1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40
41 #include "flow_netlink.h"
42
43 struct ovs_len_tbl {
44 int len;
45 const struct ovs_len_tbl *next;
46 };
47
48 #define OVS_ATTR_NESTED -1
49 #define OVS_ATTR_VARIABLE -2
50
actions_may_change_flow(const struct nlattr * actions)51 static bool actions_may_change_flow(const struct nlattr *actions)
52 {
53 struct nlattr *nla;
54 int rem;
55
56 nla_for_each_nested(nla, actions, rem) {
57 u16 action = nla_type(nla);
58
59 switch (action) {
60 case OVS_ACTION_ATTR_OUTPUT:
61 case OVS_ACTION_ATTR_RECIRC:
62 case OVS_ACTION_ATTR_TRUNC:
63 case OVS_ACTION_ATTR_USERSPACE:
64 break;
65
66 case OVS_ACTION_ATTR_CT:
67 case OVS_ACTION_ATTR_CT_CLEAR:
68 case OVS_ACTION_ATTR_HASH:
69 case OVS_ACTION_ATTR_POP_ETH:
70 case OVS_ACTION_ATTR_POP_MPLS:
71 case OVS_ACTION_ATTR_POP_NSH:
72 case OVS_ACTION_ATTR_POP_VLAN:
73 case OVS_ACTION_ATTR_PUSH_ETH:
74 case OVS_ACTION_ATTR_PUSH_MPLS:
75 case OVS_ACTION_ATTR_PUSH_NSH:
76 case OVS_ACTION_ATTR_PUSH_VLAN:
77 case OVS_ACTION_ATTR_SAMPLE:
78 case OVS_ACTION_ATTR_SET:
79 case OVS_ACTION_ATTR_SET_MASKED:
80 case OVS_ACTION_ATTR_METER:
81 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
82 case OVS_ACTION_ATTR_ADD_MPLS:
83 case OVS_ACTION_ATTR_DEC_TTL:
84 default:
85 return true;
86 }
87 }
88 return false;
89 }
90
update_range(struct sw_flow_match * match,size_t offset,size_t size,bool is_mask)91 static void update_range(struct sw_flow_match *match,
92 size_t offset, size_t size, bool is_mask)
93 {
94 struct sw_flow_key_range *range;
95 size_t start = rounddown(offset, sizeof(long));
96 size_t end = roundup(offset + size, sizeof(long));
97
98 if (!is_mask)
99 range = &match->range;
100 else
101 range = &match->mask->range;
102
103 if (range->start == range->end) {
104 range->start = start;
105 range->end = end;
106 return;
107 }
108
109 if (range->start > start)
110 range->start = start;
111
112 if (range->end < end)
113 range->end = end;
114 }
115
116 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
117 do { \
118 update_range(match, offsetof(struct sw_flow_key, field), \
119 sizeof((match)->key->field), is_mask); \
120 if (is_mask) \
121 (match)->mask->key.field = value; \
122 else \
123 (match)->key->field = value; \
124 } while (0)
125
126 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
127 do { \
128 update_range(match, offset, len, is_mask); \
129 if (is_mask) \
130 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
131 len); \
132 else \
133 memcpy((u8 *)(match)->key + offset, value_p, len); \
134 } while (0)
135
136 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
137 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
138 value_p, len, is_mask)
139
140 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
141 do { \
142 update_range(match, offsetof(struct sw_flow_key, field), \
143 sizeof((match)->key->field), is_mask); \
144 if (is_mask) \
145 memset((u8 *)&(match)->mask->key.field, value, \
146 sizeof((match)->mask->key.field)); \
147 else \
148 memset((u8 *)&(match)->key->field, value, \
149 sizeof((match)->key->field)); \
150 } while (0)
151
match_validate(const struct sw_flow_match * match,u64 key_attrs,u64 mask_attrs,bool log)152 static bool match_validate(const struct sw_flow_match *match,
153 u64 key_attrs, u64 mask_attrs, bool log)
154 {
155 u64 key_expected = 0;
156 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
157
158 /* The following mask attributes allowed only if they
159 * pass the validation tests. */
160 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
161 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
162 | (1 << OVS_KEY_ATTR_IPV6)
163 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
164 | (1 << OVS_KEY_ATTR_TCP)
165 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
166 | (1 << OVS_KEY_ATTR_UDP)
167 | (1 << OVS_KEY_ATTR_SCTP)
168 | (1 << OVS_KEY_ATTR_ICMP)
169 | (1 << OVS_KEY_ATTR_ICMPV6)
170 | (1 << OVS_KEY_ATTR_ARP)
171 | (1 << OVS_KEY_ATTR_ND)
172 | (1 << OVS_KEY_ATTR_MPLS)
173 | (1 << OVS_KEY_ATTR_NSH));
174
175 /* Always allowed mask fields. */
176 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
177 | (1 << OVS_KEY_ATTR_IN_PORT)
178 | (1 << OVS_KEY_ATTR_ETHERTYPE));
179
180 /* Check key attributes. */
181 if (match->key->eth.type == htons(ETH_P_ARP)
182 || match->key->eth.type == htons(ETH_P_RARP)) {
183 key_expected |= 1 << OVS_KEY_ATTR_ARP;
184 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
185 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
186 }
187
188 if (eth_p_mpls(match->key->eth.type)) {
189 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
190 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
191 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
192 }
193
194 if (match->key->eth.type == htons(ETH_P_IP)) {
195 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
196 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
197 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
198 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
199 }
200
201 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
202 if (match->key->ip.proto == IPPROTO_UDP) {
203 key_expected |= 1 << OVS_KEY_ATTR_UDP;
204 if (match->mask && (match->mask->key.ip.proto == 0xff))
205 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
206 }
207
208 if (match->key->ip.proto == IPPROTO_SCTP) {
209 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
210 if (match->mask && (match->mask->key.ip.proto == 0xff))
211 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
212 }
213
214 if (match->key->ip.proto == IPPROTO_TCP) {
215 key_expected |= 1 << OVS_KEY_ATTR_TCP;
216 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
217 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220 }
221 }
222
223 if (match->key->ip.proto == IPPROTO_ICMP) {
224 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
225 if (match->mask && (match->mask->key.ip.proto == 0xff))
226 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
227 }
228 }
229 }
230
231 if (match->key->eth.type == htons(ETH_P_IPV6)) {
232 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
233 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
234 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
235 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
236 }
237
238 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
239 if (match->key->ip.proto == IPPROTO_UDP) {
240 key_expected |= 1 << OVS_KEY_ATTR_UDP;
241 if (match->mask && (match->mask->key.ip.proto == 0xff))
242 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
243 }
244
245 if (match->key->ip.proto == IPPROTO_SCTP) {
246 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
247 if (match->mask && (match->mask->key.ip.proto == 0xff))
248 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
249 }
250
251 if (match->key->ip.proto == IPPROTO_TCP) {
252 key_expected |= 1 << OVS_KEY_ATTR_TCP;
253 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
254 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
255 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
256 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
257 }
258 }
259
260 if (match->key->ip.proto == IPPROTO_ICMPV6) {
261 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
262 if (match->mask && (match->mask->key.ip.proto == 0xff))
263 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
264
265 if (match->key->tp.src ==
266 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
267 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
268 key_expected |= 1 << OVS_KEY_ATTR_ND;
269 /* Original direction conntrack tuple
270 * uses the same space as the ND fields
271 * in the key, so both are not allowed
272 * at the same time.
273 */
274 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
275 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
276 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
277 }
278 }
279 }
280 }
281
282 if (match->key->eth.type == htons(ETH_P_NSH)) {
283 key_expected |= 1 << OVS_KEY_ATTR_NSH;
284 if (match->mask &&
285 match->mask->key.eth.type == htons(0xffff)) {
286 mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
287 }
288 }
289
290 if ((key_attrs & key_expected) != key_expected) {
291 /* Key attributes check failed. */
292 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
293 (unsigned long long)key_attrs,
294 (unsigned long long)key_expected);
295 return false;
296 }
297
298 if ((mask_attrs & mask_allowed) != mask_attrs) {
299 /* Mask attributes check failed. */
300 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
301 (unsigned long long)mask_attrs,
302 (unsigned long long)mask_allowed);
303 return false;
304 }
305
306 return true;
307 }
308
ovs_tun_key_attr_size(void)309 size_t ovs_tun_key_attr_size(void)
310 {
311 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
312 * updating this function.
313 */
314 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
315 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
316 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
317 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
318 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
319 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
320 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
321 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
322 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
323 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
324 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
325 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
326 */
327 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
328 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
329 }
330
ovs_nsh_key_attr_size(void)331 static size_t ovs_nsh_key_attr_size(void)
332 {
333 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
334 * updating this function.
335 */
336 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
337 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
338 * mutually exclusive, so the bigger one can cover
339 * the small one.
340 */
341 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
342 }
343
ovs_key_attr_size(void)344 size_t ovs_key_attr_size(void)
345 {
346 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
347 * updating this function.
348 */
349 BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
350
351 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
352 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
353 + ovs_tun_key_attr_size()
354 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
355 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
356 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
357 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
358 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
359 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
360 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
361 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
362 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
363 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */
364 + ovs_nsh_key_attr_size()
365 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
366 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
367 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
368 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
369 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
370 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
371 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
372 + nla_total_size(28) /* OVS_KEY_ATTR_ND */
373 + nla_total_size(2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */
374 }
375
376 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
377 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
378 };
379
380 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
381 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
382 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
383 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
384 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
385 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
386 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
387 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
388 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
389 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
390 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
391 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
392 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
393 .next = ovs_vxlan_ext_key_lens },
394 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
395 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
396 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE },
397 [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 },
398 };
399
400 static const struct ovs_len_tbl
401 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
402 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
403 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) },
404 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE },
405 };
406
407 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
408 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
409 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
410 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
411 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
412 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
413 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
414 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
415 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
416 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
417 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
418 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
419 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
420 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
421 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
422 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
423 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
424 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
425 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
426 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
427 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
428 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
429 .next = ovs_tunnel_key_lens, },
430 [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE },
431 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
432 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
433 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
434 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
435 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
436 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
437 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
438 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
439 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED,
440 .next = ovs_nsh_key_attr_lens, },
441 [OVS_KEY_ATTR_IPV6_EXTHDRS] = {
442 .len = sizeof(struct ovs_key_ipv6_exthdrs) },
443 };
444
check_attr_len(unsigned int attr_len,unsigned int expected_len)445 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
446 {
447 return expected_len == attr_len ||
448 expected_len == OVS_ATTR_NESTED ||
449 expected_len == OVS_ATTR_VARIABLE;
450 }
451
is_all_zero(const u8 * fp,size_t size)452 static bool is_all_zero(const u8 *fp, size_t size)
453 {
454 int i;
455
456 if (!fp)
457 return false;
458
459 for (i = 0; i < size; i++)
460 if (fp[i])
461 return false;
462
463 return true;
464 }
465
__parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log,bool nz)466 static int __parse_flow_nlattrs(const struct nlattr *attr,
467 const struct nlattr *a[],
468 u64 *attrsp, bool log, bool nz)
469 {
470 const struct nlattr *nla;
471 u64 attrs;
472 int rem;
473
474 attrs = *attrsp;
475 nla_for_each_nested(nla, attr, rem) {
476 u16 type = nla_type(nla);
477 int expected_len;
478
479 if (type > OVS_KEY_ATTR_MAX) {
480 OVS_NLERR(log, "Key type %d is out of range max %d",
481 type, OVS_KEY_ATTR_MAX);
482 return -EINVAL;
483 }
484
485 if (type == OVS_KEY_ATTR_PACKET_TYPE ||
486 type == OVS_KEY_ATTR_ND_EXTENSIONS ||
487 type == OVS_KEY_ATTR_TUNNEL_INFO) {
488 OVS_NLERR(log, "Key type %d is not supported", type);
489 return -EINVAL;
490 }
491
492 if (attrs & (1ULL << type)) {
493 OVS_NLERR(log, "Duplicate key (type %d).", type);
494 return -EINVAL;
495 }
496
497 expected_len = ovs_key_lens[type].len;
498 if (!check_attr_len(nla_len(nla), expected_len)) {
499 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
500 type, nla_len(nla), expected_len);
501 return -EINVAL;
502 }
503
504 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
505 attrs |= 1ULL << type;
506 a[type] = nla;
507 }
508 }
509 if (rem) {
510 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
511 return -EINVAL;
512 }
513
514 *attrsp = attrs;
515 return 0;
516 }
517
parse_flow_mask_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)518 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
519 const struct nlattr *a[], u64 *attrsp,
520 bool log)
521 {
522 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
523 }
524
parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)525 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
526 u64 *attrsp, bool log)
527 {
528 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
529 }
530
genev_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)531 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
532 struct sw_flow_match *match, bool is_mask,
533 bool log)
534 {
535 unsigned long opt_key_offset;
536
537 if (nla_len(a) > sizeof(match->key->tun_opts)) {
538 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
539 nla_len(a), sizeof(match->key->tun_opts));
540 return -EINVAL;
541 }
542
543 if (nla_len(a) % 4 != 0) {
544 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
545 nla_len(a));
546 return -EINVAL;
547 }
548
549 /* We need to record the length of the options passed
550 * down, otherwise packets with the same format but
551 * additional options will be silently matched.
