1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46 struct mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evaluates to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110 /* Evaluates to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
118 */
119 #define NUM_RETRIES 500ULL
120
121 #define define_one_cppc_ro(_name) \
122 static struct kobj_attribute _name = \
123 __ATTR(_name, 0444, show_##_name, NULL)
124
125 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
126
127 #define show_cppc_data(access_fn, struct_name, member_name) \
128 static ssize_t show_##member_name(struct kobject *kobj, \
129 struct kobj_attribute *attr, char *buf) \
130 { \
131 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
132 struct struct_name st_name = {0}; \
133 int ret; \
134 \
135 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
136 if (ret) \
137 return ret; \
138 \
139 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
140 (u64)st_name.member_name); \
141 } \
142 define_one_cppc_ro(member_name)
143
144 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
150
151 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
152 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
153
show_feedback_ctrs(struct kobject * kobj,struct kobj_attribute * attr,char * buf)154 static ssize_t show_feedback_ctrs(struct kobject *kobj,
155 struct kobj_attribute *attr, char *buf)
156 {
157 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
158 struct cppc_perf_fb_ctrs fb_ctrs = {0};
159 int ret;
160
161 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
162 if (ret)
163 return ret;
164
165 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
166 fb_ctrs.reference, fb_ctrs.delivered);
167 }
168 define_one_cppc_ro(feedback_ctrs);
169
170 static struct attribute *cppc_attrs[] = {
171 &feedback_ctrs.attr,
172 &reference_perf.attr,
173 &wraparound_time.attr,
174 &highest_perf.attr,
175 &lowest_perf.attr,
176 &lowest_nonlinear_perf.attr,
177 &nominal_perf.attr,
178 &nominal_freq.attr,
179 &lowest_freq.attr,
180 NULL
181 };
182
183 static struct kobj_type cppc_ktype = {
184 .sysfs_ops = &kobj_sysfs_ops,
185 .default_attrs = cppc_attrs,
186 };
187
check_pcc_chan(int pcc_ss_id,bool chk_err_bit)188 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
189 {
190 int ret, status;
191 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
192 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
193 pcc_ss_data->pcc_comm_addr;
194
195 if (!pcc_ss_data->platform_owns_pcc)
196 return 0;
197
198 /*
199 * Poll PCC status register every 3us(delay_us) for maximum of
200 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
201 */
202 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
203 status & PCC_CMD_COMPLETE_MASK, 3,
204 pcc_ss_data->deadline_us);
205
206 if (likely(!ret)) {
207 pcc_ss_data->platform_owns_pcc = false;
208 if (chk_err_bit && (status & PCC_ERROR_MASK))
209 ret = -EIO;
210 }
211
212 if (unlikely(ret))
213 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
214 pcc_ss_id, ret);
215
216 return ret;
217 }
218
219 /*
220 * This function transfers the ownership of the PCC to the platform
221 * So it must be called while holding write_lock(pcc_lock)
222 */
send_pcc_cmd(int pcc_ss_id,u16 cmd)223 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
224 {
225 int ret = -EIO, i;
226 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
227 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
228 pcc_ss_data->pcc_comm_addr;
229 unsigned int time_delta;
230
231 /*
232 * For CMD_WRITE we know for a fact the caller should have checked
233 * the channel before writing to PCC space
234 */
235 if (cmd == CMD_READ) {
236 /*
237 * If there are pending cpc_writes, then we stole the channel
238 * before write completion, so first send a WRITE command to
239 * platform
240 */
241 if (pcc_ss_data->pending_pcc_write_cmd)
242 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
243
244 ret = check_pcc_chan(pcc_ss_id, false);
245 if (ret)
246 goto end;
247 } else /* CMD_WRITE */
248 pcc_ss_data->pending_pcc_write_cmd = FALSE;
249
250 /*
251 * Handle the Minimum Request Turnaround Time(MRTT)
252 * "The minimum amount of time that OSPM must wait after the completion
253 * of a command before issuing the next command, in microseconds"
254 */
255 if (pcc_ss_data->pcc_mrtt) {
256 time_delta = ktime_us_delta(ktime_get(),
257 pcc_ss_data->last_cmd_cmpl_time);
258 if (pcc_ss_data->pcc_mrtt > time_delta)
259 udelay(pcc_ss_data->pcc_mrtt - time_delta);
260 }
261
262 /*
263 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
264 * "The maximum number of periodic requests that the subspace channel can
265 * support, reported in commands per minute. 0 indicates no limitation."
