1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/arch/parisc/traps.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 1999, 2000 Philipp Rumpf <prumpf@tux.org>
7 */
8
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'asm.s'.
12 */
13
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
21 #include <linux/delay.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/console.h>
29 #include <linux/bug.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uaccess.h>
32 #include <linux/kdebug.h>
33
34 #include <asm/assembly.h>
35 #include <asm/io.h>
36 #include <asm/irq.h>
37 #include <asm/traps.h>
38 #include <asm/unaligned.h>
39 #include <linux/atomic.h>
40 #include <asm/smp.h>
41 #include <asm/pdc.h>
42 #include <asm/pdc_chassis.h>
43 #include <asm/unwind.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <linux/kgdb.h>
47 #include <linux/kprobes.h>
48
49 #include "../math-emu/math-emu.h" /* for handle_fpe() */
50
51 static void parisc_show_stack(struct task_struct *task,
52 struct pt_regs *regs);
53
printbinary(char * buf,unsigned long x,int nbits)54 static int printbinary(char *buf, unsigned long x, int nbits)
55 {
56 unsigned long mask = 1UL << (nbits - 1);
57 while (mask != 0) {
58 *buf++ = (mask & x ? '1' : '0');
59 mask >>= 1;
60 }
61 *buf = '\0';
62
63 return nbits;
64 }
65
66 #ifdef CONFIG_64BIT
67 #define RFMT "%016lx"
68 #else
69 #define RFMT "%08lx"
70 #endif
71 #define FFMT "%016llx" /* fpregs are 64-bit always */
72
73 #define PRINTREGS(lvl,r,f,fmt,x) \
74 printk("%s%s%02d-%02d " fmt " " fmt " " fmt " " fmt "\n", \
75 lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1], \
76 (r)[(x)+2], (r)[(x)+3])
77
print_gr(char * level,struct pt_regs * regs)78 static void print_gr(char *level, struct pt_regs *regs)
79 {
80 int i;
81 char buf[64];
82
83 printk("%s\n", level);
84 printk("%s YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
85 printbinary(buf, regs->gr[0], 32);
86 printk("%sPSW: %s %s\n", level, buf, print_tainted());
87
88 for (i = 0; i < 32; i += 4)
89 PRINTREGS(level, regs->gr, "r", RFMT, i);
90 }
91
print_fr(char * level,struct pt_regs * regs)92 static void print_fr(char *level, struct pt_regs *regs)
93 {
94 int i;
95 char buf[64];
96 struct { u32 sw[2]; } s;
97
98 /* FR are 64bit everywhere. Need to use asm to get the content
99 * of fpsr/fper1, and we assume that we won't have a FP Identify
100 * in our way, otherwise we're screwed.
101 * The fldd is used to restore the T-bit if there was one, as the
102 * store clears it anyway.