552 */
553 if (!is_mask) {
554 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
555 false);
556 } else {
557 /* This is somewhat unusual because it looks at
558 * both the key and mask while parsing the
559 * attributes (and by extension assumes the key
560 * is parsed first). Normally, we would verify
561 * that each is the correct length and that the
562 * attributes line up in the validate function.
563 * However, that is difficult because this is
564 * variable length and we won't have the
565 * information later.
566 */
567 if (match->key->tun_opts_len != nla_len(a)) {
568 OVS_NLERR(log, "Geneve option len %d != mask len %d",
569 match->key->tun_opts_len, nla_len(a));
570 return -EINVAL;
571 }
572
573 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
574 }
575
576 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
577 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
578 nla_len(a), is_mask);
579 return 0;
580 }
581
vxlan_tun_opt_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)582 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
583 struct sw_flow_match *match, bool is_mask,
584 bool log)
585 {
586 struct nlattr *a;
587 int rem;
588 unsigned long opt_key_offset;
589 struct vxlan_metadata opts;
590
591 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
592
593 memset(&opts, 0, sizeof(opts));
594 nla_for_each_nested(a, attr, rem) {
595 int type = nla_type(a);
596
597 if (type > OVS_VXLAN_EXT_MAX) {
598 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
599 type, OVS_VXLAN_EXT_MAX);
600 return -EINVAL;
601 }
602
603 if (!check_attr_len(nla_len(a),
604 ovs_vxlan_ext_key_lens[type].len)) {
605 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
606 type, nla_len(a),
607 ovs_vxlan_ext_key_lens[type].len);
608 return -EINVAL;
609 }
610
611 switch (type) {
612 case OVS_VXLAN_EXT_GBP:
613 opts.gbp = nla_get_u32(a);
614 break;
615 default:
616 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
617 type);
618 return -EINVAL;
619 }
620 }
621 if (rem) {
622 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
623 rem);
624 return -EINVAL;
625 }
626
627 if (!is_mask)
628 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
629 else
630 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
631
632 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
633 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
634 is_mask);
635 return 0;
636 }
637
erspan_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)638 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
639 struct sw_flow_match *match, bool is_mask,
640 bool log)
641 {
642 unsigned long opt_key_offset;
643
644 BUILD_BUG_ON(sizeof(struct erspan_metadata) >
645 sizeof(match->key->tun_opts));
646
647 if (nla_len(a) > sizeof(match->key->tun_opts)) {
648 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
649 nla_len(a), sizeof(match->key->tun_opts));
650 return -EINVAL;
651 }
652
653 if (!is_mask)
654 SW_FLOW_KEY_PUT(match, tun_opts_len,
655 sizeof(struct erspan_metadata), false);
656 else
657 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
658
659 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
660 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
661 nla_len(a), is_mask);
662 return 0;
663 }
664
ip_tun_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)665 static int ip_tun_from_nlattr(const struct nlattr *attr,
666 struct sw_flow_match *match, bool is_mask,
667 bool log)
668 {
669 bool ttl = false, ipv4 = false, ipv6 = false;
670 bool info_bridge_mode = false;
671 __be16 tun_flags = 0;
672 int opts_type = 0;
673 struct nlattr *a;
674 int rem;
675
676 nla_for_each_nested(a, attr, rem) {
677 int type = nla_type(a);
678 int err;
679
680 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
681 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
682 type, OVS_TUNNEL_KEY_ATTR_MAX);
683 return -EINVAL;
684 }
685
686 if (!check_attr_len(nla_len(a),
687 ovs_tunnel_key_lens[type].len)) {
688 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
689 type, nla_len(a), ovs_tunnel_key_lens[type].len);
690 return -EINVAL;
691 }
692
693 switch (type) {
694 case OVS_TUNNEL_KEY_ATTR_ID:
695 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
696 nla_get_be64(a), is_mask);
697 tun_flags |= TUNNEL_KEY;
698 break;
699 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
700 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
701 nla_get_in_addr(a), is_mask);
702 ipv4 = true;
703 break;
704 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
705 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
706 nla_get_in_addr(a), is_mask);
707 ipv4 = true;
708 break;
709 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
710 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
711 nla_get_in6_addr(a), is_mask);
712 ipv6 = true;
713 break;
714 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
715 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
716 nla_get_in6_addr(a), is_mask);
717 ipv6 = true;
718 break;
719 case OVS_TUNNEL_KEY_ATTR_TOS:
720 SW_FLOW_KEY_PUT(match, tun_key.tos,
721 nla_get_u8(a), is_mask);
722 break;
723 case OVS_TUNNEL_KEY_ATTR_TTL:
724 SW_FLOW_KEY_PUT(match, tun_key.ttl,
725 nla_get_u8(a), is_mask);
726 ttl = true;
727 break;
728 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
729 tun_flags |= TUNNEL_DONT_FRAGMENT;
730 break;
731 case OVS_TUNNEL_KEY_ATTR_CSUM:
732 tun_flags |= TUNNEL_CSUM;
733 break;
734 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
735 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
736 nla_get_be16(a), is_mask);
737 break;
738 case OVS_TUNNEL_KEY_ATTR_TP_DST:
739 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
740 nla_get_be16(a), is_mask);
741 break;
742 case OVS_TUNNEL_KEY_ATTR_OAM:
743 tun_flags |= TUNNEL_OAM;
744 break;
745 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
746 if (opts_type) {
747 OVS_NLERR(log, "Multiple metadata blocks provided");
748 return -EINVAL;
749 }
750
751 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
752 if (err)
753 return err;
754
755 tun_flags |= TUNNEL_GENEVE_OPT;
756 opts_type = type;
757 break;
758 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
759 if (opts_type) {
760 OVS_NLERR(log, "Multiple metadata blocks provided");
761 return -EINVAL;
762 }
763
764 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
765 if (err)
766 return err;
767
768 tun_flags |= TUNNEL_VXLAN_OPT;
769 opts_type = type;
770 break;
771 case OVS_TUNNEL_KEY_ATTR_PAD:
772 break;
773 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
774 if (opts_type) {
775 OVS_NLERR(log, "Multiple metadata blocks provided");
776 return -EINVAL;
777 }
778
779 err = erspan_tun_opt_from_nlattr(a, match, is_mask,
780 log);
781 if (err)
782 return err;
783
784 tun_flags |= TUNNEL_ERSPAN_OPT;
785 opts_type = type;
786 break;
787 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
788 info_bridge_mode = true;
789 ipv4 = true;
790 break;
791 default:
792 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
793 type);
794 return -EINVAL;
795 }
796 }
797
798 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
799 if (is_mask)
800 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
801 else
802 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
803 false);
804
805 if (rem > 0) {
806 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
807 rem);
808 return -EINVAL;
809 }
810
811 if (ipv4 && ipv6) {
812 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
813 return -EINVAL;
814 }
815
816 if (!is_mask) {
817 if (!ipv4 && !ipv6) {
818 OVS_NLERR(log, "IP tunnel dst address not specified");
819 return -EINVAL;
820 }
821 if (ipv4) {
822 if (info_bridge_mode) {
823 if (match->key->tun_key.u.ipv4.src ||
824 match->key->tun_key.u.ipv4.dst ||
825 match->key->tun_key.tp_src ||
826 match->key->tun_key.tp_dst ||
827 match->key->tun_key.ttl ||
828 match->key->tun_key.tos ||
829 tun_flags & ~TUNNEL_KEY) {
830 OVS_NLERR(log, "IPv4 tun info is not correct");
831 return -EINVAL;
832 }
833 } else if (!match->key->tun_key.u.ipv4.dst) {
834 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
835 return -EINVAL;
836 }
837 }
838 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
839 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
840 return -EINVAL;
841 }
842
843 if (!ttl && !info_bridge_mode) {
844 OVS_NLERR(log, "IP tunnel TTL not specified.");
845 return -EINVAL;
846 }
847 }
848
849 return opts_type;
850 }
851
vxlan_opt_to_nlattr(struct sk_buff * skb,const void * tun_opts,int swkey_tun_opts_len)852 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
853 const void *tun_opts, int swkey_tun_opts_len)
854 {
855 const struct vxlan_metadata *opts = tun_opts;
856 struct nlattr *nla;
857
858 nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
859 if (!nla)
860 return -EMSGSIZE;
861
862 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
863 return -EMSGSIZE;
864
865 nla_nest_end(skb, nla);
866 return 0;
867 }
868
__ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)869 static int __ip_tun_to_nlattr(struct sk_buff *skb,
870 const struct ip_tunnel_key *output,
871 const void *tun_opts, int swkey_tun_opts_len,
872 unsigned short tun_proto, u8 mode)
873 {
874 if (output->tun_flags & TUNNEL_KEY &&
875 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
876 OVS_TUNNEL_KEY_ATTR_PAD))
877 return -EMSGSIZE;
878
879 if (mode & IP_TUNNEL_INFO_BRIDGE)
880 return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
881 ? -EMSGSIZE : 0;
882
883 switch (tun_proto) {
884 case AF_INET:
885 if (output->u.ipv4.src &&
886 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
887 output->u.ipv4.src))
888 return -EMSGSIZE;
889 if (output->u.ipv4.dst &&
890 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
891 output->u.ipv4.dst))
892 return -EMSGSIZE;
893 break;
894 case AF_INET6:
895 if (!ipv6_addr_any(&output->u.ipv6.src) &&
896 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
897 &output->u.ipv6.src))
898 return -EMSGSIZE;
899 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
900 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
901 &output->u.ipv6.dst))
902 return -EMSGSIZE;
903 break;
904 }
905 if (output->tos &&
906 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
907 return -EMSGSIZE;
908 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
909 return -EMSGSIZE;
910 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
911 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
912 return -EMSGSIZE;
913 if ((output->tun_flags & TUNNEL_CSUM) &&
914 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
915 return -EMSGSIZE;
916 if (output->tp_src &&
917 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
918 return -EMSGSIZE;
919 if (output->tp_dst &&
920 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
921 return -EMSGSIZE;
922 if ((output->tun_flags & TUNNEL_OAM) &&
923 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
924 return -EMSGSIZE;
925 if (swkey_tun_opts_len) {
926 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
927 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
928 swkey_tun_opts_len, tun_opts))
929 return -EMSGSIZE;
930 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
931 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
932 return -EMSGSIZE;
933 else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
934 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