266 *
267 * This parameter should be ideally zero or large enough so that it can
268 * handle maximum number of requests that all the cores in the system can
269 * collectively generate. If it is not, we will follow the spec and just
270 * not send the request to the platform after hitting the MPAR limit in
271 * any 60s window
272 */
273 if (pcc_ss_data->pcc_mpar) {
274 if (pcc_ss_data->mpar_count == 0) {
275 time_delta = ktime_ms_delta(ktime_get(),
276 pcc_ss_data->last_mpar_reset);
277 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
278 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
279 pcc_ss_id);
280 ret = -EIO;
281 goto end;
282 }
283 pcc_ss_data->last_mpar_reset = ktime_get();
284 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
285 }
286 pcc_ss_data->mpar_count--;
287 }
288
289 /* Write to the shared comm region. */
290 writew_relaxed(cmd, &generic_comm_base->command);
291
292 /* Flip CMD COMPLETE bit */
293 writew_relaxed(0, &generic_comm_base->status);
294
295 pcc_ss_data->platform_owns_pcc = true;
296
297 /* Ring doorbell */
298 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
299 if (ret < 0) {
300 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
301 pcc_ss_id, cmd, ret);
302 goto end;
303 }
304
305 /* wait for completion and check for PCC errro bit */
306 ret = check_pcc_chan(pcc_ss_id, true);
307
308 if (pcc_ss_data->pcc_mrtt)
309 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
310
311 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
312 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
313 else
314 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
315
316 end:
317 if (cmd == CMD_WRITE) {
318 if (unlikely(ret)) {
319 for_each_possible_cpu(i) {
320 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321
322 if (!desc)
323 continue;
324
325 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
326 desc->write_cmd_status = ret;
327 }
328 }
329 pcc_ss_data->pcc_write_cnt++;
330 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
331 }
332
333 return ret;
334 }
335
cppc_chan_tx_done(struct mbox_client * cl,void * msg,int ret)336 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
337 {
338 if (ret < 0)
339 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
340 *(u16 *)msg, ret);
341 else
342 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
343 *(u16 *)msg, ret);
344 }
345
346 static struct mbox_client cppc_mbox_cl = {
347 .tx_done = cppc_chan_tx_done,
348 .knows_txdone = true,
349 };
350
acpi_get_psd(struct cpc_desc * cpc_ptr,acpi_handle handle)351 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
352 {
353 int result = -EFAULT;
354 acpi_status status = AE_OK;
355 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
356 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
357 struct acpi_buffer state = {0, NULL};
358 union acpi_object *psd = NULL;
359 struct acpi_psd_package *pdomain;
360
361 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
362 &buffer, ACPI_TYPE_PACKAGE);
363 if (status == AE_NOT_FOUND) /* _PSD is optional */
364 return 0;
365 if (ACPI_FAILURE(status))
366 return -ENODEV;
367
368 psd = buffer.pointer;
369 if (!psd || psd->package.count != 1) {
370 pr_debug("Invalid _PSD data\n");
371 goto end;
372 }
373
374 pdomain = &(cpc_ptr->domain_info);
375
376 state.length = sizeof(struct acpi_psd_package);
377 state.pointer = pdomain;
378
379 status = acpi_extract_package(&(psd->package.elements[0]),
380 &format, &state);
381 if (ACPI_FAILURE(status)) {
382 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
383 goto end;
384 }
385
386 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
388 goto end;
389 }
390
391 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
393 goto end;
394 }
395
396 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
400 goto end;
401 }
402
403 result = 0;
404 end:
405 kfree(buffer.pointer);
406 return result;
407 }
408
acpi_cpc_valid(void)409 bool acpi_cpc_valid(void)
410 {
411 struct cpc_desc *cpc_ptr;
412 int cpu;
413
414 for_each_possible_cpu(cpu) {
415 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
416 if (!cpc_ptr)
417 return false;
418 }
419
420 return true;
421 }
422 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
423
424 /**
425 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
426 * @cpu: Find all CPUs that share a domain with cpu.
427 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
428 *
429 * Return: 0 for success or negative value for err.
430 */
acpi_get_psd_map(unsigned int cpu,struct cppc_cpudata * cpu_data)431 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
432 {
433 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
434 struct acpi_psd_package *match_pdomain;
435 struct acpi_psd_package *pdomain;
436 int count_target, i;
437
438 /*
439 * Now that we have _PSD data from all CPUs, let's setup P-state
440 * domain info.