103 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
104 asm volatile ("fstd %%fr0,0(%1) \n\t"
105 "fldd 0(%1),%%fr0 \n\t"
106 : "=m" (s) : "r" (&s) : "r0");
107
108 printk("%s\n", level);
109 printk("%s VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
110 printbinary(buf, s.sw[0], 32);
111 printk("%sFPSR: %s\n", level, buf);
112 printk("%sFPER1: %08x\n", level, s.sw[1]);
113
114 /* here we'll print fr0 again, tho it'll be meaningless */
115 for (i = 0; i < 32; i += 4)
116 PRINTREGS(level, regs->fr, "fr", FFMT, i);
117 }
118
show_regs(struct pt_regs * regs)119 void show_regs(struct pt_regs *regs)
120 {
121 int i, user;
122 char *level;
123 unsigned long cr30, cr31;
124
125 user = user_mode(regs);
126 level = user ? KERN_DEBUG : KERN_CRIT;
127
128 show_regs_print_info(level);
129
130 print_gr(level, regs);
131
132 for (i = 0; i < 8; i += 4)
133 PRINTREGS(level, regs->sr, "sr", RFMT, i);
134
135 if (user)
136 print_fr(level, regs);
137
138 cr30 = mfctl(30);
139 cr31 = mfctl(31);
140 printk("%s\n", level);
141 printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
142 level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
143 printk("%s IIR: %08lx ISR: " RFMT " IOR: " RFMT "\n",
144 level, regs->iir, regs->isr, regs->ior);
145 printk("%s CPU: %8d CR30: " RFMT " CR31: " RFMT "\n",
146 level, current_thread_info()->cpu, cr30, cr31);
147 printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
148
149 if (user) {
150 printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
151 printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
152 printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
153 } else {
154 printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
155 printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
156 printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
157
158 parisc_show_stack(current, regs);
159 }
160 }
161
162 static DEFINE_RATELIMIT_STATE(_hppa_rs,
163 DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
164
165 #define parisc_printk_ratelimited(critical, regs, fmt, ...) { \
166 if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
167 printk(fmt, ##__VA_ARGS__); \
168 show_regs(regs); \
169 } \
170 }
171
172
do_show_stack(struct unwind_frame_info * info)173 static void do_show_stack(struct unwind_frame_info *info)
174 {
175 int i = 1;
176
177 printk(KERN_CRIT "Backtrace:\n");
178 while (i <= MAX_UNWIND_ENTRIES) {
179 if (unwind_once(info) < 0 || info->ip == 0)
180 break;
181
182 if (__kernel_text_address(info->ip)) {
183 printk(KERN_CRIT " [<" RFMT ">] %pS\n",
184 info->ip, (void *) info->ip);
185 i++;
186 }
187 }
188 printk(KERN_CRIT "\n");
189 }
190
parisc_show_stack(struct task_struct * task,struct pt_regs * regs)191 static void parisc_show_stack(struct task_struct *task,
192 struct pt_regs *regs)
193 {
194 struct unwind_frame_info info;
195
196 unwind_frame_init_task(&info, task, regs);
197
198 do_show_stack(&info);
199 }
200
show_stack(struct task_struct * t,unsigned long * sp)201 void show_stack(struct task_struct *t, unsigned long *sp)
202 {
203 parisc_show_stack(t, NULL);
204 }
205
is_valid_bugaddr(unsigned long iaoq)206 int is_valid_bugaddr(unsigned long iaoq)
207 {
208 return 1;
209 }
210
die_if_kernel(char * str,struct pt_regs * regs,long err)211 void die_if_kernel(char *str, struct pt_regs *regs, long err)
212 {
213 if (user_mode(regs)) {
214 if (err == 0)
215 return; /* STFU */
216
217 parisc_printk_ratelimited(1, regs,
218 KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
219 current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
220
221 return;
222 }
223
224 bust_spinlocks(1);
225
226 oops_enter();
227
