_irq(int irq,int active)2136 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2137
do_pci_disable_device(struct pci_dev * dev)2138 static void do_pci_disable_device(struct pci_dev *dev)
2139 {
2140 u16 pci_command;
2141
2142 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2143 if (pci_command & PCI_COMMAND_MASTER) {
2144 pci_command &= ~PCI_COMMAND_MASTER;
2145 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2146 }
2147
2148 pcibios_disable_device(dev);
2149 }
2150
2151 /**
2152 * pci_disable_enabled_device - Disable device without updating enable_cnt
2153 * @dev: PCI device to disable
2154 *
2155 * NOTE: This function is a backend of PCI power management routines and is
2156 * not supposed to be called drivers.
2157 */
pci_disable_enabled_device(struct pci_dev * dev)2158 void pci_disable_enabled_device(struct pci_dev *dev)
2159 {
2160 if (pci_is_enabled(dev))
2161 do_pci_disable_device(dev);
2162 }
2163
2164 /**
2165 * pci_disable_device - Disable PCI device after use
2166 * @dev: PCI device to be disabled
2167 *
2168 * Signal to the system that the PCI device is not in use by the system
2169 * anymore. This only involves disabling PCI bus-mastering, if active.
2170 *
2171 * Note we don't actually disable the device until all callers of
2172 * pci_enable_device() have called pci_disable_device().
2173 */
pci_disable_device(struct pci_dev * dev)2174 void pci_disable_device(struct pci_dev *dev)
2175 {
2176 struct pci_devres *dr;
2177
2178 dr = find_pci_dr(dev);
2179 if (dr)
2180 dr->enabled = 0;
2181
2182 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2183 "disabling already-disabled device");
2184
2185 if (atomic_dec_return(&dev->enable_cnt) != 0)
2186 return;
2187
2188 do_pci_disable_device(dev);
2189
2190 dev->is_busmaster = 0;
2191 }
2192 EXPORT_SYMBOL(pci_disable_device);
2193
2194 /**
2195 * pcibios_set_pcie_reset_state - set reset state for device dev
2196 * @dev: the PCIe device reset
2197 * @state: Reset state to enter into
2198 *
2199 * Set the PCIe reset state for the device. This is the default
2200 * implementation. Architecture implementations can override this.
2201 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2202 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2203 enum pcie_reset_state state)
2204 {
2205 return -EINVAL;
2206 }
2207
2208 /**
2209 * pci_set_pcie_reset_state - set reset state for device dev
2210 * @dev: the PCIe device reset
2211 * @state: Reset state to enter into
2212 *
2213 * Sets the PCI reset state for the device.
2214 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2215 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2216 {
2217 return pcibios_set_pcie_reset_state(dev, state);
2218 }
2219 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2220
pcie_clear_device_status(struct pci_dev * dev)2221 void pcie_clear_device_status(struct pci_dev *dev)
2222 {
2223 u16 sta;
2224
2225 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2226 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2227 }
2228
2229 /**
2230 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2231 * @dev: PCIe root port or event collector.
2232 */
pcie_clear_root_pme_status(struct pci_dev * dev)2233 void pcie_clear_root_pme_status(struct pci_dev *dev)
2234 {
2235 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2236 }
2237
2238 /**
2239 * pci_check_pme_status - Check if given device has generated PME.
2240 * @dev: Device to check.
2241 *
2242 * Check the PME status of the device and if set, clear it and clear PME enable
2243 * (if set). Return 'true' if PME status and PME enable were both set or
2244 * 'false' otherwise.
2245 */
pci_check_pme_status(struct pci_dev * dev)2246 bool pci_check_pme_status(struct pci_dev *dev)
2247 {
2248 int pmcsr_pos;
2249 u16 pmcsr;
2250 bool ret = false;
2251
2252 if (!dev->pm_cap)
2253 return false;
2254
2255 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2256 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2257 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2258 return false;
2259
2260 /* Clear PME status. */
2261 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2262 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2263 /* Disable PME to avoid interrupt flood. */
2264 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2265 ret = true;
2266 }
2267
2268 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2269
2270 return ret;
2271 }
2272
2273 /**
2274 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2275 * @dev: Device to handle.
2276 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2277 *
2278 * Check if @dev has generated PME and queue a resume request for it in that
2279 * case.
2280 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2281 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2282 {
2283 if (pme_poll_reset && dev->pme_poll)
2284 dev->pme_poll = false;
2285
2286 if (pci_check_pme_status(dev)) {
2287 pci_wakeup_event(dev);
2288 pm_request_resume(&dev->dev);
2289 }
2290 return 0;
2291 }
2292
2293 /**
2294 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2295 * @bus: Top bus of the subtree to walk.
2296 */
pci_pme_wakeup_bus(struct pci_bus * bus)2297 void pci_pme_wakeup_bus(struct pci_bus *bus)
2298 {
2299 if (bus)
2300 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2301 }
2302
2303
2304 /**
2305 * pci_pme_capable - check the capability of PCI device to generate PME#
2306 * @dev: PCI device to handle.
2307 * @state: PCI state from which device will issue PME#.
2308 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2309 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2310 {
2311 if (!dev->pm_cap)
2312 return false;
2313
2314 return !!(dev->pme_support & (1 << state));
2315 }
2316 EXPORT_SYMBOL(pci_pme_capable);
2317
pci_pme_list_scan(struct work_struct * work)2318 static void pci_pme_list_scan(struct work_struct *work)
2319 {
2320 struct pci_pme_device *pme_dev, *n;
2321
2322 mutex_lock(&pci_pme_list_mutex);
2323 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2324 if (pme_dev->dev->pme_poll) {
2325 struct pci_dev *bridge;
2326
2327 bridge = pme_dev->dev->bus->self;
2328 /*
2329 * If bridge is in low power state, the
2330 * configuration space of subordinate devices
2331 * may be not accessible
2332 */
2333 if (bridge && bridge->current_state != PCI_D0)
2334 continue;
2335 /*
2336 * If the device is in D3cold it should not be
2337 * polled either.
2338 */
2339 if (pme_dev->dev->current_state == PCI_D3cold)
2340 continue;
2341
2342 pci_pme_wakeup(pme_dev->dev, NULL);
2343 } else {
2344 list_del(&pme_dev->list);
2345 kfree(pme_dev);
2346 }
2347 }
2348 if (!list_empty(&pci_pme_list))
2349 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2350 msecs_to_jiffies(PME_TIMEOUT));
2351 mutex_unlock(&pci_pme_list_mutex);
2352 }
2353
__pci_pme_active(struct pci_dev * dev,bool enable)2354 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2355 {
2356 u16 pmcsr;
2357
2358 if (!dev->pme_support)
2359 return;
2360
2361 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2362 /* Clear PME_Status by writing 1 to it and enable PME# */
2363 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2364 if (!enable)
2365 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2366
2367 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2368 }
2369
2370 /**
2371 * pci_pme_restore - Restore PME configuration after config space restore.
2372 * @dev: PCI device to update.
2373 */
pci_pme_restore(struct pci_dev * dev)2374 void pci_pme_restore(struct pci_dev *dev)
2375 {
2376 u16 pmcsr;
2377
2378 if (!dev->pme_support)
2379 return;
2380
2381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2382 if (dev->wakeup_prepared) {
2383 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2384 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2385 } else {
2386 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2387 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2388 }
2389 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2390 }
2391
2392 /**
2393 * pci_pme_active - enable or disable PCI device's PME# function
2394 * @dev: PCI device to handle.
2395 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2396 *
2397 * The caller must verify that the device is capable of generating PME# before
2398 * calling this function with @enable equal to 'true'.
2399 */
pci_pme_active(struct pci_dev * dev,bool enable)2400 void pci_pme_active(struct pci_dev *dev, bool enable)
2401 {
2402 __pci_pme_active(dev, enable);
2403
2404 /*
2405 * PCI (as opposed to PCIe) PME requires that the device have
2406 * its PME# line hooked up correctly. Not all hardware vendors
2407 * do this, so the PME never gets delivered and the device
2408 * remains asleep. The easiest way around this is to
2409 * periodically walk the list of suspended devices and check
2410 * whether any have their PME flag set. The assumption is that
2411 * we'll wake up often enough anyway that this won't be a huge
2412 * hit, and the power savings from the devices will still be a
2413 * win.
2414 *
2415 * Although PCIe uses in-band PME message instead of PME# line
2416 * to report PME, PME does not work for some PCIe devices in
2417 * reality. For example, there are devices that set their PME
2418 * status bits, but don't really bother to send a PME message;
2419 * there are PCI Express Root Ports that don't bother to
2420 * trigger interrupts when they receive PME messages from the
2421 * devices below. So PME poll is used for PCIe devices too.
2422 */
2423
2424 if (dev->pme_poll) {
2425 struct pci_pme_device *pme_dev;
2426 if (enable) {
2427 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2428 GFP_KERNEL);
2429 if (!pme_dev) {
2430 pci_warn(dev, "can't enable PME#\n");
2431 return;
2432 }
2433 pme_dev->dev = dev;
2434 mutex_lock(&pci_pme_list_mutex);
2435 list_add(&pme_dev->list, &pci_pme_list);
2436 if (list_is_singular(&pci_pme_list))
2437 queue_delayed_work(system_freezable_wq,
2438 &pci_pme_work,
2439 msecs_to_jiffies(PME_TIMEOUT));
2440 mutex_unlock(&pci_pme_list_mutex);
2441 } else {
2442 mutex_lock(&pci_pme_list_mutex);
2443 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2444 if (pme_dev->dev == dev) {
2445 list_del(&pme_dev->list);
2446 kfree(pme_dev);
2447 break;
2448 }
2449 }
2450 mutex_unlock(&pci_pme_list_mutex);
2451 }
2452 }
2453
2454 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2455 }
2456 EXPORT_SYMBOL(pci_pme_active);
2457
2458 /**
2459 * __pci_enable_wake - enable PCI device as wakeup event source
2460 * @dev: PCI device affected
2461 * @state: PCI state from which device will issue wakeup events
2462 * @enable: True to enable event generation; false to disable
2463 *
2464 * This enables the device as a wakeup event source, or disables it.
2465 * When such events involves platform-specific hooks, those hooks are
2466 * called automatically by this routine.
2467 *
2468 * Devices with legacy power management (no standard PCI PM capabilities)
2469 * always require such platform hooks.
2470 *
2471 * RETURN VALUE:
2472 * 0 is returned on success
2473 * -EINVAL is returned if device is not supposed to wake up the system
2474 * Error code depending on the platform is returned if both the platform and
2475 * the native mechanism fail to enable the generation of wake-up events
2476 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2477 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2478 {
2479 int ret = 0;
2480
2481 /*
2482 * Bridges that are not power-manageable directly only signal
2483 * wakeup on behalf of subordinate devices which is set up
2484 * elsewhere, so skip them. However, bridges that are
2485 * power-manageable may signal wakeup for themselves (for example,
2486 * on a hotplug event) and they need to be covered here.
2487 */
2488 if (!pci_power_manageable(dev))
2489 return 0;
2490
2491 /* Don't do the same thing twice in a row for one device. */
2492 if (!!enable == !!dev->wakeup_prepared)
2493 return 0;
2494
2495 /*
2496 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2497 * Anderson we should be doing PME# wake enable followed by ACPI wake
2498 * enable. To disable wake-up we call the platform first, for symmetry.
2499 */
2500
2501 if (enable) {
2502 int error;
2503
2504 /*
2505 * Enable PME signaling if the device can signal PME from
2506 * D3cold regardless of whether or not it can signal PME from
2507 * the current target state, because that will allow it to
2508 * signal PME when the hierarchy above it goes into D3cold and
2509 * the device itself ends up in D3cold as a result of that.
2510 */
2511 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2512 pci_pme_active(dev, true);
2513 else
2514 ret = 1;
2515 error = platform_pci_set_wakeup(dev, true);
2516 if (ret)
2517 ret = error;
2518 if (!ret)
2519 dev->wakeup_prepared = true;
2520 } else {
2521 platform_pci_set_wakeup(dev, false);
2522 pci_pme_active(dev, false);
2523 dev->wakeup_prepared = false;
2524 }
2525
2526 return ret;
2527 }
2528
2529 /**
2530 * pci_enable_wake - change wakeup settings for a PCI device
2531 * @pci_dev: Target device
2532 * @state: PCI state from which device will issue wakeup events
2533 * @enable: Whether or not to enable event generation
2534 *
2535 * If @enable is set, check device_may_wakeup() for the device before calling
2536 * __pci_enable_wake() for it.
2537 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2538 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2539 {
2540 if (enable && !device_may_wakeup(&pci_dev->dev))
2541 return -EINVAL;
2542
2543 return __pci_enable_wake(pci_dev, state, enable);
2544 }
2545 EXPORT_SYMBOL(pci_enable_wake);
2546
2547 /**
2548 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2549 * @dev: PCI device to prepare
2550 * @enable: True to enable wake-up event generation; false to disable
2551 *
2552 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2553 * and this function allows them to set that up cleanly - pci_enable_wake()
2554 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2555 * ordering constraints.
2556 *
2557 * This function only returns error code if the device is not allowed to wake
2558 * up the system from sleep or it is not capable of generating PME# from both
2559 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2560 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2561 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2562 {
2563 return pci_pme_capable(dev, PCI_D3cold) ?
2564 pci_enable_wake(dev, PCI_D3cold, enable) :
2565 pci_enable_wake(dev, PCI_D3hot, enable);
2566 }
2567 EXPORT_SYMBOL(pci_wake_from_d3);
2568
2569 /**
2570 * pci_target_state - find an appropriate low power state for a given PCI dev
2571 * @dev: PCI device
2572 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2573 *
2574 * Use underlying platform code to find a supported low power state for @dev.
2575 * If the platform can't manage @dev, return the deepest state from which it
2576 * can generate wake events, based on any available PME info.
2577 */
pci_target_state(struct pci_dev * dev,bool wakeup)2578 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2579 {
2580 pci_power_t target_state = PCI_D3hot;
2581
2582 if (platform_pci_power_manageable(dev)) {
2583 /*
2584 * Call the platform to find the target state for the device.
2585 */
2586 pci_power_t state = platform_pci_choose_state(dev);
2587
2588 switch (state) {
2589 case PCI_POWER_ERROR:
2590 case PCI_UNKNOWN:
2591 break;
2592 case PCI_D1:
2593 case PCI_D2:
2594 if (pci_no_d1d2(dev))
2595 break;
2596 fallthrough;
2597 default:
2598 target_state = state;
2599 }
2600
2601 return target_state;
2602 }
2603
2604 if (!dev->pm_cap)
2605 target_state = PCI_D0;
2606
2607 /*
2608 * If the device is in D3cold even though it's not power-manageable by
2609 * the platform, it may have been powered down by non-standard means.
2610 * Best to let it slumber.
2611 */
2612 if (dev->current_state == PCI_D3cold)
2613 target_state = PCI_D3cold;
2614
2615 if (wakeup && dev->pme_support) {
2616 pci_power_t state = target_state;
2617
2618 /*
2619 * Find the deepest state from which the device can generate
2620 * PME#.
2621 */
2622 while (state && !(dev->pme_support & (1 << state)))
2623 state--;
2624
2625 if (state)
2626 return state;
2627 else if (dev->pme_support & 1)
2628 return PCI_D0;
2629 }
2630
2631 return target_state;
2632 }
2633
2634 /**
2635 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2636 * into a sleep state
2637 * @dev: Device to handle.
2638 *
2639 * Choose the power state appropriate for the device depending on whether
2640 * it can wake up the system and/or is power manageable by the platform
2641 * (PCI_D3hot is the default) and put the device into that state.
2642 */
pci_prepare_to_sleep(struct pci_dev * dev)2643 int pci_prepare_to_sleep(struct pci_dev *dev)
2644 {
2645 bool wakeup = device_may_wakeup(&dev->dev);
2646 pci_power_t target_state = pci_target_state(dev, wakeup);
2647 int error;
2648
2649 if (target_state == PCI_POWER_ERROR)
2650 return -EIO;
2651
2652 /*
2653 * There are systems (for example, Intel mobile chips since Coffee
2654 * Lake) where the power drawn while suspended can be significantly
2655 * reduced by disabling PTM on PCIe root ports as this allows the
2656 * port to enter a lower-power PM state and the SoC to reach a
2657 * lower-power idle state as a whole.
2658 */
2659 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2660 pci_disable_ptm(dev);
2661
2662 pci_enable_wake(dev, target_state, wakeup);
2663
2664 error = pci_set_power_state(dev, target_state);
2665
2666 if (error) {
2667 pci_enable_wake(dev, target_state, false);
2668 pci_restore_ptm_state(dev);
2669 }
2670
2671 return error;
2672 }
2673 EXPORT_SYMBOL(pci_prepare_to_sleep);
2674
2675 /**
2676 * pci_back_from_sleep - turn PCI device on during system-wide transition
2677 * into working state
2678 * @dev: Device to handle.
2679 *
2680 * Disable device's system wake-up capability and put it into D0.
2681 */
pci_back_from_sleep(struct pci_dev * dev)2682 int pci_back_from_sleep(struct pci_dev *dev)
2683 {
2684 pci_enable_wake(dev, PCI_D0, false);
2685 return pci_set_power_state(dev, PCI_D0);
2686 }
2687 EXPORT_SYMBOL(pci_back_from_sleep);
2688
2689 /**
2690 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2691 * @dev: PCI device being suspended.