935 swkey_tun_opts_len, tun_opts))
936 return -EMSGSIZE;
937 }
938
939 return 0;
940 }
941
ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)942 static int ip_tun_to_nlattr(struct sk_buff *skb,
943 const struct ip_tunnel_key *output,
944 const void *tun_opts, int swkey_tun_opts_len,
945 unsigned short tun_proto, u8 mode)
946 {
947 struct nlattr *nla;
948 int err;
949
950 nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
951 if (!nla)
952 return -EMSGSIZE;
953
954 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
955 tun_proto, mode);
956 if (err)
957 return err;
958
959 nla_nest_end(skb, nla);
960 return 0;
961 }
962
ovs_nla_put_tunnel_info(struct sk_buff * skb,struct ip_tunnel_info * tun_info)963 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
964 struct ip_tunnel_info *tun_info)
965 {
966 return __ip_tun_to_nlattr(skb, &tun_info->key,
967 ip_tunnel_info_opts(tun_info),
968 tun_info->options_len,
969 ip_tunnel_info_af(tun_info), tun_info->mode);
970 }
971
encode_vlan_from_nlattrs(struct sw_flow_match * match,const struct nlattr * a[],bool is_mask,bool inner)972 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
973 const struct nlattr *a[],
974 bool is_mask, bool inner)
975 {
976 __be16 tci = 0;
977 __be16 tpid = 0;
978
979 if (a[OVS_KEY_ATTR_VLAN])
980 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
981
982 if (a[OVS_KEY_ATTR_ETHERTYPE])
983 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
984
985 if (likely(!inner)) {
986 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
987 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
988 } else {
989 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
990 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
991 }
992 return 0;
993 }
994
validate_vlan_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)995 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
996 u64 key_attrs, bool inner,
997 const struct nlattr **a, bool log)
998 {
999 __be16 tci = 0;
1000
1001 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1002 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1003 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1004 /* Not a VLAN. */
1005 return 0;
1006 }
1007
1008 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1009 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1010 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1011 return -EINVAL;
1012 }
1013
1014 if (a[OVS_KEY_ATTR_VLAN])
1015 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1016
1017 if (!(tci & htons(VLAN_CFI_MASK))) {
1018 if (tci) {
1019 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1020 (inner) ? "C-VLAN" : "VLAN");
1021 return -EINVAL;
1022 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1023 /* Corner case for truncated VLAN header. */
1024 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1025 (inner) ? "C-VLAN" : "VLAN");
1026 return -EINVAL;
1027 }
1028 }
1029
1030 return 1;
1031 }
1032
validate_vlan_mask_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)1033 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1034 u64 key_attrs, bool inner,
1035 const struct nlattr **a, bool log)
1036 {
1037 __be16 tci = 0;
1038 __be16 tpid = 0;
1039 bool encap_valid = !!(match->key->eth.vlan.tci &
1040 htons(VLAN_CFI_MASK));
1041 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1042 htons(VLAN_CFI_MASK));
1043
1044 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1045 /* Not a VLAN. */
1046 return 0;
1047 }
1048
1049 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1050 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1051 (inner) ? "C-VLAN" : "VLAN");
1052 return -EINVAL;
1053 }
1054
1055 if (a[OVS_KEY_ATTR_VLAN])
1056 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1057
1058 if (a[OVS_KEY_ATTR_ETHERTYPE])
1059 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1060
1061 if (tpid != htons(0xffff)) {
1062 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1063 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1064 return -EINVAL;
1065 }
1066 if (!(tci & htons(VLAN_CFI_MASK))) {
1067 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1068 (inner) ? "C-VLAN" : "VLAN");
1069 return -EINVAL;
1070 }
1071
1072 return 1;
1073 }
1074
__parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,bool inner,const struct nlattr ** a,bool is_mask,bool log)1075 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1076 u64 *key_attrs, bool inner,
1077 const struct nlattr **a, bool is_mask,
1078 bool log)
1079 {
1080 int err;
1081 const struct nlattr *encap;
1082
1083 if (!is_mask)
1084 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1085 a, log);
1086 else
1087 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1088 a, log);
1089 if (err <= 0)
1090 return err;
1091
1092 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1093 if (err)
1094 return err;
1095
1096 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1097 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1098 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1099
1100 encap = a[OVS_KEY_ATTR_ENCAP];
1101
1102 if (!is_mask)
1103 err = parse_flow_nlattrs(encap, a, key_attrs, log);
1104 else
1105 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1106
1107 return err;
1108 }
1109
parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,const struct nlattr ** a,bool is_mask,bool log)1110 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1111 u64 *key_attrs, const struct nlattr **a,
1112 bool is_mask, bool log)
1113 {
1114 int err;
1115 bool encap_valid = false;
1116
1117 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1118 is_mask, log);
1119 if (err)
1120 return err;
1121
1122 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1123 if (encap_valid) {
1124 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1125 is_mask, log);
1126 if (err)
1127 return err;
1128 }
1129
1130 return 0;
1131 }
1132
parse_eth_type_from_nlattrs(struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1133 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1134 u64 *attrs, const struct nlattr **a,
1135 bool is_mask, bool log)
1136 {
1137 __be16 eth_type;
1138
1139 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1140 if (is_mask) {
1141 /* Always exact match EtherType. */
1142 eth_type = htons(0xffff);
1143 } else if (!eth_proto_is_802_3(eth_type)) {
1144 OVS_NLERR(log, "EtherType %x is less than min %x",
1145 ntohs(eth_type), ETH_P_802_3_MIN);
1146 return -EINVAL;
1147 }
1148
1149 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1150 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1151 return 0;
1152 }
1153
metadata_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1154 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1155 u64 *attrs, const struct nlattr **a,
1156 bool is_mask, bool log)
1157 {
1158 u8 mac_proto = MAC_PROTO_ETHERNET;
1159
1160 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1161 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1162
1163 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1164 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1165 }
1166
1167 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1168 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1169
1170 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1171 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1172 }
1173
1174 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1175 SW_FLOW_KEY_PUT(match, phy.priority,
1176 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1177 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1178 }
1179
1180 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1181 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1182
1183 if (is_mask) {
1184 in_port = 0xffffffff; /* Always exact match in_port. */
1185 } else if (in_port >= DP_MAX_PORTS) {
1186 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1187 in_port, DP_MAX_PORTS);
1188 return -EINVAL;
1189 }
1190
1191 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1192 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1193 } else if (!is_mask) {
1194 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1195 }
1196
1197 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1198 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1199
1200 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1201 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1202 }
1203 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1204 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1205 is_mask, log) < 0)
1206 return -EINVAL;
1207 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1208 }
1209
1210 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1211 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1212 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1213
1214 if (ct_state & ~CT_SUPPORTED_MASK) {
1215 OVS_NLERR(log, "ct_state flags %08x unsupported",
1216 ct_state);
1217 return -EINVAL;
1218 }
1219
1220 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1221 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1222 }
1223 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1224 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1225 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1226
1227 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1228 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1229 }
1230 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1231 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1232 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1233
1234 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1235 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1236 }
1237 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1238 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1239 const struct ovs_key_ct_labels *cl;
1240
1241 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1242 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1243 sizeof(*cl), is_mask);
1244 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1245 }
1246 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1247 const struct ovs_key_ct_tuple_ipv4 *ct;
1248
1249 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1250
1251 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1252 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1253 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1254 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1255 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1256 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1257 }
1258 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1259 const struct ovs_key_ct_tuple_ipv6 *ct;
1260
1261 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1262
1263 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1264 sizeof(match->key->ipv6.ct_orig.src),
1265 is_mask);
1266 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1267 sizeof(match->key->ipv6.ct_orig.dst),
1268 is_mask);
1269 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1270 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1271 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1272 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1273 }
1274
1275 /* For layer 3 packets the Ethernet type is provided
1276 * and treated as metadata but no MAC addresses are provided.
