1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _RAID5_H
3  #define _RAID5_H
4  
5  #include <linux/raid/xor.h>
6  #include <linux/dmaengine.h>
7  #include <linux/local_lock.h>
8  
9  /*
10   *
11   * Each stripe contains one buffer per device.  Each buffer can be in
12   * one of a number of states stored in "flags".  Changes between
13   * these states happen *almost* exclusively under the protection of the
14   * STRIPE_ACTIVE flag.  Some very specific changes can happen in bi_end_io, and
15   * these are not protected by STRIPE_ACTIVE.
16   *
17   * The flag bits that are used to represent these states are:
18   *   R5_UPTODATE and R5_LOCKED
19   *
20   * State Empty == !UPTODATE, !LOCK
21   *        We have no data, and there is no active request
22   * State Want == !UPTODATE, LOCK
23   *        A read request is being submitted for this block
24   * State Dirty == UPTODATE, LOCK
25   *        Some new data is in this buffer, and it is being written out
26   * State Clean == UPTODATE, !LOCK
27   *        We have valid data which is the same as on disc
28   *
29   * The possible state transitions are:
30   *
31   *  Empty -> Want   - on read or write to get old data for  parity calc
32   *  Empty -> Dirty  - on compute_parity to satisfy write/sync request.
33   *  Empty -> Clean  - on compute_block when computing a block for failed drive
34   *  Want  -> Empty  - on failed read
35   *  Want  -> Clean  - on successful completion of read request
36   *  Dirty -> Clean  - on successful completion of write request
37   *  Dirty -> Clean  - on failed write
38   *  Clean -> Dirty  - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
39   *
40   * The Want->Empty, Want->Clean, Dirty->Clean, transitions
41   * all happen in b_end_io at interrupt time.
42   * Each sets the Uptodate bit before releasing the Lock bit.
43   * This leaves one multi-stage transition:
44   *    Want->Dirty->Clean
45   * This is safe because thinking that a Clean buffer is actually dirty
46   * will at worst delay some action, and the stripe will be scheduled
47   * for attention after the transition is complete.
48   *
49   * There is one possibility that is not covered by these states.  That
50   * is if one drive has failed and there is a spare being rebuilt.  We
51   * can't distinguish between a clean block that has been generated
52   * from parity calculations, and a clean block that has been
53   * successfully written to the spare ( or to parity when resyncing).
54   * To distinguish these states we have a stripe bit STRIPE_INSYNC that
55   * is set whenever a write is scheduled to the spare, or to the parity
56   * disc if there is no spare.  A sync request clears this bit, and
57   * when we find it set with no buffers locked, we know the sync is
58   * complete.
59   *
60   * Buffers for the md device that arrive via make_request are attached
61   * to the appropriate stripe in one of two lists linked on b_reqnext.
62   * One list (bh_read) for read requests, one (bh_write) for write.
63   * There should never be more than one buffer on the two lists
64   * together, but we are not guaranteed of that so we allow for more.
65   *
66   * If a buffer is on the read list when the associated cache buffer is
67   * Uptodate, the data is copied into the read buffer and it's b_end_io
68   * routine is called.  This may happen in the end_request routine only
69   * if the buffer has just successfully been read.  end_request should
70   * remove the buffers from the list and then set the Uptodate bit on
71   * the buffer.  Other threads may do this only if they first check
72   * that the Uptodate bit is set.  Once they have checked that they may
73   * take buffers off the read queue.
74   *
75   * When a buffer on the write list is committed for write it is copied
76   * into the cache buffer, which is then marked dirty, and moved onto a
77   * third list, the written list (bh_written).  Once both the parity
78   * block and the cached buffer are successfully written, any buffer on
79   * a written list can be returned with b_end_io.
80   *
81   * The write list and read list both act as fifos.  The read list,
82   * write list and written list are protected by the device_lock.
83   * The device_lock is only for list manipulations and will only be
84   * held for a very short time.  It can be claimed from interrupts.
85   *
86   *
87   * Stripes in the stripe cache can be on one of two lists (or on
88   * neither).  The "inactive_list" contains stripes which are not
89   * currently being used for any request.  They can freely be reused
90   * for another stripe.  The "handle_list" contains stripes that need
91   * to be handled in some way.  Both of these are fifo queues.  Each
92   * stripe is also (potentially) linked to a hash bucket in the hash
93   * table so that it can be found by sector number.  Stripes that are
94   * not hashed must be on the inactive_list, and will normally be at
95   * the front.  All stripes start life this way.
96   *
97   * The inactive_list, handle_list and hash bucket lists are all protected by the
98   * device_lock.