2692 *
2693 * Prepare @dev to generate wake-up events at run time and put it into a low
2694 * power state.
2695 */
pci_finish_runtime_suspend(struct pci_dev * dev)2696 int pci_finish_runtime_suspend(struct pci_dev *dev)
2697 {
2698 pci_power_t target_state;
2699 int error;
2700
2701 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2702 if (target_state == PCI_POWER_ERROR)
2703 return -EIO;
2704
2705 dev->runtime_d3cold = target_state == PCI_D3cold;
2706
2707 /*
2708 * There are systems (for example, Intel mobile chips since Coffee
2709 * Lake) where the power drawn while suspended can be significantly
2710 * reduced by disabling PTM on PCIe root ports as this allows the
2711 * port to enter a lower-power PM state and the SoC to reach a
2712 * lower-power idle state as a whole.
2713 */
2714 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2715 pci_disable_ptm(dev);
2716
2717 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2718
2719 error = pci_set_power_state(dev, target_state);
2720
2721 if (error) {
2722 pci_enable_wake(dev, target_state, false);
2723 pci_restore_ptm_state(dev);
2724 dev->runtime_d3cold = false;
2725 }
2726
2727 return error;
2728 }
2729
2730 /**
2731 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2732 * @dev: Device to check.
2733 *
2734 * Return true if the device itself is capable of generating wake-up events
2735 * (through the platform or using the native PCIe PME) or if the device supports
2736 * PME and one of its upstream bridges can generate wake-up events.
2737 */
pci_dev_run_wake(struct pci_dev * dev)2738 bool pci_dev_run_wake(struct pci_dev *dev)
2739 {
2740 struct pci_bus *bus = dev->bus;
2741
2742 if (!dev->pme_support)
2743 return false;
2744
2745 /* PME-capable in principle, but not from the target power state */
2746 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2747 return false;
2748
2749 if (device_can_wakeup(&dev->dev))
2750 return true;
2751
2752 while (bus->parent) {
2753 struct pci_dev *bridge = bus->self;
2754
2755 if (device_can_wakeup(&bridge->dev))
2756 return true;
2757
2758 bus = bus->parent;
2759 }
2760
2761 /* We have reached the root bus. */
2762 if (bus->bridge)
2763 return device_can_wakeup(bus->bridge);
2764
2765 return false;
2766 }
2767 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2768
2769 /**
2770 * pci_dev_need_resume - Check if it is necessary to resume the device.
2771 * @pci_dev: Device to check.
2772 *
2773 * Return 'true' if the device is not runtime-suspended or it has to be
2774 * reconfigured due to wakeup settings difference between system and runtime
2775 * suspend, or the current power state of it is not suitable for the upcoming
2776 * (system-wide) transition.
2777 */
pci_dev_need_resume(struct pci_dev * pci_dev)2778 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2779 {
2780 struct device *dev = &pci_dev->dev;
2781 pci_power_t target_state;
2782
2783 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2784 return true;
2785
2786 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2787
2788 /*
2789 * If the earlier platform check has not triggered, D3cold is just power
2790 * removal on top of D3hot, so no need to resume the device in that
2791 * case.
2792 */
2793 return target_state != pci_dev->current_state &&
2794 target_state != PCI_D3cold &&
2795 pci_dev->current_state != PCI_D3hot;
2796 }
2797
2798 /**
2799 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2800 * @pci_dev: Device to check.
2801 *
2802 * If the device is suspended and it is not configured for system wakeup,
2803 * disable PME for it to prevent it from waking up the system unnecessarily.
2804 *
2805 * Note that if the device's power state is D3cold and the platform check in
2806 * pci_dev_need_resume() has not triggered, the device's configuration need not
2807 * be changed.
2808 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2809 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2810 {
2811 struct device *dev = &pci_dev->dev;
2812
2813 spin_lock_irq(&dev->power.lock);
2814
2815 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2816 pci_dev->current_state < PCI_D3cold)
2817 __pci_pme_active(pci_dev, false);
2818
2819 spin_unlock_irq(&dev->power.lock);
2820 }
2821
2822 /**
2823 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2824 * @pci_dev: Device to handle.
2825 *
2826 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2827 * it might have been disabled during the prepare phase of system suspend if
2828 * the device was not configured for system wakeup.
2829 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2830 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2831 {
2832 struct device *dev = &pci_dev->dev;
2833
2834 if (!pci_dev_run_wake(pci_dev))
2835 return;
2836
2837 spin_lock_irq(&dev->power.lock);
2838
2839 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2840 __pci_pme_active(pci_dev, true);
2841
2842 spin_unlock_irq(&dev->power.lock);
2843 }
2844
pci_config_pm_runtime_get(struct pci_dev * pdev)2845 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2846 {
2847 struct device *dev = &pdev->dev;
2848 struct device *parent = dev->parent;
2849
2850 if (parent)
2851 pm_runtime_get_sync(parent);
2852 pm_runtime_get_noresume(dev);
2853 /*
2854 * pdev->current_state is set to PCI_D3cold during suspending,
2855 * so wait until suspending completes
2856 */
2857 pm_runtime_barrier(dev);
2858 /*
2859 * Only need to resume devices in D3cold, because config
2860 * registers are still accessible for devices suspended but
2861 * not in D3cold.
2862 */
2863 if (pdev->current_state == PCI_D3cold)
2864 pm_runtime_resume(dev);
2865 }
2866
pci_config_pm_runtime_put(struct pci_dev * pdev)2867 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2868 {
2869 struct device *dev = &pdev->dev;
2870 struct device *parent = dev->parent;
2871
2872 pm_runtime_put(dev);
2873 if (parent)
2874 pm_runtime_put_sync(parent);
2875 }
2876
2877 static const struct dmi_system_id bridge_d3_blacklist[] = {
2878 #ifdef CONFIG_X86
2879 {
2880 /*
2881 * Gigabyte X299 root port is not marked as hotplug capable
2882 * which allows Linux to power manage it. However, this
2883 * confuses the BIOS SMI handler so don't power manage root
2884 * ports on that system.
2885 */
2886 .ident = "X299 DESIGNARE EX-CF",
2887 .matches = {
2888 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2889 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2890 },
2891 },
2892 #endif
2893 { }
2894 };
2895
2896 /**
2897 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2898 * @bridge: Bridge to check
2899 *
2900 * This function checks if it is possible to move the bridge to D3.
2901 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2902 */
pci_bridge_d3_possible(struct pci_dev * bridge)2903 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2904 {
2905 if (!pci_is_pcie(bridge))
2906 return false;
2907
2908 switch (pci_pcie_type(bridge)) {
2909 case PCI_EXP_TYPE_ROOT_PORT:
2910 case PCI_EXP_TYPE_UPSTREAM:
2911 case PCI_EXP_TYPE_DOWNSTREAM:
2912 if (pci_bridge_d3_disable)
2913 return false;
2914
2915 /*
2916 * Hotplug ports handled by firmware in System Management Mode
2917 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2918 */
2919 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2920 return false;
2921
2922 if (pci_bridge_d3_force)
2923 return true;
2924
2925 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2926 if (bridge->is_thunderbolt)
2927 return true;
2928
2929 /* Platform might know better if the bridge supports D3 */
2930 if (platform_pci_bridge_d3(bridge))
2931 return true;
2932
2933 /*
2934 * Hotplug ports handled natively by the OS were not validated
2935 * by vendors for runtime D3 at least until 2018 because there
2936 * was no OS support.
2937 */
2938 if (bridge->is_hotplug_bridge)
2939 return false;
2940
2941 if (dmi_check_system(bridge_d3_blacklist))
2942 return false;
2943
2944 /*
2945 * It should be safe to put PCIe ports from 2015 or newer
2946 * to D3.
2947 */
2948 if (dmi_get_bios_year() >= 2015)
2949 return true;
2950 break;
2951 }
2952
2953 return false;
2954 }
2955
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2956 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2957 {
2958 bool *d3cold_ok = data;
2959
2960 if (/* The device needs to be allowed to go D3cold ... */
2961 dev->no_d3cold || !dev->d3cold_allowed ||
2962
2963 /* ... and if it is wakeup capable to do so from D3cold. */
2964 (device_may_wakeup(&dev->dev) &&
2965 !pci_pme_capable(dev, PCI_D3cold)) ||
2966
2967 /* If it is a bridge it must be allowed to go to D3. */
2968 !pci_power_manageable(dev))
2969
2970 *d3cold_ok = false;
2971
2972 return !*d3cold_ok;
2973 }
2974
2975 /*
2976 * pci_bridge_d3_update - Update bridge D3 capabilities
2977 * @dev: PCI device which is changed
2978 *
2979 * Update upstream bridge PM capabilities accordingly depending on if the
2980 * device PM configuration was changed or the device is being removed. The
2981 * change is also propagated upstream.
2982 */
pci_bridge_d3_update(struct pci_dev * dev)2983 void pci_bridge_d3_update(struct pci_dev *dev)
2984 {
2985 bool remove = !device_is_registered(&dev->dev);
2986 struct pci_dev *bridge;
2987 bool d3cold_ok = true;
2988
2989 bridge = pci_upstream_bridge(dev);
2990 if (!bridge || !pci_bridge_d3_possible(bridge))
2991 return;
2992
2993 /*
2994 * If D3 is currently allowed for the bridge, removing one of its
2995 * children won't change that.
2996 */
2997 if (remove && bridge->bridge_d3)
2998 return;
2999
3000 /*
3001 * If D3 is currently allowed for the bridge and a child is added or
3002 * changed, disallowance of D3 can only be caused by that child, so
3003 * we only need to check that single device, not any of its siblings.
3004 *
3005 * If D3 is currently not allowed for the bridge, checking the device
3006 * first may allow us to skip checking its siblings.
3007 */
3008 if (!remove)
3009 pci_dev_check_d3cold(dev, &d3cold_ok);
3010
3011 /*
3012 * If D3 is currently not allowed for the bridge, this may be caused
3013 * either by the device being changed/removed or any of its siblings,
3014 * so we need to go through all children to find out if one of them
3015 * continues to block D3.
3016 */
3017 if (d3cold_ok && !bridge->bridge_d3)
3018 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3019 &d3cold_ok);
3020
3021 if (bridge->bridge_d3 != d3cold_ok) {
3022 bridge->bridge_d3 = d3cold_ok;
3023 /* Propagate change to upstream bridges */
3024 pci_bridge_d3_update(bridge);
3025 }
3026 }
3027
3028 /**
3029 * pci_d3cold_enable - Enable D3cold for device
3030 * @dev: PCI device to handle
3031 *
3032 * This function can be used in drivers to enable D3cold from the device
3033 * they handle. It also updates upstream PCI bridge PM capabilities
3034 * accordingly.
3035 */
pci_d3cold_enable(struct pci_dev * dev)3036 void pci_d3cold_enable(struct pci_dev *dev)
3037 {
3038 if (dev->no_d3cold) {
3039 dev->no_d3cold = false;
3040 pci_bridge_d3_update(dev);
3041 }
3042 }
3043 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3044
3045 /**
3046 * pci_d3cold_disable - Disable D3cold for device
3047 * @dev: PCI device to handle
3048 *
3049 * This function can be used in drivers to disable D3cold from the device
3050 * they handle. It also updates upstream PCI bridge PM capabilities
3051 * accordingly.
3052 */
pci_d3cold_disable(struct pci_dev * dev)3053 void pci_d3cold_disable(struct pci_dev *dev)
3054 {
3055 if (!dev->no_d3cold) {
3056 dev->no_d3cold = true;
3057 pci_bridge_d3_update(dev);
3058 }
3059 }
3060 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3061
3062 /**
3063 * pci_pm_init - Initialize PM functions of given PCI device
3064 * @dev: PCI device to handle.
3065 */
pci_pm_init(struct pci_dev * dev)3066 void pci_pm_init(struct pci_dev *dev)
3067 {
3068 int pm;
3069 u16 status;
3070 u16 pmc;
3071
3072 pm_runtime_forbid(&dev->dev);
3073 pm_runtime_set_active(&dev->dev);
3074 pm_runtime_enable(&dev->dev);
3075 device_enable_async_suspend(&dev->dev);
3076 dev->wakeup_prepared = false;
3077
3078 dev->pm_cap = 0;
3079 dev->pme_support = 0;
3080
3081 /* find PCI PM capability in list */
3082 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3083 if (!pm)
3084 return;
3085 /* Check device's ability to generate PME# */
3086 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3087
3088 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3089 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3090 pmc & PCI_PM_CAP_VER_MASK);
3091 return;
3092 }
3093
3094 dev->pm_cap = pm;
3095 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3096 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3097 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3098 dev->d3cold_allowed = true;
3099
3100 dev->d1_support = false;
3101 dev->d2_support = false;
3102 if (!pci_no_d1d2(dev)) {
3103 if (pmc & PCI_PM_CAP_D1)
3104 dev->d1_support = true;
3105 if (pmc & PCI_PM_CAP_D2)
3106 dev->d2_support = true;
3107
3108 if (dev->d1_support || dev->d2_support)
3109 pci_info(dev, "supports%s%s\n",
3110 dev->d1_support ? " D1" : "",
3111 dev->d2_support ? " D2" : "");
3112 }
3113
3114 pmc &= PCI_PM_CAP_PME_MASK;
3115 if (pmc) {
3116 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3117 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3118 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3119 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3120 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3121 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3122 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3123 dev->pme_poll = true;
3124 /*
3125 * Make device's PM flags reflect the wake-up capability, but
3126 * let the user space enable it to wake up the system as needed.
3127 */
3128 device_set_wakeup_capable(&dev->dev, true);
3129 /* Disable the PME# generation functionality */
3130 pci_pme_active(dev, false);
3131 }
3132
3133 pci_read_config_word(dev, PCI_STATUS, &status);
3134 if (status & PCI_STATUS_IMM_READY)
3135 dev->imm_ready = 1;
3136 }
3137
pci_ea_flags(struct pci_dev * dev,u8 prop)3138 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3139 {
3140 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3141
3142 switch (prop) {
3143 case PCI_EA_P_MEM:
3144 case PCI_EA_P_VF_MEM:
3145 flags |= IORESOURCE_MEM;
3146 break;
3147 case PCI_EA_P_MEM_PREFETCH:
3148 case PCI_EA_P_VF_MEM_PREFETCH:
3149 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3150 break;
3151 case PCI_EA_P_IO:
3152 flags |= IORESOURCE_IO;
3153 break;
3154 default:
3155 return 0;
3156 }
3157
3158 return flags;
3159 }
3160
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3161 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3162 u8 prop)
3163 {
3164 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3165 return &dev->resource[bei];
3166 #ifdef CONFIG_PCI_IOV
3167 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3168 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3169 return &dev->resource[PCI_IOV_RESOURCES +
3170 bei - PCI_EA_BEI_VF_BAR0];
3171 #endif
3172 else if (bei == PCI_EA_BEI_ROM)
3173 return &dev->resource[PCI_ROM_RESOURCE];
3174 else
3175 return NULL;
3176 }
3177
3178 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3179 static int pci_ea_read(struct pci_dev *dev, int offset)
3180 {
3181 struct resource *res;
3182 int ent_size, ent_offset = offset;
3183 resource_size_t start, end;
3184 unsigned long flags;
3185 u32 dw0, bei, base, max_offset;
3186 u8 prop;
3187 bool support_64 = (sizeof(resource_size_t) >= 8);
3188
3189 pci_read_config_dword(dev, ent_offset, &dw0);
3190 ent_offset += 4;
3191
3192 /* Entry size field indicates DWORDs after 1st */
3193 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3194
3195 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3196 goto out;
3197
3198 bei = (dw0 & PCI_EA_BEI) >> 4;
3199 prop = (dw0 & PCI_EA_PP) >> 8;
3200
3201 /*
3202 * If the Property is in the reserved range, try the Secondary
3203 * Property instead.