1277 */
1278 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1279 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1280 mac_proto = MAC_PROTO_NONE;
1281
1282 /* Always exact match mac_proto */
1283 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1284
1285 if (mac_proto == MAC_PROTO_NONE)
1286 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1287 log);
1288
1289 return 0;
1290 }
1291
nsh_hdr_from_nlattr(const struct nlattr * attr,struct nshhdr * nh,size_t size)1292 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1293 struct nshhdr *nh, size_t size)
1294 {
1295 struct nlattr *a;
1296 int rem;
1297 u8 flags = 0;
1298 u8 ttl = 0;
1299 int mdlen = 0;
1300
1301 /* validate_nsh has check this, so we needn't do duplicate check here
1302 */
1303 if (size < NSH_BASE_HDR_LEN)
1304 return -ENOBUFS;
1305
1306 nla_for_each_nested(a, attr, rem) {
1307 int type = nla_type(a);
1308
1309 switch (type) {
1310 case OVS_NSH_KEY_ATTR_BASE: {
1311 const struct ovs_nsh_key_base *base = nla_data(a);
1312
1313 flags = base->flags;
1314 ttl = base->ttl;
1315 nh->np = base->np;
1316 nh->mdtype = base->mdtype;
1317 nh->path_hdr = base->path_hdr;
1318 break;
1319 }
1320 case OVS_NSH_KEY_ATTR_MD1:
1321 mdlen = nla_len(a);
1322 if (mdlen > size - NSH_BASE_HDR_LEN)
1323 return -ENOBUFS;
1324 memcpy(&nh->md1, nla_data(a), mdlen);
1325 break;
1326
1327 case OVS_NSH_KEY_ATTR_MD2:
1328 mdlen = nla_len(a);
1329 if (mdlen > size - NSH_BASE_HDR_LEN)
1330 return -ENOBUFS;
1331 memcpy(&nh->md2, nla_data(a), mdlen);
1332 break;
1333
1334 default:
1335 return -EINVAL;
1336 }
1337 }
1338
1339 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */
1340 nh->ver_flags_ttl_len = 0;
1341 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1342
1343 return 0;
1344 }
1345
nsh_key_from_nlattr(const struct nlattr * attr,struct ovs_key_nsh * nsh,struct ovs_key_nsh * nsh_mask)1346 int nsh_key_from_nlattr(const struct nlattr *attr,
1347 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1348 {
1349 struct nlattr *a;
1350 int rem;
1351
1352 /* validate_nsh has check this, so we needn't do duplicate check here
1353 */
1354 nla_for_each_nested(a, attr, rem) {
1355 int type = nla_type(a);
1356
1357 switch (type) {
1358 case OVS_NSH_KEY_ATTR_BASE: {
1359 const struct ovs_nsh_key_base *base = nla_data(a);
1360 const struct ovs_nsh_key_base *base_mask = base + 1;
1361
1362 nsh->base = *base;
1363 nsh_mask->base = *base_mask;
1364 break;
1365 }
1366 case OVS_NSH_KEY_ATTR_MD1: {
1367 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1368 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1369
1370 memcpy(nsh->context, md1->context, sizeof(*md1));
1371 memcpy(nsh_mask->context, md1_mask->context,
1372 sizeof(*md1_mask));
1373 break;
1374 }
1375 case OVS_NSH_KEY_ATTR_MD2:
1376 /* Not supported yet */
1377 return -ENOTSUPP;
1378 default:
1379 return -EINVAL;
1380 }
1381 }
1382
1383 return 0;
1384 }
1385
nsh_key_put_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool is_push_nsh,bool log)1386 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1387 struct sw_flow_match *match, bool is_mask,
1388 bool is_push_nsh, bool log)
1389 {
1390 struct nlattr *a;
1391 int rem;
1392 bool has_base = false;
1393 bool has_md1 = false;
1394 bool has_md2 = false;
1395 u8 mdtype = 0;
1396 int mdlen = 0;
1397
1398 if (WARN_ON(is_push_nsh && is_mask))
1399 return -EINVAL;
1400
1401 nla_for_each_nested(a, attr, rem) {
1402 int type = nla_type(a);
1403 int i;
1404
1405 if (type > OVS_NSH_KEY_ATTR_MAX) {
1406 OVS_NLERR(log, "nsh attr %d is out of range max %d",
1407 type, OVS_NSH_KEY_ATTR_MAX);
1408 return -EINVAL;
1409 }
1410
1411 if (!check_attr_len(nla_len(a),
1412 ovs_nsh_key_attr_lens[type].len)) {
1413 OVS_NLERR(
1414 log,
1415 "nsh attr %d has unexpected len %d expected %d",
1416 type,
1417 nla_len(a),
1418 ovs_nsh_key_attr_lens[type].len
1419 );
1420 return -EINVAL;
1421 }
1422
1423 switch (type) {
1424 case OVS_NSH_KEY_ATTR_BASE: {
1425 const struct ovs_nsh_key_base *base = nla_data(a);
1426
1427 has_base = true;
1428 mdtype = base->mdtype;
1429 SW_FLOW_KEY_PUT(match, nsh.base.flags,
1430 base->flags, is_mask);
1431 SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1432 base->ttl, is_mask);
1433 SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1434 base->mdtype, is_mask);
1435 SW_FLOW_KEY_PUT(match, nsh.base.np,
1436 base->np, is_mask);
1437 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1438 base->path_hdr, is_mask);
1439 break;
1440 }
1441 case OVS_NSH_KEY_ATTR_MD1: {
1442 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1443
1444 has_md1 = true;
1445 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1446 SW_FLOW_KEY_PUT(match, nsh.context[i],
1447 md1->context[i], is_mask);
1448 break;
1449 }
1450 case OVS_NSH_KEY_ATTR_MD2:
1451 if (!is_push_nsh) /* Not supported MD type 2 yet */
1452 return -ENOTSUPP;
1453
1454 has_md2 = true;
1455 mdlen = nla_len(a);
1456 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1457 OVS_NLERR(
1458 log,
1459 "Invalid MD length %d for MD type %d",
1460 mdlen,
1461 mdtype
1462 );
1463 return -EINVAL;
1464 }
1465 break;
1466 default:
1467 OVS_NLERR(log, "Unknown nsh attribute %d",
1468 type);
1469 return -EINVAL;
1470 }
1471 }
1472
1473 if (rem > 0) {
1474 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1475 return -EINVAL;
1476 }
1477
1478 if (has_md1 && has_md2) {
1479 OVS_NLERR(
1480 1,
1481 "invalid nsh attribute: md1 and md2 are exclusive."
1482 );
1483 return -EINVAL;
1484 }
1485
1486 if (!is_mask) {
1487 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1488 (has_md2 && mdtype != NSH_M_TYPE2)) {
1489 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1490 mdtype);
1491 return -EINVAL;
1492 }
1493
1494 if (is_push_nsh &&
1495 (!has_base || (!has_md1 && !has_md2))) {
1496 OVS_NLERR(
1497 1,
1498 "push_nsh: missing base or metadata attributes"
1499 );
1500 return -EINVAL;
1501 }
1502 }
1503
1504 return 0;
1505 }
1506
ovs_key_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 attrs,const struct nlattr ** a,bool is_mask,bool log)1507 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1508 u64 attrs, const struct nlattr **a,
1509 bool is_mask, bool log)
1510 {
1511 int err;
1512
1513 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1514 if (err)
1515 return err;
1516
1517 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1518 const struct ovs_key_ethernet *eth_key;
1519
1520 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1521 SW_FLOW_KEY_MEMCPY(match, eth.src,
1522 eth_key->eth_src, ETH_ALEN, is_mask);
1523 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1524 eth_key->eth_dst, ETH_ALEN, is_mask);
1525 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1526
1527 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1528 /* VLAN attribute is always parsed before getting here since it
1529 * may occur multiple times.
1530 */
1531 OVS_NLERR(log, "VLAN attribute unexpected.");
1532 return -EINVAL;
1533 }
1534
1535 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1536 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1537 log);
1538 if (err)
1539 return err;
1540 } else if (!is_mask) {
1541 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1542 }
1543 } else if (!match->key->eth.type) {
1544 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1545 return -EINVAL;
1546 }
1547
1548 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1549 const struct ovs_key_ipv4 *ipv4_key;
1550
1551 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1552 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1553 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1554 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1555 return -EINVAL;
1556 }
1557 SW_FLOW_KEY_PUT(match, ip.proto,
1558 ipv4_key->ipv4_proto, is_mask);
1559 SW_FLOW_KEY_PUT(match, ip.tos,
1560 ipv4_key->ipv4_tos, is_mask);
1561 SW_FLOW_KEY_PUT(match, ip.ttl,
1562 ipv4_key->ipv4_ttl, is_mask);
1563 SW_FLOW_KEY_PUT(match, ip.frag,
1564 ipv4_key->ipv4_frag, is_mask);
1565 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1566 ipv4_key->ipv4_src, is_mask);
1567 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1568 ipv4_key->ipv4_dst, is_mask);
1569 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1570 }
1571
1572 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1573 const struct ovs_key_ipv6 *ipv6_key;
1574
1575 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1576 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1577 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1578 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1579 return -EINVAL;
1580 }
1581
1582 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1583 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1584 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1585 return -EINVAL;
1586 }
1587
1588 SW_FLOW_KEY_PUT(match, ipv6.label,
1589 ipv6_key->ipv6_label, is_mask);
1590 SW_FLOW_KEY_PUT(match, ip.proto,
1591 ipv6_key->ipv6_proto, is_mask);
1592 SW_FLOW_KEY_PUT(match, ip.tos,
1593 ipv6_key->ipv6_tclass, is_mask);
1594 SW_FLOW_KEY_PUT(match, ip.ttl,
1595 ipv6_key->ipv6_hlimit, is_mask);
1596 SW_FLOW_KEY_PUT(match, ip.frag,
1597 ipv6_key->ipv6_frag, is_mask);
1598 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1599 ipv6_key->ipv6_src,
1600 sizeof(match->key->ipv6.addr.src),
1601 is_mask);
1602 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1603 ipv6_key->ipv6_dst,
1604 sizeof(match->key->ipv6.addr.dst),
1605 is_mask);
1606
1607 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1608 }
1609
1610 if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1611 const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1612
1613 ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1614
1615 SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1616 ipv6_exthdrs_key->hdrs, is_mask);
1617
1618 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1619 }
1620
1621 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1622 const struct ovs_key_arp *arp_key;
1623
1624 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1625 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1626 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1627 arp_key->arp_op);
1628 return -EINVAL;
1629 }
1630
1631 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1632 arp_key->arp_sip, is_mask);
1633 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1634 arp_key->arp_tip, is_mask);
1635 SW_FLOW_KEY_PUT(match, ip.proto,
1636 ntohs(arp_key->arp_op), is_mask);
1637 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1638 arp_key->arp_sha, ETH_ALEN, is_mask);
1639 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1640 arp_key->arp_tha, ETH_ALEN, is_mask);
1641
1642 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1643 }
1644
1645 if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1646 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1647 is_mask, false, log) < 0)
1648 return -EINVAL;
1649 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1650 }
1651
1652 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1653 const struct ovs_key_mpls *mpls_key;
1654 u32 hdr_len;
1655 u32 label_count, label_count_mask, i;
1656
1657 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1658 hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1659 label_count = hdr_len / sizeof(struct ovs_key_mpls);
1660
1661 if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1662 hdr_len % sizeof(struct ovs_key_mpls))
1663 return -EINVAL;
1664
1665 label_count_mask = GENMASK(label_count - 1, 0);
1666
1667 for (i = 0 ; i < label_count; i++)
1668 SW_FLOW_KEY_PUT(match, mpls.lse[i],
1669 mpls_key[i].mpls_lse, is_mask);
1670
1671 SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1672 label_count_mask, is_mask);
1673
1674 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1675 }
1676
1677 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1678 const struct ovs_key_tcp *tcp_key;
1679
1680 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1681 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1682 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1683 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1684 }
1685
1686 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1687 SW_FLOW_KEY_PUT(match, tp.flags,
1688 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1689 is_mask);
1690 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1691 }
1692
1693 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1694 const struct ovs_key_udp *udp_key;
1695
1696 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1697 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1698 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1699 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1700 }
1701
1702 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1703 const struct ovs_key_sctp *sctp_key;
1704
1705 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1706 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1707 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1708 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1709 }
1710
1711 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1712 const struct ovs_key_icmp *icmp_key;
1713
1714 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1715 SW_FLOW_KEY_PUT(match, tp.src,
1716 htons(icmp_key->icmp_type), is_mask);
1717 SW_FLOW_KEY_PUT(match, tp.dst,
1718 htons(icmp_key->icmp_code), is_mask);
1719 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1720 }
1721
1722 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1723 const struct ovs_key_icmpv6 *icmpv6_key;
1724
1725 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1726 SW_FLOW_KEY_PUT(match, tp.src,
1727 htons(icmpv6_key->icmpv6_type), is_mask);
1728 SW_FLOW_KEY_PUT(match, tp.dst,
1729 htons(icmpv6_key->icmpv6_code), is_mask);
1730 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1731 }
1732
1733 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1734 const struct ovs_key_nd *nd_key;
1735
1736 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1737 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1738 nd_key->nd_target,
1739 sizeof(match->key->ipv6.nd.target),
1740 is_mask);
1741 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1742 nd_key->nd_sll, ETH_ALEN, is_mask);
1743 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1744 nd_key->nd_tll, ETH_ALEN, is_mask);
1745 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1746 }
1747
1748 if (attrs != 0) {
1749 OVS_NLERR(log, "Unknown key attributes %llx",
1750 (unsigned long long)attrs);
1751 return -EINVAL;
1752 }
1753
1754 return 0;
1755 }
1756
nlattr_set(struct nlattr * attr,u8 val,const struct ovs_len_tbl * tbl)1757 static void nlattr_set(struct nlattr *attr, u8 val,
1758 const struct ovs_len_tbl *tbl)
1759 {
1760 struct nlattr *nla;
1761 int rem;
1762
1763 /* The nlattr stream should already have been validated */
1764 nla_for_each_nested(nla, attr, rem) {
1765 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1766 nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1767 else
1768 memset(nla_data(nla), val, nla_len(nla));
1769
1770 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1771 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1772 }
1773 }
1774
mask_set_nlattr(struct nlattr * attr,u8 val)1775 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1776 {
1777 nlattr_set(attr, val, ovs_key_lens);
1778 }
1779
1780 /**
1781 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1782 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1783 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1784 * does not include any don't care bit.
