1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Handle caching attributes in page tables (PAT)
4 *
5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 *
8 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9 */
10
11 #include <linux/seq_file.h>
12 #include <linux/memblock.h>
13 #include <linux/debugfs.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/pfn_t.h>
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/rbtree.h>
21
22 #include <asm/cacheflush.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/x86_init.h>
26 #include <asm/pgtable.h>
27 #include <asm/fcntl.h>
28 #include <asm/e820/api.h>
29 #include <asm/mtrr.h>
30 #include <asm/page.h>
31 #include <asm/msr.h>
32 #include <asm/pat.h>
33 #include <asm/io.h>
34
35 #include "pat_internal.h"
36 #include "mm_internal.h"
37
38 #undef pr_fmt
39 #define pr_fmt(fmt) "" fmt
40
41 static bool __read_mostly boot_cpu_done;
42 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
43 static bool __read_mostly pat_initialized;
44 static bool __read_mostly init_cm_done;
45
pat_disable(const char * reason)46 void pat_disable(const char *reason)
47 {
48 if (pat_disabled)
49 return;
50
51 if (boot_cpu_done) {
52 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
53 return;
54 }
55
56 pat_disabled = true;
57 pr_info("x86/PAT: %s\n", reason);
58 }
59
nopat(char * str)60 static int __init nopat(char *str)
61 {
62 pat_disable("PAT support disabled.");
63 return 0;
64 }
65 early_param("nopat", nopat);
66
pat_enabled(void)67 bool pat_enabled(void)
68 {
69 return pat_initialized;
70 }
71 EXPORT_SYMBOL_GPL(pat_enabled);
72
73 int pat_debug_enable;
74
pat_debug_setup(char * str)75 static int __init pat_debug_setup(char *str)
76 {
77 pat_debug_enable = 1;
78 return 0;
79 }
80 __setup("debugpat", pat_debug_setup);
81
82 #ifdef CONFIG_X86_PAT
83 /*
84 * X86 PAT uses page flags arch_1 and uncached together to keep track of
85 * memory type of pages that have backing page struct.
86 *
87 * X86 PAT supports 4 different memory types:
88 * - _PAGE_CACHE_MODE_WB
89 * - _PAGE_CACHE_MODE_WC
90 * - _PAGE_CACHE_MODE_UC_MINUS
91 * - _PAGE_CACHE_MODE_WT
92 *
93 * _PAGE_CACHE_MODE_WB is the default type.
94 */
95
96 #define _PGMT_WB 0
97 #define _PGMT_WC (1UL << PG_arch_1)
98 #define _PGMT_UC_MINUS (1UL << PG_uncached)
99 #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
100 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
101 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
102
get_page_memtype(struct page * pg)103 static inline enum page_cache_mode get_page_memtype(struct page *pg)
104 {
105 unsigned long pg_flags = pg->flags & _PGMT_MASK;
106
107 if (pg_flags == _PGMT_WB)
108 return _PAGE_CACHE_MODE_WB;
109 else if (pg_flags == _PGMT_WC)
110 return _PAGE_CACHE_MODE_WC;
111 else if (pg_flags == _PGMT_UC_MINUS)
112 return _PAGE_CACHE_MODE_UC_MINUS;
113 else
114 return _PAGE_CACHE_MODE_WT;
115 }
116
set_page_memtype(struct page * pg,enum page_cache_mode memtype)117 static inline void set_page_memtype(struct page *pg,
118 enum page_cache_mode memtype)
119 {
120 unsigned long memtype_flags;
121 unsigned long old_flags;
122 unsigned long new_flags;
123
124 switch (memtype) {
125 case _PAGE_CACHE_MODE_WC:
126 memtype_flags = _PGMT_WC;
127 break;
128 case _PAGE_CACHE_MODE_UC_MINUS:
129 memtype_flags = _PGMT_UC_MINUS;
130 break;
131 case _PAGE_CACHE_MODE_WT:
132 memtype_flags = _PGMT_WT;
133 break;
134 case _PAGE_CACHE_MODE_WB:
135 default:
136 memtype_flags = _PGMT_WB;
137 break;
138 }
139
140 do {
141 old_flags = pg->flags;
142 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
143 } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
144 }
145 #else
get_page_memtype(struct page * pg)146 static inline enum page_cache_mode get_page_memtype(struct page *pg)
147 {
148 return -1;
149 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)150 static inline void set_page_memtype(struct page *pg,
151 enum page_cache_mode memtype)
152 {
153 }
154 #endif
155
156 enum {
157 PAT_UC = 0, /* uncached */
158 PAT_WC = 1, /* Write combining */
159 PAT_WT = 4, /* Write Through */
160 PAT_WP = 5, /* Write Protected */
161 PAT_WB = 6, /* Write Back (default) */
162 PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
163 };
164
165 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
166
pat_get_cache_mode(unsigned pat_val,char * msg)167 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
168 {
169 enum page_cache_mode cache;
170 char *cache_mode;
171
172 switch (pat_val) {
173 case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
174 case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
175 case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
176 case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
177 case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
178 case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
179 default: cache = CM(WB); cache_mode = "WB "; break;
180 }
181
182 memcpy(msg, cache_mode, 4);
183
184 return cache;
185 }
186
187 #undef CM
188
189 /*
190 * Update the cache mode to pgprot translation tables according to PAT
191 * configuration.