3204 */
3205 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3206 prop = (dw0 & PCI_EA_SP) >> 16;
3207 if (prop > PCI_EA_P_BRIDGE_IO)
3208 goto out;
3209
3210 res = pci_ea_get_resource(dev, bei, prop);
3211 if (!res) {
3212 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3213 goto out;
3214 }
3215
3216 flags = pci_ea_flags(dev, prop);
3217 if (!flags) {
3218 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3219 goto out;
3220 }
3221
3222 /* Read Base */
3223 pci_read_config_dword(dev, ent_offset, &base);
3224 start = (base & PCI_EA_FIELD_MASK);
3225 ent_offset += 4;
3226
3227 /* Read MaxOffset */
3228 pci_read_config_dword(dev, ent_offset, &max_offset);
3229 ent_offset += 4;
3230
3231 /* Read Base MSBs (if 64-bit entry) */
3232 if (base & PCI_EA_IS_64) {
3233 u32 base_upper;
3234
3235 pci_read_config_dword(dev, ent_offset, &base_upper);
3236 ent_offset += 4;
3237
3238 flags |= IORESOURCE_MEM_64;
3239
3240 /* entry starts above 32-bit boundary, can't use */
3241 if (!support_64 && base_upper)
3242 goto out;
3243
3244 if (support_64)
3245 start |= ((u64)base_upper << 32);
3246 }
3247
3248 end = start + (max_offset | 0x03);
3249
3250 /* Read MaxOffset MSBs (if 64-bit entry) */
3251 if (max_offset & PCI_EA_IS_64) {
3252 u32 max_offset_upper;
3253
3254 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3255 ent_offset += 4;
3256
3257 flags |= IORESOURCE_MEM_64;
3258
3259 /* entry too big, can't use */
3260 if (!support_64 && max_offset_upper)
3261 goto out;
3262
3263 if (support_64)
3264 end += ((u64)max_offset_upper << 32);
3265 }
3266
3267 if (end < start) {
3268 pci_err(dev, "EA Entry crosses address boundary\n");
3269 goto out;
3270 }
3271
3272 if (ent_size != ent_offset - offset) {
3273 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3274 ent_size, ent_offset - offset);
3275 goto out;
3276 }
3277
3278 res->name = pci_name(dev);
3279 res->start = start;
3280 res->end = end;
3281 res->flags = flags;
3282
3283 if (bei <= PCI_EA_BEI_BAR5)
3284 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3285 bei, res, prop);
3286 else if (bei == PCI_EA_BEI_ROM)
3287 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3288 res, prop);
3289 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3290 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3291 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3292 else
3293 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3294 bei, res, prop);
3295
3296 out:
3297 return offset + ent_size;
3298 }
3299
3300 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3301 void pci_ea_init(struct pci_dev *dev)
3302 {
3303 int ea;
3304 u8 num_ent;
3305 int offset;
3306 int i;
3307
3308 /* find PCI EA capability in list */
3309 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3310 if (!ea)
3311 return;
3312
3313 /* determine the number of entries */
3314 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3315 &num_ent);
3316 num_ent &= PCI_EA_NUM_ENT_MASK;
3317
3318 offset = ea + PCI_EA_FIRST_ENT;
3319
3320 /* Skip DWORD 2 for type 1 functions */
3321 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3322 offset += 4;
3323
3324 /* parse each EA entry */
3325 for (i = 0; i < num_ent; ++i)
3326 offset = pci_ea_read(dev, offset);
3327 }
3328
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3329 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3330 struct pci_cap_saved_state *new_cap)
3331 {
3332 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3333 }
3334
3335 /**
3336 * _pci_add_cap_save_buffer - allocate buffer for saving given
3337 * capability registers
3338 * @dev: the PCI device
3339 * @cap: the capability to allocate the buffer for
3340 * @extended: Standard or Extended capability ID
3341 * @size: requested size of the buffer
3342 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3343 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3344 bool extended, unsigned int size)
3345 {
3346 int pos;
3347 struct pci_cap_saved_state *save_state;
3348
3349 if (extended)
3350 pos = pci_find_ext_capability(dev, cap);
3351 else
3352 pos = pci_find_capability(dev, cap);
3353
3354 if (!pos)
3355 return 0;
3356
3357 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3358 if (!save_state)
3359 return -ENOMEM;
3360
3361 save_state->cap.cap_nr = cap;
3362 save_state->cap.cap_extended = extended;
3363 save_state->cap.size = size;
3364 pci_add_saved_cap(dev, save_state);
3365
3366 return 0;
3367 }
3368
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3369 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3370 {
3371 return _pci_add_cap_save_buffer(dev, cap, false, size);
3372 }
3373
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3374 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3375 {
3376 return _pci_add_cap_save_buffer(dev, cap, true, size);
3377 }
3378
3379 /**
3380 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3381 * @dev: the PCI device
3382 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3383 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3384 {
3385 int error;
3386
3387 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3388 PCI_EXP_SAVE_REGS * sizeof(u16));
3389 if (error)
3390 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3391
3392 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3393 if (error)
3394 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3395
3396 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3397 2 * sizeof(u16));
3398 if (error)
3399 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3400
3401 pci_allocate_vc_save_buffers(dev);
3402 }
3403
pci_free_cap_save_buffers(struct pci_dev * dev)3404 void pci_free_cap_save_buffers(struct pci_dev *dev)
3405 {
3406 struct pci_cap_saved_state *tmp;
3407 struct hlist_node *n;
3408
3409 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3410 kfree(tmp);
3411 }
3412
3413 /**
3414 * pci_configure_ari - enable or disable ARI forwarding
3415 * @dev: the PCI device
3416 *
3417 * If @dev and its upstream bridge both support ARI, enable ARI in the
3418 * bridge. Otherwise, disable ARI in the bridge.
3419 */
pci_configure_ari(struct pci_dev * dev)3420 void pci_configure_ari(struct pci_dev *dev)
3421 {
3422 u32 cap;
3423 struct pci_dev *bridge;
3424
3425 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3426 return;
3427
3428 bridge = dev->bus->self;
3429 if (!bridge)
3430 return;
3431
3432 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3433 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3434 return;
3435
3436 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3437 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3438 PCI_EXP_DEVCTL2_ARI);
3439 bridge->ari_enabled = 1;
3440 } else {
3441 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3442 PCI_EXP_DEVCTL2_ARI);
3443 bridge->ari_enabled = 0;
3444 }
3445 }
3446
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3447 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3448 {
3449 int pos;
3450 u16 cap, ctrl;
3451
3452 pos = pdev->acs_cap;
3453 if (!pos)
3454 return false;
3455
3456 /*
3457 * Except for egress control, capabilities are either required
3458 * or only required if controllable. Features missing from the
3459 * capability field can therefore be assumed as hard-wired enabled.
3460 */
3461 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3462 acs_flags &= (cap | PCI_ACS_EC);
3463
3464 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3465 return (ctrl & acs_flags) == acs_flags;
3466 }
3467
3468 /**
3469 * pci_acs_enabled - test ACS against required flags for a given device
3470 * @pdev: device to test
3471 * @acs_flags: required PCI ACS flags
3472 *
3473 * Return true if the device supports the provided flags. Automatically
3474 * filters out flags that are not implemented on multifunction devices.
3475 *
3476 * Note that this interface checks the effective ACS capabilities of the
3477 * device rather than the actual capabilities. For instance, most single
3478 * function endpoints are not required to support ACS because they have no
3479 * opportunity for peer-to-peer access. We therefore return 'true'
3480 * regardless of whether the device exposes an ACS capability. This makes
3481 * it much easier for callers of this function to ignore the actual type
3482 * or topology of the device when testing ACS support.
3483 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3484 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3485 {
3486 int ret;
3487
3488 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3489 if (ret >= 0)
3490 return ret > 0;
3491
3492 /*
3493 * Conventional PCI and PCI-X devices never support ACS, either
3494 * effectively or actually. The shared bus topology implies that
3495 * any device on the bus can receive or snoop DMA.
3496 */
3497 if (!pci_is_pcie(pdev))
3498 return false;
3499
3500 switch (pci_pcie_type(pdev)) {
3501 /*
3502 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3503 * but since their primary interface is PCI/X, we conservatively
3504 * handle them as we would a non-PCIe device.
3505 */
3506 case PCI_EXP_TYPE_PCIE_BRIDGE:
3507 /*
3508 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3509 * applicable... must never implement an ACS Extended Capability...".
3510 * This seems arbitrary, but we take a conservative interpretation
3511 * of this statement.
3512 */
3513 case PCI_EXP_TYPE_PCI_BRIDGE:
3514 case PCI_EXP_TYPE_RC_EC:
3515 return false;
3516 /*
3517 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3518 * implement ACS in order to indicate their peer-to-peer capabilities,
3519 * regardless of whether they are single- or multi-function devices.
3520 */
3521 case PCI_EXP_TYPE_DOWNSTREAM:
3522 case PCI_EXP_TYPE_ROOT_PORT:
3523 return pci_acs_flags_enabled(pdev, acs_flags);
3524 /*
3525 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3526 * implemented by the remaining PCIe types to indicate peer-to-peer
3527 * capabilities, but only when they are part of a multifunction
3528 * device. The footnote for section 6.12 indicates the specific
3529 * PCIe types included here.
3530 */
3531 case PCI_EXP_TYPE_ENDPOINT:
3532 case PCI_EXP_TYPE_UPSTREAM:
3533 case PCI_EXP_TYPE_LEG_END:
3534 case PCI_EXP_TYPE_RC_END:
3535 if (!pdev->multifunction)
3536 break;
3537
3538 return pci_acs_flags_enabled(pdev, acs_flags);
3539 }
3540
3541 /*
3542 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3543 * to single function devices with the exception of downstream ports.
3544 */
3545 return true;
3546 }
3547
3548 /**
3549 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3550 * @start: starting downstream device
3551 * @end: ending upstream device or NULL to search to the root bus
3552 * @acs_flags: required flags
3553 *
3554 * Walk up a device tree from start to end testing PCI ACS support. If
3555 * any step along the way does not support the required flags, return false.
3556 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3557 bool pci_acs_path_enabled(struct pci_dev *start,
3558 struct pci_dev *end, u16 acs_flags)
3559 {
3560 struct pci_dev *pdev, *parent = start;
3561
3562 do {
3563 pdev = parent;
3564
3565 if (!pci_acs_enabled(pdev, acs_flags))
3566 return false;
3567
3568 if (pci_is_root_bus(pdev->bus))
3569 return (end == NULL);
3570
3571 parent = pdev->bus->self;
3572 } while (pdev != end);
3573
3574 return true;
3575 }
3576
3577 /**
3578 * pci_acs_init - Initialize ACS if hardware supports it
3579 * @dev: the PCI device
3580 */
pci_acs_init(struct pci_dev * dev)3581 void pci_acs_init(struct pci_dev *dev)
3582 {
3583 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3584
3585 /*
3586 * Attempt to enable ACS regardless of capability because some Root
3587 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3588 * the standard ACS capability but still support ACS via those
3589 * quirks.
3590 */
3591 pci_enable_acs(dev);
3592 }
3593
3594 /**
3595 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3596 * @pdev: PCI device
3597 * @bar: BAR to find
3598 *
3599 * Helper to find the position of the ctrl register for a BAR.
3600 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3601 * Returns -ENOENT if no ctrl register for the BAR could be found.
3602 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3603 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3604 {
3605 unsigned int pos, nbars, i;
3606 u32 ctrl;
3607
3608 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3609 if (!pos)
3610 return -ENOTSUPP;
3611
3612 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3613 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3614 PCI_REBAR_CTRL_NBAR_SHIFT;
3615
3616 for (i = 0; i < nbars; i++, pos += 8) {
3617 int bar_idx;
3618
3619 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3620 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3621 if (bar_idx == bar)
3622 return pos;
3623 }
3624
3625 return -ENOENT;
3626 }
3627
3628 /**
3629 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3630 * @pdev: PCI device
3631 * @bar: BAR to query
3632 *
3633 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3634 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3635 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3636 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3637 {
3638 int pos;
3639 u32 cap;
3640
3641 pos = pci_rebar_find_pos(pdev, bar);
3642 if (pos < 0)
3643 return 0;
3644
3645 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3646 cap &= PCI_REBAR_CAP_SIZES;
3647
3648 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3649 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3650 bar == 0 && cap == 0x7000)
3651 cap = 0x3f000;
3652
3653 return cap >> 4;
3654 }
3655 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3656
3657 /**
3658 * pci_rebar_get_current_size - get the current size of a BAR
3659 * @pdev: PCI device
3660 * @bar: BAR to set size to
3661 *
3662 * Read the size of a BAR from the resizable BAR config.
3663 * Returns size if found or negative error code.
3664 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3665 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3666 {
3667 int pos;
3668 u32 ctrl;
3669
3670 pos = pci_rebar_find_pos(pdev, bar);
3671 if (pos < 0)
3672 return pos;
3673
3674 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3675 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3676 }
3677
3678 /**
3679 * pci_rebar_set_size - set a new size for a BAR
3680 * @pdev: PCI device
3681 * @bar: BAR to set size to
3682 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3683 *
3684 * Set the new size of a BAR as defined in the spec.
3685 * Returns zero if resizing was successful, error code otherwise.
3686 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3687 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3688 {
3689 int pos;
3690 u32 ctrl;
3691
3692 pos = pci_rebar_find_pos(pdev, bar);
3693 if (pos < 0)
3694 return pos;
3695
3696 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3697 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3698 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3699 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3700 return 0;
3701 }
3702
3703 /**
3704 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3705 * @dev: the PCI device
3706 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3707 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3708 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3709 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3710 *
3711 * Return 0 if all upstream bridges support AtomicOp routing, egress
3712 * blocking is disabled on all upstream ports, and the root port supports
3713 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3714 * AtomicOp completion), or negative otherwise.
3715 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3716 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3717 {
3718 struct pci_bus *bus = dev->bus;
3719 struct pci_dev *bridge;
3720 u32 cap, ctl2;
3721
3722 if (!pci_is_pcie(dev))
3723 return -EINVAL;
3724
3725 /*
3726 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3727 * AtomicOp requesters. For now, we only support endpoints as
3728 * requesters and root ports as completers. No endpoints as
3729 * completers, and no peer-to-peer.
3730 */
3731
3732 switch (pci_pcie_type(dev)) {
3733 case PCI_EXP_TYPE_ENDPOINT:
3734 case PCI_EXP_TYPE_LEG_END:
3735 case PCI_EXP_TYPE_RC_END:
3736 break;
3737 default:
3738 return -EINVAL;
3739 }
3740
3741 while (bus->parent) {
3742 bridge = bus->self;
3743
3744 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3745
3746 switch (pci_pcie_type(bridge)) {
3747 /* Ensure switch ports support AtomicOp routing */
3748 case PCI_EXP_TYPE_UPSTREAM:
3749 case PCI_EXP_TYPE_DOWNSTREAM:
3750 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3751 return -EINVAL;
3752 break;
3753
3754 /* Ensure root port supports all the sizes we care about */
3755 case PCI_EXP_TYPE_ROOT_PORT:
3756 if ((cap & cap_mask) != cap_mask)
3757 return -EINVAL;
3758 break;
3759 }
3760
3761 /* Ensure upstream ports don't block AtomicOps on egress */
3762 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3763 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3764 &ctl2);
3765 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3766 return -EINVAL;
3767 }
3768
3769 bus = bus->parent;
3770 }
3771
3772 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3773 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3774 return 0;
3775 }
3776 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3777
3778 /**
3779 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3780 * @dev: the PCI device
3781 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3782 *
3783 * Perform INTx swizzling for a device behind one level of bridge. This is
3784 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3785 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3786 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3787 * the PCI Express Base Specification, Revision 2.1)
3788 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3789 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3790 {
3791 int slot;
3792
3793 if (pci_ari_enabled(dev->bus))
3794 slot = 0;
3795 else
3796 slot = PCI_SLOT(dev->devfn);
3797
3798 return (((pin - 1) + slot) % 4) + 1;
3799 }
3800
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3801 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3802 {
3803 u8 pin;
3804
3805 pin = dev->pin;
3806 if (!pin)
3807 return -1;
3808
3809 while (!pci_is_root_bus(dev->bus)) {
3810 pin = pci_swizzle_interrupt_pin(dev, pin);
3811 dev = dev->bus->self;
3812 }
3813 *bridge = dev;
3814 return pin;
3815 }
3816
3817 /**
3818 * pci_common_swizzle - swizzle INTx all the way to root bridge
3819 * @dev: the PCI device
3820 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3821 *
3822 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3823 * bridges all the way up to a PCI root bus.
3824 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3825 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3826 {
3827 u8 pin = *pinp;
3828
3829 while (!pci_is_root_bus(dev->bus)) {
3830 pin = pci_swizzle_interrupt_pin(dev, pin);
3831 dev = dev->bus->self;
3832 }
3833 *pinp = pin;
3834 return PCI_SLOT(dev->devfn);
3835 }
3836 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3837
3838 /**
3839 * pci_release_region - Release a PCI bar
3840 * @pdev: PCI device whose resources were previously reserved by
3841 * pci_request_region()
3842 * @bar: BAR to release
3843 *
3844 * Releases the PCI I/O and memory resources previously reserved by a
3845 * successful call to pci_request_region(). Call this function only
3846 * after all use of the PCI regions has ceased.
3847 */
pci_release_region(struct pci_dev * pdev,int bar)3848 void pci_release_region(struct pci_dev *pdev, int bar)
3849 {
3850 struct pci_devres *dr;
3851
3852 if (pci_resource_len(pdev, bar) == 0)
3853 return;
3854 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3855 release_region(pci_resource_start(pdev, bar),
3856 pci_resource_len(pdev, bar));
3857 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3858 release_mem_region(pci_resource_start(pdev, bar),
3859 pci_resource_len(pdev, bar));
3860
3861 dr = find_pci_dr(pdev);
3862 if (dr)
3863 dr->region_mask &= ~(1 << bar);
3864 }
3865 EXPORT_SYMBOL(pci_release_region);
3866
3867 /**
3868 * __pci_request_region - Reserved PCI I/O and memory resource
3869 * @pdev: PCI device whose resources are to be reserved
3870 * @bar: BAR to be reserved
3871 * @res_name: Name to be associated with resource.
3872 * @exclusive: whether the region access is exclusive or not
3873 *
3874 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3875 * being reserved by owner @res_name. Do not access any
3876 * address inside the PCI regions unless this call returns
3877 * successfully.
3878 *
3879 * If @exclusive is set, then the region is marked so that userspace
3880 * is explicitly not allowed to map the resource via /dev/mem or
3881 * sysfs MMIO access.