1785 * @net: Used to determine per-namespace field support.
1786 * @match: receives the extracted flow match information.
1787 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1788 * sequence. The fields should of the packet that triggered the creation
1789 * of this flow.
1790 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1791 * Netlink attribute specifies the mask field of the wildcarded flow.
1792 * @log: Boolean to allow kernel error logging. Normally true, but when
1793 * probing for feature compatibility this should be passed in as false to
1794 * suppress unnecessary error logging.
1795 */
ovs_nla_get_match(struct net * net,struct sw_flow_match * match,const struct nlattr * nla_key,const struct nlattr * nla_mask,bool log)1796 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1797 const struct nlattr *nla_key,
1798 const struct nlattr *nla_mask,
1799 bool log)
1800 {
1801 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1802 struct nlattr *newmask = NULL;
1803 u64 key_attrs = 0;
1804 u64 mask_attrs = 0;
1805 int err;
1806
1807 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1808 if (err)
1809 return err;
1810
1811 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1812 if (err)
1813 return err;
1814
1815 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1816 if (err)
1817 return err;
1818
1819 if (match->mask) {
1820 if (!nla_mask) {
1821 /* Create an exact match mask. We need to set to 0xff
1822 * all the 'match->mask' fields that have been touched
1823 * in 'match->key'. We cannot simply memset
1824 * 'match->mask', because padding bytes and fields not
1825 * specified in 'match->key' should be left to 0.
1826 * Instead, we use a stream of netlink attributes,
1827 * copied from 'key' and set to 0xff.
1828 * ovs_key_from_nlattrs() will take care of filling
1829 * 'match->mask' appropriately.
1830 */
1831 newmask = kmemdup(nla_key,
1832 nla_total_size(nla_len(nla_key)),
1833 GFP_KERNEL);
1834 if (!newmask)
1835 return -ENOMEM;
1836
1837 mask_set_nlattr(newmask, 0xff);
1838
1839 /* The userspace does not send tunnel attributes that
1840 * are 0, but we should not wildcard them nonetheless.
1841 */
1842 if (match->key->tun_proto)
1843 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1844 0xff, true);
1845
1846 nla_mask = newmask;
1847 }
1848
1849 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1850 if (err)
1851 goto free_newmask;
1852
1853 /* Always match on tci. */
1854 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1855 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1856
1857 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1858 if (err)
1859 goto free_newmask;
1860
1861 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1862 log);
1863 if (err)
1864 goto free_newmask;
1865 }
1866
1867 if (!match_validate(match, key_attrs, mask_attrs, log))
1868 err = -EINVAL;
1869
1870 free_newmask:
1871 kfree(newmask);
1872 return err;
1873 }
1874
get_ufid_len(const struct nlattr * attr,bool log)1875 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1876 {
1877 size_t len;
1878
1879 if (!attr)
1880 return 0;
1881
1882 len = nla_len(attr);
1883 if (len < 1 || len > MAX_UFID_LENGTH) {
1884 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1885 nla_len(attr), MAX_UFID_LENGTH);
1886 return 0;
1887 }
1888
1889 return len;
1890 }
1891
1892 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1893 * or false otherwise.
1894 */
ovs_nla_get_ufid(struct sw_flow_id * sfid,const struct nlattr * attr,bool log)1895 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1896 bool log)
1897 {
1898 sfid->ufid_len = get_ufid_len(attr, log);
1899 if (sfid->ufid_len)
1900 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1901
1902 return sfid->ufid_len;
1903 }
1904
ovs_nla_get_identifier(struct sw_flow_id * sfid,const struct nlattr * ufid,const struct sw_flow_key * key,bool log)1905 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1906 const struct sw_flow_key *key, bool log)
1907 {
1908 struct sw_flow_key *new_key;
1909
1910 if (ovs_nla_get_ufid(sfid, ufid, log))
1911 return 0;
1912
1913 /* If UFID was not provided, use unmasked key. */
1914 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1915 if (!new_key)
1916 return -ENOMEM;
1917 memcpy(new_key, key, sizeof(*key));
1918 sfid->unmasked_key = new_key;
1919
1920 return 0;
1921 }
1922
ovs_nla_get_ufid_flags(const struct nlattr * attr)1923 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1924 {
1925 return attr ? nla_get_u32(attr) : 0;
1926 }
1927
1928 /**
1929 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1930 * @net: Network namespace.
1931 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1932 * metadata.
1933 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1934 * attributes.
1935 * @attrs: Bit mask for the netlink attributes included in @a.
1936 * @log: Boolean to allow kernel error logging. Normally true, but when
1937 * probing for feature compatibility this should be passed in as false to
1938 * suppress unnecessary error logging.
1939 *
1940 * This parses a series of Netlink attributes that form a flow key, which must
1941 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1942 * get the metadata, that is, the parts of the flow key that cannot be
1943 * extracted from the packet itself.
1944 *
1945 * This must be called before the packet key fields are filled in 'key'.
1946 */
1947
ovs_nla_get_flow_metadata(struct net * net,const struct nlattr * a[OVS_KEY_ATTR_MAX+1],u64 attrs,struct sw_flow_key * key,bool log)1948 int ovs_nla_get_flow_metadata(struct net *net,
1949 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1950 u64 attrs, struct sw_flow_key *key, bool log)
1951 {
1952 struct sw_flow_match match;
1953
1954 memset(&match, 0, sizeof(match));
1955 match.key = key;
1956
1957 key->ct_state = 0;
1958 key->ct_zone = 0;
1959 key->ct_orig_proto = 0;
1960 memset(&key->ct, 0, sizeof(key->ct));
1961 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1962 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1963
1964 key->phy.in_port = DP_MAX_PORTS;
1965
1966 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1967 }
1968
ovs_nla_put_vlan(struct sk_buff * skb,const struct vlan_head * vh,bool is_mask)1969 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1970 bool is_mask)
1971 {
1972 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1973
1974 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1975 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1976 return -EMSGSIZE;
1977 return 0;
1978 }
1979
nsh_key_to_nlattr(const struct ovs_key_nsh * nsh,bool is_mask,struct sk_buff * skb)1980 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1981 struct sk_buff *skb)
1982 {
1983 struct nlattr *start;
1984
1985 start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1986 if (!start)
1987 return -EMSGSIZE;
1988
1989 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1990 goto nla_put_failure;
1991
1992 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1993 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1994 sizeof(nsh->context), nsh->context))
1995 goto nla_put_failure;
1996 }
1997
1998 /* Don't support MD type 2 yet */
1999
2000 nla_nest_end(skb, start);
2001
2002 return 0;
2003
2004 nla_put_failure:
2005 return -EMSGSIZE;
2006 }
2007
__ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,bool is_mask,struct sk_buff * skb)2008 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2009 const struct sw_flow_key *output, bool is_mask,
2010 struct sk_buff *skb)
2011 {
2012 struct ovs_key_ethernet *eth_key;
2013 struct nlattr *nla;
2014 struct nlattr *encap = NULL;
2015 struct nlattr *in_encap = NULL;
2016
2017 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2018 goto nla_put_failure;
2019
2020 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2021 goto nla_put_failure;
2022
2023 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2024 goto nla_put_failure;
2025
2026 if ((swkey->tun_proto || is_mask)) {
2027 const void *opts = NULL;
2028
2029 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2030 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2031
2032 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2033 swkey->tun_opts_len, swkey->tun_proto, 0))
2034 goto nla_put_failure;
2035 }
2036
2037 if (swkey->phy.in_port == DP_MAX_PORTS) {
2038 if (is_mask && (output->phy.in_port == 0xffff))
2039 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2040 goto nla_put_failure;
2041 } else {
2042 u16 upper_u16;
2043 upper_u16 = !is_mask ? 0 : 0xffff;
2044
2045 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2046 (upper_u16 << 16) | output->phy.in_port))
2047 goto nla_put_failure;
2048 }
2049
2050 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2051 goto nla_put_failure;
2052
2053 if (ovs_ct_put_key(swkey, output, skb))
2054 goto nla_put_failure;
2055
2056 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2057 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2058 if (!nla)
2059 goto nla_put_failure;
2060
2061 eth_key = nla_data(nla);
2062 ether_addr_copy(eth_key->eth_src, output->eth.src);
2063 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2064
2065 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2066 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2067 goto nla_put_failure;
2068 encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2069 if (!swkey->eth.vlan.tci)
2070 goto unencap;
2071
2072 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2073 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2074 goto nla_put_failure;
2075 in_encap = nla_nest_start_noflag(skb,
2076 OVS_KEY_ATTR_ENCAP);
2077 if (!swkey->eth.cvlan.tci)
2078 goto unencap;
2079 }
2080 }
2081
2082 if (swkey->eth.type == htons(ETH_P_802_2)) {
2083 /*
2084 * Ethertype 802.2 is represented in the netlink with omitted
2085 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2086 * 0xffff in the mask attribute. Ethertype can also
2087 * be wildcarded.
2088 */
2089 if (is_mask && output->eth.type)
2090 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2091 output->eth.type))
2092 goto nla_put_failure;
2093 goto unencap;
2094 }
2095 }
2096
2097 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2098 goto nla_put_failure;
2099
2100 if (eth_type_vlan(swkey->eth.type)) {
2101 /* There are 3 VLAN tags, we don't know anything about the rest
2102 * of the packet, so truncate here.