441 */
442 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
443 if (!cpc_ptr)
444 return -EFAULT;
445
446 pdomain = &(cpc_ptr->domain_info);
447 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
448 if (pdomain->num_processors <= 1)
449 return 0;
450
451 /* Validate the Domain info */
452 count_target = pdomain->num_processors;
453 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
454 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
455 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
456 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
457 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
458 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
459
460 for_each_possible_cpu(i) {
461 if (i == cpu)
462 continue;
463
464 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
465 if (!match_cpc_ptr)
466 goto err_fault;
467
468 match_pdomain = &(match_cpc_ptr->domain_info);
469 if (match_pdomain->domain != pdomain->domain)
470 continue;
471
472 /* Here i and cpu are in the same domain */
473 if (match_pdomain->num_processors != count_target)
474 goto err_fault;
475
476 if (pdomain->coord_type != match_pdomain->coord_type)
477 goto err_fault;
478
479 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
480 }
481
482 return 0;
483
484 err_fault:
485 /* Assume no coordination on any error parsing domain info */
486 cpumask_clear(cpu_data->shared_cpu_map);
487 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
488 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
489
490 return -EFAULT;
491 }
492 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
493
register_pcc_channel(int pcc_ss_idx)494 static int register_pcc_channel(int pcc_ss_idx)
495 {
496 struct acpi_pcct_hw_reduced *cppc_ss;
497 u64 usecs_lat;
498
499 if (pcc_ss_idx >= 0) {
500 pcc_data[pcc_ss_idx]->pcc_channel =
501 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
502
503 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
504 pr_err("Failed to find PCC channel for subspace %d\n",
505 pcc_ss_idx);
506 return -ENODEV;
507 }
508
509 /*
510 * The PCC mailbox controller driver should
511 * have parsed the PCCT (global table of all
512 * PCC channels) and stored pointers to the
513 * subspace communication region in con_priv.
514 */
515 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
516
517 if (!cppc_ss) {
518 pr_err("No PCC subspace found for %d CPPC\n",
519 pcc_ss_idx);
520 return -ENODEV;
521 }
522
523 /*
524 * cppc_ss->latency is just a Nominal value. In reality
525 * the remote processor could be much slower to reply.
526 * So add an arbitrary amount of wait on top of Nominal.
527 */
528 usecs_lat = NUM_RETRIES * cppc_ss->latency;
529 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
530 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
531 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
532 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
533
534 pcc_data[pcc_ss_idx]->pcc_comm_addr =
535 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
536 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
537 pr_err("Failed to ioremap PCC comm region mem for %d\n",
538 pcc_ss_idx);
539 return -ENOMEM;
540 }
541
542 /* Set flag so that we don't come here for each CPU. */
543 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
544 }
545
546 return 0;
547 }
548
549 /**
550 * cpc_ffh_supported() - check if FFH reading supported
551 *
552 * Check if the architecture has support for functional fixed hardware
553 * read/write capability.
554 *
555 * Return: true for supported, false for not supported
556 */
cpc_ffh_supported(void)557 bool __weak cpc_ffh_supported(void)
558 {
559 return false;
560 }
561
562 /**
563 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
564 *
565 * Check and allocate the cppc_pcc_data memory.
566 * In some processor configurations it is possible that same subspace
567 * is shared between multiple CPUs. This is seen especially in CPUs
568 * with hardware multi-threading support.
569 *
570 * Return: 0 for success, errno for failure
571 */
pcc_data_alloc(int pcc_ss_id)572 static int pcc_data_alloc(int pcc_ss_id)
573 {
574 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
575 return -EINVAL;
576
577 if (pcc_data[pcc_ss_id]) {
578 pcc_data[pcc_ss_id]->refcount++;
579 } else {
580 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
581 GFP_KERNEL);
582 if (!pcc_data[pcc_ss_id])
583 return -ENOMEM;
584 pcc_data[pcc_ss_id]->refcount++;
585 }
586
587 return 0;
588 }
589
590 /* Check if CPPC revision + num_ent combination is supported */
is_cppc_supported(int revision,int num_ent)591 static bool is_cppc_supported(int revision, int num_ent)
592 {
593 int expected_num_ent;
594
595 switch (revision) {
596 case CPPC_V2_REV:
597 expected_num_ent = CPPC_V2_NUM_ENT;
598 break;
599 case CPPC_V3_REV:
600 expected_num_ent = CPPC_V3_NUM_ENT;
601 break;
602 default:
603 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
604 revision);
605 return false;
606 }
607
608 if (expected_num_ent != num_ent) {
609 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
610 num_ent, expected_num_ent, revision);
611 return false;
612 }
613
614 return true;
615 }
616
617 /*
618 * An example CPC table looks like the following.
619 *
620 * Name(_CPC, Package()
621 * {
622 * 17,
623 * NumEntries
624 * 1,
625 * // Revision
626 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
627 * // Highest Performance
628 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
629 * // Nominal Performance
630 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
631 * // Lowest Nonlinear Performance
632 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
633 * // Lowest Performance
634 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
635 * // Guaranteed Performance Register
636 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
637 * // Desired Performance Register
638 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
639 * ..