192 * Using lower indices is preferred, so we start with highest index.
193 */
__init_cache_modes(u64 pat)194 static void __init_cache_modes(u64 pat)
195 {
196 enum page_cache_mode cache;
197 char pat_msg[33];
198 int i;
199
200 pat_msg[32] = 0;
201 for (i = 7; i >= 0; i--) {
202 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
203 pat_msg + 4 * i);
204 update_cache_mode_entry(i, cache);
205 }
206 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
207
208 init_cm_done = true;
209 }
210
211 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
212
pat_bsp_init(u64 pat)213 static void pat_bsp_init(u64 pat)
214 {
215 u64 tmp_pat;
216
217 if (!boot_cpu_has(X86_FEATURE_PAT)) {
218 pat_disable("PAT not supported by CPU.");
219 return;
220 }
221
222 rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
223 if (!tmp_pat) {
224 pat_disable("PAT MSR is 0, disabled.");
225 return;
226 }
227
228 wrmsrl(MSR_IA32_CR_PAT, pat);
229 pat_initialized = true;
230
231 __init_cache_modes(pat);
232 }
233
pat_ap_init(u64 pat)234 static void pat_ap_init(u64 pat)
235 {
236 if (!boot_cpu_has(X86_FEATURE_PAT)) {
237 /*
238 * If this happens we are on a secondary CPU, but switched to
239 * PAT on the boot CPU. We have no way to undo PAT.
240 */
241 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
242 }
243
244 wrmsrl(MSR_IA32_CR_PAT, pat);
245 }
246
init_cache_modes(void)247 void init_cache_modes(void)
248 {
249 u64 pat = 0;
250
251 if (init_cm_done)
252 return;
253
254 if (boot_cpu_has(X86_FEATURE_PAT)) {
255 /*
256 * CPU supports PAT. Set PAT table to be consistent with
257 * PAT MSR. This case supports "nopat" boot option, and
258 * virtual machine environments which support PAT without
259 * MTRRs. In specific, Xen has unique setup to PAT MSR.
260 *
261 * If PAT MSR returns 0, it is considered invalid and emulates
262 * as No PAT.
263 */
264 rdmsrl(MSR_IA32_CR_PAT, pat);
265 }
266
267 if (!pat) {
268 /*
269 * No PAT. Emulate the PAT table that corresponds to the two
270 * cache bits, PWT (Write Through) and PCD (Cache Disable).
271 * This setup is also the same as the BIOS default setup.
272 *
273 * PTE encoding:
274 *
275 * PCD
276 * |PWT PAT
277 * || slot
278 * 00 0 WB : _PAGE_CACHE_MODE_WB
279 * 01 1 WT : _PAGE_CACHE_MODE_WT
280 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
281 * 11 3 UC : _PAGE_CACHE_MODE_UC
282 *
283 * NOTE: When WC or WP is used, it is redirected to UC- per
284 * the default setup in __cachemode2pte_tbl[].
285 */
286 pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
287 PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
288 }
289
290 __init_cache_modes(pat);
291 }
292
293 /**
294 * pat_init - Initialize PAT MSR and PAT table
295 *
296 * This function initializes PAT MSR and PAT table with an OS-defined value
297 * to enable additional cache attributes, WC, WT and WP.