99   *  - stripes have a reference counter. If count==0, they are on a list.
100   *  - If a stripe might need handling, STRIPE_HANDLE is set.
101   *  - When refcount reaches zero, then if STRIPE_HANDLE it is put on
102   *    handle_list else inactive_list
103   *
104   * This, combined with the fact that STRIPE_HANDLE is only ever
105   * cleared while a stripe has a non-zero count means that if the
106   * refcount is 0 and STRIPE_HANDLE is set, then it is on the
107   * handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
108   * the stripe is on inactive_list.
109   *
110   * The possible transitions are:
111   *  activate an unhashed/inactive stripe (get_active_stripe())
112   *     lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
113   *  activate a hashed, possibly active stripe (get_active_stripe())
114   *     lockdev check-hash if(!cnt++)unlink-stripe unlockdev
115   *  attach a request to an active stripe (add_stripe_bh())
116   *     lockdev attach-buffer unlockdev
117   *  handle a stripe (handle_stripe())
118   *     setSTRIPE_ACTIVE,  clrSTRIPE_HANDLE ...
119   *		(lockdev check-buffers unlockdev) ..
120   *		change-state ..
121   *		record io/ops needed clearSTRIPE_ACTIVE schedule io/ops
122   *  release an active stripe (release_stripe())
123   *     lockdev if (!--cnt) { if  STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
124   *
125   * The refcount counts each thread that have activated the stripe,
126   * plus raid5d if it is handling it, plus one for each active request
127   * on a cached buffer, and plus one if the stripe is undergoing stripe
128   * operations.
129   *
130   * The stripe operations are:
131   * -copying data between the stripe cache and user application buffers
132   * -computing blocks to save a disk access, or to recover a missing block
133   * -updating the parity on a write operation (reconstruct write and
134   *  read-modify-write)
135   * -checking parity correctness
136   * -running i/o to disk
137   * These operations are carried out by raid5_run_ops which uses the async_tx
138   * api to (optionally) offload operations to dedicated hardware engines.
139   * When requesting an operation handle_stripe sets the pending bit for the
140   * operation and increments the count.  raid5_run_ops is then run whenever
141   * the count is non-zero.
142   * There are some critical dependencies between the operations that prevent some
143   * from being requested while another is in flight.
144   * 1/ Parity check operations destroy the in cache version of the parity block,
145   *    so we prevent parity dependent operations like writes and compute_blocks
146   *    from starting while a check is in progress.  Some dma engines can perform
147   *    the check without damaging the parity block, in these cases the parity
148   *    block is re-marked up to date (assuming the check was successful) and is
149   *    not re-read from disk.
150   * 2/ When a write operation is requested we immediately lock the affected
151   *    blocks, and mark them as not up to date.  This causes new read requests
152   *    to be held off, as well as parity checks and compute block operations.
153   * 3/ Once a compute block operation has been requested handle_stripe treats
154   *    that block as if it is up to date.  raid5_run_ops guaruntees that any
155   *    operation that is dependent on the compute block result is initiated after
156   *    the compute block completes.
157   */
158  
159  /*
160   * Operations state - intermediate states that are visible outside of
161   *   STRIPE_ACTIVE.