640 * ..
641 * ..
642 *
643 * }
644 * Each Register() encodes how to access that specific register.
645 * e.g. a sample PCC entry has the following encoding:
646 *
647 * Register (
648 * PCC,
649 * AddressSpaceKeyword
650 * 8,
651 * //RegisterBitWidth
652 * 8,
653 * //RegisterBitOffset
654 * 0x30,
655 * //RegisterAddress
656 * 9
657 * //AccessSize (subspace ID)
658 * 0
659 * )
660 * }
661 */
662
663 #ifndef init_freq_invariance_cppc
init_freq_invariance_cppc(void)664 static inline void init_freq_invariance_cppc(void) { }
665 #endif
666
667 /**
668 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
669 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
670 *
671 * Return: 0 for success or negative value for err.
672 */
acpi_cppc_processor_probe(struct acpi_processor * pr)673 int acpi_cppc_processor_probe(struct acpi_processor *pr)
674 {
675 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
676 union acpi_object *out_obj, *cpc_obj;
677 struct cpc_desc *cpc_ptr;
678 struct cpc_reg *gas_t;
679 struct device *cpu_dev;
680 acpi_handle handle = pr->handle;
681 unsigned int num_ent, i, cpc_rev;
682 int pcc_subspace_id = -1;
683 acpi_status status;
684 int ret = -EFAULT;
685
686 /* Parse the ACPI _CPC table for this CPU. */
687 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
688 ACPI_TYPE_PACKAGE);
689 if (ACPI_FAILURE(status)) {
690 ret = -ENODEV;
691 goto out_buf_free;
692 }
693
694 out_obj = (union acpi_object *) output.pointer;
695
696 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
697 if (!cpc_ptr) {
698 ret = -ENOMEM;
699 goto out_buf_free;
700 }
701
702 /* First entry is NumEntries. */
703 cpc_obj = &out_obj->package.elements[0];
704 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705 num_ent = cpc_obj->integer.value;
706 } else {
707 pr_debug("Unexpected entry type(%d) for NumEntries\n",
708 cpc_obj->type);
709 goto out_free;
710 }
711 cpc_ptr->num_entries = num_ent;
712
713 /* Second entry should be revision. */
714 cpc_obj = &out_obj->package.elements[1];
715 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
716 cpc_rev = cpc_obj->integer.value;
717 } else {
718 pr_debug("Unexpected entry type(%d) for Revision\n",
719 cpc_obj->type);
720 goto out_free;
721 }
722 cpc_ptr->version = cpc_rev;
723
724 if (!is_cppc_supported(cpc_rev, num_ent))
725 goto out_free;
726
727 /* Iterate through remaining entries in _CPC */
728 for (i = 2; i < num_ent; i++) {
729 cpc_obj = &out_obj->package.elements[i];
730
731 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
732 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
733 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
734 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
735 gas_t = (struct cpc_reg *)
736 cpc_obj->buffer.pointer;
737
738 /*
739 * The PCC Subspace index is encoded inside
740 * the CPC table entries. The same PCC index
741 * will be used for all the PCC entries,
742 * so extract it only once.
743 */
744 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
745 if (pcc_subspace_id < 0) {
746 pcc_subspace_id = gas_t->access_width;
747 if (pcc_data_alloc(pcc_subspace_id))
748 goto out_free;
749 } else if (pcc_subspace_id != gas_t->access_width) {
750 pr_debug("Mismatched PCC ids.\n");
751 goto out_free;
752 }
753 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
754 if (gas_t->address) {
755 void __iomem *addr;
756
757 addr = ioremap(gas_t->address, gas_t->bit_width/8);
758 if (!addr)
759 goto out_free;
760 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
761 }
762 } else {
763 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
764 /* Support only PCC ,SYS MEM and FFH type regs */
765 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
766 goto out_free;
767 }
768 }
769
770 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
771 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
772 } else {
773 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
774 goto out_free;
775 }
776 }
777 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
778
779 /*
780 * Initialize the remaining cpc_regs as unsupported.