298 *
299 * This function must be called on all CPUs using the specific sequence of
300 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
301 * procedure for PAT.
302 */
pat_init(void)303 void pat_init(void)
304 {
305 u64 pat;
306 struct cpuinfo_x86 *c = &boot_cpu_data;
307
308 if (pat_disabled)
309 return;
310
311 if ((c->x86_vendor == X86_VENDOR_INTEL) &&
312 (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
313 ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
314 /*
315 * PAT support with the lower four entries. Intel Pentium 2,
316 * 3, M, and 4 are affected by PAT errata, which makes the
317 * upper four entries unusable. To be on the safe side, we don't
318 * use those.
319 *
320 * PTE encoding:
321 * PAT
322 * |PCD
323 * ||PWT PAT
324 * ||| slot
325 * 000 0 WB : _PAGE_CACHE_MODE_WB
326 * 001 1 WC : _PAGE_CACHE_MODE_WC
327 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
328 * 011 3 UC : _PAGE_CACHE_MODE_UC
329 * PAT bit unused
330 *
331 * NOTE: When WT or WP is used, it is redirected to UC- per
332 * the default setup in __cachemode2pte_tbl[].
333 */
334 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
335 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
336 } else {
337 /*
338 * Full PAT support. We put WT in slot 7 to improve
339 * robustness in the presence of errata that might cause
340 * the high PAT bit to be ignored. This way, a buggy slot 7
341 * access will hit slot 3, and slot 3 is UC, so at worst
342 * we lose performance without causing a correctness issue.
343 * Pentium 4 erratum N46 is an example for such an erratum,
344 * although we try not to use PAT at all on affected CPUs.
345 *
346 * PTE encoding:
347 * PAT
348 * |PCD
349 * ||PWT PAT
350 * ||| slot
351 * 000 0 WB : _PAGE_CACHE_MODE_WB
352 * 001 1 WC : _PAGE_CACHE_MODE_WC
353 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
354 * 011 3 UC : _PAGE_CACHE_MODE_UC
355 * 100 4 WB : Reserved
356 * 101 5 WP : _PAGE_CACHE_MODE_WP
357 * 110 6 UC-: Reserved
358 * 111 7 WT : _PAGE_CACHE_MODE_WT
359 *
360 * The reserved slots are unused, but mapped to their
361 * corresponding types in the presence of PAT errata.
362 */
363 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
364 PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
365 }
366
367 if (!boot_cpu_done) {
368 pat_bsp_init(pat);
369 boot_cpu_done = true;
370 } else {
371 pat_ap_init(pat);
372 }
373 }
374
375 #undef PAT
376
377 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
378
379 /*
380 * Does intersection of PAT memory type and MTRR memory type and returns
381 * the resulting memory type as PAT understands it.
382 * (Type in pat and mtrr will not have same value)
383 * The intersection is based on "Effective Memory Type" tables in IA-32
384 * SDM vol 3a
385 */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)386 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
387 enum page_cache_mode req_type)
388 {
389 /*
390 * Look for MTRR hint to get the effective type in case where PAT
391 * request is for WB.
392 */
393 if (req_type == _PAGE_CACHE_MODE_WB) {
394 u8 mtrr_type, uniform;
395
396 mtrr_type = mtrr_type_lookup(start, end, &uniform);
397 if (mtrr_type != MTRR_TYPE_WRBACK)
398 return _PAGE_CACHE_MODE_UC_MINUS;
399
400 return _PAGE_CACHE_MODE_WB;
401 }
402
403 return req_type;
404 }
405
406 struct pagerange_state {
407 unsigned long cur_pfn;
408 int ram;
409 int not_ram;
410 };
411
412 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)413 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
414 {
415 struct pagerange_state *state = arg;
416
417 state->not_ram |= initial_pfn > state->cur_pfn;
418 state->ram |= total_nr_pages > 0;
419 state->cur_pfn = initial_pfn + total_nr_pages;
420
421 return state->ram && state->not_ram;
422 }
423
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)424 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
425 {
426 int ret = 0;
427 unsigned long start_pfn = start >> PAGE_SHIFT;
428 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
429 struct pagerange_state state = {start_pfn, 0, 0};
430
431 /*
432 * For legacy reasons, physical address range in the legacy ISA
433 * region is tracked as non-RAM. This will allow users of
434 * /dev/mem to map portions of legacy ISA region, even when
435 * some of those portions are listed(or not even listed) with
436 * different e820 types(RAM/reserved/..)