228 /* Amuse the user in a SPARC fashion */
229 if (err) printk(KERN_CRIT
230 " _______________________________ \n"
231 " < Your System ate a SPARC! Gah! >\n"
232 " ------------------------------- \n"
233 " \\ ^__^\n"
234 " (__)\\ )\\/\\\n"
235 " U ||----w |\n"
236 " || ||\n");
237
238 /* unlock the pdc lock if necessary */
239 pdc_emergency_unlock();
240
241 /* maybe the kernel hasn't booted very far yet and hasn't been able
242 * to initialize the serial or STI console. In that case we should
243 * re-enable the pdc console, so that the user will be able to
244 * identify the problem. */
245 if (!console_drivers)
246 pdc_console_restart();
247
248 if (err)
249 printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
250 current->comm, task_pid_nr(current), str, err);
251
252 /* Wot's wrong wif bein' racy? */
253 if (current->thread.flags & PARISC_KERNEL_DEATH) {
254 printk(KERN_CRIT "%s() recursion detected.\n", __func__);
255 local_irq_enable();
256 while (1);
257 }
258 current->thread.flags |= PARISC_KERNEL_DEATH;
259
260 show_regs(regs);
261 dump_stack();
262 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
263
264 if (in_interrupt())
265 panic("Fatal exception in interrupt");
266
267 if (panic_on_oops)
268 panic("Fatal exception");
269
270 oops_exit();
271 do_exit(SIGSEGV);
272 }
273
274 /* gdb uses break 4,8 */
275 #define GDB_BREAK_INSN 0x10004
handle_gdb_break(struct pt_regs * regs,int wot)276 static void handle_gdb_break(struct pt_regs *regs, int wot)
277 {
278 force_sig_fault(SIGTRAP, wot,
279 (void __user *) (regs->iaoq[0] & ~3));
280 }
281
handle_break(struct pt_regs * regs)282 static void handle_break(struct pt_regs *regs)
283 {
284 unsigned iir = regs->iir;
285
286 if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
287 /* check if a BUG() or WARN() trapped here. */
288 enum bug_trap_type tt;
289 tt = report_bug(regs->iaoq[0] & ~3, regs);
290 if (tt == BUG_TRAP_TYPE_WARN) {
291 regs->iaoq[0] += 4;
292 regs->iaoq[1] += 4;
293 return; /* return to next instruction when WARN_ON(). */
294 }
295 die_if_kernel("Unknown kernel breakpoint", regs,
296 (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
297 }
298
299 #ifdef CONFIG_KPROBES
300 if (unlikely(iir == PARISC_KPROBES_BREAK_INSN)) {
301 parisc_kprobe_break_handler(regs);
302 return;
303 }
304
305 #endif
306
307 #ifdef CONFIG_KGDB
308 if (unlikely(iir == PARISC_KGDB_COMPILED_BREAK_INSN ||
309 iir == PARISC_KGDB_BREAK_INSN)) {
310 kgdb_handle_exception(9, SIGTRAP, 0, regs);
311 return;
312 }
313 #endif
314
315 if (unlikely(iir != GDB_BREAK_INSN))
316 parisc_printk_ratelimited(0, regs,
317 KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
318 iir & 31, (iir>>13) & ((1<<13)-1),
319 task_pid_nr(current), current->comm);
320
321 /* send standard GDB signal */
322 handle_gdb_break(regs, TRAP_BRKPT);
323 }
324
default_trap(int code,struct pt_regs * regs)325 static void default_trap(int code, struct pt_regs *regs)
326 {
327 printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
328 show_regs(regs);
329 }
330
331 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
332
333
transfer_pim_to_trap_frame(struct pt_regs * regs)334 void transfer_pim_to_trap_frame(struct pt_regs *regs)
335 {
336 register int i;
337 extern unsigned int hpmc_pim_data[];
338 struct pdc_hpmc_pim_11 *pim_narrow;
339 struct pdc_hpmc_pim_20 *pim_wide;
340
341 if (boot_cpu_data.cpu_type >= pcxu) {
342
343 pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
344
345 /*
346 * Note: The following code will probably generate a
347 * bunch of truncation error warnings from the compiler.
348 * Could be handled with an ifdef, but perhaps there
349 * is a better way.