162   * In general _idle indicates nothing is running, _run indicates a data
163   * processing operation is active, and _result means the data processing result
164   * is stable and can be acted upon.  For simple operations like biofill and
165   * compute that only have an _idle and _run state they are indicated with
166   * sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN)
167   */
168  /**
169   * enum check_states - handles syncing / repairing a stripe
170   * @check_state_idle - check operations are quiesced
171   * @check_state_run - check operation is running
172   * @check_state_result - set outside lock when check result is valid
173   * @check_state_compute_run - check failed and we are repairing
174   * @check_state_compute_result - set outside lock when compute result is valid
175   */
176  enum check_states {
177  	check_state_idle = 0,
178  	check_state_run, /* xor parity check */
179  	check_state_run_q, /* q-parity check */
180  	check_state_run_pq, /* pq dual parity check */
181  	check_state_check_result,
182  	check_state_compute_run, /* parity repair */
183  	check_state_compute_result,
184  };
185  
186  /**
187   * enum reconstruct_states - handles writing or expanding a stripe
188   */
189  enum reconstruct_states {
190  	reconstruct_state_idle = 0,
191  	reconstruct_state_prexor_drain_run,	/* prexor-write */
192  	reconstruct_state_drain_run,		/* write */
193  	reconstruct_state_run,			/* expand */
194  	reconstruct_state_prexor_drain_result,
195  	reconstruct_state_drain_result,
196  	reconstruct_state_result,
197  };
198  
199  #define DEFAULT_STRIPE_SIZE	4096
200  struct stripe_head {
201  	struct hlist_node	hash;
202  	struct list_head	lru;	      /* inactive_list or handle_list */
203  	struct llist_node	release_list;
204  	struct r5conf		*raid_conf;
205  	short			generation;	/* increments with every
206  						 * reshape */
207  	sector_t		sector;		/* sector of this row */
208  	short			pd_idx;		/* parity disk index */
209  	short			qd_idx;		/* 'Q' disk index for raid6 */
210  	short			ddf_layout;/* use DDF ordering to calculate Q */
211  	short			hash_lock_index;
212  	unsigned long		state;		/* state flags */
213  	atomic_t		count;	      /* nr of active thread/requests */
214  	int			bm_seq;	/* sequence number for bitmap flushes */
215  	int			disks;		/* disks in stripe */
216  	int			overwrite_disks; /* total overwrite disks in stripe,
217  						  * this is only checked when stripe
218  						  * has STRIPE_BATCH_READY
219  						  */
220  	enum check_states	check_state;
221  	enum reconstruct_states reconstruct_state;
222  	spinlock_t		stripe_lock;
223  	int			cpu;
224  	struct r5worker_group	*group;
225  
226  	struct stripe_head	*batch_head; /* protected by stripe lock */
227  	spinlock_t		batch_lock; /* only header's lock is useful */
228  	struct list_head	batch_list; /* protected by head's batch lock*/
229  
230  	union {
231  		struct r5l_io_unit	*log_io;
232  		struct ppl_io_unit	*ppl_io;
233  	};
234  
235  	struct list_head	log_list;
236  	sector_t		log_start; /* first meta block on the journal */
237  	struct list_head	r5c; /* for r5c_cache->stripe_in_journal */
238  
239  	struct page		*ppl_page; /* partial parity of this stripe */
240  	/**
241  	 * struct stripe_operations
242  	 * @target - STRIPE_OP_COMPUTE_BLK target
243  	 * @target2 - 2nd compute target in the raid6 case
244  	 * @zero_sum_result - P and Q verification flags
245  	 * @request - async service request flags for raid_run_ops
246  	 */
247  	struct stripe_operations {
248  		int 		     target, target2;
249  		enum sum_check_flags zero_sum_result;
250  	} ops;
251  
252  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
253  	/* These pages will be used by bios in dev[i] */
254  	struct page	**pages;
255  	int	nr_pages;	/* page array size */
256  	int	stripes_per_page;
257  #endif
258  	struct r5dev {
259  		/* rreq and rvec are used for the replacement device when
260  		 * writing data to both devices.
261  		 */
262  		struct bio	req, rreq;
263  		struct bio_vec	vec, rvec;
264  		struct page	*page, *orig_page;
265  		unsigned int    offset;     /* offset of the page */
266  		struct bio	*toread, *read, *towrite, *written;
267  		sector_t	sector;			/* sector of this page */
268  		unsigned long	flags;
269  		u32		log_checksum;
270  		unsigned short	write_hint;
271  	} dev[]; /* allocated depending of RAID geometry ("disks" member) */
272  };
273  
274  /* stripe_head_state - collects and tracks the dynamic state of a stripe_head
275   *     for handle_stripe.
276   */
277  struct stripe_head_state {
278  	/* 'syncing' means that we need to read all devices, either
279  	 * to check/correct parity, or to reconstruct a missing device.
280  	 * 'replacing' means we are replacing one or more drives and
281  	 * the source is valid at this point so we don't need to
282  	 * read all devices, just the replacement targets.