437 */
438 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
439 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
440
441 if (start_pfn < end_pfn) {
442 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
443 &state, pagerange_is_ram_callback);
444 }
445
446 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
447 }
448
449 /*
450 * For RAM pages, we use page flags to mark the pages with appropriate type.
451 * The page flags are limited to four types, WB (default), WC, WT and UC-.
452 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
453 * a new memory type is only allowed for a page mapped with the default WB
454 * type.
455 *
456 * Here we do two passes:
457 * - Find the memtype of all the pages in the range, look for any conflicts.
458 * - In case of no conflicts, set the new memtype for pages in the range.
459 */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)460 static int reserve_ram_pages_type(u64 start, u64 end,
461 enum page_cache_mode req_type,
462 enum page_cache_mode *new_type)
463 {
464 struct page *page;
465 u64 pfn;
466
467 if (req_type == _PAGE_CACHE_MODE_WP) {
468 if (new_type)
469 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
470 return -EINVAL;
471 }
472
473 if (req_type == _PAGE_CACHE_MODE_UC) {
474 /* We do not support strong UC */
475 WARN_ON_ONCE(1);
476 req_type = _PAGE_CACHE_MODE_UC_MINUS;
477 }
478
479 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
480 enum page_cache_mode type;
481
482 page = pfn_to_page(pfn);
483 type = get_page_memtype(page);
484 if (type != _PAGE_CACHE_MODE_WB) {
485 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
486 start, end - 1, type, req_type);
487 if (new_type)
488 *new_type = type;
489
490 return -EBUSY;
491 }
492 }
493
494 if (new_type)
495 *new_type = req_type;
496
497 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
498 page = pfn_to_page(pfn);
499 set_page_memtype(page, req_type);
500 }
501 return 0;
502 }
503
free_ram_pages_type(u64 start,u64 end)504 static int free_ram_pages_type(u64 start, u64 end)
505 {
506 struct page *page;
507 u64 pfn;
508
509 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
510 page = pfn_to_page(pfn);
511 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
512 }
513 return 0;
514 }
515
sanitize_phys(u64 address)516 static u64 sanitize_phys(u64 address)
517 {
518 /*
519 * When changing the memtype for pages containing poison allow
520 * for a "decoy" virtual address (bit 63 clear) passed to
521 * set_memory_X(). __pa() on a "decoy" address results in a
522 * physical address with bit 63 set.
523 *
524 * Decoy addresses are not present for 32-bit builds, see
525 * set_mce_nospec().
526 */
527 if (IS_ENABLED(CONFIG_X86_64))
528 return address & __PHYSICAL_MASK;
529 return address;
530 }
531
532 /*
533 * req_type typically has one of the:
534 * - _PAGE_CACHE_MODE_WB
535 * - _PAGE_CACHE_MODE_WC
536 * - _PAGE_CACHE_MODE_UC_MINUS
537 * - _PAGE_CACHE_MODE_UC
538 * - _PAGE_CACHE_MODE_WT
539 *
540 * If new_type is NULL, function will return an error if it cannot reserve the
541 * region with req_type. If new_type is non-NULL, function will return
542 * available type in new_type in case of no error. In case of any error
543 * it will return a negative return value.
544 */
reserve_memtype(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)545 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
546 enum page_cache_mode *new_type)
547 {
548 struct memtype *new;
549 enum page_cache_mode actual_type;
550 int is_range_ram;
551 int err = 0;
552
553 start = sanitize_phys(start);
554 end = sanitize_phys(end);
555 if (start >= end) {
556 WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
557 start, end - 1, cattr_name(req_type));
558 return -EINVAL;
559 }
560
561 if (!pat_enabled()) {
562 /* This is identical to page table setting without PAT */
563 if (new_type)
564 *new_type = req_type;
565 return 0;
566 }
567
568 /* Low ISA region is always mapped WB in page table. No need to track */
569 if (x86_platform.is_untracked_pat_range(start, end)) {
570 if (new_type)
571 *new_type = _PAGE_CACHE_MODE_WB;
572 return 0;
573 }
574
575 /*
576 * Call mtrr_lookup to get the type hint. This is an
577 * optimization for /dev/mem mmap'ers into WB memory (BIOS
578 * tools and ACPI tools). Use WB request for WB memory and use
579 * UC_MINUS otherwise.