3882 *
3883 * Returns 0 on success, or %EBUSY on error. A warning
3884 * message is also printed on failure.
3885 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3886 static int __pci_request_region(struct pci_dev *pdev, int bar,
3887 const char *res_name, int exclusive)
3888 {
3889 struct pci_devres *dr;
3890
3891 if (pci_resource_len(pdev, bar) == 0)
3892 return 0;
3893
3894 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3895 if (!request_region(pci_resource_start(pdev, bar),
3896 pci_resource_len(pdev, bar), res_name))
3897 goto err_out;
3898 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3899 if (!__request_mem_region(pci_resource_start(pdev, bar),
3900 pci_resource_len(pdev, bar), res_name,
3901 exclusive))
3902 goto err_out;
3903 }
3904
3905 dr = find_pci_dr(pdev);
3906 if (dr)
3907 dr->region_mask |= 1 << bar;
3908
3909 return 0;
3910
3911 err_out:
3912 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3913 &pdev->resource[bar]);
3914 return -EBUSY;
3915 }
3916
3917 /**
3918 * pci_request_region - Reserve PCI I/O and memory resource
3919 * @pdev: PCI device whose resources are to be reserved
3920 * @bar: BAR to be reserved
3921 * @res_name: Name to be associated with resource
3922 *
3923 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3924 * being reserved by owner @res_name. Do not access any
3925 * address inside the PCI regions unless this call returns
3926 * successfully.
3927 *
3928 * Returns 0 on success, or %EBUSY on error. A warning
3929 * message is also printed on failure.
3930 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3931 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3932 {
3933 return __pci_request_region(pdev, bar, res_name, 0);
3934 }
3935 EXPORT_SYMBOL(pci_request_region);
3936
3937 /**
3938 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3939 * @pdev: PCI device whose resources were previously reserved
3940 * @bars: Bitmask of BARs to be released
3941 *
3942 * Release selected PCI I/O and memory resources previously reserved.
3943 * Call this function only after all use of the PCI regions has ceased.
3944 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3945 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3946 {
3947 int i;
3948
3949 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3950 if (bars & (1 << i))
3951 pci_release_region(pdev, i);
3952 }
3953 EXPORT_SYMBOL(pci_release_selected_regions);
3954
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3955 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3956 const char *res_name, int excl)
3957 {
3958 int i;
3959
3960 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3961 if (bars & (1 << i))
3962 if (__pci_request_region(pdev, i, res_name, excl))
3963 goto err_out;
3964 return 0;
3965
3966 err_out:
3967 while (--i >= 0)
3968 if (bars & (1 << i))
3969 pci_release_region(pdev, i);
3970
3971 return -EBUSY;
3972 }
3973
3974
3975 /**
3976 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3977 * @pdev: PCI device whose resources are to be reserved
3978 * @bars: Bitmask of BARs to be requested
3979 * @res_name: Name to be associated with resource
3980 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3981 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3982 const char *res_name)
3983 {
3984 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3985 }
3986 EXPORT_SYMBOL(pci_request_selected_regions);
3987
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3988 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3989 const char *res_name)
3990 {
3991 return __pci_request_selected_regions(pdev, bars, res_name,
3992 IORESOURCE_EXCLUSIVE);
3993 }
3994 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3995
3996 /**
3997 * pci_release_regions - Release reserved PCI I/O and memory resources
3998 * @pdev: PCI device whose resources were previously reserved by
3999 * pci_request_regions()
4000 *
4001 * Releases all PCI I/O and memory resources previously reserved by a
4002 * successful call to pci_request_regions(). Call this function only
4003 * after all use of the PCI regions has ceased.
4004 */
4005
pci_release_regions(struct pci_dev * pdev)4006 void pci_release_regions(struct pci_dev *pdev)
4007 {
4008 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4009 }
4010 EXPORT_SYMBOL(pci_release_regions);
4011
4012 /**
4013 * pci_request_regions - Reserve PCI I/O and memory resources
4014 * @pdev: PCI device whose resources are to be reserved
4015 * @res_name: Name to be associated with resource.
4016 *
4017 * Mark all PCI regions associated with PCI device @pdev as
4018 * being reserved by owner @res_name. Do not access any
4019 * address inside the PCI regions unless this call returns
4020 * successfully.
4021 *
4022 * Returns 0 on success, or %EBUSY on error. A warning
4023 * message is also printed on failure.
4024 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4025 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4026 {
4027 return pci_request_selected_regions(pdev,
4028 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4029 }
4030 EXPORT_SYMBOL(pci_request_regions);
4031
4032 /**
4033 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4034 * @pdev: PCI device whose resources are to be reserved
4035 * @res_name: Name to be associated with resource.
4036 *
4037 * Mark all PCI regions associated with PCI device @pdev as being reserved
4038 * by owner @res_name. Do not access any address inside the PCI regions
4039 * unless this call returns successfully.
4040 *
4041 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4042 * and the sysfs MMIO access will not be allowed.
4043 *
4044 * Returns 0 on success, or %EBUSY on error. A warning message is also
4045 * printed on failure.
4046 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4047 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4048 {
4049 return pci_request_selected_regions_exclusive(pdev,
4050 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051 }
4052 EXPORT_SYMBOL(pci_request_regions_exclusive);
4053
4054 /*
4055 * Record the PCI IO range (expressed as CPU physical address + size).
4056 * Return a negative value if an error has occurred, zero otherwise
4057 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4058 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4059 resource_size_t size)
4060 {
4061 int ret = 0;
4062 #ifdef PCI_IOBASE
4063 struct logic_pio_hwaddr *range;
4064
4065 if (!size || addr + size < addr)
4066 return -EINVAL;
4067
4068 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4069 if (!range)
4070 return -ENOMEM;
4071
4072 range->fwnode = fwnode;
4073 range->size = size;
4074 range->hw_start = addr;
4075 range->flags = LOGIC_PIO_CPU_MMIO;
4076
4077 ret = logic_pio_register_range(range);
4078 if (ret)
4079 kfree(range);
4080
4081 /* Ignore duplicates due to deferred probing */
4082 if (ret == -EEXIST)
4083 ret = 0;
4084 #endif
4085
4086 return ret;
4087 }
4088
pci_pio_to_address(unsigned long pio)4089 phys_addr_t pci_pio_to_address(unsigned long pio)
4090 {
4091 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4092
4093 #ifdef PCI_IOBASE
4094 if (pio >= MMIO_UPPER_LIMIT)
4095 return address;
4096
4097 address = logic_pio_to_hwaddr(pio);
4098 #endif
4099
4100 return address;
4101 }
4102 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4103
pci_address_to_pio(phys_addr_t address)4104 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4105 {
4106 #ifdef PCI_IOBASE
4107 return logic_pio_trans_cpuaddr(address);
4108 #else
4109 if (address > IO_SPACE_LIMIT)
4110 return (unsigned long)-1;
4111
4112 return (unsigned long) address;
4113 #endif
4114 }
4115
4116 /**
4117 * pci_remap_iospace - Remap the memory mapped I/O space
4118 * @res: Resource describing the I/O space
4119 * @phys_addr: physical address of range to be mapped
4120 *
4121 * Remap the memory mapped I/O space described by the @res and the CPU
4122 * physical address @phys_addr into virtual address space. Only
4123 * architectures that have memory mapped IO functions defined (and the
4124 * PCI_IOBASE value defined) should call this function.
4125 */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4126 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4127 {
4128 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4129 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4130
4131 if (!(res->flags & IORESOURCE_IO))
4132 return -EINVAL;
4133
4134 if (res->end > IO_SPACE_LIMIT)
4135 return -EINVAL;
4136
4137 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4138 pgprot_device(PAGE_KERNEL));
4139 #else
4140 /*
4141 * This architecture does not have memory mapped I/O space,
4142 * so this function should never be called
4143 */
4144 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4145 return -ENODEV;
4146 #endif
4147 }
4148 EXPORT_SYMBOL(pci_remap_iospace);
4149
4150 /**
4151 * pci_unmap_iospace - Unmap the memory mapped I/O space
4152 * @res: resource to be unmapped
4153 *
4154 * Unmap the CPU virtual address @res from virtual address space. Only
4155 * architectures that have memory mapped IO functions defined (and the
4156 * PCI_IOBASE value defined) should call this function.
4157 */
pci_unmap_iospace(struct resource * res)4158 void pci_unmap_iospace(struct resource *res)
4159 {
4160 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4161 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4162
4163 vunmap_range(vaddr, vaddr + resource_size(res));
4164 #endif
4165 }
4166 EXPORT_SYMBOL(pci_unmap_iospace);
4167
devm_pci_unmap_iospace(struct device * dev,void * ptr)4168 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4169 {
4170 struct resource **res = ptr;
4171
4172 pci_unmap_iospace(*res);
4173 }
4174
4175 /**
4176 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4177 * @dev: Generic device to remap IO address for
4178 * @res: Resource describing the I/O space
4179 * @phys_addr: physical address of range to be mapped
4180 *
4181 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4182 * detach.
4183 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4184 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4185 phys_addr_t phys_addr)
4186 {
4187 const struct resource **ptr;
4188 int error;
4189
4190 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4191 if (!ptr)
4192 return -ENOMEM;
4193
4194 error = pci_remap_iospace(res, phys_addr);
4195 if (error) {
4196 devres_free(ptr);
4197 } else {
4198 *ptr = res;
4199 devres_add(dev, ptr);
4200 }
4201
4202 return error;
4203 }
4204 EXPORT_SYMBOL(devm_pci_remap_iospace);
4205
4206 /**
4207 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4208 * @dev: Generic device to remap IO address for
4209 * @offset: Resource address to map
4210 * @size: Size of map
4211 *
4212 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4213 * detach.
4214 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4215 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4216 resource_size_t offset,
4217 resource_size_t size)
4218 {
4219 void __iomem **ptr, *addr;
4220
4221 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4222 if (!ptr)
4223 return NULL;
4224
4225 addr = pci_remap_cfgspace(offset, size);
4226 if (addr) {
4227 *ptr = addr;
4228 devres_add(dev, ptr);
4229 } else
4230 devres_free(ptr);
4231
4232 return addr;
4233 }
4234 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4235
4236 /**
4237 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4238 * @dev: generic device to handle the resource for
4239 * @res: configuration space resource to be handled
4240 *
4241 * Checks that a resource is a valid memory region, requests the memory
4242 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4243 * proper PCI configuration space memory attributes are guaranteed.
4244 *
4245 * All operations are managed and will be undone on driver detach.
4246 *
4247 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4248 * on failure. Usage example::
4249 *
4250 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4251 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4252 * if (IS_ERR(base))
4253 * return PTR_ERR(base);
4254 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4255 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4256 struct resource *res)
4257 {
4258 resource_size_t size;
4259 const char *name;
4260 void __iomem *dest_ptr;
4261
4262 BUG_ON(!dev);
4263
4264 if (!res || resource_type(res) != IORESOURCE_MEM) {
4265 dev_err(dev, "invalid resource\n");
4266 return IOMEM_ERR_PTR(-EINVAL);
4267 }
4268
4269 size = resource_size(res);
4270
4271 if (res->name)
4272 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4273 res->name);
4274 else
4275 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4276 if (!name)
4277 return IOMEM_ERR_PTR(-ENOMEM);
4278
4279 if (!devm_request_mem_region(dev, res->start, size, name)) {
4280 dev_err(dev, "can't request region for resource %pR\n", res);
4281 return IOMEM_ERR_PTR(-EBUSY);
4282 }
4283
4284 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4285 if (!dest_ptr) {
4286 dev_err(dev, "ioremap failed for resource %pR\n", res);
4287 devm_release_mem_region(dev, res->start, size);
4288 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4289 }
4290
4291 return dest_ptr;
4292 }
4293 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4294
__pci_set_master(struct pci_dev * dev,bool enable)4295 static void __pci_set_master(struct pci_dev *dev, bool enable)
4296 {
4297 u16 old_cmd, cmd;
4298
4299 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4300 if (enable)
4301 cmd = old_cmd | PCI_COMMAND_MASTER;
4302 else
4303 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4304 if (cmd != old_cmd) {
4305 pci_dbg(dev, "%s bus mastering\n",
4306 enable ? "enabling" : "disabling");
4307 pci_write_config_word(dev, PCI_COMMAND, cmd);
4308 }
4309 dev->is_busmaster = enable;
4310 }
4311
4312 /**
4313 * pcibios_setup - process "pci=" kernel boot arguments
4314 * @str: string used to pass in "pci=" kernel boot arguments
4315 *
4316 * Process kernel boot arguments. This is the default implementation.
4317 * Architecture specific implementations can override this as necessary.
4318 */
pcibios_setup(char * str)4319 char * __weak __init pcibios_setup(char *str)
4320 {
4321 return str;
4322 }
4323
4324 /**
4325 * pcibios_set_master - enable PCI bus-mastering for device dev
4326 * @dev: the PCI device to enable
4327 *
4328 * Enables PCI bus-mastering for the device. This is the default
4329 * implementation. Architecture specific implementations can override
4330 * this if necessary.
4331 */
pcibios_set_master(struct pci_dev * dev)4332 void __weak pcibios_set_master(struct pci_dev *dev)
4333 {
4334 u8 lat;
4335
4336 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4337 if (pci_is_pcie(dev))
4338 return;
4339
4340 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4341 if (lat < 16)
4342 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4343 else if (lat > pcibios_max_latency)
4344 lat = pcibios_max_latency;
4345 else
4346 return;
4347
4348 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4349 }
4350
4351 /**
4352 * pci_set_master - enables bus-mastering for device dev
4353 * @dev: the PCI device to enable
4354 *
4355 * Enables bus-mastering on the device and calls pcibios_set_master()
4356 * to do the needed arch specific settings.
4357 */
pci_set_master(struct pci_dev * dev)4358 void pci_set_master(struct pci_dev *dev)
4359 {
4360 __pci_set_master(dev, true);
4361 pcibios_set_master(dev);
4362 }
4363 EXPORT_SYMBOL(pci_set_master);
4364
4365 /**
4366 * pci_clear_master - disables bus-mastering for device dev
4367 * @dev: the PCI device to disable
4368 */
pci_clear_master(struct pci_dev * dev)4369 void pci_clear_master(struct pci_dev *dev)
4370 {
4371 __pci_set_master(dev, false);
4372 }
4373 EXPORT_SYMBOL(pci_clear_master);
4374
4375 /**
4376 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4377 * @dev: the PCI device for which MWI is to be enabled
4378 *
4379 * Helper function for pci_set_mwi.
4380 * Originally copied from drivers/net/acenic.c.
4381 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4382 *
4383 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4384 */
pci_set_cacheline_size(struct pci_dev * dev)4385 int pci_set_cacheline_size(struct pci_dev *dev)
4386 {
4387 u8 cacheline_size;
4388
4389 if (!pci_cache_line_size)
4390 return -EINVAL;
4391
4392 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4393 equal to or multiple of the right value. */
4394 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4395 if (cacheline_size >= pci_cache_line_size &&
4396 (cacheline_size % pci_cache_line_size) == 0)
4397 return 0;
4398
4399 /* Write the correct value. */
4400 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4401 /* Read it back. */
4402 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4403 if (cacheline_size == pci_cache_line_size)
4404 return 0;
4405
4406 pci_dbg(dev, "cache line size of %d is not supported\n",
4407 pci_cache_line_size << 2);
4408
4409 return -EINVAL;
4410 }
4411 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4412
4413 /**
4414 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4415 * @dev: the PCI device for which MWI is enabled
4416 *
4417 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4418 *
4419 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4420 */
pci_set_mwi(struct pci_dev * dev)4421 int pci_set_mwi(struct pci_dev *dev)
4422 {
4423 #ifdef PCI_DISABLE_MWI
4424 return 0;
4425 #else
4426 int rc;
4427 u16 cmd;
4428
4429 rc = pci_set_cacheline_size(dev);
4430 if (rc)
4431 return rc;
4432
4433 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4434 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4435 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4436 cmd |= PCI_COMMAND_INVALIDATE;
4437 pci_write_config_word(dev, PCI_COMMAND, cmd);
4438 }
4439 return 0;
4440 #endif
4441 }
4442 EXPORT_SYMBOL(pci_set_mwi);
4443
4444 /**
4445 * pcim_set_mwi - a device-managed pci_set_mwi()
4446 * @dev: the PCI device for which MWI is enabled
4447 *
4448 * Managed pci_set_mwi().
4449 *
4450 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4451 */
pcim_set_mwi(struct pci_dev * dev)4452 int pcim_set_mwi(struct pci_dev *dev)
4453 {
4454 struct pci_devres *dr;
4455
4456 dr = find_pci_dr(dev);
4457 if (!dr)
4458 return -ENOMEM;
4459
4460 dr->mwi = 1;
4461 return pci_set_mwi(dev);
4462 }
4463 EXPORT_SYMBOL(pcim_set_mwi);
4464
4465 /**
4466 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4467 * @dev: the PCI device for which MWI is enabled
4468 *
4469 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4470 * Callers are not required to check the return value.