350 */
351
352 regs->gr[0] = pim_wide->cr[22];
353
354 for (i = 1; i < 32; i++)
355 regs->gr[i] = pim_wide->gr[i];
356
357 for (i = 0; i < 32; i++)
358 regs->fr[i] = pim_wide->fr[i];
359
360 for (i = 0; i < 8; i++)
361 regs->sr[i] = pim_wide->sr[i];
362
363 regs->iasq[0] = pim_wide->cr[17];
364 regs->iasq[1] = pim_wide->iasq_back;
365 regs->iaoq[0] = pim_wide->cr[18];
366 regs->iaoq[1] = pim_wide->iaoq_back;
367
368 regs->sar = pim_wide->cr[11];
369 regs->iir = pim_wide->cr[19];
370 regs->isr = pim_wide->cr[20];
371 regs->ior = pim_wide->cr[21];
372 }
373 else {
374 pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
375
376 regs->gr[0] = pim_narrow->cr[22];
377
378 for (i = 1; i < 32; i++)
379 regs->gr[i] = pim_narrow->gr[i];
380
381 for (i = 0; i < 32; i++)
382 regs->fr[i] = pim_narrow->fr[i];
383
384 for (i = 0; i < 8; i++)
385 regs->sr[i] = pim_narrow->sr[i];
386
387 regs->iasq[0] = pim_narrow->cr[17];
388 regs->iasq[1] = pim_narrow->iasq_back;
389 regs->iaoq[0] = pim_narrow->cr[18];
390 regs->iaoq[1] = pim_narrow->iaoq_back;
391
392 regs->sar = pim_narrow->cr[11];
393 regs->iir = pim_narrow->cr[19];
394 regs->isr = pim_narrow->cr[20];
395 regs->ior = pim_narrow->cr[21];
396 }
397
398 /*
399 * The following fields only have meaning if we came through
400 * another path. So just zero them here.
401 */
402
403 regs->ksp = 0;
404 regs->kpc = 0;
405 regs->orig_r28 = 0;
406 }
407
408
409 /*
410 * This routine is called as a last resort when everything else
411 * has gone clearly wrong. We get called for faults in kernel space,
412 * and HPMC's.
413 */
parisc_terminate(char * msg,struct pt_regs * regs,int code,unsigned long offset)414 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
415 {
416 static DEFINE_SPINLOCK(terminate_lock);
417
418 (void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP);
419 bust_spinlocks(1);
420
421 set_eiem(0);
422 local_irq_disable();
423 spin_lock(&terminate_lock);
424
425 /* unlock the pdc lock if necessary */
426 pdc_emergency_unlock();
427
428 /* restart pdc console if necessary */
429 if (!console_drivers)
430 pdc_console_restart();
431
432 /* Not all paths will gutter the processor... */
433 switch(code){
434
435 case 1:
436 transfer_pim_to_trap_frame(regs);
437 break;
438
439 default:
440 /* Fall through */
441 break;
442
443 }
444
445 {
446 /* show_stack(NULL, (unsigned long *)regs->gr[30]); */
447 struct unwind_frame_info info;
448 unwind_frame_init(&info, current, regs);
449 do_show_stack(&info);
450 }
451
452 printk("\n");
453 pr_crit("%s: Code=%d (%s) at addr " RFMT "\n",
454 msg, code, trap_name(code), offset);
455 show_regs(regs);
456
457 spin_unlock(&terminate_lock);
458
459 /* put soft power button back under hardware control;
460 * if the user had pressed it once at any time, the
461 * system will shut down immediately right here. */
462 pdc_soft_power_button(0);
463
464 /* Call kernel panic() so reboot timeouts work properly
465 * FIXME: This function should be on the list of
466 * panic notifiers, and we should call panic
467 * directly from the location that we wish.
468 * e.g. We should not call panic from
469 * parisc_terminate, but rather the oter way around.
470 * This hack works, prints the panic message twice,
471 * and it enables reboot timers!
472 */
473 panic(msg);
474 }
475
handle_interruption(int code,struct pt_regs * regs)476 void notrace handle_interruption(int code, struct pt_regs *regs)
477 {
478 unsigned long fault_address = 0;
479 unsigned long fault_space = 0;
480 int si_code;
481
482 if (code == 1)
483 pdc_console_restart(); /* switch back to pdc if HPMC */
484 else
485 local_irq_enable();
486
487 /* Security check:
488 * If the priority level is still user, and the
489 * faulting space is not equal to the active space
490 * then the user is attempting something in a space
491 * that does not belong to them. Kill the process.
492 *
493 * This is normally the situation when the user
494 * attempts to jump into the kernel space at the
495 * wrong offset, be it at the gateway page or a
496 * random location.