781 * Example: In case FW exposes CPPC v2, the below loop will initialize
782 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
783 */
784 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
785 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
786 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
787 }
788
789
790 /* Store CPU Logical ID */
791 cpc_ptr->cpu_id = pr->id;
792
793 /* Parse PSD data for this CPU */
794 ret = acpi_get_psd(cpc_ptr, handle);
795 if (ret)
796 goto out_free;
797
798 /* Register PCC channel once for all PCC subspace ID. */
799 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
800 ret = register_pcc_channel(pcc_subspace_id);
801 if (ret)
802 goto out_free;
803
804 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
805 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
806 }
807
808 /* Everything looks okay */
809 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
810
811 /* Add per logical CPU nodes for reading its feedback counters. */
812 cpu_dev = get_cpu_device(pr->id);
813 if (!cpu_dev) {
814 ret = -EINVAL;
815 goto out_free;
816 }
817
818 /* Plug PSD data into this CPU's CPC descriptor. */
819 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
820
821 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
822 "acpi_cppc");
823 if (ret) {
824 per_cpu(cpc_desc_ptr, pr->id) = NULL;
825 kobject_put(&cpc_ptr->kobj);
826 goto out_free;
827 }
828
829 init_freq_invariance_cppc();
830
831 kfree(output.pointer);
832 return 0;
833
834 out_free:
835 /* Free all the mapped sys mem areas for this CPU */
836 for (i = 2; i < cpc_ptr->num_entries; i++) {
837 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
838
839 if (addr)
840 iounmap(addr);
841 }
842 kfree(cpc_ptr);
843
844 out_buf_free:
845 kfree(output.pointer);
846 return ret;
847 }
848 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
849
850 /**
851 * acpi_cppc_processor_exit - Cleanup CPC structs.
852 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
853 *
854 * Return: Void
855 */
acpi_cppc_processor_exit(struct acpi_processor * pr)856 void acpi_cppc_processor_exit(struct acpi_processor *pr)
857 {
858 struct cpc_desc *cpc_ptr;
859 unsigned int i;
860 void __iomem *addr;
861 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
862
863 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
864 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
865 pcc_data[pcc_ss_id]->refcount--;
866 if (!pcc_data[pcc_ss_id]->refcount) {
867 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
868 kfree(pcc_data[pcc_ss_id]);
869 pcc_data[pcc_ss_id] = NULL;
870 }
871 }
872 }
873
874 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
875 if (!cpc_ptr)
876 return;
877
878 /* Free all the mapped sys mem areas for this CPU */
879 for (i = 2; i < cpc_ptr->num_entries; i++) {
880 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
881 if (addr)
882 iounmap(addr);
883 }
884
885 kobject_put(&cpc_ptr->kobj);
886 kfree(cpc_ptr);
887 }
888 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
889
890 /**
891 * cpc_read_ffh() - Read FFH register
892 * @cpunum: CPU number to read
893 * @reg: cppc register information
894 * @val: place holder for return value
895 *
896 * Read bit_width bits from a specified address and bit_offset
897 *
898 * Return: 0 for success and error code
899 */
cpc_read_ffh(int cpunum,struct cpc_reg * reg,u64 * val)900 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
901 {
902 return -ENOTSUPP;
903 }
904
905 /**
906 * cpc_write_ffh() - Write FFH register
907 * @cpunum: CPU number to write
908 * @reg: cppc register information
909 * @val: value to write
910 *
911 * Write value of bit_width bits to a specified address and bit_offset
912 *
913 * Return: 0 for success and error code
914 */
cpc_write_ffh(int cpunum,struct cpc_reg * reg,u64 val)915 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
916 {
917 return -ENOTSUPP;
918 }
919
920 /*
921 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
922 * as fast as possible. We have already mapped the PCC subspace during init, so
923 * we can directly write to it.
924 */
925
cpc_read(int cpu,struct cpc_register_resource * reg_res,u64 * val)926 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
927 {
928 int ret_val = 0;
929 void __iomem *vaddr = NULL;
930 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
931 struct cpc_reg *reg = ®_res->cpc_entry.reg;
932
933 if (reg_res->type == ACPI_TYPE_INTEGER) {
934 *val = reg_res->cpc_entry.int_value;
935 return ret_val;
936 }
937
938 *val = 0;
939 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
940 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
941 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
942 vaddr = reg_res->sys_mem_vaddr;
943 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
944 return cpc_read_ffh(cpu, reg, val);
945 else
946 return acpi_os_read_memory((acpi_physical_address)reg->address,
947 val, reg->bit_width);
948
949 switch (reg->bit_width) {
950 case 8:
951 *val = readb_relaxed(vaddr);
952 break;
953 case 16:
954 *val = readw_relaxed(vaddr);
955 break;
956 case 32:
957 *val = readl_relaxed(vaddr);
958 break;
959 case 64:
960 *val = readq_relaxed(vaddr);
961 break;
962 default:
963 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
964 reg->bit_width, pcc_ss_id);
965 ret_val = -EFAULT;
966 }
967
968 return ret_val;
969 }
970
cpc_write(int cpu,struct cpc_register_resource * reg_res,u64 val)971 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
972 {
973 int ret_val = 0;
974 void __iomem *vaddr = NULL;
975 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
976 struct cpc_reg *reg = ®_res->cpc_entry.reg;
977
978 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
979 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