283  	 */
284  	int syncing, expanding, expanded, replacing;
285  	int locked, uptodate, to_read, to_write, failed, written;
286  	int to_fill, compute, req_compute, non_overwrite;
287  	int injournal, just_cached;
288  	int failed_num[2];
289  	int p_failed, q_failed;
290  	int dec_preread_active;
291  	unsigned long ops_request;
292  
293  	struct md_rdev *blocked_rdev;
294  	int handle_bad_blocks;
295  	int log_failed;
296  	int waiting_extra_page;
297  };
298  
299  /* Flags for struct r5dev.flags */
300  enum r5dev_flags {
301  	R5_UPTODATE,	/* page contains current data */
302  	R5_LOCKED,	/* IO has been submitted on "req" */
303  	R5_DOUBLE_LOCKED,/* Cannot clear R5_LOCKED until 2 writes complete */
304  	R5_OVERWRITE,	/* towrite covers whole page */
305  /* and some that are internal to handle_stripe */
306  	R5_Insync,	/* rdev && rdev->in_sync at start */
307  	R5_Wantread,	/* want to schedule a read */
308  	R5_Wantwrite,
309  	R5_Overlap,	/* There is a pending overlapping request
310  			 * on this block */
311  	R5_ReadNoMerge, /* prevent bio from merging in block-layer */
312  	R5_ReadError,	/* seen a read error here recently */
313  	R5_ReWrite,	/* have tried to over-write the readerror */
314  
315  	R5_Expanded,	/* This block now has post-expand data */
316  	R5_Wantcompute,	/* compute_block in progress treat as
317  			 * uptodate
318  			 */
319  	R5_Wantfill,	/* dev->toread contains a bio that needs
320  			 * filling
321  			 */
322  	R5_Wantdrain,	/* dev->towrite needs to be drained */
323  	R5_WantFUA,	/* Write should be FUA */
324  	R5_SyncIO,	/* The IO is sync */
325  	R5_WriteError,	/* got a write error - need to record it */
326  	R5_MadeGood,	/* A bad block has been fixed by writing to it */
327  	R5_ReadRepl,	/* Will/did read from replacement rather than orig */
328  	R5_MadeGoodRepl,/* A bad block on the replacement device has been
329  			 * fixed by writing to it */
330  	R5_NeedReplace,	/* This device has a replacement which is not
331  			 * up-to-date at this stripe. */
332  	R5_WantReplace, /* We need to update the replacement, we have read
333  			 * data in, and now is a good time to write it out.
334  			 */
335  	R5_Discard,	/* Discard the stripe */
336  	R5_SkipCopy,	/* Don't copy data from bio to stripe cache */
337  	R5_InJournal,	/* data being written is in the journal device.
338  			 * if R5_InJournal is set for parity pd_idx, all the
339  			 * data and parity being written are in the journal
340  			 * device
341  			 */
342  	R5_OrigPageUPTDODATE,	/* with write back cache, we read old data into
343  				 * dev->orig_page for prexor. When this flag is
344  				 * set, orig_page contains latest data in the
345  				 * raid disk.
346  				 */
347  };
348  
349  /*
350   * Stripe state
351   */
352  enum {
353  	STRIPE_ACTIVE,
354  	STRIPE_HANDLE,
355  	STRIPE_SYNC_REQUESTED,
356  	STRIPE_SYNCING,
357  	STRIPE_INSYNC,
358  	STRIPE_REPLACED,
359  	STRIPE_PREREAD_ACTIVE,
360  	STRIPE_DELAYED,
361  	STRIPE_DEGRADED,
362  	STRIPE_BIT_DELAY,
363  	STRIPE_EXPANDING,
364  	STRIPE_EXPAND_SOURCE,
365  	STRIPE_EXPAND_READY,
366  	STRIPE_IO_STARTED,	/* do not count towards 'bypass_count' */
367  	STRIPE_FULL_WRITE,	/* all blocks are set to be overwritten */
368  	STRIPE_BIOFILL_RUN,
369  	STRIPE_COMPUTE_RUN,
370  	STRIPE_ON_UNPLUG_LIST,
371  	STRIPE_DISCARD,
372  	STRIPE_ON_RELEASE_LIST,
373  	STRIPE_BATCH_READY,
374  	STRIPE_BATCH_ERR,
375  	STRIPE_BITMAP_PENDING,	/* Being added to bitmap, don't add
376  				 * to batch yet.