2103 */
2104 WARN_ON_ONCE(!(encap && in_encap));
2105 goto unencap;
2106 }
2107
2108 if (swkey->eth.type == htons(ETH_P_IP)) {
2109 struct ovs_key_ipv4 *ipv4_key;
2110
2111 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2112 if (!nla)
2113 goto nla_put_failure;
2114 ipv4_key = nla_data(nla);
2115 ipv4_key->ipv4_src = output->ipv4.addr.src;
2116 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2117 ipv4_key->ipv4_proto = output->ip.proto;
2118 ipv4_key->ipv4_tos = output->ip.tos;
2119 ipv4_key->ipv4_ttl = output->ip.ttl;
2120 ipv4_key->ipv4_frag = output->ip.frag;
2121 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2122 struct ovs_key_ipv6 *ipv6_key;
2123 struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2124
2125 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2126 if (!nla)
2127 goto nla_put_failure;
2128 ipv6_key = nla_data(nla);
2129 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2130 sizeof(ipv6_key->ipv6_src));
2131 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2132 sizeof(ipv6_key->ipv6_dst));
2133 ipv6_key->ipv6_label = output->ipv6.label;
2134 ipv6_key->ipv6_proto = output->ip.proto;
2135 ipv6_key->ipv6_tclass = output->ip.tos;
2136 ipv6_key->ipv6_hlimit = output->ip.ttl;
2137 ipv6_key->ipv6_frag = output->ip.frag;
2138
2139 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2140 sizeof(*ipv6_exthdrs_key));
2141 if (!nla)
2142 goto nla_put_failure;
2143 ipv6_exthdrs_key = nla_data(nla);
2144 ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2145 } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2146 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2147 goto nla_put_failure;
2148 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2149 swkey->eth.type == htons(ETH_P_RARP)) {
2150 struct ovs_key_arp *arp_key;
2151
2152 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2153 if (!nla)
2154 goto nla_put_failure;
2155 arp_key = nla_data(nla);
2156 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2157 arp_key->arp_sip = output->ipv4.addr.src;
2158 arp_key->arp_tip = output->ipv4.addr.dst;
2159 arp_key->arp_op = htons(output->ip.proto);
2160 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2161 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2162 } else if (eth_p_mpls(swkey->eth.type)) {
2163 u8 i, num_labels;
2164 struct ovs_key_mpls *mpls_key;
2165
2166 num_labels = hweight_long(output->mpls.num_labels_mask);
2167 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2168 num_labels * sizeof(*mpls_key));
2169 if (!nla)
2170 goto nla_put_failure;
2171
2172 mpls_key = nla_data(nla);
2173 for (i = 0; i < num_labels; i++)
2174 mpls_key[i].mpls_lse = output->mpls.lse[i];
2175 }
2176
2177 if ((swkey->eth.type == htons(ETH_P_IP) ||
2178 swkey->eth.type == htons(ETH_P_IPV6)) &&
2179 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2180
2181 if (swkey->ip.proto == IPPROTO_TCP) {
2182 struct ovs_key_tcp *tcp_key;
2183
2184 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2185 if (!nla)
2186 goto nla_put_failure;
2187 tcp_key = nla_data(nla);
2188 tcp_key->tcp_src = output->tp.src;
2189 tcp_key->tcp_dst = output->tp.dst;
2190 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2191 output->tp.flags))
2192 goto nla_put_failure;
2193 } else if (swkey->ip.proto == IPPROTO_UDP) {
2194 struct ovs_key_udp *udp_key;
2195
2196 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2197 if (!nla)
2198 goto nla_put_failure;
2199 udp_key = nla_data(nla);
2200 udp_key->udp_src = output->tp.src;
2201 udp_key->udp_dst = output->tp.dst;
2202 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2203 struct ovs_key_sctp *sctp_key;
2204
2205 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2206 if (!nla)
2207 goto nla_put_failure;
2208 sctp_key = nla_data(nla);
2209 sctp_key->sctp_src = output->tp.src;
2210 sctp_key->sctp_dst = output->tp.dst;
2211 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2212 swkey->ip.proto == IPPROTO_ICMP) {
2213 struct ovs_key_icmp *icmp_key;
2214
2215 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2216 if (!nla)
2217 goto nla_put_failure;
2218 icmp_key = nla_data(nla);
2219 icmp_key->icmp_type = ntohs(output->tp.src);
2220 icmp_key->icmp_code = ntohs(output->tp.dst);
2221 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2222 swkey->ip.proto == IPPROTO_ICMPV6) {
2223 struct ovs_key_icmpv6 *icmpv6_key;
2224
2225 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2226 sizeof(*icmpv6_key));
2227 if (!nla)
2228 goto nla_put_failure;
2229 icmpv6_key = nla_data(nla);
2230 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2231 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2232
2233 if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2234 swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2235 struct ovs_key_nd *nd_key;
2236
2237 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2238 if (!nla)
2239 goto nla_put_failure;
2240 nd_key = nla_data(nla);
2241 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2242 sizeof(nd_key->nd_target));
2243 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2244 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2245 }
2246 }
2247 }
2248
2249 unencap:
2250 if (in_encap)
2251 nla_nest_end(skb, in_encap);
2252 if (encap)
2253 nla_nest_end(skb, encap);
2254
2255 return 0;
2256
2257 nla_put_failure:
2258 return -EMSGSIZE;
2259 }
2260
ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,int attr,bool is_mask,struct sk_buff * skb)2261 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2262 const struct sw_flow_key *output, int attr, bool is_mask,
2263 struct sk_buff *skb)
2264 {
2265 int err;
2266 struct nlattr *nla;
2267
2268 nla = nla_nest_start_noflag(skb, attr);
2269 if (!nla)
2270 return -EMSGSIZE;
2271 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2272 if (err)
2273 return err;
2274 nla_nest_end(skb, nla);
2275
2276 return 0;
2277 }
2278
2279 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_identifier(const struct sw_flow * flow,struct sk_buff * skb)2280 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2281 {
2282 if (ovs_identifier_is_ufid(&flow->id))
2283 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2284 flow->id.ufid);
2285
2286 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2287 OVS_FLOW_ATTR_KEY, false, skb);
2288 }
2289
2290 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_masked_key(const struct sw_flow * flow,struct sk_buff * skb)2291 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2292 {
2293 return ovs_nla_put_key(&flow->key, &flow->key,
2294 OVS_FLOW_ATTR_KEY, false, skb);
2295 }
2296
2297 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_mask(const struct sw_flow * flow,struct sk_buff * skb)2298 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2299 {
2300 return ovs_nla_put_key(&flow->key, &flow->mask->key,
2301 OVS_FLOW_ATTR_MASK, true, skb);
2302 }
2303
2304 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
2305
nla_alloc_flow_actions(int size)2306 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2307 {
2308 struct sw_flow_actions *sfa;
2309
2310 WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2311
2312 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2313 if (!sfa)
2314 return ERR_PTR(-ENOMEM);
2315
2316 sfa->actions_len = 0;
2317 return sfa;
2318 }
2319
2320 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2321
ovs_nla_free_check_pkt_len_action(const struct nlattr * action)2322 static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2323 {
2324 const struct nlattr *a;
2325 int rem;
2326
2327 nla_for_each_nested(a, action, rem) {
2328 switch (nla_type(a)) {
2329 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2330 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2331 ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2332 break;
2333 }
2334 }
2335 }
2336
ovs_nla_free_clone_action(const struct nlattr * action)2337 static void ovs_nla_free_clone_action(const struct nlattr *action)
2338 {
2339 const struct nlattr *a = nla_data(action);
2340 int rem = nla_len(action);
2341
2342 switch (nla_type(a)) {
2343 case OVS_CLONE_ATTR_EXEC:
2344 /* The real list of actions follows this attribute. */
2345 a = nla_next(a, &rem);
2346 ovs_nla_free_nested_actions(a, rem);
2347 break;
2348 }
2349 }
2350
ovs_nla_free_dec_ttl_action(const struct nlattr * action)2351 static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2352 {
2353 const struct nlattr *a = nla_data(action);
2354
2355 switch (nla_type(a)) {
2356 case OVS_DEC_TTL_ATTR_ACTION:
2357 ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2358 break;
2359 }
2360 }
2361
ovs_nla_free_sample_action(const struct nlattr * action)2362 static void ovs_nla_free_sample_action(const struct nlattr *action)
2363 {
2364 const struct nlattr *a = nla_data(action);
2365 int rem = nla_len(action);
2366
2367 switch (nla_type(a)) {
2368 case OVS_SAMPLE_ATTR_ARG:
2369 /* The real list of actions follows this attribute. */
2370 a = nla_next(a, &rem);
2371 ovs_nla_free_nested_actions(a, rem);
2372 break;
2373 }
2374 }
2375
ovs_nla_free_set_action(const struct nlattr * a)2376 static void ovs_nla_free_set_action(const struct nlattr *a)
2377 {
2378 const struct nlattr *ovs_key = nla_data(a);
2379 struct ovs_tunnel_info *ovs_tun;
2380
2381 switch (nla_type(ovs_key)) {
2382 case OVS_KEY_ATTR_TUNNEL_INFO:
2383 ovs_tun = nla_data(ovs_key);
2384 dst_release((struct dst_entry *)ovs_tun->tun_dst);
2385 break;
2386 }
2387 }
2388
ovs_nla_free_nested_actions(const struct nlattr * actions,int len)2389 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2390 {
2391 const struct nlattr *a;
2392 int rem;
2393
2394 /* Whenever new actions are added, the need to update this
2395 * function should be considered.