4471 *
4472 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4473 */
pci_try_set_mwi(struct pci_dev * dev)4474 int pci_try_set_mwi(struct pci_dev *dev)
4475 {
4476 #ifdef PCI_DISABLE_MWI
4477 return 0;
4478 #else
4479 return pci_set_mwi(dev);
4480 #endif
4481 }
4482 EXPORT_SYMBOL(pci_try_set_mwi);
4483
4484 /**
4485 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4486 * @dev: the PCI device to disable
4487 *
4488 * Disables PCI Memory-Write-Invalidate transaction on the device
4489 */
pci_clear_mwi(struct pci_dev * dev)4490 void pci_clear_mwi(struct pci_dev *dev)
4491 {
4492 #ifndef PCI_DISABLE_MWI
4493 u16 cmd;
4494
4495 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4496 if (cmd & PCI_COMMAND_INVALIDATE) {
4497 cmd &= ~PCI_COMMAND_INVALIDATE;
4498 pci_write_config_word(dev, PCI_COMMAND, cmd);
4499 }
4500 #endif
4501 }
4502 EXPORT_SYMBOL(pci_clear_mwi);
4503
4504 /**
4505 * pci_disable_parity - disable parity checking for device
4506 * @dev: the PCI device to operate on
4507 *
4508 * Disable parity checking for device @dev
4509 */
pci_disable_parity(struct pci_dev * dev)4510 void pci_disable_parity(struct pci_dev *dev)
4511 {
4512 u16 cmd;
4513
4514 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4515 if (cmd & PCI_COMMAND_PARITY) {
4516 cmd &= ~PCI_COMMAND_PARITY;
4517 pci_write_config_word(dev, PCI_COMMAND, cmd);
4518 }
4519 }
4520
4521 /**
4522 * pci_intx - enables/disables PCI INTx for device dev
4523 * @pdev: the PCI device to operate on
4524 * @enable: boolean: whether to enable or disable PCI INTx
4525 *
4526 * Enables/disables PCI INTx for device @pdev
4527 */
pci_intx(struct pci_dev * pdev,int enable)4528 void pci_intx(struct pci_dev *pdev, int enable)
4529 {
4530 u16 pci_command, new;
4531
4532 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4533
4534 if (enable)
4535 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4536 else
4537 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4538
4539 if (new != pci_command) {
4540 struct pci_devres *dr;
4541
4542 pci_write_config_word(pdev, PCI_COMMAND, new);
4543
4544 dr = find_pci_dr(pdev);
4545 if (dr && !dr->restore_intx) {
4546 dr->restore_intx = 1;
4547 dr->orig_intx = !enable;
4548 }
4549 }
4550 }
4551 EXPORT_SYMBOL_GPL(pci_intx);
4552
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4553 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4554 {
4555 struct pci_bus *bus = dev->bus;
4556 bool mask_updated = true;
4557 u32 cmd_status_dword;
4558 u16 origcmd, newcmd;
4559 unsigned long flags;
4560 bool irq_pending;
4561
4562 /*
4563 * We do a single dword read to retrieve both command and status.
4564 * Document assumptions that make this possible.
4565 */
4566 BUILD_BUG_ON(PCI_COMMAND % 4);
4567 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4568
4569 raw_spin_lock_irqsave(&pci_lock, flags);
4570
4571 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4572
4573 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4574
4575 /*
4576 * Check interrupt status register to see whether our device
4577 * triggered the interrupt (when masking) or the next IRQ is
4578 * already pending (when unmasking).
4579 */
4580 if (mask != irq_pending) {
4581 mask_updated = false;
4582 goto done;
4583 }
4584
4585 origcmd = cmd_status_dword;
4586 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4587 if (mask)
4588 newcmd |= PCI_COMMAND_INTX_DISABLE;
4589 if (newcmd != origcmd)
4590 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4591
4592 done:
4593 raw_spin_unlock_irqrestore(&pci_lock, flags);
4594
4595 return mask_updated;
4596 }
4597
4598 /**
4599 * pci_check_and_mask_intx - mask INTx on pending interrupt
4600 * @dev: the PCI device to operate on
4601 *
4602 * Check if the device dev has its INTx line asserted, mask it and return
4603 * true in that case. False is returned if no interrupt was pending.
4604 */
pci_check_and_mask_intx(struct pci_dev * dev)4605 bool pci_check_and_mask_intx(struct pci_dev *dev)
4606 {
4607 return pci_check_and_set_intx_mask(dev, true);
4608 }
4609 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4610
4611 /**
4612 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4613 * @dev: the PCI device to operate on
4614 *
4615 * Check if the device dev has its INTx line asserted, unmask it if not and
4616 * return true. False is returned and the mask remains active if there was
4617 * still an interrupt pending.
4618 */
pci_check_and_unmask_intx(struct pci_dev * dev)4619 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4620 {
4621 return pci_check_and_set_intx_mask(dev, false);
4622 }
4623 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4624
4625 /**
4626 * pci_wait_for_pending_transaction - wait for pending transaction
4627 * @dev: the PCI device to operate on
4628 *
4629 * Return 0 if transaction is pending 1 otherwise.
4630 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4631 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4632 {
4633 if (!pci_is_pcie(dev))
4634 return 1;
4635
4636 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4637 PCI_EXP_DEVSTA_TRPND);
4638 }
4639 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4640
4641 /**
4642 * pcie_flr - initiate a PCIe function level reset
4643 * @dev: device to reset
4644 *
4645 * Initiate a function level reset unconditionally on @dev without
4646 * checking any flags and DEVCAP
4647 */
pcie_flr(struct pci_dev * dev)4648 int pcie_flr(struct pci_dev *dev)
4649 {
4650 if (!pci_wait_for_pending_transaction(dev))
4651 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4652
4653 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4654
4655 if (dev->imm_ready)
4656 return 0;
4657
4658 /*
4659 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4660 * 100ms, but may silently discard requests while the FLR is in
4661 * progress. Wait 100ms before trying to access the device.
4662 */
4663 msleep(100);
4664
4665 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4666 }
4667 EXPORT_SYMBOL_GPL(pcie_flr);
4668
4669 /**
4670 * pcie_reset_flr - initiate a PCIe function level reset
4671 * @dev: device to reset
4672 * @probe: if true, return 0 if device can be reset this way
4673 *
4674 * Initiate a function level reset on @dev.
4675 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4676 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4677 {
4678 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4679 return -ENOTTY;
4680
4681 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4682 return -ENOTTY;
4683
4684 if (probe)
4685 return 0;
4686
4687 return pcie_flr(dev);
4688 }
4689 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4690
pci_af_flr(struct pci_dev * dev,bool probe)4691 static int pci_af_flr(struct pci_dev *dev, bool probe)
4692 {
4693 int pos;
4694 u8 cap;
4695
4696 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4697 if (!pos)
4698 return -ENOTTY;
4699
4700 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4701 return -ENOTTY;
4702
4703 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4704 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4705 return -ENOTTY;
4706
4707 if (probe)
4708 return 0;
4709
4710 /*
4711 * Wait for Transaction Pending bit to clear. A word-aligned test
4712 * is used, so we use the control offset rather than status and shift
4713 * the test bit to match.
4714 */
4715 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4716 PCI_AF_STATUS_TP << 8))
4717 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4718
4719 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4720
4721 if (dev->imm_ready)
4722 return 0;
4723
4724 /*
4725 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4726 * updated 27 July 2006; a device must complete an FLR within
4727 * 100ms, but may silently discard requests while the FLR is in
4728 * progress. Wait 100ms before trying to access the device.
4729 */
4730 msleep(100);
4731
4732 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4733 }
4734
4735 /**
4736 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4737 * @dev: Device to reset.
4738 * @probe: if true, return 0 if the device can be reset this way.
4739 *
4740 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4741 * unset, it will be reinitialized internally when going from PCI_D3hot to
4742 * PCI_D0. If that's the case and the device is not in a low-power state
4743 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4744 *
4745 * NOTE: This causes the caller to sleep for twice the device power transition
4746 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4747 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4748 * Moreover, only devices in D0 can be reset by this function.
4749 */
pci_pm_reset(struct pci_dev * dev,bool probe)4750 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4751 {
4752 u16 csr;
4753
4754 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4755 return -ENOTTY;
4756
4757 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4758 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4759 return -ENOTTY;
4760
4761 if (probe)
4762 return 0;
4763
4764 if (dev->current_state != PCI_D0)
4765 return -EINVAL;
4766
4767 csr &= ~PCI_PM_CTRL_STATE_MASK;
4768 csr |= PCI_D3hot;
4769 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4770 pci_dev_d3_sleep(dev);
4771
4772 csr &= ~PCI_PM_CTRL_STATE_MASK;
4773 csr |= PCI_D0;
4774 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4775 pci_dev_d3_sleep(dev);
4776
4777 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4778 }
4779
4780 /**
4781 * pcie_wait_for_link_delay - Wait until link is active or inactive
4782 * @pdev: Bridge device
4783 * @active: waiting for active or inactive?
4784 * @delay: Delay to wait after link has become active (in ms)
4785 *
4786 * Use this to wait till link becomes active or inactive.
4787 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4788 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4789 int delay)
4790 {
4791 int timeout = 1000;
4792 bool ret;
4793 u16 lnk_status;
4794
4795 /*
4796 * Some controllers might not implement link active reporting. In this
4797 * case, we wait for 1000 ms + any delay requested by the caller.
4798 */
4799 if (!pdev->link_active_reporting) {
4800 msleep(timeout + delay);
4801 return true;
4802 }
4803
4804 /*
4805 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4806 * after which we should expect an link active if the reset was
4807 * successful. If so, software must wait a minimum 100ms before sending
4808 * configuration requests to devices downstream this port.
4809 *
4810 * If the link fails to activate, either the device was physically
4811 * removed or the link is permanently failed.
4812 */
4813 if (active)
4814 msleep(20);
4815 for (;;) {
4816 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4817 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4818 if (ret == active)
4819 break;
4820 if (timeout <= 0)
4821 break;
4822 msleep(10);
4823 timeout -= 10;
4824 }
4825 if (active && ret)
4826 msleep(delay);
4827
4828 return ret == active;
4829 }
4830
4831 /**
4832 * pcie_wait_for_link - Wait until link is active or inactive
4833 * @pdev: Bridge device
4834 * @active: waiting for active or inactive?
4835 *
4836 * Use this to wait till link becomes active or inactive.
4837 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4838 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4839 {
4840 return pcie_wait_for_link_delay(pdev, active, 100);
4841 }
4842
4843 /*
4844 * Find maximum D3cold delay required by all the devices on the bus. The
4845 * spec says 100 ms, but firmware can lower it and we allow drivers to
4846 * increase it as well.
4847 *
4848 * Called with @pci_bus_sem locked for reading.
4849 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4850 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4851 {
4852 const struct pci_dev *pdev;
4853 int min_delay = 100;
4854 int max_delay = 0;
4855
4856 list_for_each_entry(pdev, &bus->devices, bus_list) {
4857 if (pdev->d3cold_delay < min_delay)
4858 min_delay = pdev->d3cold_delay;
4859 if (pdev->d3cold_delay > max_delay)
4860 max_delay = pdev->d3cold_delay;
4861 }
4862
4863 return max(min_delay, max_delay);
4864 }
4865
4866 /**
4867 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4868 * @dev: PCI bridge
4869 *
4870 * Handle necessary delays before access to the devices on the secondary
4871 * side of the bridge are permitted after D3cold to D0 transition.
4872 *
4873 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4874 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4875 * 4.3.2.
4876 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev)4877 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4878 {
4879 struct pci_dev *child;
4880 int delay;
4881
4882 if (pci_dev_is_disconnected(dev))
4883 return;
4884
4885 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4886 return;
4887
4888 down_read(&pci_bus_sem);
4889
4890 /*
4891 * We only deal with devices that are present currently on the bus.
4892 * For any hot-added devices the access delay is handled in pciehp
4893 * board_added(). In case of ACPI hotplug the firmware is expected
4894 * to configure the devices before OS is notified.
4895 */
4896 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4897 up_read(&pci_bus_sem);
4898 return;
4899 }
4900
4901 /* Take d3cold_delay requirements into account */
4902 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4903 if (!delay) {
4904 up_read(&pci_bus_sem);
4905 return;
4906 }
4907
4908 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4909 bus_list);
4910 up_read(&pci_bus_sem);
4911
4912 /*
4913 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4914 * accessing the device after reset (that is 1000 ms + 100 ms). In
4915 * practice this should not be needed because we don't do power
4916 * management for them (see pci_bridge_d3_possible()).
4917 */
4918 if (!pci_is_pcie(dev)) {
4919 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4920 msleep(1000 + delay);
4921 return;
4922 }
4923
4924 /*
4925 * For PCIe downstream and root ports that do not support speeds
4926 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4927 * speeds (gen3) we need to wait first for the data link layer to
4928 * become active.
4929 *
4930 * However, 100 ms is the minimum and the PCIe spec says the
4931 * software must allow at least 1s before it can determine that the
4932 * device that did not respond is a broken device. There is
4933 * evidence that 100 ms is not always enough, for example certain
4934 * Titan Ridge xHCI controller does not always respond to
4935 * configuration requests if we only wait for 100 ms (see
4936 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4937 *
4938 * Therefore we wait for 100 ms and check for the device presence.
4939 * If it is still not present give it an additional 100 ms.
4940 */
4941 if (!pcie_downstream_port(dev))
4942 return;
4943
4944 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4945 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4946 msleep(delay);
4947 } else {
4948 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4949 delay);
4950 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4951 /* Did not train, no need to wait any further */
4952 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4953 return;
4954 }
4955 }
4956
4957 if (!pci_device_is_present(child)) {
4958 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4959 msleep(delay);
4960 }
4961 }
4962
pci_reset_secondary_bus(struct pci_dev * dev)4963 void pci_reset_secondary_bus(struct pci_dev *dev)
4964 {
4965 u16 ctrl;
4966
4967 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4968 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4969 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4970
4971 /*
4972 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4973 * this to 2ms to ensure that we meet the minimum requirement.
4974 */
4975 msleep(2);
4976
4977 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4978 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4979
4980 /*
4981 * Trhfa for conventional PCI is 2^25 clock cycles.
4982 * Assuming a minimum 33MHz clock this results in a 1s
4983 * delay before we can consider subordinate devices to
4984 * be re-initialized. PCIe has some ways to shorten this,
4985 * but we don't make use of them yet.
4986 */
4987 ssleep(1);
4988 }
4989
pcibios_reset_secondary_bus(struct pci_dev * dev)4990 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4991 {
4992 pci_reset_secondary_bus(dev);
4993 }
4994
4995 /**
4996 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4997 * @dev: Bridge device
4998 *
4999 * Use the bridge control register to assert reset on the secondary bus.
5000 * Devices on the secondary bus are left in power-on state.
5001 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)5002 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5003 {
5004 pcibios_reset_secondary_bus(dev);
5005
5006 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5007 }
5008 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5009
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5010 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5011 {
5012 struct pci_dev *pdev;
5013
5014 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5015 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5016 return -ENOTTY;
5017
5018 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5019 if (pdev != dev)
5020 return -ENOTTY;
5021
5022 if (probe)
5023 return 0;
5024
5025 return pci_bridge_secondary_bus_reset(dev->bus->self);
5026 }
5027
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5028 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5029 {
5030 int rc = -ENOTTY;
5031
5032 if (!hotplug || !try_module_get(hotplug->owner))
5033 return rc;
5034
5035 if (hotplug->ops->reset_slot)
5036 rc = hotplug->ops->reset_slot(hotplug, probe);
5037
5038 module_put(hotplug->owner);
5039
5040 return rc;
5041 }
5042
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5043 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5044 {
5045 if (dev->multifunction || dev->subordinate || !dev->slot ||
5046 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5047 return -ENOTTY;
5048
5049 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5050 }
5051
pci_reset_bus_function(struct pci_dev * dev,bool probe)5052 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5053 {
5054 int rc;
5055
5056 rc = pci_dev_reset_slot_function(dev, probe);
5057 if (rc != -ENOTTY)
5058 return rc;
5059 return pci_parent_bus_reset(dev, probe);
5060 }
5061
pci_dev_lock(struct pci_dev * dev)5062 static void pci_dev_lock(struct pci_dev *dev)
5063 {
5064 pci_cfg_access_lock(dev);
5065 /* block PM suspend, driver probe, etc. */
5066 device_lock(&dev->dev);
5067 }
5068
5069 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5070 int pci_dev_trylock(struct pci_dev *dev)
5071 {
5072 if (pci_cfg_access_trylock(dev)) {
5073 if (device_trylock(&dev->dev))
5074 return 1;
5075 pci_cfg_access_unlock(dev);
5076 }
5077
5078 return 0;
5079 }
5080 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5081
pci_dev_unlock(struct pci_dev * dev)5082 void pci_dev_unlock(struct pci_dev *dev)
5083 {
5084 device_unlock(&dev->dev);
5085 pci_cfg_access_unlock(dev);
5086 }
5087 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5088
pci_dev_save_and_disable(struct pci_dev * dev)5089 static void pci_dev_save_and_disable(struct pci_dev *dev)
5090 {
5091 const struct pci_error_handlers *err_handler =
5092 dev->driver ? dev->driver->err_handler : NULL;
5093
5094 /*
5095 * dev->driver->err_handler->reset_prepare() is protected against
5096 * races with ->remove() by the device lock, which must be held by
5097 * the caller.
5098 */
5099 if (err_handler && err_handler->reset_prepare)
5100 err_handler->reset_prepare(dev);
5101
5102 /*
5103 * Wake-up device prior to save. PM registers default to D0 after
5104 * reset and a simple register restore doesn't reliably return
5105 * to a non-D0 state anyway.