377  				 */
378  	STRIPE_LOG_TRAPPED,	/* trapped into log (see raid5-cache.c)
379  				 * this bit is used in two scenarios:
380  				 *
381  				 * 1. write-out phase
382  				 *  set in first entry of r5l_write_stripe
383  				 *  clear in second entry of r5l_write_stripe
384  				 *  used to bypass logic in handle_stripe
385  				 *
386  				 * 2. caching phase
387  				 *  set in r5c_try_caching_write()
388  				 *  clear when journal write is done
389  				 *  used to initiate r5c_cache_data()
390  				 *  also used to bypass logic in handle_stripe
391  				 */
392  	STRIPE_R5C_CACHING,	/* the stripe is in caching phase
393  				 * see more detail in the raid5-cache.c
394  				 */
395  	STRIPE_R5C_PARTIAL_STRIPE,	/* in r5c cache (to-be/being handled or
396  					 * in conf->r5c_partial_stripe_list)
397  					 */
398  	STRIPE_R5C_FULL_STRIPE,	/* in r5c cache (to-be/being handled or
399  				 * in conf->r5c_full_stripe_list)
400  				 */
401  	STRIPE_R5C_PREFLUSH,	/* need to flush journal device */
402  };
403  
404  #define STRIPE_EXPAND_SYNC_FLAGS \
405  	((1 << STRIPE_EXPAND_SOURCE) |\
406  	(1 << STRIPE_EXPAND_READY) |\
407  	(1 << STRIPE_EXPANDING) |\
408  	(1 << STRIPE_SYNC_REQUESTED))
409  /*
410   * Operation request flags
411   */
412  enum {
413  	STRIPE_OP_BIOFILL,
414  	STRIPE_OP_COMPUTE_BLK,
415  	STRIPE_OP_PREXOR,
416  	STRIPE_OP_BIODRAIN,
417  	STRIPE_OP_RECONSTRUCT,
418  	STRIPE_OP_CHECK,
419  	STRIPE_OP_PARTIAL_PARITY,
420  };
421  
422  /*
423   * RAID parity calculation preferences
424   */
425  enum {
426  	PARITY_DISABLE_RMW = 0,
427  	PARITY_ENABLE_RMW,
428  	PARITY_PREFER_RMW,
429  };
430  
431  /*
432   * Pages requested from set_syndrome_sources()
433   */
434  enum {
435  	SYNDROME_SRC_ALL,
436  	SYNDROME_SRC_WANT_DRAIN,
437  	SYNDROME_SRC_WRITTEN,
438  };
439  /*
440   * Plugging:
441   *
442   * To improve write throughput, we need to delay the handling of some
443   * stripes until there has been a chance that several write requests
444   * for the one stripe have all been collected.
445   * In particular, any write request that would require pre-reading
446   * is put on a "delayed" queue until there are no stripes currently
447   * in a pre-read phase.  Further, if the "delayed" queue is empty when
448   * a stripe is put on it then we "plug" the queue and do not process it
449   * until an unplug call is made. (the unplug_io_fn() is called).
450   *
451   * When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
452   * it to the count of prereading stripes.
453   * When write is initiated, or the stripe refcnt == 0 (just in case) we
454   * clear the PREREAD_ACTIVE flag and decrement the count
455   * Whenever the 'handle' queue is empty and the device is not plugged, we
456   * move any strips from delayed to handle and clear the DELAYED flag and set
457   * PREREAD_ACTIVE.
458   * In stripe_handle, if we find pre-reading is necessary, we do it if
459   * PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
460   * HANDLE gets cleared if stripe_handle leaves nothing locked.
461   */
462  
463  /* Note: disk_info.rdev can be set to NULL asynchronously by raid5_remove_disk.
464   * There are three safe ways to access disk_info.rdev.
465   * 1/ when holding mddev->reconfig_mutex
466   * 2/ when resync/recovery/reshape is known to be happening - i.e. in code that
467   *    is called as part of performing resync/recovery/reshape.
468   * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
469   *    and if it is non-NULL, increment rdev->nr_pending before dropping the RCU
470   *    lock.
471   * When .rdev is set to NULL, the nr_pending count checked again and if
472   * it has been incremented, the pointer is put back in .rdev.
473   */
474  
475  struct disk_info {
476  	struct md_rdev	__rcu *rdev;
477  	struct md_rdev  __rcu *replacement;
478  	struct page	*extra_page; /* extra page to use in prexor */
479  };
480  
481  /*
482   * Stripe cache
483   */
484  
485  #define NR_STRIPES		256
486  
487  #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
488  #define STRIPE_SIZE		PAGE_SIZE
489  #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
490  #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
491  #endif
492  
493  #define	IO_THRESHOLD		1
494  #define BYPASS_THRESHOLD	1
495  #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
496  #define HASH_MASK		(NR_HASH - 1)
497  #define MAX_STRIPE_BATCH	8
498  
499  /* NOTE NR_STRIPE_HASH_LOCKS must remain below 64.
500   * This is because we sometimes take all the spinlocks
501   * and creating that much locking depth can cause
502   * problems.
503   */
504  #define NR_STRIPE_HASH_LOCKS 8
505  #define STRIPE_HASH_LOCKS_MASK (NR_STRIPE_HASH_LOCKS - 1)
506  
507  struct r5worker {
508  	struct work_struct work;
509  	struct r5worker_group *group;
510  	struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
511  	bool working;
512  };
513  
514  struct r5worker_group {
515  	struct list_head handle_list;
516  	struct list_head loprio_list;
517  	struct r5conf *conf;
518  	struct r5worker *workers;
519  	int stripes_cnt;
520  };
521  
522  /*
523   * r5c journal modes of the array: write-back or write-through.