2396 */
2397 BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 23);
2398
2399 if (!actions)
2400 return;
2401
2402 nla_for_each_attr(a, actions, len, rem) {
2403 switch (nla_type(a)) {
2404 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2405 ovs_nla_free_check_pkt_len_action(a);
2406 break;
2407
2408 case OVS_ACTION_ATTR_CLONE:
2409 ovs_nla_free_clone_action(a);
2410 break;
2411
2412 case OVS_ACTION_ATTR_CT:
2413 ovs_ct_free_action(a);
2414 break;
2415
2416 case OVS_ACTION_ATTR_DEC_TTL:
2417 ovs_nla_free_dec_ttl_action(a);
2418 break;
2419
2420 case OVS_ACTION_ATTR_SAMPLE:
2421 ovs_nla_free_sample_action(a);
2422 break;
2423
2424 case OVS_ACTION_ATTR_SET:
2425 ovs_nla_free_set_action(a);
2426 break;
2427 }
2428 }
2429 }
2430
ovs_nla_free_flow_actions(struct sw_flow_actions * sf_acts)2431 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2432 {
2433 if (!sf_acts)
2434 return;
2435
2436 ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2437 kfree(sf_acts);
2438 }
2439
__ovs_nla_free_flow_actions(struct rcu_head * head)2440 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2441 {
2442 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2443 }
2444
2445 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2446 * The caller must hold rcu_read_lock for this to be sensible. */
ovs_nla_free_flow_actions_rcu(struct sw_flow_actions * sf_acts)2447 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2448 {
2449 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2450 }
2451
reserve_sfa_size(struct sw_flow_actions ** sfa,int attr_len,bool log)2452 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2453 int attr_len, bool log)
2454 {
2455
2456 struct sw_flow_actions *acts;
2457 int new_acts_size;
2458 size_t req_size = NLA_ALIGN(attr_len);
2459 int next_offset = offsetof(struct sw_flow_actions, actions) +
2460 (*sfa)->actions_len;
2461
2462 if (req_size <= (ksize(*sfa) - next_offset))
2463 goto out;
2464
2465 new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2466
2467 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2468 if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2469 OVS_NLERR(log, "Flow action size exceeds max %u",
2470 MAX_ACTIONS_BUFSIZE);
2471 return ERR_PTR(-EMSGSIZE);
2472 }
2473 new_acts_size = MAX_ACTIONS_BUFSIZE;
2474 }
2475
2476 acts = nla_alloc_flow_actions(new_acts_size);
2477 if (IS_ERR(acts))
2478 return (void *)acts;
2479
2480 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2481 acts->actions_len = (*sfa)->actions_len;
2482 acts->orig_len = (*sfa)->orig_len;
2483 kfree(*sfa);
2484 *sfa = acts;
2485
2486 out:
2487 (*sfa)->actions_len += req_size;
2488 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2489 }
2490
__add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2491 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2492 int attrtype, void *data, int len, bool log)
2493 {
2494 struct nlattr *a;
2495
2496 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2497 if (IS_ERR(a))
2498 return a;
2499
2500 a->nla_type = attrtype;
2501 a->nla_len = nla_attr_size(len);
2502
2503 if (data)
2504 memcpy(nla_data(a), data, len);
2505 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2506
2507 return a;
2508 }
2509
ovs_nla_add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2510 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2511 int len, bool log)
2512 {
2513 struct nlattr *a;
2514
2515 a = __add_action(sfa, attrtype, data, len, log);
2516
2517 return PTR_ERR_OR_ZERO(a);
2518 }
2519
add_nested_action_start(struct sw_flow_actions ** sfa,int attrtype,bool log)2520 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2521 int attrtype, bool log)
2522 {
2523 int used = (*sfa)->actions_len;
2524 int err;
2525
2526 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2527 if (err)
2528 return err;
2529
2530 return used;
2531 }
2532
add_nested_action_end(struct sw_flow_actions * sfa,int st_offset)2533 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2534 int st_offset)
2535 {
2536 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2537 st_offset);
2538
2539 a->nla_len = sfa->actions_len - st_offset;
2540 }
2541
2542 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2543 const struct sw_flow_key *key,
2544 struct sw_flow_actions **sfa,
2545 __be16 eth_type, __be16 vlan_tci,
2546 u32 mpls_label_count, bool log);
2547
validate_and_copy_sample(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last)2548 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2549 const struct sw_flow_key *key,
2550 struct sw_flow_actions **sfa,
2551 __be16 eth_type, __be16 vlan_tci,
2552 u32 mpls_label_count, bool log, bool last)
2553 {
2554 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2555 const struct nlattr *probability, *actions;
2556 const struct nlattr *a;
2557 int rem, start, err;
2558 struct sample_arg arg;
2559
2560 memset(attrs, 0, sizeof(attrs));
2561 nla_for_each_nested(a, attr, rem) {
2562 int type = nla_type(a);
2563 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2564 return -EINVAL;
2565 attrs[type] = a;
2566 }
2567 if (rem)
2568 return -EINVAL;
2569
2570 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2571 if (!probability || nla_len(probability) != sizeof(u32))
2572 return -EINVAL;
2573
2574 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2575 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2576 return -EINVAL;
2577
2578 /* validation done, copy sample action. */
2579 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2580 if (start < 0)
2581 return start;
2582
2583 /* When both skb and flow may be changed, put the sample
2584 * into a deferred fifo. On the other hand, if only skb
2585 * may be modified, the actions can be executed in place.
2586 *
2587 * Do this analysis at the flow installation time.
2588 * Set 'clone_action->exec' to true if the actions can be
2589 * executed without being deferred.
2590 *
2591 * If the sample is the last action, it can always be excuted
2592 * rather than deferred.
2593 */
2594 arg.exec = last || !actions_may_change_flow(actions);
2595 arg.probability = nla_get_u32(probability);
2596
2597 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2598 log);
2599 if (err)
2600 return err;
2601
2602 err = __ovs_nla_copy_actions(net, actions, key, sfa,
2603 eth_type, vlan_tci, mpls_label_count, log);
2604
2605 if (err)
2606 return err;
2607
2608 add_nested_action_end(*sfa, start);
2609
2610 return 0;
2611 }
2612
validate_and_copy_dec_ttl(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log)2613 static int validate_and_copy_dec_ttl(struct net *net,
2614 const struct nlattr *attr,
2615 const struct sw_flow_key *key,
2616 struct sw_flow_actions **sfa,
2617 __be16 eth_type, __be16 vlan_tci,
2618 u32 mpls_label_count, bool log)
2619 {
2620 const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2621 int start, action_start, err, rem;
2622 const struct nlattr *a, *actions;
2623
2624 memset(attrs, 0, sizeof(attrs));
2625 nla_for_each_nested(a, attr, rem) {
2626 int type = nla_type(a);
2627
2628 /* Ignore unknown attributes to be future proof. */
2629 if (type > OVS_DEC_TTL_ATTR_MAX)
2630 continue;
2631
2632 if (!type || attrs[type]) {
2633 OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2634 type);
2635 return -EINVAL;
2636 }
2637
2638 attrs[type] = a;
2639 }
2640
2641 if (rem) {
2642 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2643 return -EINVAL;
2644 }
2645
2646 actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2647 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2648 OVS_NLERR(log, "Missing valid actions attribute.");
2649 return -EINVAL;
2650 }
2651
2652 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2653 if (start < 0)
2654 return start;
2655
2656 action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2657 if (action_start < 0)
2658 return action_start;
2659
2660 err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2661 vlan_tci, mpls_label_count, log);
2662 if (err)
2663 return err;
2664
2665 add_nested_action_end(*sfa, action_start);
2666 add_nested_action_end(*sfa, start);
2667 return 0;
2668 }
2669
validate_and_copy_clone(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last)2670 static int validate_and_copy_clone(struct net *net,
2671 const struct nlattr *attr,
2672 const struct sw_flow_key *key,
2673 struct sw_flow_actions **sfa,
2674 __be16 eth_type, __be16 vlan_tci,
2675 u32 mpls_label_count, bool log, bool last)
2676 {
2677 int start, err;
2678 u32 exec;
2679
2680 if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2681 return -EINVAL;
2682
2683 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2684 if (start < 0)
2685 return start;
2686
2687 exec = last || !actions_may_change_flow(attr);
2688
2689 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2690 sizeof(exec), log);
2691 if (err)
2692 return err;
2693
2694 err = __ovs_nla_copy_actions(net, attr, key, sfa,
2695 eth_type, vlan_tci, mpls_label_count, log);
2696 if (err)
2697 return err;
2698
2699 add_nested_action_end(*sfa, start);
2700
2701 return 0;
2702 }
2703
ovs_match_init(struct sw_flow_match * match,struct sw_flow_key * key,bool reset_key,struct sw_flow_mask * mask)2704 void ovs_match_init(struct sw_flow_match *match,
2705 struct sw_flow_key *key,
2706 bool reset_key,
2707 struct sw_flow_mask *mask)
2708 {
2709 memset(match, 0, sizeof(*match));
2710 match->key = key;
2711 match->mask = mask;
2712
2713 if (reset_key)
2714 memset(key, 0, sizeof(*key));
2715
2716 if (mask) {
2717 memset(&mask->key, 0, sizeof(mask->key));
2718 mask->range.start = mask->range.end = 0;
2719 }
2720 }
2721
validate_geneve_opts(struct sw_flow_key * key)2722 static int validate_geneve_opts(struct sw_flow_key *key)
2723 {
2724 struct geneve_opt *option;
2725 int opts_len = key->tun_opts_len;
2726 bool crit_opt = false;
2727
2728 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2729 while (opts_len > 0) {
2730 int len;
2731
2732 if (opts_len < sizeof(*option))
2733 return -EINVAL;
2734
2735 len = sizeof(*option) + option->length * 4;
2736 if (len > opts_len)
2737 return -EINVAL;
2738
2739 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2740
2741 option = (struct geneve_opt *)((u8 *)option + len);
2742 opts_len -= len;
2743 }
2744
2745 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2746
2747 return 0;
2748 }
2749
validate_and_copy_set_tun(const struct nlattr * attr,struct sw_flow_actions ** sfa,bool log)2750 static int validate_and_copy_set_tun(const struct nlattr *attr,
2751 struct sw_flow_actions **sfa, bool log)
2752 {
2753 struct sw_flow_match match;
2754 struct sw_flow_key key;
2755 struct metadata_dst *tun_dst;
2756 struct ip_tunnel_info *tun_info;
2757 struct ovs_tunnel_info *ovs_tun;
2758 struct nlattr *a;
2759 int err = 0, start, opts_type;
2760 __be16 dst_opt_type;
2761
2762 dst_opt_type = 0;
2763 ovs_match_init(&match, &key, true, NULL);
2764 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2765 if (opts_type < 0)
2766 return opts_type;
2767
2768 if (key.tun_opts_len) {
2769 switch (opts_type) {
2770 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2771 err = validate_geneve_opts(&key);
2772 if (err < 0)
2773 return err;
2774 dst_opt_type = TUNNEL_GENEVE_OPT;
2775 break;
2776 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2777 dst_opt_type = TUNNEL_VXLAN_OPT;
2778 break;
2779 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2780 dst_opt_type = TUNNEL_ERSPAN_OPT;
2781 break;
2782 }
2783 }
2784
2785 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2786 if (start < 0)
2787 return start;
2788
2789 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2790 GFP_KERNEL);
2791
2792 if (!tun_dst)
2793 return -ENOMEM;
2794
2795 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2796 if (err) {
2797 dst_release((struct dst_entry *)tun_dst);
2798 return err;
2799 }
2800
2801 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2802 sizeof(*ovs_tun), log);
2803 if (IS_ERR(a)) {
2804 dst_release((struct dst_entry *)tun_dst);
2805 return PTR_ERR(a);
2806 }
2807
2808 ovs_tun = nla_data(a);
2809 ovs_tun->tun_dst = tun_dst;
2810
2811 tun_info = &tun_dst->u.tun_info;
2812 tun_info->mode = IP_TUNNEL_INFO_TX;
2813 if (key.tun_proto == AF_INET6)
2814 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2815 else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2816 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2817 tun_info->key = key.tun_key;
2818
2819 /* We need to store the options in the action itself since
2820 * everything else will go away after flow setup. We can append
2821 * it to tun_info and then point there.
2822 */
2823 ip_tunnel_info_opts_set(tun_info,
2824 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2825 key.tun_opts_len, dst_opt_type);
2826 add_nested_action_end(*sfa, start);
2827
2828 return err;
2829 }
2830
validate_nsh(const struct nlattr * attr,bool is_mask,bool is_push_nsh,bool log)2831 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2832 bool is_push_nsh, bool log)
2833 {
2834 struct sw_flow_match match;
2835 struct sw_flow_key key;
2836 int ret = 0;
2837
2838 ovs_match_init(&match, &key, true, NULL);
2839 ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2840 is_push_nsh, log);
2841 return !ret;
2842 }
2843
2844 /* Return false if there are any non-masked bits set.
2845 * Mask follows data immediately, before any netlink padding.