5106 */
5107 pci_set_power_state(dev, PCI_D0);
5108
5109 pci_save_state(dev);
5110 /*
5111 * Disable the device by clearing the Command register, except for
5112 * INTx-disable which is set. This not only disables MMIO and I/O port
5113 * BARs, but also prevents the device from being Bus Master, preventing
5114 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5115 * compliant devices, INTx-disable prevents legacy interrupts.
5116 */
5117 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5118 }
5119
pci_dev_restore(struct pci_dev * dev)5120 static void pci_dev_restore(struct pci_dev *dev)
5121 {
5122 const struct pci_error_handlers *err_handler =
5123 dev->driver ? dev->driver->err_handler : NULL;
5124
5125 pci_restore_state(dev);
5126
5127 /*
5128 * dev->driver->err_handler->reset_done() is protected against
5129 * races with ->remove() by the device lock, which must be held by
5130 * the caller.
5131 */
5132 if (err_handler && err_handler->reset_done)
5133 err_handler->reset_done(dev);
5134 }
5135
5136 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5137 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5138 { },
5139 { pci_dev_specific_reset, .name = "device_specific" },
5140 { pci_dev_acpi_reset, .name = "acpi" },
5141 { pcie_reset_flr, .name = "flr" },
5142 { pci_af_flr, .name = "af_flr" },
5143 { pci_pm_reset, .name = "pm" },
5144 { pci_reset_bus_function, .name = "bus" },
5145 };
5146
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5147 static ssize_t reset_method_show(struct device *dev,
5148 struct device_attribute *attr, char *buf)
5149 {
5150 struct pci_dev *pdev = to_pci_dev(dev);
5151 ssize_t len = 0;
5152 int i, m;
5153
5154 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5155 m = pdev->reset_methods[i];
5156 if (!m)
5157 break;
5158
5159 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5160 pci_reset_fn_methods[m].name);
5161 }
5162
5163 if (len)
5164 len += sysfs_emit_at(buf, len, "\n");
5165
5166 return len;
5167 }
5168
reset_method_lookup(const char * name)5169 static int reset_method_lookup(const char *name)
5170 {
5171 int m;
5172
5173 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5174 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5175 return m;
5176 }
5177
5178 return 0; /* not found */
5179 }
5180
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5181 static ssize_t reset_method_store(struct device *dev,
5182 struct device_attribute *attr,
5183 const char *buf, size_t count)
5184 {
5185 struct pci_dev *pdev = to_pci_dev(dev);
5186 char *options, *name;
5187 int m, n;
5188 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5189
5190 if (sysfs_streq(buf, "")) {
5191 pdev->reset_methods[0] = 0;
5192 pci_warn(pdev, "All device reset methods disabled by user");
5193 return count;
5194 }
5195
5196 if (sysfs_streq(buf, "default")) {
5197 pci_init_reset_methods(pdev);
5198 return count;
5199 }
5200
5201 options = kstrndup(buf, count, GFP_KERNEL);
5202 if (!options)
5203 return -ENOMEM;
5204
5205 n = 0;
5206 while ((name = strsep(&options, " ")) != NULL) {
5207 if (sysfs_streq(name, ""))
5208 continue;
5209
5210 name = strim(name);
5211
5212 m = reset_method_lookup(name);
5213 if (!m) {
5214 pci_err(pdev, "Invalid reset method '%s'", name);
5215 goto error;
5216 }
5217
5218 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5219 pci_err(pdev, "Unsupported reset method '%s'", name);
5220 goto error;
5221 }
5222
5223 if (n == PCI_NUM_RESET_METHODS - 1) {
5224 pci_err(pdev, "Too many reset methods\n");
5225 goto error;
5226 }
5227
5228 reset_methods[n++] = m;
5229 }
5230
5231 reset_methods[n] = 0;
5232
5233 /* Warn if dev-specific supported but not highest priority */
5234 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5235 reset_methods[0] != 1)
5236 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5237 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5238 kfree(options);
5239 return count;
5240
5241 error:
5242 /* Leave previous methods unchanged */
5243 kfree(options);
5244 return -EINVAL;
5245 }
5246 static DEVICE_ATTR_RW(reset_method);
5247
5248 static struct attribute *pci_dev_reset_method_attrs[] = {
5249 &dev_attr_reset_method.attr,
5250 NULL,
5251 };
5252
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5253 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5254 struct attribute *a, int n)
5255 {
5256 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5257
5258 if (!pci_reset_supported(pdev))
5259 return 0;
5260
5261 return a->mode;
5262 }
5263
5264 const struct attribute_group pci_dev_reset_method_attr_group = {
5265 .attrs = pci_dev_reset_method_attrs,
5266 .is_visible = pci_dev_reset_method_attr_is_visible,
5267 };
5268
5269 /**
5270 * __pci_reset_function_locked - reset a PCI device function while holding
5271 * the @dev mutex lock.
5272 * @dev: PCI device to reset
5273 *
5274 * Some devices allow an individual function to be reset without affecting
5275 * other functions in the same device. The PCI device must be responsive
5276 * to PCI config space in order to use this function.
5277 *
5278 * The device function is presumed to be unused and the caller is holding
5279 * the device mutex lock when this function is called.
5280 *
5281 * Resetting the device will make the contents of PCI configuration space
5282 * random, so any caller of this must be prepared to reinitialise the
5283 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5284 * etc.
5285 *
5286 * Returns 0 if the device function was successfully reset or negative if the
5287 * device doesn't support resetting a single function.
5288 */
__pci_reset_function_locked(struct pci_dev * dev)5289 int __pci_reset_function_locked(struct pci_dev *dev)
5290 {
5291 int i, m, rc = -ENOTTY;
5292
5293 might_sleep();
5294
5295 /*
5296 * A reset method returns -ENOTTY if it doesn't support this device and
5297 * we should try the next method.
5298 *
5299 * If it returns 0 (success), we're finished. If it returns any other
5300 * error, we're also finished: this indicates that further reset
5301 * mechanisms might be broken on the device.
5302 */
5303 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5304 m = dev->reset_methods[i];
5305 if (!m)
5306 return -ENOTTY;
5307
5308 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5309 if (!rc)
5310 return 0;
5311 if (rc != -ENOTTY)
5312 return rc;
5313 }
5314
5315 return -ENOTTY;
5316 }
5317 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5318
5319 /**
5320 * pci_init_reset_methods - check whether device can be safely reset
5321 * and store supported reset mechanisms.
5322 * @dev: PCI device to check for reset mechanisms
5323 *
5324 * Some devices allow an individual function to be reset without affecting
5325 * other functions in the same device. The PCI device must be in D0-D3hot
5326 * state.
5327 *
5328 * Stores reset mechanisms supported by device in reset_methods byte array
5329 * which is a member of struct pci_dev.
5330 */
pci_init_reset_methods(struct pci_dev * dev)5331 void pci_init_reset_methods(struct pci_dev *dev)
5332 {
5333 int m, i, rc;
5334
5335 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5336
5337 might_sleep();
5338
5339 i = 0;
5340 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5341 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5342 if (!rc)
5343 dev->reset_methods[i++] = m;
5344 else if (rc != -ENOTTY)
5345 break;
5346 }
5347
5348 dev->reset_methods[i] = 0;
5349 }
5350
5351 /**
5352 * pci_reset_function - quiesce and reset a PCI device function
5353 * @dev: PCI device to reset
5354 *
5355 * Some devices allow an individual function to be reset without affecting
5356 * other functions in the same device. The PCI device must be responsive
5357 * to PCI config space in order to use this function.
5358 *
5359 * This function does not just reset the PCI portion of a device, but
5360 * clears all the state associated with the device. This function differs
5361 * from __pci_reset_function_locked() in that it saves and restores device state
5362 * over the reset and takes the PCI device lock.
5363 *
5364 * Returns 0 if the device function was successfully reset or negative if the
5365 * device doesn't support resetting a single function.
5366 */
pci_reset_function(struct pci_dev * dev)5367 int pci_reset_function(struct pci_dev *dev)
5368 {
5369 int rc;
5370
5371 if (!pci_reset_supported(dev))
5372 return -ENOTTY;
5373
5374 pci_dev_lock(dev);
5375 pci_dev_save_and_disable(dev);
5376
5377 rc = __pci_reset_function_locked(dev);
5378
5379 pci_dev_restore(dev);
5380 pci_dev_unlock(dev);
5381
5382 return rc;
5383 }
5384 EXPORT_SYMBOL_GPL(pci_reset_function);
5385
5386 /**
5387 * pci_reset_function_locked - quiesce and reset a PCI device function
5388 * @dev: PCI device to reset
5389 *
5390 * Some devices allow an individual function to be reset without affecting
5391 * other functions in the same device. The PCI device must be responsive
5392 * to PCI config space in order to use this function.
5393 *
5394 * This function does not just reset the PCI portion of a device, but
5395 * clears all the state associated with the device. This function differs
5396 * from __pci_reset_function_locked() in that it saves and restores device state
5397 * over the reset. It also differs from pci_reset_function() in that it
5398 * requires the PCI device lock to be held.
5399 *
5400 * Returns 0 if the device function was successfully reset or negative if the
5401 * device doesn't support resetting a single function.
5402 */
pci_reset_function_locked(struct pci_dev * dev)5403 int pci_reset_function_locked(struct pci_dev *dev)
5404 {
5405 int rc;
5406
5407 if (!pci_reset_supported(dev))
5408 return -ENOTTY;
5409
5410 pci_dev_save_and_disable(dev);
5411
5412 rc = __pci_reset_function_locked(dev);
5413
5414 pci_dev_restore(dev);
5415
5416 return rc;
5417 }
5418 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5419
5420 /**
5421 * pci_try_reset_function - quiesce and reset a PCI device function
5422 * @dev: PCI device to reset
5423 *
5424 * Same as above, except return -EAGAIN if unable to lock device.
5425 */
pci_try_reset_function(struct pci_dev * dev)5426 int pci_try_reset_function(struct pci_dev *dev)
5427 {
5428 int rc;
5429
5430 if (!pci_reset_supported(dev))
5431 return -ENOTTY;
5432
5433 if (!pci_dev_trylock(dev))
5434 return -EAGAIN;
5435
5436 pci_dev_save_and_disable(dev);
5437 rc = __pci_reset_function_locked(dev);
5438 pci_dev_restore(dev);
5439 pci_dev_unlock(dev);
5440
5441 return rc;
5442 }
5443 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5444
5445 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5446 static bool pci_bus_resetable(struct pci_bus *bus)
5447 {
5448 struct pci_dev *dev;
5449
5450
5451 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5452 return false;
5453
5454 list_for_each_entry(dev, &bus->devices, bus_list) {
5455 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5456 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5457 return false;
5458 }
5459
5460 return true;
5461 }
5462
5463 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5464 static void pci_bus_lock(struct pci_bus *bus)
5465 {
5466 struct pci_dev *dev;
5467
5468 list_for_each_entry(dev, &bus->devices, bus_list) {
5469 pci_dev_lock(dev);
5470 if (dev->subordinate)
5471 pci_bus_lock(dev->subordinate);
5472 }
5473 }
5474
5475 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5476 static void pci_bus_unlock(struct pci_bus *bus)
5477 {
5478 struct pci_dev *dev;
5479
5480 list_for_each_entry(dev, &bus->devices, bus_list) {
5481 if (dev->subordinate)
5482 pci_bus_unlock(dev->subordinate);
5483 pci_dev_unlock(dev);
5484 }
5485 }
5486
5487 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5488 static int pci_bus_trylock(struct pci_bus *bus)
5489 {
5490 struct pci_dev *dev;
5491
5492 list_for_each_entry(dev, &bus->devices, bus_list) {
5493 if (!pci_dev_trylock(dev))
5494 goto unlock;
5495 if (dev->subordinate) {
5496 if (!pci_bus_trylock(dev->subordinate)) {
5497 pci_dev_unlock(dev);
5498 goto unlock;
5499 }
5500 }
5501 }
5502 return 1;
5503
5504 unlock:
5505 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5506 if (dev->subordinate)
5507 pci_bus_unlock(dev->subordinate);
5508 pci_dev_unlock(dev);
5509 }
5510 return 0;
5511 }
5512
5513 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5514 static bool pci_slot_resetable(struct pci_slot *slot)
5515 {
5516 struct pci_dev *dev;
5517
5518 if (slot->bus->self &&
5519 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5520 return false;
5521
5522 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5523 if (!dev->slot || dev->slot != slot)
5524 continue;
5525 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5526 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5527 return false;
5528 }
5529
5530 return true;
5531 }
5532
5533 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5534 static void pci_slot_lock(struct pci_slot *slot)
5535 {
5536 struct pci_dev *dev;
5537
5538 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5539 if (!dev->slot || dev->slot != slot)
5540 continue;
5541 pci_dev_lock(dev);
5542 if (dev->subordinate)
5543 pci_bus_lock(dev->subordinate);
5544 }
5545 }
5546
5547 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5548 static void pci_slot_unlock(struct pci_slot *slot)
5549 {
5550 struct pci_dev *dev;
5551
5552 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5553 if (!dev->slot || dev->slot != slot)
5554 continue;
5555 if (dev->subordinate)
5556 pci_bus_unlock(dev->subordinate);
5557 pci_dev_unlock(dev);
5558 }
5559 }
5560
5561 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5562 static int pci_slot_trylock(struct pci_slot *slot)
5563 {
5564 struct pci_dev *dev;
5565
5566 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5567 if (!dev->slot || dev->slot != slot)
5568 continue;
5569 if (!pci_dev_trylock(dev))
5570 goto unlock;
5571 if (dev->subordinate) {
5572 if (!pci_bus_trylock(dev->subordinate)) {
5573 pci_dev_unlock(dev);
5574 goto unlock;
5575 }
5576 }
5577 }
5578 return 1;
5579
5580 unlock:
5581 list_for_each_entry_continue_reverse(dev,
5582 &slot->bus->devices, bus_list) {
5583 if (!dev->slot || dev->slot != slot)
5584 continue;
5585 if (dev->subordinate)
5586 pci_bus_unlock(dev->subordinate);
5587 pci_dev_unlock(dev);
5588 }
5589 return 0;
5590 }
5591
5592 /*
5593 * Save and disable devices from the top of the tree down while holding
5594 * the @dev mutex lock for the entire tree.
5595 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5596 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5597 {
5598 struct pci_dev *dev;
5599
5600 list_for_each_entry(dev, &bus->devices, bus_list) {
5601 pci_dev_save_and_disable(dev);
5602 if (dev->subordinate)
5603 pci_bus_save_and_disable_locked(dev->subordinate);
5604 }
5605 }
5606
5607 /*
5608 * Restore devices from top of the tree down while holding @dev mutex lock
5609 * for the entire tree. Parent bridges need to be restored before we can
5610 * get to subordinate devices.
5611 */
pci_bus_restore_locked(struct pci_bus * bus)5612 static void pci_bus_restore_locked(struct pci_bus *bus)
5613 {
5614 struct pci_dev *dev;
5615
5616 list_for_each_entry(dev, &bus->devices, bus_list) {
5617 pci_dev_restore(dev);
5618 if (dev->subordinate)
5619 pci_bus_restore_locked(dev->subordinate);
5620 }
5621 }
5622
5623 /*
5624 * Save and disable devices from the top of the tree down while holding
5625 * the @dev mutex lock for the entire tree.
5626 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5627 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5628 {
5629 struct pci_dev *dev;
5630
5631 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5632 if (!dev->slot || dev->slot != slot)
5633 continue;
5634 pci_dev_save_and_disable(dev);
5635 if (dev->subordinate)
5636 pci_bus_save_and_disable_locked(dev->subordinate);
5637 }
5638 }
5639
5640 /*
5641 * Restore devices from top of the tree down while holding @dev mutex lock
5642 * for the entire tree. Parent bridges need to be restored before we can
5643 * get to subordinate devices.
5644 */
pci_slot_restore_locked(struct pci_slot * slot)5645 static void pci_slot_restore_locked(struct pci_slot *slot)
5646 {
5647 struct pci_dev *dev;
5648
5649 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5650 if (!dev->slot || dev->slot != slot)
5651 continue;
5652 pci_dev_restore(dev);
5653 if (dev->subordinate)
5654 pci_bus_restore_locked(dev->subordinate);
5655 }
5656 }
5657
pci_slot_reset(struct pci_slot * slot,bool probe)5658 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5659 {
5660 int rc;
5661
5662 if (!slot || !pci_slot_resetable(slot))
5663 return -ENOTTY;
5664
5665 if (!probe)
5666 pci_slot_lock(slot);
5667
5668 might_sleep();
5669
5670 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5671
5672 if (!probe)
5673 pci_slot_unlock(slot);
5674
5675 return rc;
5676 }
5677
5678 /**
5679 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5680 * @slot: PCI slot to probe
5681 *
5682 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5683 */
pci_probe_reset_slot(struct pci_slot * slot)5684 int pci_probe_reset_slot(struct pci_slot *slot)
5685 {
5686 return pci_slot_reset(slot, PCI_RESET_PROBE);
5687 }
5688 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5689
5690 /**
5691 * __pci_reset_slot - Try to reset a PCI slot
5692 * @slot: PCI slot to reset
5693 *
5694 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5695 * independent of other slots. For instance, some slots may support slot power
5696 * control. In the case of a 1:1 bus to slot architecture, this function may
5697 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5698 * Generally a slot reset should be attempted before a bus reset. All of the
5699 * function of the slot and any subordinate buses behind the slot are reset
5700 * through this function. PCI config space of all devices in the slot and
5701 * behind the slot is saved before and restored after reset.