580 */
581 actual_type = pat_x_mtrr_type(start, end, req_type);
582
583 if (new_type)
584 *new_type = actual_type;
585
586 is_range_ram = pat_pagerange_is_ram(start, end);
587 if (is_range_ram == 1) {
588
589 err = reserve_ram_pages_type(start, end, req_type, new_type);
590
591 return err;
592 } else if (is_range_ram < 0) {
593 return -EINVAL;
594 }
595
596 new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
597 if (!new)
598 return -ENOMEM;
599
600 new->start = start;
601 new->end = end;
602 new->type = actual_type;
603
604 spin_lock(&memtype_lock);
605
606 err = rbt_memtype_check_insert(new, new_type);
607 if (err) {
608 pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
609 start, end - 1,
610 cattr_name(new->type), cattr_name(req_type));
611 kfree(new);
612 spin_unlock(&memtype_lock);
613
614 return err;
615 }
616
617 spin_unlock(&memtype_lock);
618
619 dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
620 start, end - 1, cattr_name(new->type), cattr_name(req_type),
621 new_type ? cattr_name(*new_type) : "-");
622
623 return err;
624 }
625
free_memtype(u64 start,u64 end)626 int free_memtype(u64 start, u64 end)
627 {
628 int err = -EINVAL;
629 int is_range_ram;
630 struct memtype *entry;
631
632 if (!pat_enabled())
633 return 0;
634
635 start = sanitize_phys(start);
636 end = sanitize_phys(end);
637
638 /* Low ISA region is always mapped WB. No need to track */
639 if (x86_platform.is_untracked_pat_range(start, end))
640 return 0;
641
642 is_range_ram = pat_pagerange_is_ram(start, end);
643 if (is_range_ram == 1) {
644
645 err = free_ram_pages_type(start, end);
646
647 return err;
648 } else if (is_range_ram < 0) {
649 return -EINVAL;
650 }
651
652 spin_lock(&memtype_lock);
653 entry = rbt_memtype_erase(start, end);
654 spin_unlock(&memtype_lock);
655
656 if (IS_ERR(entry)) {
657 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
658 current->comm, current->pid, start, end - 1);
659 return -EINVAL;
660 }
661
662 kfree(entry);
663
664 dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
665
666 return 0;
667 }
668
669
670 /**
671 * lookup_memtype - Looksup the memory type for a physical address
672 * @paddr: physical address of which memory type needs to be looked up
673 *
674 * Only to be called when PAT is enabled
675 *
676 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
677 * or _PAGE_CACHE_MODE_WT.
678 */
lookup_memtype(u64 paddr)679 static enum page_cache_mode lookup_memtype(u64 paddr)
680 {
681 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
682 struct memtype *entry;
683
684 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
685 return rettype;
686
687 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
688 struct page *page;
689
690 page = pfn_to_page(paddr >> PAGE_SHIFT);
691 return get_page_memtype(page);
692 }
693
694 spin_lock(&memtype_lock);
695
696 entry = rbt_memtype_lookup(paddr);
697 if (entry != NULL)
698 rettype = entry->type;
699 else
700 rettype = _PAGE_CACHE_MODE_UC_MINUS;
701
702 spin_unlock(&memtype_lock);
703 return rettype;
704 }
705
706 /**
707 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
708 * of @pfn cannot be overridden by UC MTRR memory type.
709 *
710 * Only to be called when PAT is enabled.
711 *
712 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
713 * Returns false in other cases.