524   * write-through mode has identical behavior as existing log only
525   * implementation.
526   */
527  enum r5c_journal_mode {
528  	R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
529  	R5C_JOURNAL_MODE_WRITE_BACK = 1,
530  };
531  
532  enum r5_cache_state {
533  	R5_INACTIVE_BLOCKED,	/* release of inactive stripes blocked,
534  				 * waiting for 25% to be free
535  				 */
536  	R5_ALLOC_MORE,		/* It might help to allocate another
537  				 * stripe.
538  				 */
539  	R5_DID_ALLOC,		/* A stripe was allocated, don't allocate
540  				 * more until at least one has been
541  				 * released.  This avoids flooding
542  				 * the cache.
543  				 */
544  	R5C_LOG_TIGHT,		/* log device space tight, need to
545  				 * prioritize stripes at last_checkpoint
546  				 */
547  	R5C_LOG_CRITICAL,	/* log device is running out of space,
548  				 * only process stripes that are already
549  				 * occupying the log
550  				 */
551  	R5C_EXTRA_PAGE_IN_USE,	/* a stripe is using disk_info.extra_page
552  				 * for prexor
553  				 */
554  };
555  
556  #define PENDING_IO_MAX 512
557  #define PENDING_IO_ONE_FLUSH 128
558  struct r5pending_data {
559  	struct list_head sibling;
560  	sector_t sector; /* stripe sector */
561  	struct bio_list bios;
562  };
563  
564  struct raid5_percpu {
565  	struct page	*spare_page; /* Used when checking P/Q in raid6 */
566  	void		*scribble;  /* space for constructing buffer
567  				     * lists and performing address
568  				     * conversions
569  				     */
570  	int             scribble_obj_size;
571  	local_lock_t    lock;
572  };
573  
574  struct r5conf {
575  	struct hlist_head	*stripe_hashtbl;
576  	/* only protect corresponding hash list and inactive_list */
577  	spinlock_t		hash_locks[NR_STRIPE_HASH_LOCKS];
578  	struct mddev		*mddev;
579  	int			chunk_sectors;
580  	int			level, algorithm, rmw_level;
581  	int			max_degraded;
582  	int			raid_disks;
583  	int			max_nr_stripes;
584  	int			min_nr_stripes;
585  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
586  	unsigned long	stripe_size;
587  	unsigned int	stripe_shift;
588  	unsigned long	stripe_sectors;
589  #endif
590  
591  	/* reshape_progress is the leading edge of a 'reshape'
592  	 * It has value MaxSector when no reshape is happening
593  	 * If delta_disks < 0, it is the last sector we started work on,
594  	 * else is it the next sector to work on.
595  	 */
596  	sector_t		reshape_progress;
597  	/* reshape_safe is the trailing edge of a reshape.  We know that
598  	 * before (or after) this address, all reshape has completed.
599  	 */
600  	sector_t		reshape_safe;
601  	int			previous_raid_disks;
602  	int			prev_chunk_sectors;
603  	int			prev_algo;
604  	short			generation; /* increments with every reshape */
605  	seqcount_spinlock_t	gen_lock;	/* lock against generation changes */
606  	unsigned long		reshape_checkpoint; /* Time we last updated
607  						     * metadata */
608  	long long		min_offset_diff; /* minimum difference between
609  						  * data_offset and
610  						  * new_data_offset across all
611  						  * devices.  May be negative,
612  						  * but is closest to zero.
613  						  */
614  
615  	struct list_head	handle_list; /* stripes needing handling */
616  	struct list_head	loprio_list; /* low priority stripes */
617  	struct list_head	hold_list; /* preread ready stripes */
618  	struct list_head	delayed_list; /* stripes that have plugged requests */
619  	struct list_head	bitmap_list; /* stripes delaying awaiting bitmap update */
620  	struct bio		*retry_read_aligned; /* currently retrying aligned bios   */
621  	unsigned int		retry_read_offset; /* sector offset into retry_read_aligned */
622  	struct bio		*retry_read_aligned_list; /* aligned bios retry list  */
623  	atomic_t		preread_active_stripes; /* stripes with scheduled io */
624  	atomic_t		active_aligned_reads;
625  	atomic_t		pending_full_writes; /* full write backlog */
626  	int			bypass_count; /* bypassed prereads */
627  	int			bypass_threshold; /* preread nice */
628  	int			skip_copy; /* Don't copy data from bio to stripe cache */
629  	struct list_head	*last_hold; /* detect hold_list promotions */
630  
631  	atomic_t		reshape_stripes; /* stripes with pending writes for reshape */
632  	/* unfortunately we need two cache names as we temporarily have
633  	 * two caches.