5702 *
5703 * Same as above except return -EAGAIN if the slot cannot be locked
5704 */
__pci_reset_slot(struct pci_slot * slot)5705 static int __pci_reset_slot(struct pci_slot *slot)
5706 {
5707 int rc;
5708
5709 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5710 if (rc)
5711 return rc;
5712
5713 if (pci_slot_trylock(slot)) {
5714 pci_slot_save_and_disable_locked(slot);
5715 might_sleep();
5716 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5717 pci_slot_restore_locked(slot);
5718 pci_slot_unlock(slot);
5719 } else
5720 rc = -EAGAIN;
5721
5722 return rc;
5723 }
5724
pci_bus_reset(struct pci_bus * bus,bool probe)5725 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5726 {
5727 int ret;
5728
5729 if (!bus->self || !pci_bus_resetable(bus))
5730 return -ENOTTY;
5731
5732 if (probe)
5733 return 0;
5734
5735 pci_bus_lock(bus);
5736
5737 might_sleep();
5738
5739 ret = pci_bridge_secondary_bus_reset(bus->self);
5740
5741 pci_bus_unlock(bus);
5742
5743 return ret;
5744 }
5745
5746 /**
5747 * pci_bus_error_reset - reset the bridge's subordinate bus
5748 * @bridge: The parent device that connects to the bus to reset
5749 *
5750 * This function will first try to reset the slots on this bus if the method is
5751 * available. If slot reset fails or is not available, this will fall back to a
5752 * secondary bus reset.
5753 */
pci_bus_error_reset(struct pci_dev * bridge)5754 int pci_bus_error_reset(struct pci_dev *bridge)
5755 {
5756 struct pci_bus *bus = bridge->subordinate;
5757 struct pci_slot *slot;
5758
5759 if (!bus)
5760 return -ENOTTY;
5761
5762 mutex_lock(&pci_slot_mutex);
5763 if (list_empty(&bus->slots))
5764 goto bus_reset;
5765
5766 list_for_each_entry(slot, &bus->slots, list)
5767 if (pci_probe_reset_slot(slot))
5768 goto bus_reset;
5769
5770 list_for_each_entry(slot, &bus->slots, list)
5771 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5772 goto bus_reset;
5773
5774 mutex_unlock(&pci_slot_mutex);
5775 return 0;
5776 bus_reset:
5777 mutex_unlock(&pci_slot_mutex);
5778 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5779 }
5780
5781 /**
5782 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5783 * @bus: PCI bus to probe
5784 *
5785 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5786 */
pci_probe_reset_bus(struct pci_bus * bus)5787 int pci_probe_reset_bus(struct pci_bus *bus)
5788 {
5789 return pci_bus_reset(bus, PCI_RESET_PROBE);
5790 }
5791 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5792
5793 /**
5794 * __pci_reset_bus - Try to reset a PCI bus
5795 * @bus: top level PCI bus to reset
5796 *
5797 * Same as above except return -EAGAIN if the bus cannot be locked
5798 */
__pci_reset_bus(struct pci_bus * bus)5799 static int __pci_reset_bus(struct pci_bus *bus)
5800 {
5801 int rc;
5802
5803 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5804 if (rc)
5805 return rc;
5806
5807 if (pci_bus_trylock(bus)) {
5808 pci_bus_save_and_disable_locked(bus);
5809 might_sleep();
5810 rc = pci_bridge_secondary_bus_reset(bus->self);
5811 pci_bus_restore_locked(bus);
5812 pci_bus_unlock(bus);
5813 } else
5814 rc = -EAGAIN;
5815
5816 return rc;
5817 }
5818
5819 /**
5820 * pci_reset_bus - Try to reset a PCI bus
5821 * @pdev: top level PCI device to reset via slot/bus
5822 *
5823 * Same as above except return -EAGAIN if the bus cannot be locked
5824 */
pci_reset_bus(struct pci_dev * pdev)5825 int pci_reset_bus(struct pci_dev *pdev)
5826 {
5827 return (!pci_probe_reset_slot(pdev->slot)) ?
5828 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5829 }
5830 EXPORT_SYMBOL_GPL(pci_reset_bus);
5831
5832 /**
5833 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5834 * @dev: PCI device to query
5835 *
5836 * Returns mmrbc: maximum designed memory read count in bytes or
5837 * appropriate error value.
5838 */
pcix_get_max_mmrbc(struct pci_dev * dev)5839 int pcix_get_max_mmrbc(struct pci_dev *dev)
5840 {
5841 int cap;
5842 u32 stat;
5843
5844 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5845 if (!cap)
5846 return -EINVAL;
5847
5848 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5849 return -EINVAL;
5850
5851 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5852 }
5853 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5854
5855 /**
5856 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5857 * @dev: PCI device to query
5858 *
5859 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5860 * value.
5861 */
pcix_get_mmrbc(struct pci_dev * dev)5862 int pcix_get_mmrbc(struct pci_dev *dev)
5863 {
5864 int cap;
5865 u16 cmd;
5866
5867 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5868 if (!cap)
5869 return -EINVAL;
5870
5871 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5872 return -EINVAL;
5873
5874 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5875 }
5876 EXPORT_SYMBOL(pcix_get_mmrbc);
5877
5878 /**
5879 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5880 * @dev: PCI device to query
5881 * @mmrbc: maximum memory read count in bytes
5882 * valid values are 512, 1024, 2048, 4096
5883 *
5884 * If possible sets maximum memory read byte count, some bridges have errata
5885 * that prevent this.
5886 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5887 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5888 {
5889 int cap;
5890 u32 stat, v, o;
5891 u16 cmd;
5892
5893 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5894 return -EINVAL;
5895
5896 v = ffs(mmrbc) - 10;
5897
5898 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5899 if (!cap)
5900 return -EINVAL;
5901
5902 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5903 return -EINVAL;
5904
5905 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5906 return -E2BIG;
5907
5908 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5909 return -EINVAL;
5910
5911 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5912 if (o != v) {
5913 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5914 return -EIO;
5915
5916 cmd &= ~PCI_X_CMD_MAX_READ;
5917 cmd |= v << 2;
5918 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5919 return -EIO;
5920 }
5921 return 0;
5922 }
5923 EXPORT_SYMBOL(pcix_set_mmrbc);
5924
5925 /**
5926 * pcie_get_readrq - get PCI Express read request size
5927 * @dev: PCI device to query
5928 *
5929 * Returns maximum memory read request in bytes or appropriate error value.
5930 */
pcie_get_readrq(struct pci_dev * dev)5931 int pcie_get_readrq(struct pci_dev *dev)
5932 {
5933 u16 ctl;
5934
5935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5936
5937 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5938 }
5939 EXPORT_SYMBOL(pcie_get_readrq);
5940
5941 /**
5942 * pcie_set_readrq - set PCI Express maximum memory read request
5943 * @dev: PCI device to query
5944 * @rq: maximum memory read count in bytes
5945 * valid values are 128, 256, 512, 1024, 2048, 4096
5946 *
5947 * If possible sets maximum memory read request in bytes
5948 */
pcie_set_readrq(struct pci_dev * dev,int rq)5949 int pcie_set_readrq(struct pci_dev *dev, int rq)
5950 {
5951 u16 v;
5952 int ret;
5953
5954 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5955 return -EINVAL;
5956
5957 /*
5958 * If using the "performance" PCIe config, we clamp the read rq
5959 * size to the max packet size to keep the host bridge from
5960 * generating requests larger than we can cope with.
5961 */
5962 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5963 int mps = pcie_get_mps(dev);
5964
5965 if (mps < rq)
5966 rq = mps;
5967 }
5968
5969 v = (ffs(rq) - 8) << 12;
5970
5971 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5972 PCI_EXP_DEVCTL_READRQ, v);
5973
5974 return pcibios_err_to_errno(ret);
5975 }
5976 EXPORT_SYMBOL(pcie_set_readrq);
5977
5978 /**
5979 * pcie_get_mps - get PCI Express maximum payload size
5980 * @dev: PCI device to query
5981 *
5982 * Returns maximum payload size in bytes
5983 */
pcie_get_mps(struct pci_dev * dev)5984 int pcie_get_mps(struct pci_dev *dev)
5985 {
5986 u16 ctl;
5987
5988 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5989
5990 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5991 }
5992 EXPORT_SYMBOL(pcie_get_mps);
5993
5994 /**
5995 * pcie_set_mps - set PCI Express maximum payload size
5996 * @dev: PCI device to query
5997 * @mps: maximum payload size in bytes
5998 * valid values are 128, 256, 512, 1024, 2048, 4096
5999 *
6000 * If possible sets maximum payload size
6001 */
pcie_set_mps(struct pci_dev * dev,int mps)6002 int pcie_set_mps(struct pci_dev *dev, int mps)
6003 {
6004 u16 v;
6005 int ret;
6006
6007 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6008 return -EINVAL;
6009
6010 v = ffs(mps) - 8;
6011 if (v > dev->pcie_mpss)
6012 return -EINVAL;
6013 v <<= 5;
6014
6015 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6016 PCI_EXP_DEVCTL_PAYLOAD, v);
6017
6018 return pcibios_err_to_errno(ret);
6019 }
6020 EXPORT_SYMBOL(pcie_set_mps);
6021
6022 /**
6023 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6024 * device and its bandwidth limitation
6025 * @dev: PCI device to query
6026 * @limiting_dev: storage for device causing the bandwidth limitation
6027 * @speed: storage for speed of limiting device
6028 * @width: storage for width of limiting device
6029 *
6030 * Walk up the PCI device chain and find the point where the minimum
6031 * bandwidth is available. Return the bandwidth available there and (if
6032 * limiting_dev, speed, and width pointers are supplied) information about
6033 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6034 * raw bandwidth.
6035 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6036 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6037 enum pci_bus_speed *speed,
6038 enum pcie_link_width *width)
6039 {
6040 u16 lnksta;
6041 enum pci_bus_speed next_speed;
6042 enum pcie_link_width next_width;
6043 u32 bw, next_bw;
6044
6045 if (speed)
6046 *speed = PCI_SPEED_UNKNOWN;
6047 if (width)
6048 *width = PCIE_LNK_WIDTH_UNKNOWN;
6049
6050 bw = 0;
6051
6052 while (dev) {
6053 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6054
6055 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6056 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6057 PCI_EXP_LNKSTA_NLW_SHIFT;
6058
6059 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6060
6061 /* Check if current device limits the total bandwidth */
6062 if (!bw || next_bw <= bw) {
6063 bw = next_bw;
6064
6065 if (limiting_dev)
6066 *limiting_dev = dev;
6067 if (speed)
6068 *speed = next_speed;
6069 if (width)
6070 *width = next_width;
6071 }
6072
6073 dev = pci_upstream_bridge(dev);
6074 }
6075
6076 return bw;
6077 }
6078 EXPORT_SYMBOL(pcie_bandwidth_available);
6079
6080 /**
6081 * pcie_get_speed_cap - query for the PCI device's link speed capability
6082 * @dev: PCI device to query
6083 *
6084 * Query the PCI device speed capability. Return the maximum link speed
6085 * supported by the device.
6086 */
pcie_get_speed_cap(struct pci_dev * dev)6087 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6088 {
6089 u32 lnkcap2, lnkcap;
6090
6091 /*
6092 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6093 * implementation note there recommends using the Supported Link
6094 * Speeds Vector in Link Capabilities 2 when supported.
6095 *
6096 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6097 * should use the Supported Link Speeds field in Link Capabilities,
6098 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6099 */
6100 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6101
6102 /* PCIe r3.0-compliant */
6103 if (lnkcap2)
6104 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6105
6106 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6107 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6108 return PCIE_SPEED_5_0GT;
6109 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6110 return PCIE_SPEED_2_5GT;
6111
6112 return PCI_SPEED_UNKNOWN;
6113 }
6114 EXPORT_SYMBOL(pcie_get_speed_cap);
6115
6116 /**
6117 * pcie_get_width_cap - query for the PCI device's link width capability
6118 * @dev: PCI device to query
6119 *
6120 * Query the PCI device width capability. Return the maximum link width
6121 * supported by the device.
6122 */
pcie_get_width_cap(struct pci_dev * dev)6123 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6124 {
6125 u32 lnkcap;
6126
6127 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6128 if (lnkcap)
6129 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6130
6131 return PCIE_LNK_WIDTH_UNKNOWN;
6132 }
6133 EXPORT_SYMBOL(pcie_get_width_cap);
6134
6135 /**
6136 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6137 * @dev: PCI device
6138 * @speed: storage for link speed
6139 * @width: storage for link width
6140 *
6141 * Calculate a PCI device's link bandwidth by querying for its link speed
6142 * and width, multiplying them, and applying encoding overhead. The result
6143 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6144 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6145 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6146 enum pcie_link_width *width)
6147 {
6148 *speed = pcie_get_speed_cap(dev);
6149 *width = pcie_get_width_cap(dev);
6150
6151 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6152 return 0;
6153
6154 return *width * PCIE_SPEED2MBS_ENC(*speed);
6155 }
6156
6157 /**
6158 * __pcie_print_link_status - Report the PCI device's link speed and width
6159 * @dev: PCI device to query
6160 * @verbose: Print info even when enough bandwidth is available
6161 *
6162 * If the available bandwidth at the device is less than the device is
6163 * capable of, report the device's maximum possible bandwidth and the
6164 * upstream link that limits its performance. If @verbose, always print
6165 * the available bandwidth, even if the device isn't constrained.
6166 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6167 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6168 {
6169 enum pcie_link_width width, width_cap;
6170 enum pci_bus_speed speed, speed_cap;
6171 struct pci_dev *limiting_dev = NULL;
6172 u32 bw_avail, bw_cap;
6173
6174 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6175 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6176
6177 if (bw_avail >= bw_cap && verbose)
6178 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6179 bw_cap / 1000, bw_cap % 1000,
6180 pci_speed_string(speed_cap), width_cap);
6181 else if (bw_avail < bw_cap)
6182 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6183 bw_avail / 1000, bw_avail % 1000,
6184 pci_speed_string(speed), width,
6185 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6186 bw_cap / 1000, bw_cap % 1000,
6187 pci_speed_string(speed_cap), width_cap);
6188 }
6189
6190 /**
6191 * pcie_print_link_status - Report the PCI device's link speed and width
6192 * @dev: PCI device to query
6193 *
6194 * Report the available bandwidth at the device.
6195 */
pcie_print_link_status(struct pci_dev * dev)6196 void pcie_print_link_status(struct pci_dev *dev)
6197 {
6198 __pcie_print_link_status(dev, true);
6199 }
6200 EXPORT_SYMBOL(pcie_print_link_status);
6201
6202 /**
6203 * pci_select_bars - Make BAR mask from the type of resource
6204 * @dev: the PCI device for which BAR mask is made
6205 * @flags: resource type mask to be selected
6206 *
6207 * This helper routine makes bar mask from the type of resource.
6208 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6209 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6210 {
6211 int i, bars = 0;
6212 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6213 if (pci_resource_flags(dev, i) & flags)
6214 bars |= (1 << i);
6215 return bars;
6216 }
6217 EXPORT_SYMBOL(pci_select_bars);
6218
6219 /* Some architectures require additional programming to enable VGA */
6220 static arch_set_vga_state_t arch_set_vga_state;
6221
pci_register_set_vga_state(arch_set_vga_state_t func)6222 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6223 {
6224 arch_set_vga_state = func; /* NULL disables */
6225 }
6226
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6227 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6228 unsigned int command_bits, u32 flags)
6229 {
6230 if (arch_set_vga_state)
6231 return arch_set_vga_state(dev, decode, command_bits,
6232 flags);
6233 return 0;
6234 }
6235
6236 /**
6237 * pci_set_vga_state - set VGA decode state on device and parents if requested
6238 * @dev: the PCI device
6239 * @decode: true = enable decoding, false = disable decoding
6240 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6241 * @flags: traverse ancestors and change bridges
6242 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6243 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6244 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6245 unsigned int command_bits, u32 flags)
6246 {
6247 struct pci_bus *bus;
6248 struct pci_dev *bridge;
6249 u16 cmd;
6250 int rc;
6251
6252 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6253
6254 /* ARCH specific VGA enables */
6255 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6256 if (rc)
6257 return rc;
6258
6259 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6260 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6261 if (decode)
6262 cmd |= command_bits;
6263 else
6264 cmd &= ~command_bits;
6265 pci_write_config_word(dev, PCI_COMMAND, cmd);
6266 }
6267
6268 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6269 return 0;
6270
6271 bus = dev->bus;
6272 while (bus) {
6273 bridge = bus->self;
6274 if (bridge) {
6275 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6276 &cmd);
6277 if (decode)
6278 cmd |= PCI_BRIDGE_CTL_VGA;
6279 else
6280 cmd &= ~PCI_BRIDGE_CTL_VGA;
6281 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6282 cmd);
6283 }
6284 bus = bus->parent;
6285 }
6286 return 0;
6287 }
6288
6289 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6290 bool pci_pr3_present(struct pci_dev *pdev)
6291 {
6292 struct acpi_device *adev;
6293
6294 if (acpi_disabled)
6295 return false;
6296
6297 adev = ACPI_COMPANION(&pdev->dev);
6298 if (!adev)
6299 return false;
6300
6301 return adev->power.flags.power_resources &&
6302 acpi_has_method(adev->handle, "_PR3");
6303 }
6304 EXPORT_SYMBOL_GPL(pci_pr3_present);
6305 #endif
6306
6307 /**
6308 * pci_add_dma_alias - Add a DMA devfn alias for a device
6309 * @dev: the PCI device for which alias is added
6310 * @devfn_from: alias slot and function
6311 * @nr_devfns: number of subsequent devfns to alias
6312 *
6313 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6314 * which is used to program permissible bus-devfn source addresses for DMA
6315 * requests in an IOMMU. These aliases factor into IOMMU group creation
6316 * and are useful for devices generating DMA requests beyond or different
6317 * from their logical bus-devfn. Examples include device quirks where the
6318 * device simply uses the wrong devfn, as well as non-transparent bridges
6319 * where the alias may be a proxy for devices in another domain.