714 */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)715 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
716 {
717 enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
718
719 return cm == _PAGE_CACHE_MODE_UC ||
720 cm == _PAGE_CACHE_MODE_UC_MINUS ||
721 cm == _PAGE_CACHE_MODE_WC;
722 }
723 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
724
725 /**
726 * io_reserve_memtype - Request a memory type mapping for a region of memory
727 * @start: start (physical address) of the region
728 * @end: end (physical address) of the region
729 * @type: A pointer to memtype, with requested type. On success, requested
730 * or any other compatible type that was available for the region is returned
731 *
732 * On success, returns 0
733 * On failure, returns non-zero
734 */
io_reserve_memtype(resource_size_t start,resource_size_t end,enum page_cache_mode * type)735 int io_reserve_memtype(resource_size_t start, resource_size_t end,
736 enum page_cache_mode *type)
737 {
738 resource_size_t size = end - start;
739 enum page_cache_mode req_type = *type;
740 enum page_cache_mode new_type;
741 int ret;
742
743 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
744
745 ret = reserve_memtype(start, end, req_type, &new_type);
746 if (ret)
747 goto out_err;
748
749 if (!is_new_memtype_allowed(start, size, req_type, new_type))
750 goto out_free;
751
752 if (kernel_map_sync_memtype(start, size, new_type) < 0)
753 goto out_free;
754
755 *type = new_type;
756 return 0;
757
758 out_free:
759 free_memtype(start, end);
760 ret = -EBUSY;
761 out_err:
762 return ret;
763 }
764
765 /**
766 * io_free_memtype - Release a memory type mapping for a region of memory
767 * @start: start (physical address) of the region
768 * @end: end (physical address) of the region
769 */
io_free_memtype(resource_size_t start,resource_size_t end)770 void io_free_memtype(resource_size_t start, resource_size_t end)
771 {
772 free_memtype(start, end);
773 }
774
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)775 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
776 {
777 enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
778
779 return io_reserve_memtype(start, start + size, &type);
780 }
781 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
782
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)783 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
784 {
785 io_free_memtype(start, start + size);
786 }
787 EXPORT_SYMBOL(arch_io_free_memtype_wc);
788
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)789 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
790 unsigned long size, pgprot_t vma_prot)
791 {
792 if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
793 vma_prot = pgprot_decrypted(vma_prot);
794
795 return vma_prot;
796 }
797
798 #ifdef CONFIG_STRICT_DEVMEM
799 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)800 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
801 {
802 return 1;
803 }
804 #else
805 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)806 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
807 {
808 u64 from = ((u64)pfn) << PAGE_SHIFT;
809 u64 to = from + size;
810 u64 cursor = from;
811
812 if (!pat_enabled())
813 return 1;
814
815 while (cursor < to) {
816 if (!devmem_is_allowed(pfn))
817 return 0;
818 cursor += PAGE_SIZE;
819 pfn++;
820 }
821 return 1;
822 }
823 #endif /* CONFIG_STRICT_DEVMEM */
824
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)825 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
826 unsigned long size, pgprot_t *vma_prot)
827 {
828 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
829
830 if (!range_is_allowed(pfn, size))
831 return 0;
832
833 if (file->f_flags & O_DSYNC)
834 pcm = _PAGE_CACHE_MODE_UC_MINUS;
835
836 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
837 cachemode2protval(pcm));
838 return 1;
839 }
840
841 /*
842 * Change the memory type for the physial address range in kernel identity
843 * mapping space if that range is a part of identity map.
844 */
kernel_map_sync_memtype(u64 base,unsigned long size,enum page_cache_mode pcm)845 int kernel_map_sync_memtype(u64 base, unsigned long size,
846 enum page_cache_mode pcm)
847 {
848 unsigned long id_sz;
849
850 if (base > __pa(high_memory-1))
851 return 0;
852
853 /*
854 * some areas in the middle of the kernel identity range
855 * are not mapped, like the PCI space.
856 */
857 if (!page_is_ram(base >> PAGE_SHIFT))
858 return 0;
859
860 id_sz = (__pa(high_memory-1) <= base + size) ?
861 __pa(high_memory) - base :
862 size;
863
864 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
865 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
866 current->comm, current->pid,
867 cattr_name(pcm),
868 base, (unsigned long long)(base + size-1));
869 return -EINVAL;
870 }
871 return 0;
872 }
873
874 /*
875 * Internal interface to reserve a range of physical memory with prot.
876 * Reserved non RAM regions only and after successful reserve_memtype,
877 * this func also keeps identity mapping (if any) in sync with this new prot.
878 */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)879 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
880 int strict_prot)
881 {
882 int is_ram = 0;
883 int ret;
884 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
885 enum page_cache_mode pcm = want_pcm;
886
887 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
888
889 /*
890 * reserve_pfn_range() for RAM pages. We do not refcount to keep
891 * track of number of mappings of RAM pages. We can assert that
892 * the type requested matches the type of first page in the range.