634  	 */
635  	int			active_name;
636  	char			cache_name[2][32];
637  	struct kmem_cache	*slab_cache; /* for allocating stripes */
638  	struct mutex		cache_size_mutex; /* Protect changes to cache size */
639  
640  	int			seq_flush, seq_write;
641  	int			quiesce;
642  
643  	int			fullsync;  /* set to 1 if a full sync is needed,
644  					    * (fresh device added).
645  					    * Cleared when a sync completes.
646  					    */
647  	int			recovery_disabled;
648  	/* per cpu variables */
649  	struct raid5_percpu __percpu *percpu;
650  	int scribble_disks;
651  	int scribble_sectors;
652  	struct hlist_node node;
653  
654  	/*
655  	 * Free stripes pool
656  	 */
657  	atomic_t		active_stripes;
658  	struct list_head	inactive_list[NR_STRIPE_HASH_LOCKS];
659  
660  	atomic_t		r5c_cached_full_stripes;
661  	struct list_head	r5c_full_stripe_list;
662  	atomic_t		r5c_cached_partial_stripes;
663  	struct list_head	r5c_partial_stripe_list;
664  	atomic_t		r5c_flushing_full_stripes;
665  	atomic_t		r5c_flushing_partial_stripes;
666  
667  	atomic_t		empty_inactive_list_nr;
668  	struct llist_head	released_stripes;
669  	wait_queue_head_t	wait_for_quiescent;
670  	wait_queue_head_t	wait_for_stripe;
671  	wait_queue_head_t	wait_for_overlap;
672  	unsigned long		cache_state;
673  	struct shrinker		shrinker;
674  	int			pool_size; /* number of disks in stripeheads in pool */
675  	spinlock_t		device_lock;
676  	struct disk_info	*disks;
677  	struct bio_set		bio_split;
678  
679  	/* When taking over an array from a different personality, we store
680  	 * the new thread here until we fully activate the array.
681  	 */
682  	struct md_thread __rcu	*thread;
683  	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
684  	struct r5worker_group	*worker_groups;
685  	int			group_cnt;
686  	int			worker_cnt_per_group;
687  	struct r5l_log		*log;
688  	void			*log_private;
689  
690  	spinlock_t		pending_bios_lock;
691  	bool			batch_bio_dispatch;
692  	struct r5pending_data	*pending_data;
693  	struct list_head	free_list;
694  	struct list_head	pending_list;
695  	int			pending_data_cnt;
696  	struct r5pending_data	*next_pending_data;
697  };
698  
699  #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
700  #define RAID5_STRIPE_SIZE(conf)	STRIPE_SIZE
701  #define RAID5_STRIPE_SHIFT(conf)	STRIPE_SHIFT
702  #define RAID5_STRIPE_SECTORS(conf)	STRIPE_SECTORS
703  #else
704  #define RAID5_STRIPE_SIZE(conf)	((conf)->stripe_size)
705  #define RAID5_STRIPE_SHIFT(conf)	((conf)->stripe_shift)
706  #define RAID5_STRIPE_SECTORS(conf)	((conf)->stripe_sectors)
707  #endif
708  
709  /* bio's attached to a stripe+device for I/O are linked together in bi_sector
710   * order without overlap.  There may be several bio's per stripe+device, and
711   * a bio could span several devices.
712   * When walking this list for a particular stripe+device, we must never proceed
713   * beyond a bio that extends past this device, as the next bio might no longer
714   * be valid.
715   * This function is used to determine the 'next' bio in the list, given the
716   * sector of the current stripe+device
717   */
r5_next_bio(struct r5conf * conf,struct bio * bio,sector_t sector)718  static inline struct bio *r5_next_bio(struct r5conf *conf, struct bio *bio, sector_t sector)
719  {
720  	if (bio_end_sector(bio) < sector + RAID5_STRIPE_SECTORS(conf))
721  		return bio->bi_next;
722  	else
723  		return NULL;
724  }
725  
726  /*
727   * Our supported algorithms
728   */
729  #define ALGORITHM_LEFT_ASYMMETRIC	0 /* Rotating Parity N with Data Restart */
730  #define ALGORITHM_RIGHT_ASYMMETRIC	1 /* Rotating Parity 0 with Data Restart */
731  #define ALGORITHM_LEFT_SYMMETRIC	2 /* Rotating Parity N with Data Continuation */
732  #define ALGORITHM_RIGHT_SYMMETRIC	3 /* Rotating Parity 0 with Data Continuation */
733  
734  /* Define non-rotating (raid4) algorithms.  These allow
735   * conversion of raid4 to raid5.