6320 *
6321 * IOMMU group creation is performed during device discovery or addition,
6322 * prior to any potential DMA mapping and therefore prior to driver probing
6323 * (especially for userspace assigned devices where IOMMU group definition
6324 * cannot be left as a userspace activity). DMA aliases should therefore
6325 * be configured via quirks, such as the PCI fixup header quirk.
6326 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6327 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6328 {
6329 int devfn_to;
6330
6331 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6332 devfn_to = devfn_from + nr_devfns - 1;
6333
6334 if (!dev->dma_alias_mask)
6335 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6336 if (!dev->dma_alias_mask) {
6337 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6338 return;
6339 }
6340
6341 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6342
6343 if (nr_devfns == 1)
6344 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6345 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6346 else if (nr_devfns > 1)
6347 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6348 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6349 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6350 }
6351
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6352 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6353 {
6354 return (dev1->dma_alias_mask &&
6355 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6356 (dev2->dma_alias_mask &&
6357 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6358 pci_real_dma_dev(dev1) == dev2 ||
6359 pci_real_dma_dev(dev2) == dev1;
6360 }
6361
pci_device_is_present(struct pci_dev * pdev)6362 bool pci_device_is_present(struct pci_dev *pdev)
6363 {
6364 u32 v;
6365
6366 if (pci_dev_is_disconnected(pdev))
6367 return false;
6368 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6369 }
6370 EXPORT_SYMBOL_GPL(pci_device_is_present);
6371
pci_ignore_hotplug(struct pci_dev * dev)6372 void pci_ignore_hotplug(struct pci_dev *dev)
6373 {
6374 struct pci_dev *bridge = dev->bus->self;
6375
6376 dev->ignore_hotplug = 1;
6377 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6378 if (bridge)
6379 bridge->ignore_hotplug = 1;
6380 }
6381 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6382
6383 /**
6384 * pci_real_dma_dev - Get PCI DMA device for PCI device
6385 * @dev: the PCI device that may have a PCI DMA alias
6386 *
6387 * Permits the platform to provide architecture-specific functionality to
6388 * devices needing to alias DMA to another PCI device on another PCI bus. If
6389 * the PCI device is on the same bus, it is recommended to use
6390 * pci_add_dma_alias(). This is the default implementation. Architecture
6391 * implementations can override this.
6392 */
pci_real_dma_dev(struct pci_dev * dev)6393 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6394 {
6395 return dev;
6396 }
6397
pcibios_default_alignment(void)6398 resource_size_t __weak pcibios_default_alignment(void)
6399 {
6400 return 0;
6401 }
6402
6403 /*
6404 * Arches that don't want to expose struct resource to userland as-is in
6405 * sysfs and /proc can implement their own pci_resource_to_user().
6406 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6407 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6408 const struct resource *rsrc,
6409 resource_size_t *start, resource_size_t *end)
6410 {
6411 *start = rsrc->start;
6412 *end = rsrc->end;
6413 }
6414
6415 static char *resource_alignment_param;
6416 static DEFINE_SPINLOCK(resource_alignment_lock);
6417
6418 /**
6419 * pci_specified_resource_alignment - get resource alignment specified by user.
6420 * @dev: the PCI device to get
6421 * @resize: whether or not to change resources' size when reassigning alignment
6422 *
6423 * RETURNS: Resource alignment if it is specified.
6424 * Zero if it is not specified.
6425 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6426 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6427 bool *resize)
6428 {
6429 int align_order, count;
6430 resource_size_t align = pcibios_default_alignment();
6431 const char *p;
6432 int ret;
6433
6434 spin_lock(&resource_alignment_lock);
6435 p = resource_alignment_param;
6436 if (!p || !*p)
6437 goto out;
6438 if (pci_has_flag(PCI_PROBE_ONLY)) {
6439 align = 0;
6440 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6441 goto out;
6442 }
6443
6444 while (*p) {
6445 count = 0;
6446 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6447 p[count] == '@') {
6448 p += count + 1;
6449 if (align_order > 63) {
6450 pr_err("PCI: Invalid requested alignment (order %d)\n",
6451 align_order);
6452 align_order = PAGE_SHIFT;
6453 }
6454 } else {
6455 align_order = PAGE_SHIFT;
6456 }
6457
6458 ret = pci_dev_str_match(dev, p, &p);
6459 if (ret == 1) {
6460 *resize = true;
6461 align = 1ULL << align_order;
6462 break;
6463 } else if (ret < 0) {
6464 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6465 p);
6466 break;
6467 }
6468
6469 if (*p != ';' && *p != ',') {
6470 /* End of param or invalid format */
6471 break;
6472 }
6473 p++;
6474 }
6475 out:
6476 spin_unlock(&resource_alignment_lock);
6477 return align;
6478 }
6479
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6480 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6481 resource_size_t align, bool resize)
6482 {
6483 struct resource *r = &dev->resource[bar];
6484 resource_size_t size;
6485
6486 if (!(r->flags & IORESOURCE_MEM))
6487 return;
6488
6489 if (r->flags & IORESOURCE_PCI_FIXED) {
6490 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6491 bar, r, (unsigned long long)align);
6492 return;
6493 }
6494
6495 size = resource_size(r);
6496 if (size >= align)
6497 return;
6498
6499 /*
6500 * Increase the alignment of the resource. There are two ways we
6501 * can do this:
6502 *
6503 * 1) Increase the size of the resource. BARs are aligned on their
6504 * size, so when we reallocate space for this resource, we'll
6505 * allocate it with the larger alignment. This also prevents
6506 * assignment of any other BARs inside the alignment region, so
6507 * if we're requesting page alignment, this means no other BARs
6508 * will share the page.
6509 *
6510 * The disadvantage is that this makes the resource larger than
6511 * the hardware BAR, which may break drivers that compute things
6512 * based on the resource size, e.g., to find registers at a
6513 * fixed offset before the end of the BAR.
6514 *
6515 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6516 * set r->start to the desired alignment. By itself this
6517 * doesn't prevent other BARs being put inside the alignment
6518 * region, but if we realign *every* resource of every device in
6519 * the system, none of them will share an alignment region.
6520 *
6521 * When the user has requested alignment for only some devices via
6522 * the "pci=resource_alignment" argument, "resize" is true and we
6523 * use the first method. Otherwise we assume we're aligning all
6524 * devices and we use the second.
6525 */
6526
6527 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6528 bar, r, (unsigned long long)align);
6529
6530 if (resize) {
6531 r->start = 0;
6532 r->end = align - 1;
6533 } else {
6534 r->flags &= ~IORESOURCE_SIZEALIGN;
6535 r->flags |= IORESOURCE_STARTALIGN;
6536 r->start = align;
6537 r->end = r->start + size - 1;
6538 }
6539 r->flags |= IORESOURCE_UNSET;
6540 }
6541
6542 /*
6543 * This function disables memory decoding and releases memory resources
6544 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6545 * It also rounds up size to specified alignment.
6546 * Later on, the kernel will assign page-aligned memory resource back
6547 * to the device.
6548 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6549 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6550 {
6551 int i;
6552 struct resource *r;
6553 resource_size_t align;
6554 u16 command;
6555 bool resize = false;
6556
6557 /*
6558 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6559 * 3.4.1.11. Their resources are allocated from the space
6560 * described by the VF BARx register in the PF's SR-IOV capability.
6561 * We can't influence their alignment here.
6562 */
6563 if (dev->is_virtfn)
6564 return;
6565
6566 /* check if specified PCI is target device to reassign */
6567 align = pci_specified_resource_alignment(dev, &resize);
6568 if (!align)
6569 return;
6570
6571 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6572 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6573 pci_warn(dev, "Can't reassign resources to host bridge\n");
6574 return;
6575 }
6576
6577 pci_read_config_word(dev, PCI_COMMAND, &command);
6578 command &= ~PCI_COMMAND_MEMORY;
6579 pci_write_config_word(dev, PCI_COMMAND, command);
6580
6581 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6582 pci_request_resource_alignment(dev, i, align, resize);
6583
6584 /*
6585 * Need to disable bridge's resource window,
6586 * to enable the kernel to reassign new resource
6587 * window later on.
6588 */
6589 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6590 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6591 r = &dev->resource[i];
6592 if (!(r->flags & IORESOURCE_MEM))
6593 continue;
6594 r->flags |= IORESOURCE_UNSET;
6595 r->end = resource_size(r) - 1;
6596 r->start = 0;
6597 }
6598 pci_disable_bridge_window(dev);
6599 }
6600 }
6601
resource_alignment_show(struct bus_type * bus,char * buf)6602 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6603 {
6604 size_t count = 0;
6605
6606 spin_lock(&resource_alignment_lock);
6607 if (resource_alignment_param)
6608 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6609 spin_unlock(&resource_alignment_lock);
6610
6611 return count;
6612 }
6613
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6614 static ssize_t resource_alignment_store(struct bus_type *bus,
6615 const char *buf, size_t count)
6616 {
6617 char *param, *old, *end;
6618
6619 if (count >= (PAGE_SIZE - 1))
6620 return -EINVAL;
6621
6622 param = kstrndup(buf, count, GFP_KERNEL);
6623 if (!param)
6624 return -ENOMEM;
6625
6626 end = strchr(param, '\n');
6627 if (end)
6628 *end = '\0';
6629
6630 spin_lock(&resource_alignment_lock);
6631 old = resource_alignment_param;
6632 if (strlen(param)) {
6633 resource_alignment_param = param;
6634 } else {
6635 kfree(param);
6636 resource_alignment_param = NULL;
6637 }
6638 spin_unlock(&resource_alignment_lock);
6639
6640 kfree(old);
6641
6642 return count;
6643 }
6644
6645 static BUS_ATTR_RW(resource_alignment);
6646
pci_resource_alignment_sysfs_init(void)6647 static int __init pci_resource_alignment_sysfs_init(void)
6648 {
6649 return bus_create_file(&pci_bus_type,
6650 &bus_attr_resource_alignment);
6651 }
6652 late_initcall(pci_resource_alignment_sysfs_init);
6653
pci_no_domains(void)6654 static void pci_no_domains(void)
6655 {
6656 #ifdef CONFIG_PCI_DOMAINS
6657 pci_domains_supported = 0;
6658 #endif
6659 }
6660
6661 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6662 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6663
pci_get_new_domain_nr(void)6664 static int pci_get_new_domain_nr(void)
6665 {
6666 return atomic_inc_return(&__domain_nr);
6667 }
6668
of_pci_bus_find_domain_nr(struct device * parent)6669 static int of_pci_bus_find_domain_nr(struct device *parent)
6670 {
6671 static int use_dt_domains = -1;
6672 int domain = -1;
6673
6674 if (parent)
6675 domain = of_get_pci_domain_nr(parent->of_node);
6676
6677 /*
6678 * Check DT domain and use_dt_domains values.
6679 *
6680 * If DT domain property is valid (domain >= 0) and
6681 * use_dt_domains != 0, the DT assignment is valid since this means
6682 * we have not previously allocated a domain number by using
6683 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6684 * 1, to indicate that we have just assigned a domain number from
6685 * DT.
6686 *
6687 * If DT domain property value is not valid (ie domain < 0), and we
6688 * have not previously assigned a domain number from DT
6689 * (use_dt_domains != 1) we should assign a domain number by
6690 * using the:
6691 *
6692 * pci_get_new_domain_nr()
6693 *
6694 * API and update the use_dt_domains value to keep track of method we
6695 * are using to assign domain numbers (use_dt_domains = 0).
6696 *
6697 * All other combinations imply we have a platform that is trying
6698 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6699 * which is a recipe for domain mishandling and it is prevented by
6700 * invalidating the domain value (domain = -1) and printing a
6701 * corresponding error.
6702 */
6703 if (domain >= 0 && use_dt_domains) {
6704 use_dt_domains = 1;
6705 } else if (domain < 0 && use_dt_domains != 1) {
6706 use_dt_domains = 0;
6707 domain = pci_get_new_domain_nr();
6708 } else {
6709 if (parent)
6710 pr_err("Node %pOF has ", parent->of_node);
6711 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6712 domain = -1;
6713 }
6714
6715 return domain;
6716 }
6717
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6718 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6719 {
6720 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6721 acpi_pci_bus_find_domain_nr(bus);
6722 }
6723 #endif
6724
6725 /**
6726 * pci_ext_cfg_avail - can we access extended PCI config space?
6727 *
6728 * Returns 1 if we can access PCI extended config space (offsets
6729 * greater than 0xff). This is the default implementation. Architecture
6730 * implementations can override this.
6731 */
pci_ext_cfg_avail(void)6732 int __weak pci_ext_cfg_avail(void)
6733 {
6734 return 1;
6735 }
6736
pci_fixup_cardbus(struct pci_bus * bus)6737 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6738 {
6739 }
6740 EXPORT_SYMBOL(pci_fixup_cardbus);
6741
pci_setup(char * str)6742 static int __init pci_setup(char *str)
6743 {
6744 while (str) {
6745 char *k = strchr(str, ',');
6746 if (k)
6747 *k++ = 0;
6748 if (*str && (str = pcibios_setup(str)) && *str) {
6749 if (!strcmp(str, "nomsi")) {
6750 pci_no_msi();
6751 } else if (!strncmp(str, "noats", 5)) {
6752 pr_info("PCIe: ATS is disabled\n");
6753 pcie_ats_disabled = true;
6754 } else if (!strcmp(str, "noaer")) {
6755 pci_no_aer();
6756 } else if (!strcmp(str, "earlydump")) {
6757 pci_early_dump = true;
6758 } else if (!strncmp(str, "realloc=", 8)) {
6759 pci_realloc_get_opt(str + 8);
6760 } else if (!strncmp(str, "realloc", 7)) {
6761 pci_realloc_get_opt("on");
6762 } else if (!strcmp(str, "nodomains")) {
6763 pci_no_domains();
6764 } else if (!strncmp(str, "noari", 5)) {
6765 pcie_ari_disabled = true;
6766 } else if (!strncmp(str, "cbiosize=", 9)) {
6767 pci_cardbus_io_size = memparse(str + 9, &str);
6768 } else if (!strncmp(str, "cbmemsize=", 10)) {
6769 pci_cardbus_mem_size = memparse(str + 10, &str);
6770 } else if (!strncmp(str, "resource_alignment=", 19)) {
6771 resource_alignment_param = str + 19;
6772 } else if (!strncmp(str, "ecrc=", 5)) {
6773 pcie_ecrc_get_policy(str + 5);
6774 } else if (!strncmp(str, "hpiosize=", 9)) {
6775 pci_hotplug_io_size = memparse(str + 9, &str);
6776 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6777 pci_hotplug_mmio_size = memparse(str + 11, &str);
6778 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6779 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6780 } else if (!strncmp(str, "hpmemsize=", 10)) {
6781 pci_hotplug_mmio_size = memparse(str + 10, &str);
6782 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6783 } else if (!strncmp(str, "hpbussize=", 10)) {
6784 pci_hotplug_bus_size =
6785 simple_strtoul(str + 10, &str, 0);
6786 if (pci_hotplug_bus_size > 0xff)
6787 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6788 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6789 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6790 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6791 pcie_bus_config = PCIE_BUS_SAFE;
6792 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6793 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6794 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6795 pcie_bus_config = PCIE_BUS_PEER2PEER;
6796 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6797 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6798 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6799 disable_acs_redir_param = str + 18;
6800 } else {
6801 pr_err("PCI: Unknown option `%s'\n", str);
6802 }
6803 }
6804 str = k;
6805 }
6806 return 0;
6807 }
6808 early_param("pci", pci_setup);
6809
6810 /*
6811 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6812 * in pci_setup(), above, to point to data in the __initdata section which
6813 * will be freed after the init sequence is complete. We can't allocate memory
6814 * in pci_setup() because some architectures do not have any memory allocation
6815 * service available during an early_param() call. So we allocate memory and
6816 * copy the variable here before the init section is freed.
6817 *
6818 */
pci_realloc_setup_params(void)6819 static int __init pci_realloc_setup_params(void)
6820 {
6821 resource_alignment_param = kstrdup(resource_alignment_param,
6822 GFP_KERNEL);
6823 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6824
6825 return 0;
6826 }
6827 pure_initcall(pci_realloc_setup_params);
6828