497 *
498 * We cannot normally signal the process because it
499 * could *be* on the gateway page, and processes
500 * executing on the gateway page can't have signals
501 * delivered.
502 *
503 * We merely readjust the address into the users
504 * space, at a destination address of zero, and
505 * allow processing to continue.
506 */
507 if (((unsigned long)regs->iaoq[0] & 3) &&
508 ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) {
509 /* Kill the user process later */
510 regs->iaoq[0] = 0 | 3;
511 regs->iaoq[1] = regs->iaoq[0] + 4;
512 regs->iasq[0] = regs->iasq[1] = regs->sr[7];
513 regs->gr[0] &= ~PSW_B;
514 return;
515 }
516
517 #if 0
518 printk(KERN_CRIT "Interruption # %d\n", code);
519 #endif
520
521 switch(code) {
522
523 case 1:
524 /* High-priority machine check (HPMC) */
525
526 /* set up a new led state on systems shipped with a LED State panel */
527 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
528
529 parisc_terminate("High Priority Machine Check (HPMC)",
530 regs, code, 0);
531 /* NOT REACHED */
532
533 case 2:
534 /* Power failure interrupt */
535 printk(KERN_CRIT "Power failure interrupt !\n");
536 return;
537
538 case 3:
539 /* Recovery counter trap */
540 regs->gr[0] &= ~PSW_R;
541
542 #ifdef CONFIG_KPROBES
543 if (parisc_kprobe_ss_handler(regs))
544 return;
545 #endif
546
547 #ifdef CONFIG_KGDB
548 if (kgdb_single_step) {
549 kgdb_handle_exception(0, SIGTRAP, 0, regs);
550 return;
551 }
552 #endif
553
554 if (user_space(regs))
555 handle_gdb_break(regs, TRAP_TRACE);
556 /* else this must be the start of a syscall - just let it run */
557 return;
558
559 case 5:
560 /* Low-priority machine check */
561 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
562
563 flush_cache_all();
564 flush_tlb_all();
565 cpu_lpmc(5, regs);
566 return;
567
568 case PARISC_ITLB_TRAP:
569 /* Instruction TLB miss fault/Instruction page fault */
570 fault_address = regs->iaoq[0];
571 fault_space = regs->iasq[0];
572 break;
573
574 case 8:
575 /* Illegal instruction trap */
576 die_if_kernel("Illegal instruction", regs, code);
577 si_code = ILL_ILLOPC;
578 goto give_sigill;
579
580 case 9:
581 /* Break instruction trap */
582 handle_break(regs);
583 return;
584
585 case 10:
586 /* Privileged operation trap */
587 die_if_kernel("Privileged operation", regs, code);
588 si_code = ILL_PRVOPC;
589 goto give_sigill;
590
591 case 11:
592 /* Privileged register trap */
593 if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
594
595 /* This is a MFCTL cr26/cr27 to gr instruction.
596 * PCXS traps on this, so we need to emulate it.
597 */
598
599 if (regs->iir & 0x00200000)
600 regs->gr[regs->iir & 0x1f] = mfctl(27);
601 else
602 regs->gr[regs->iir & 0x1f] = mfctl(26);
603
604 regs->iaoq[0] = regs->iaoq[1];
605 regs->iaoq[1] += 4;
606 regs->iasq[0] = regs->iasq[1];
607 return;
608 }
609
610 die_if_kernel("Privileged register usage", regs, code);
611 si_code = ILL_PRVREG;
612 give_sigill:
613 force_sig_fault(SIGILL, si_code,
614 (void __user *) regs->iaoq[0]);
615 return;
616
617 case 12:
618 /* Overflow Trap, let the userland signal handler do the cleanup */
619 force_sig_fault(SIGFPE, FPE_INTOVF,
620 (void __user *) regs->iaoq[0]);
621 return;
622
623 case 13:
624 /* Conditional Trap
625 The condition succeeds in an instruction which traps
626 on condition */
627 if(user_mode(regs)){
628 /* Let userspace app figure it out from the insn pointed
629 * to by si_addr.