736   */
737  #define ALGORITHM_PARITY_0		4 /* P or P,Q are initial devices */
738  #define ALGORITHM_PARITY_N		5 /* P or P,Q are final devices. */
739  
740  /* DDF RAID6 layouts differ from md/raid6 layouts in two ways.
741   * Firstly, the exact positioning of the parity block is slightly
742   * different between the 'LEFT_*' modes of md and the "_N_*" modes
743   * of DDF.
744   * Secondly, or order of datablocks over which the Q syndrome is computed
745   * is different.
746   * Consequently we have different layouts for DDF/raid6 than md/raid6.
747   * These layouts are from the DDFv1.2 spec.
748   * Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but
749   * leaves RLQ=3 as 'Vendor Specific'
750   */
751  
752  #define ALGORITHM_ROTATING_ZERO_RESTART	8 /* DDF PRL=6 RLQ=1 */
753  #define ALGORITHM_ROTATING_N_RESTART	9 /* DDF PRL=6 RLQ=2 */
754  #define ALGORITHM_ROTATING_N_CONTINUE	10 /*DDF PRL=6 RLQ=3 */
755  
756  /* For every RAID5 algorithm we define a RAID6 algorithm
757   * with exactly the same layout for data and parity, and
758   * with the Q block always on the last device (N-1).
759   * This allows trivial conversion from RAID5 to RAID6
760   */
761  #define ALGORITHM_LEFT_ASYMMETRIC_6	16
762  #define ALGORITHM_RIGHT_ASYMMETRIC_6	17
763  #define ALGORITHM_LEFT_SYMMETRIC_6	18
764  #define ALGORITHM_RIGHT_SYMMETRIC_6	19
765  #define ALGORITHM_PARITY_0_6		20
766  #define ALGORITHM_PARITY_N_6		ALGORITHM_PARITY_N
767  
algorithm_valid_raid5(int layout)768  static inline int algorithm_valid_raid5(int layout)
769  {
770  	return (layout >= 0) &&
771  		(layout <= 5);
772  }
algorithm_valid_raid6(int layout)773  static inline int algorithm_valid_raid6(int layout)
774  {
775  	return (layout >= 0 && layout <= 5)
776  		||
777  		(layout >= 8 && layout <= 10)
778  		||
779  		(layout >= 16 && layout <= 20);
780  }
781  
algorithm_is_DDF(int layout)782  static inline int algorithm_is_DDF(int layout)
783  {
784  	return layout >= 8 && layout <= 10;
785  }
786  
787  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
788  /*
789   * Return offset of the corresponding page for r5dev.
790   */
raid5_get_page_offset(struct stripe_head * sh,int disk_idx)791  static inline int raid5_get_page_offset(struct stripe_head *sh, int disk_idx)
792  {
793  	return (disk_idx % sh->stripes_per_page) * RAID5_STRIPE_SIZE(sh->raid_conf);
794  }
795  
796  /*
797   * Return corresponding page address for r5dev.
798   */
799  static inline struct page *
raid5_get_dev_page(struct stripe_head * sh,int disk_idx)800  raid5_get_dev_page(struct stripe_head *sh, int disk_idx)
801  {
802  	return sh->pages[disk_idx / sh->stripes_per_page];
803  }
804  #endif
805  
806  void md_raid5_kick_device(struct r5conf *conf);
807  int raid5_set_cache_size(struct mddev *mddev, int size);
808  sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous);
809  void raid5_release_stripe(struct stripe_head *sh);
810  sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
811  		int previous, int *dd_idx, struct stripe_head *sh);
812  
813  struct stripe_request_ctx;
814  /* get stripe from previous generation (when reshaping) */
815  #define R5_GAS_PREVIOUS		(1 << 0)
816  /* do not block waiting for a free stripe */
817  #define R5_GAS_NOBLOCK		(1 << 1)
818  /* do not block waiting for quiesce to be released */
819  #define R5_GAS_NOQUIESCE	(1 << 2)
820  struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
821  		struct stripe_request_ctx *ctx, sector_t sector,
822  		unsigned int flags);
823  
824  int raid5_calc_degraded(struct r5conf *conf);
825  int r5c_journal_mode_set(struct mddev *mddev, int journal_mode);
826  #endif
827