980 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
981 vaddr = reg_res->sys_mem_vaddr;
982 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
983 return cpc_write_ffh(cpu, reg, val);
984 else
985 return acpi_os_write_memory((acpi_physical_address)reg->address,
986 val, reg->bit_width);
987
988 switch (reg->bit_width) {
989 case 8:
990 writeb_relaxed(val, vaddr);
991 break;
992 case 16:
993 writew_relaxed(val, vaddr);
994 break;
995 case 32:
996 writel_relaxed(val, vaddr);
997 break;
998 case 64:
999 writeq_relaxed(val, vaddr);
1000 break;
1001 default:
1002 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1003 reg->bit_width, pcc_ss_id);
1004 ret_val = -EFAULT;
1005 break;
1006 }
1007
1008 return ret_val;
1009 }
1010
cppc_get_perf(int cpunum,enum cppc_regs reg_idx,u64 * perf)1011 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1012 {
1013 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1014 struct cpc_register_resource *reg = &cpc_desc->cpc_regs[reg_idx];
1015
1016 if (CPC_IN_PCC(reg)) {
1017 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1018 struct cppc_pcc_data *pcc_ss_data = NULL;
1019 int ret = 0;
1020
1021 if (pcc_ss_id < 0)
1022 return -EIO;
1023
1024 pcc_ss_data = pcc_data[pcc_ss_id];
1025
1026 down_write(&pcc_ss_data->pcc_lock);
1027
1028 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1029 cpc_read(cpunum, reg, perf);
1030 else
1031 ret = -EIO;
1032
1033 up_write(&pcc_ss_data->pcc_lock);
1034
1035 return ret;
1036 }
1037
1038 cpc_read(cpunum, reg, perf);
1039
1040 return 0;
1041 }
1042
1043 /**
1044 * cppc_get_desired_perf - Get the desired performance register value.
1045 * @cpunum: CPU from which to get desired performance.
1046 * @desired_perf: Return address.
1047 *
1048 * Return: 0 for success, -EIO otherwise.
1049 */
cppc_get_desired_perf(int cpunum,u64 * desired_perf)1050 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1051 {
1052 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1053 }
1054 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1055
1056 /**
1057 * cppc_get_nominal_perf - Get the nominal performance register value.
1058 * @cpunum: CPU from which to get nominal performance.
1059 * @nominal_perf: Return address.
1060 *
1061 * Return: 0 for success, -EIO otherwise.
1062 */
cppc_get_nominal_perf(int cpunum,u64 * nominal_perf)1063 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1064 {
1065 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1066 }
1067
1068 /**
1069 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1070 * @cpunum: CPU from which to get capabilities info.
1071 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1072 *
1073 * Return: 0 for success with perf_caps populated else -ERRNO.
1074 */
cppc_get_perf_caps(int cpunum,struct cppc_perf_caps * perf_caps)1075 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1076 {
1077 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1078 struct cpc_register_resource *highest_reg, *lowest_reg,
1079 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1080 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1081 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1082 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1083 struct cppc_pcc_data *pcc_ss_data = NULL;
1084 int ret = 0, regs_in_pcc = 0;
1085
1086 if (!cpc_desc) {
1087 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1088 return -ENODEV;
1089 }
1090
1091 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1092 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1093 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1094 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1095 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1096 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1097 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1098
1099 /* Are any of the regs PCC ?*/
1100 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1101 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1102 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1103 if (pcc_ss_id < 0) {
1104 pr_debug("Invalid pcc_ss_id\n");
1105 return -ENODEV;
1106 }
1107 pcc_ss_data = pcc_data[pcc_ss_id];
1108 regs_in_pcc = 1;
1109 down_write(&pcc_ss_data->pcc_lock);
1110 /* Ring doorbell once to update PCC subspace */
1111 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1112 ret = -EIO;
1113 goto out_err;
1114 }
1115 }
1116
1117 cpc_read(cpunum, highest_reg, &high);
1118 perf_caps->highest_perf = high;
1119
1120 cpc_read(cpunum, lowest_reg, &low);
1121 perf_caps->lowest_perf = low;
1122
1123 cpc_read(cpunum, nominal_reg, &nom);
1124 perf_caps->nominal_perf = nom;
1125
1126 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1127 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1128 perf_caps->guaranteed_perf = 0;
1129 } else {
1130 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1131 perf_caps->guaranteed_perf = guaranteed;
1132 }
1133
1134 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1135 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1136
1137 if (!high || !low || !nom || !min_nonlinear)
1138 ret = -EFAULT;
1139
1140 /* Read optional lowest and nominal frequencies if present */
1141 if (CPC_SUPPORTED(low_freq_reg))
1142 cpc_read(cpunum, low_freq_reg, &low_f);
1143
1144 if (CPC_SUPPORTED(nom_freq_reg))
1145 cpc_read(cpunum, nom_freq_reg, &nom_f);
1146
1147 perf_caps->lowest_freq = low_f;
1148 perf_caps->nominal_freq = nom_f;
1149
1150
1151 out_err:
1152 if (regs_in_pcc)
1153 up_write(&pcc_ss_data->pcc_lock);
1154 return ret;
1155 }
1156 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1157
1158 /**
1159 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1160 * @cpunum: CPU from which to read counters.