893 */
894 if (is_ram) {
895 if (!pat_enabled())
896 return 0;
897
898 pcm = lookup_memtype(paddr);
899 if (want_pcm != pcm) {
900 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
901 current->comm, current->pid,
902 cattr_name(want_pcm),
903 (unsigned long long)paddr,
904 (unsigned long long)(paddr + size - 1),
905 cattr_name(pcm));
906 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
907 (~_PAGE_CACHE_MASK)) |
908 cachemode2protval(pcm));
909 }
910 return 0;
911 }
912
913 ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
914 if (ret)
915 return ret;
916
917 if (pcm != want_pcm) {
918 if (strict_prot ||
919 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
920 free_memtype(paddr, paddr + size);
921 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
922 current->comm, current->pid,
923 cattr_name(want_pcm),
924 (unsigned long long)paddr,
925 (unsigned long long)(paddr + size - 1),
926 cattr_name(pcm));
927 return -EINVAL;
928 }
929 /*
930 * We allow returning different type than the one requested in
931 * non strict case.
932 */
933 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
934 (~_PAGE_CACHE_MASK)) |
935 cachemode2protval(pcm));
936 }
937
938 if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
939 free_memtype(paddr, paddr + size);
940 return -EINVAL;
941 }
942 return 0;
943 }
944
945 /*
946 * Internal interface to free a range of physical memory.
947 * Frees non RAM regions only.
948 */
free_pfn_range(u64 paddr,unsigned long size)949 static void free_pfn_range(u64 paddr, unsigned long size)
950 {
951 int is_ram;
952
953 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
954 if (is_ram == 0)
955 free_memtype(paddr, paddr + size);
956 }
957
958 /*
959 * track_pfn_copy is called when vma that is covering the pfnmap gets
960 * copied through copy_page_range().
961 *
962 * If the vma has a linear pfn mapping for the entire range, we get the prot
963 * from pte and reserve the entire vma range with single reserve_pfn_range call.
964 */
track_pfn_copy(struct vm_area_struct * vma)965 int track_pfn_copy(struct vm_area_struct *vma)
966 {
967 resource_size_t paddr;
968 unsigned long prot;
969 unsigned long vma_size = vma->vm_end - vma->vm_start;
970 pgprot_t pgprot;
971
972 if (vma->vm_flags & VM_PAT) {
973 /*
974 * reserve the whole chunk covered by vma. We need the
975 * starting address and protection from pte.
976 */
977 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
978 WARN_ON_ONCE(1);
979 return -EINVAL;
980 }
981 pgprot = __pgprot(prot);
982 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
983 }
984
985 return 0;
986 }
987
988 /*
989 * prot is passed in as a parameter for the new mapping. If the vma has
990 * a linear pfn mapping for the entire range, or no vma is provided,
991 * reserve the entire pfn + size range with single reserve_pfn_range
992 * call.
993 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)994 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
995 unsigned long pfn, unsigned long addr, unsigned long size)
996 {
997 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
998 enum page_cache_mode pcm;
999
1000 /* reserve the whole chunk starting from paddr */
1001 if (!vma || (addr == vma->vm_start
1002 && size == (vma->vm_end - vma->vm_start))) {
1003 int ret;
1004
1005 ret = reserve_pfn_range(paddr, size, prot, 0);
1006 if (ret == 0 && vma)
1007 vma->vm_flags |= VM_PAT;
1008 return ret;
1009 }
1010
1011 if (!pat_enabled())
1012 return 0;
1013
1014 /*
1015 * For anything smaller than the vma size we set prot based on the
1016 * lookup.
1017 */
1018 pcm = lookup_memtype(paddr);
1019
1020 /* Check memtype for the remaining pages */
1021 while (size > PAGE_SIZE) {
1022 size -= PAGE_SIZE;
1023 paddr += PAGE_SIZE;
1024 if (pcm != lookup_memtype(paddr))
1025 return -EINVAL;
1026 }
1027
1028 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1029 cachemode2protval(pcm));
1030
1031 return 0;
1032 }
1033
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1034 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1035 {
1036 enum page_cache_mode pcm;
1037
1038 if (!pat_enabled())
1039 return;
1040
1041 /* Set prot based on lookup */
1042 pcm = lookup_memtype(pfn_t_to_phys(pfn));
1043 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1044 cachemode2protval(pcm));
1045 }
1046
1047 /*
1048 * untrack_pfn is called while unmapping a pfnmap for a region.
1049 * untrack can be called for a specific region indicated by pfn and size or
1050 * can be for the entire vma (in which case pfn, size are zero).