630 */
631 force_sig_fault(SIGFPE, FPE_CONDTRAP,
632 (void __user *) regs->iaoq[0]);
633 return;
634 }
635 /* The kernel doesn't want to handle condition codes */
636 break;
637
638 case 14:
639 /* Assist Exception Trap, i.e. floating point exception. */
640 die_if_kernel("Floating point exception", regs, 0); /* quiet */
641 __inc_irq_stat(irq_fpassist_count);
642 handle_fpe(regs);
643 return;
644
645 case 15:
646 /* Data TLB miss fault/Data page fault */
647 /* Fall through */
648 case 16:
649 /* Non-access instruction TLB miss fault */
650 /* The instruction TLB entry needed for the target address of the FIC
651 is absent, and hardware can't find it, so we get to cleanup */
652 /* Fall through */
653 case 17:
654 /* Non-access data TLB miss fault/Non-access data page fault */
655 /* FIXME:
656 Still need to add slow path emulation code here!
657 If the insn used a non-shadow register, then the tlb
658 handlers could not have their side-effect (e.g. probe
659 writing to a target register) emulated since rfir would
660 erase the changes to said register. Instead we have to
661 setup everything, call this function we are in, and emulate
662 by hand. Technically we need to emulate:
663 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
664 */
665 fault_address = regs->ior;
666 fault_space = regs->isr;
667 break;
668
669 case 18:
670 /* PCXS only -- later cpu's split this into types 26,27 & 28 */
671 /* Check for unaligned access */
672 if (check_unaligned(regs)) {
673 handle_unaligned(regs);
674 return;
675 }
676 /* Fall Through */
677 case 26:
678 /* PCXL: Data memory access rights trap */
679 fault_address = regs->ior;
680 fault_space = regs->isr;
681 break;
682
683 case 19:
684 /* Data memory break trap */
685 regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
686 /* fall thru */
687 case 21:
688 /* Page reference trap */
689 handle_gdb_break(regs, TRAP_HWBKPT);
690 return;
691
692 case 25:
693 /* Taken branch trap */
694 regs->gr[0] &= ~PSW_T;
695 if (user_space(regs))
696 handle_gdb_break(regs, TRAP_BRANCH);
697 /* else this must be the start of a syscall - just let it
698 * run.
699 */
700 return;
701
702 case 7:
703 /* Instruction access rights */
704 /* PCXL: Instruction memory protection trap */
705
706 /*
707 * This could be caused by either: 1) a process attempting
708 * to execute within a vma that does not have execute
709 * permission, or 2) an access rights violation caused by a
710 * flush only translation set up by ptep_get_and_clear().
711 * So we check the vma permissions to differentiate the two.
712 * If the vma indicates we have execute permission, then
713 * the cause is the latter one. In this case, we need to
714 * call do_page_fault() to fix the problem.
715 */
716
717 if (user_mode(regs)) {
718 struct vm_area_struct *vma;
719
720 down_read(¤t->mm->mmap_sem);
721 vma = find_vma(current->mm,regs->iaoq[0]);
722 if (vma && (regs->iaoq[0] >= vma->vm_start)
723 && (vma->vm_flags & VM_EXEC)) {
724
725 fault_address = regs->iaoq[0];
726 fault_space = regs->iasq[0];
727
728 up_read(¤t->mm->mmap_sem);
729 break; /* call do_page_fault() */
730 }
731 up_read(¤t->mm->mmap_sem);
732 }
733 /* Fall Through */
734 case 27:
735 /* Data memory protection ID trap */
736 if (code == 27 && !user_mode(regs) &&
737 fixup_exception(regs))
738 return;
739
740 die_if_kernel("Protection id trap", regs, code);
741 force_sig_fault(SIGSEGV, SEGV_MAPERR,
742 (code == 7)?