1161 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1162 *
1163 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1164 */
cppc_get_perf_ctrs(int cpunum,struct cppc_perf_fb_ctrs * perf_fb_ctrs)1165 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1166 {
1167 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1168 struct cpc_register_resource *delivered_reg, *reference_reg,
1169 *ref_perf_reg, *ctr_wrap_reg;
1170 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1171 struct cppc_pcc_data *pcc_ss_data = NULL;
1172 u64 delivered, reference, ref_perf, ctr_wrap_time;
1173 int ret = 0, regs_in_pcc = 0;
1174
1175 if (!cpc_desc) {
1176 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1177 return -ENODEV;
1178 }
1179
1180 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1181 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1182 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1183 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1184
1185 /*
1186 * If reference perf register is not supported then we should
1187 * use the nominal perf value
1188 */
1189 if (!CPC_SUPPORTED(ref_perf_reg))
1190 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1191
1192 /* Are any of the regs PCC ?*/
1193 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1194 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1195 if (pcc_ss_id < 0) {
1196 pr_debug("Invalid pcc_ss_id\n");
1197 return -ENODEV;
1198 }
1199 pcc_ss_data = pcc_data[pcc_ss_id];
1200 down_write(&pcc_ss_data->pcc_lock);
1201 regs_in_pcc = 1;
1202 /* Ring doorbell once to update PCC subspace */
1203 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1204 ret = -EIO;
1205 goto out_err;
1206 }
1207 }
1208
1209 cpc_read(cpunum, delivered_reg, &delivered);
1210 cpc_read(cpunum, reference_reg, &reference);
1211 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1212
1213 /*
1214 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1215 * performance counters are assumed to never wrap during the lifetime of
1216 * platform
1217 */
1218 ctr_wrap_time = (u64)(~((u64)0));
1219 if (CPC_SUPPORTED(ctr_wrap_reg))
1220 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1221
1222 if (!delivered || !reference || !ref_perf) {
1223 ret = -EFAULT;
1224 goto out_err;
1225 }
1226
1227 perf_fb_ctrs->delivered = delivered;
1228 perf_fb_ctrs->reference = reference;
1229 perf_fb_ctrs->reference_perf = ref_perf;
1230 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1231 out_err:
1232 if (regs_in_pcc)
1233 up_write(&pcc_ss_data->pcc_lock);
1234 return ret;
1235 }
1236 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1237
1238 /**
1239 * cppc_set_perf - Set a CPU's performance controls.
1240 * @cpu: CPU for which to set performance controls.
1241 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1242 *
1243 * Return: 0 for success, -ERRNO otherwise.
1244 */
cppc_set_perf(int cpu,struct cppc_perf_ctrls * perf_ctrls)1245 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1246 {
1247 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1248 struct cpc_register_resource *desired_reg;
1249 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1250 struct cppc_pcc_data *pcc_ss_data = NULL;
1251 int ret = 0;
1252
1253 if (!cpc_desc) {
1254 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1255 return -ENODEV;
1256 }
1257
1258 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1259
1260 /*
1261 * This is Phase-I where we want to write to CPC registers
1262 * -> We want all CPUs to be able to execute this phase in parallel
1263 *
1264 * Since read_lock can be acquired by multiple CPUs simultaneously we
1265 * achieve that goal here
1266 */
1267 if (CPC_IN_PCC(desired_reg)) {
1268 if (pcc_ss_id < 0) {
1269 pr_debug("Invalid pcc_ss_id\n");
1270 return -ENODEV;
1271 }
1272 pcc_ss_data = pcc_data[pcc_ss_id];
1273 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1274 if (pcc_ss_data->platform_owns_pcc) {
1275 ret = check_pcc_chan(pcc_ss_id, false);
1276 if (ret) {
1277 up_read(&pcc_ss_data->pcc_lock);
1278 return ret;
1279 }
1280 }
1281 /*
1282 * Update the pending_write to make sure a PCC CMD_READ will not
1283 * arrive and steal the channel during the switch to write lock
1284 */
1285 pcc_ss_data->pending_pcc_write_cmd = true;
1286 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1287 cpc_desc->write_cmd_status = 0;
1288 }
1289
1290 /*
1291 * Skip writing MIN/MAX until Linux knows how to come up with
1292 * useful values.