1051 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1052 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1053 unsigned long size)
1054 {
1055 resource_size_t paddr;
1056 unsigned long prot;
1057
1058 if (vma && !(vma->vm_flags & VM_PAT))
1059 return;
1060
1061 /* free the chunk starting from pfn or the whole chunk */
1062 paddr = (resource_size_t)pfn << PAGE_SHIFT;
1063 if (!paddr && !size) {
1064 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1065 WARN_ON_ONCE(1);
1066 return;
1067 }
1068
1069 size = vma->vm_end - vma->vm_start;
1070 }
1071 free_pfn_range(paddr, size);
1072 if (vma)
1073 vma->vm_flags &= ~VM_PAT;
1074 }
1075
1076 /*
1077 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1078 * with the old vma after its pfnmap page table has been removed. The new
1079 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1080 */
untrack_pfn_moved(struct vm_area_struct * vma)1081 void untrack_pfn_moved(struct vm_area_struct *vma)
1082 {
1083 vma->vm_flags &= ~VM_PAT;
1084 }
1085
pgprot_writecombine(pgprot_t prot)1086 pgprot_t pgprot_writecombine(pgprot_t prot)
1087 {
1088 return __pgprot(pgprot_val(prot) |
1089 cachemode2protval(_PAGE_CACHE_MODE_WC));
1090 }
1091 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1092
pgprot_writethrough(pgprot_t prot)1093 pgprot_t pgprot_writethrough(pgprot_t prot)
1094 {
1095 return __pgprot(pgprot_val(prot) |
1096 cachemode2protval(_PAGE_CACHE_MODE_WT));
1097 }
1098 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1099
1100 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1101
memtype_get_idx(loff_t pos)1102 static struct memtype *memtype_get_idx(loff_t pos)
1103 {
1104 struct memtype *print_entry;
1105 int ret;
1106
1107 print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1108 if (!print_entry)
1109 return NULL;
1110
1111 spin_lock(&memtype_lock);
1112 ret = rbt_memtype_copy_nth_element(print_entry, pos);
1113 spin_unlock(&memtype_lock);
1114
1115 if (!ret) {
1116 return print_entry;
1117 } else {
1118 kfree(print_entry);
1119 return NULL;
1120 }
1121 }
1122
memtype_seq_start(struct seq_file * seq,loff_t * pos)1123 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1124 {
1125 if (*pos == 0) {
1126 ++*pos;
1127 seq_puts(seq, "PAT memtype list:\n");
1128 }
1129
1130 return memtype_get_idx(*pos);
1131 }
1132
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1133 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1134 {
1135 ++*pos;
1136 return memtype_get_idx(*pos);
1137 }
1138
memtype_seq_stop(struct seq_file * seq,void * v)1139 static void memtype_seq_stop(struct seq_file *seq, void *v)
1140 {
1141 }
1142
memtype_seq_show(struct seq_file * seq,void * v)1143 static int memtype_seq_show(struct seq_file *seq, void *v)
1144 {
1145 struct memtype *print_entry = (struct memtype *)v;
1146
1147 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1148 print_entry->start, print_entry->end);
1149 kfree(print_entry);
1150
1151 return 0;
1152 }
1153
1154 static const struct seq_operations memtype_seq_ops = {
1155 .start = memtype_seq_start,
1156 .next = memtype_seq_next,
1157 .stop = memtype_seq_stop,
1158 .show = memtype_seq_show,
1159 };
1160
memtype_seq_open(struct inode * inode,struct file * file)1161 static int memtype_seq_open(struct inode *inode, struct file *file)
1162 {
1163 return seq_open(file, &memtype_seq_ops);
1164 }
1165
1166 static const struct file_operations memtype_fops = {
1167 .open = memtype_seq_open,
1168 .read = seq_read,
1169 .llseek = seq_lseek,
1170 .release = seq_release,
1171 };
1172
pat_memtype_list_init(void)1173 static int __init pat_memtype_list_init(void)
1174 {
1175 if (pat_enabled()) {
1176 debugfs_create_file("pat_memtype_list", S_IRUSR,
1177 arch_debugfs_dir, NULL, &memtype_fops);
1178 }
1179 return 0;
1180 }
1181
1182 late_initcall(pat_memtype_list_init);
1183
1184 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1185