743 ((void __user *) regs->iaoq[0]) :
744 ((void __user *) regs->ior));
745 return;
746
747 case 28:
748 /* Unaligned data reference trap */
749 handle_unaligned(regs);
750 return;
751
752 default:
753 if (user_mode(regs)) {
754 parisc_printk_ratelimited(0, regs, KERN_DEBUG
755 "handle_interruption() pid=%d command='%s'\n",
756 task_pid_nr(current), current->comm);
757 /* SIGBUS, for lack of a better one. */
758 force_sig_fault(SIGBUS, BUS_OBJERR,
759 (void __user *)regs->ior);
760 return;
761 }
762 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
763
764 parisc_terminate("Unexpected interruption", regs, code, 0);
765 /* NOT REACHED */
766 }
767
768 if (user_mode(regs)) {
769 if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
770 parisc_printk_ratelimited(0, regs, KERN_DEBUG
771 "User fault %d on space 0x%08lx, pid=%d command='%s'\n",
772 code, fault_space,
773 task_pid_nr(current), current->comm);
774 force_sig_fault(SIGSEGV, SEGV_MAPERR,
775 (void __user *)regs->ior);
776 return;
777 }
778 }
779 else {
780
781 /*
782 * The kernel should never fault on its own address space,
783 * unless pagefault_disable() was called before.
784 */
785
786 if (fault_space == 0 && !faulthandler_disabled())
787 {
788 /* Clean up and return if in exception table. */
789 if (fixup_exception(regs))
790 return;
791 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
792 parisc_terminate("Kernel Fault", regs, code, fault_address);
793 }
794 }
795
796 do_page_fault(regs, code, fault_address);
797 }
798
799
initialize_ivt(const void * iva)800 void __init initialize_ivt(const void *iva)
801 {
802 extern u32 os_hpmc_size;
803 extern const u32 os_hpmc[];
804
805 int i;
806 u32 check = 0;
807 u32 *ivap;
808 u32 *hpmcp;
809 u32 length, instr;
810
811 if (strcmp((const char *)iva, "cows can fly"))
812 panic("IVT invalid");
813
814 ivap = (u32 *)iva;
815
816 for (i = 0; i < 8; i++)
817 *ivap++ = 0;
818
819 /*
820 * Use PDC_INSTR firmware function to get instruction that invokes
821 * PDCE_CHECK in HPMC handler. See programming note at page 1-31 of
822 * the PA 1.1 Firmware Architecture document.
823 */
824 if (pdc_instr(&instr) == PDC_OK)
825 ivap[0] = instr;
826
827 /*
828 * Rules for the checksum of the HPMC handler:
829 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed
830 * its own IVA).
831 * 2. The word at IVA + 32 is nonzero.
832 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and
833 * Address (IVA + 56) are word-aligned.
834 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of
835 * the Length/4 words starting at Address is zero.
836 */
837
838 /* Setup IVA and compute checksum for HPMC handler */
839 ivap[6] = (u32)__pa(os_hpmc);
840 length = os_hpmc_size;
841 ivap[7] = length;
842
843 hpmcp = (u32 *)os_hpmc;
844
845 for (i=0; i<length/4; i++)
846 check += *hpmcp++;
847
848 for (i=0; i<8; i++)
849 check += ivap[i];
850
851 ivap[5] = -check;
852 }
853
854
855 /* early_trap_init() is called before we set up kernel mappings and
856 * write-protect the kernel */
early_trap_init(void)857 void __init early_trap_init(void)
858 {
859 extern const void fault_vector_20;
860
861 #ifndef CONFIG_64BIT
862 extern const void fault_vector_11;
863 initialize_ivt(&fault_vector_11);
864 #endif
865
866 initialize_ivt(&fault_vector_20);
867 }
868
trap_init(void)869 void __init trap_init(void)
870 {
871 }
872