1293 */
1294 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1295
1296 if (CPC_IN_PCC(desired_reg))
1297 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1298 /*
1299 * This is Phase-II where we transfer the ownership of PCC to Platform
1300 *
1301 * Short Summary: Basically if we think of a group of cppc_set_perf
1302 * requests that happened in short overlapping interval. The last CPU to
1303 * come out of Phase-I will enter Phase-II and ring the doorbell.
1304 *
1305 * We have the following requirements for Phase-II:
1306 * 1. We want to execute Phase-II only when there are no CPUs
1307 * currently executing in Phase-I
1308 * 2. Once we start Phase-II we want to avoid all other CPUs from
1309 * entering Phase-I.
1310 * 3. We want only one CPU among all those who went through Phase-I
1311 * to run phase-II
1312 *
1313 * If write_trylock fails to get the lock and doesn't transfer the
1314 * PCC ownership to the platform, then one of the following will be TRUE
1315 * 1. There is at-least one CPU in Phase-I which will later execute
1316 * write_trylock, so the CPUs in Phase-I will be responsible for
1317 * executing the Phase-II.
1318 * 2. Some other CPU has beaten this CPU to successfully execute the
1319 * write_trylock and has already acquired the write_lock. We know for a
1320 * fact it (other CPU acquiring the write_lock) couldn't have happened
1321 * before this CPU's Phase-I as we held the read_lock.
1322 * 3. Some other CPU executing pcc CMD_READ has stolen the
1323 * down_write, in which case, send_pcc_cmd will check for pending
1324 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1325 * So this CPU can be certain that its request will be delivered
1326 * So in all cases, this CPU knows that its request will be delivered
1327 * by another CPU and can return
1328 *
1329 * After getting the down_write we still need to check for
1330 * pending_pcc_write_cmd to take care of the following scenario
1331 * The thread running this code could be scheduled out between
1332 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1333 * could have delivered the request to Platform by triggering the
1334 * doorbell and transferred the ownership of PCC to platform. So this
1335 * avoids triggering an unnecessary doorbell and more importantly before
1336 * triggering the doorbell it makes sure that the PCC channel ownership
1337 * is still with OSPM.
1338 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1339 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1340 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1341 * case during a CMD_READ and if there are pending writes it delivers
1342 * the write command before servicing the read command
1343 */
1344 if (CPC_IN_PCC(desired_reg)) {
1345 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1346 /* Update only if there are pending write commands */
1347 if (pcc_ss_data->pending_pcc_write_cmd)
1348 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1349 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1350 } else
1351 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1352 wait_event(pcc_ss_data->pcc_write_wait_q,
1353 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1354
1355 /* send_pcc_cmd updates the status in case of failure */
1356 ret = cpc_desc->write_cmd_status;
1357 }
1358 return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(cppc_set_perf);
1361
1362 /**
1363 * cppc_get_transition_latency - returns frequency transition latency in ns
1364 *
1365 * ACPI CPPC does not explicitly specify how a platform can specify the
1366 * transition latency for performance change requests. The closest we have
1367 * is the timing information from the PCCT tables which provides the info
1368 * on the number and frequency of PCC commands the platform can handle.
1369 */
cppc_get_transition_latency(int cpu_num)1370 unsigned int cppc_get_transition_latency(int cpu_num)
1371 {
1372 /*
1373 * Expected transition latency is based on the PCCT timing values
1374 * Below are definition from ACPI spec:
1375 * pcc_nominal- Expected latency to process a command, in microseconds
1376 * pcc_mpar - The maximum number of periodic requests that the subspace
1377 * channel can support, reported in commands per minute. 0
1378 * indicates no limitation.
1379 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1380 * completion of a command before issuing the next command,
1381 * in microseconds.
1382 */
1383 unsigned int latency_ns = 0;
1384 struct cpc_desc *cpc_desc;
1385 struct cpc_register_resource *desired_reg;
1386 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1387 struct cppc_pcc_data *pcc_ss_data;
1388
1389 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1390 if (!cpc_desc)
1391 return CPUFREQ_ETERNAL;
1392
1393 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1394 if (!CPC_IN_PCC(desired_reg))
1395 return CPUFREQ_ETERNAL;
1396
1397 if (pcc_ss_id < 0)
1398 return CPUFREQ_ETERNAL;
1399
1400 pcc_ss_data = pcc_data[pcc_ss_id];
1401 if (pcc_ss_data->pcc_mpar)
1402 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1403
1404 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1405 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1406
1407 return latency_ns;
1408 }
1409 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1410