2846 */
validate_masked(u8 * data,int len)2847 static bool validate_masked(u8 *data, int len)
2848 {
2849 u8 *mask = data + len;
2850
2851 while (len--)
2852 if (*data++ & ~*mask++)
2853 return false;
2854
2855 return true;
2856 }
2857
validate_set(const struct nlattr * a,const struct sw_flow_key * flow_key,struct sw_flow_actions ** sfa,bool * skip_copy,u8 mac_proto,__be16 eth_type,bool masked,bool log)2858 static int validate_set(const struct nlattr *a,
2859 const struct sw_flow_key *flow_key,
2860 struct sw_flow_actions **sfa, bool *skip_copy,
2861 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2862 {
2863 const struct nlattr *ovs_key = nla_data(a);
2864 int key_type = nla_type(ovs_key);
2865 size_t key_len;
2866
2867 /* There can be only one key in a action */
2868 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2869 return -EINVAL;
2870
2871 key_len = nla_len(ovs_key);
2872 if (masked)
2873 key_len /= 2;
2874
2875 if (key_type > OVS_KEY_ATTR_MAX ||
2876 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2877 return -EINVAL;
2878
2879 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2880 return -EINVAL;
2881
2882 switch (key_type) {
2883 case OVS_KEY_ATTR_PRIORITY:
2884 case OVS_KEY_ATTR_SKB_MARK:
2885 case OVS_KEY_ATTR_CT_MARK:
2886 case OVS_KEY_ATTR_CT_LABELS:
2887 break;
2888
2889 case OVS_KEY_ATTR_ETHERNET:
2890 if (mac_proto != MAC_PROTO_ETHERNET)
2891 return -EINVAL;
2892 break;
2893
2894 case OVS_KEY_ATTR_TUNNEL: {
2895 int err;
2896
2897 if (masked)
2898 return -EINVAL; /* Masked tunnel set not supported. */
2899
2900 *skip_copy = true;
2901 err = validate_and_copy_set_tun(a, sfa, log);
2902 if (err)
2903 return err;
2904 break;
2905 }
2906 case OVS_KEY_ATTR_IPV4: {
2907 const struct ovs_key_ipv4 *ipv4_key;
2908
2909 if (eth_type != htons(ETH_P_IP))
2910 return -EINVAL;
2911
2912 ipv4_key = nla_data(ovs_key);
2913
2914 if (masked) {
2915 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2916
2917 /* Non-writeable fields. */
2918 if (mask->ipv4_proto || mask->ipv4_frag)
2919 return -EINVAL;
2920 } else {
2921 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2922 return -EINVAL;
2923
2924 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2925 return -EINVAL;
2926 }
2927 break;
2928 }
2929 case OVS_KEY_ATTR_IPV6: {
2930 const struct ovs_key_ipv6 *ipv6_key;
2931
2932 if (eth_type != htons(ETH_P_IPV6))
2933 return -EINVAL;
2934
2935 ipv6_key = nla_data(ovs_key);
2936
2937 if (masked) {
2938 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2939
2940 /* Non-writeable fields. */
2941 if (mask->ipv6_proto || mask->ipv6_frag)
2942 return -EINVAL;
2943
2944 /* Invalid bits in the flow label mask? */
2945 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2946 return -EINVAL;
2947 } else {
2948 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2949 return -EINVAL;
2950
2951 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2952 return -EINVAL;
2953 }
2954 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2955 return -EINVAL;
2956
2957 break;
2958 }
2959 case OVS_KEY_ATTR_TCP:
2960 if ((eth_type != htons(ETH_P_IP) &&
2961 eth_type != htons(ETH_P_IPV6)) ||
2962 flow_key->ip.proto != IPPROTO_TCP)
2963 return -EINVAL;
2964
2965 break;
2966
2967 case OVS_KEY_ATTR_UDP:
2968 if ((eth_type != htons(ETH_P_IP) &&
2969 eth_type != htons(ETH_P_IPV6)) ||
2970 flow_key->ip.proto != IPPROTO_UDP)
2971 return -EINVAL;
2972
2973 break;
2974
2975 case OVS_KEY_ATTR_MPLS:
2976 if (!eth_p_mpls(eth_type))
2977 return -EINVAL;
2978 break;
2979
2980 case OVS_KEY_ATTR_SCTP:
2981 if ((eth_type != htons(ETH_P_IP) &&
2982 eth_type != htons(ETH_P_IPV6)) ||
2983 flow_key->ip.proto != IPPROTO_SCTP)
2984 return -EINVAL;
2985
2986 break;
2987
2988 case OVS_KEY_ATTR_NSH:
2989 if (eth_type != htons(ETH_P_NSH))
2990 return -EINVAL;
2991 if (!validate_nsh(nla_data(a), masked, false, log))
2992 return -EINVAL;
2993 break;
2994
2995 default:
2996 return -EINVAL;
2997 }
2998
2999 /* Convert non-masked non-tunnel set actions to masked set actions. */
3000 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3001 int start, len = key_len * 2;
3002 struct nlattr *at;
3003
3004 *skip_copy = true;
3005
3006 start = add_nested_action_start(sfa,
3007 OVS_ACTION_ATTR_SET_TO_MASKED,
3008 log);
3009 if (start < 0)
3010 return start;
3011
3012 at = __add_action(sfa, key_type, NULL, len, log);
3013 if (IS_ERR(at))
3014 return PTR_ERR(at);
3015
3016 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3017 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
3018 /* Clear non-writeable bits from otherwise writeable fields. */
3019 if (key_type == OVS_KEY_ATTR_IPV6) {
3020 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3021
3022 mask->ipv6_label &= htonl(0x000FFFFF);
3023 }
3024 add_nested_action_end(*sfa, start);
3025 }
3026
3027 return 0;
3028 }
3029
validate_userspace(const struct nlattr * attr)3030 static int validate_userspace(const struct nlattr *attr)
3031 {
3032 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3033 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3034 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3035 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3036 };
3037 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3038 int error;
3039
3040 error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3041 userspace_policy, NULL);
3042 if (error)
3043 return error;
3044
3045 if (!a[OVS_USERSPACE_ATTR_PID] ||
3046 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3047 return -EINVAL;
3048
3049 return 0;
3050 }
3051
3052 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3053 [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3054 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3055 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3056 };
3057
validate_and_copy_check_pkt_len(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last)3058 static int validate_and_copy_check_pkt_len(struct net *net,
3059 const struct nlattr *attr,
3060 const struct sw_flow_key *key,
3061 struct sw_flow_actions **sfa,
3062 __be16 eth_type, __be16 vlan_tci,
3063 u32 mpls_label_count,
3064 bool log, bool last)
3065 {
3066 const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3067 struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3068 struct check_pkt_len_arg arg;
3069 int nested_acts_start;
3070 int start, err;
3071
3072 err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3073 nla_data(attr), nla_len(attr),
3074 cpl_policy, NULL);
3075 if (err)
3076 return err;
3077
3078 if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3079 !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3080 return -EINVAL;
3081
3082 acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3083 acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3084
3085 /* Both the nested action should be present. */
3086 if (!acts_if_greater || !acts_if_lesser_eq)
3087 return -EINVAL;
3088
3089 /* validation done, copy the nested actions. */
3090 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3091 log);
3092 if (start < 0)
3093 return start;
3094
3095 arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3096 arg.exec_for_lesser_equal =
3097 last || !actions_may_change_flow(acts_if_lesser_eq);
3098 arg.exec_for_greater =
3099 last || !actions_may_change_flow(acts_if_greater);
3100
3101 err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3102 sizeof(arg), log);
3103 if (err)
3104 return err;
3105
3106 nested_acts_start = add_nested_action_start(sfa,
3107 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3108 if (nested_acts_start < 0)
3109 return nested_acts_start;
3110
3111 err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3112 eth_type, vlan_tci, mpls_label_count, log);
3113
3114 if (err)
3115 return err;
3116
3117 add_nested_action_end(*sfa, nested_acts_start);
3118
3119 nested_acts_start = add_nested_action_start(sfa,
3120 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3121 if (nested_acts_start < 0)
3122 return nested_acts_start;
3123
3124 err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3125 eth_type, vlan_tci, mpls_label_count, log);
3126
3127 if (err)
3128 return err;
3129
3130 add_nested_action_end(*sfa, nested_acts_start);
3131 add_nested_action_end(*sfa, start);
3132 return 0;
3133 }
3134
copy_action(const struct nlattr * from,struct sw_flow_actions ** sfa,bool log)3135 static int copy_action(const struct nlattr *from,
3136 struct sw_flow_actions **sfa, bool log)
3137 {
3138 int totlen = NLA_ALIGN(from->nla_len);
3139 struct nlattr *to;
3140
3141 to = reserve_sfa_size(sfa, from->nla_len, log);
3142 if (IS_ERR(to))
3143 return PTR_ERR(to);
3144
3145 memcpy(to, from, totlen);
3146 return 0;
3147 }
3148
__ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log)3149 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3150 const struct sw_flow_key *key,
3151 struct sw_flow_actions **sfa,
3152 __be16 eth_type, __be16 vlan_tci,
3153 u32 mpls_label_count, bool log)
3154 {
3155 u8 mac_proto = ovs_key_mac_proto(key);
3156 const struct nlattr *a;
3157 int rem, err;
3158
3159 nla_for_each_nested(a, attr, rem) {
3160 /* Expected argument lengths, (u32)-1 for variable length. */
3161 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3162 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3163 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3164 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3165 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3166 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3167 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3168 [OVS_ACTION_ATTR_POP_VLAN] = 0,
3169 [OVS_ACTION_ATTR_SET] = (u32)-1,
3170 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3171 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3172 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3173 [OVS_ACTION_ATTR_CT] = (u32)-1,
3174 [OVS_ACTION_ATTR_CT_CLEAR] = 0,
3175 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3176 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3177 [OVS_ACTION_ATTR_POP_ETH] = 0,
3178 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3179 [OVS_ACTION_ATTR_POP_NSH] = 0,
3180 [OVS_ACTION_ATTR_METER] = sizeof(u32),
3181 [OVS_ACTION_ATTR_CLONE] = (u32)-1,
3182 [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3183 [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3184 [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3185 };
3186 const struct ovs_action_push_vlan *vlan;
3187 int type = nla_type(a);
3188 bool skip_copy;
3189
3190 if (type > OVS_ACTION_ATTR_MAX ||
3191 (action_lens[type] != nla_len(a) &&
3192 action_lens[type] != (u32)-1))
3193 return -EINVAL;
3194
3195 skip_copy = false;
3196 switch (type) {
3197 case OVS_ACTION_ATTR_UNSPEC:
3198 return -EINVAL;
3199
3200 case OVS_ACTION_ATTR_USERSPACE:
3201 err = validate_userspace(a);
3202 if (err)
3203 return err;
3204 break;
3205
3206 case OVS_ACTION_ATTR_OUTPUT:
3207 if (nla_get_u32(a) >= DP_MAX_PORTS)
3208 return -EINVAL;
3209 break;
3210
3211 case OVS_ACTION_ATTR_TRUNC: {
3212 const struct ovs_action_trunc *trunc = nla_data(a);
3213
3214 if (trunc->max_len < ETH_HLEN)
3215 return -EINVAL;
3216 break;
3217 }
3218
3219 case OVS_ACTION_ATTR_HASH: {
3220 const struct ovs_action_hash *act_hash = nla_data(a);
3221
3222 switch (act_hash->hash_alg) {
3223 case OVS_HASH_ALG_L4:
3224 break;
3225 default:
3226 return -EINVAL;
3227 }
3228
3229 break;
3230 }
3231
3232 case OVS_ACTION_ATTR_POP_VLAN:
3233 if (mac_proto != MAC_PROTO_ETHERNET)
3234 return -EINVAL;
3235 vlan_tci = htons(0);
3236 break;
3237
3238 case OVS_ACTION_ATTR_PUSH_VLAN:
3239 if (mac_proto != MAC_PROTO_ETHERNET)
3240 return -EINVAL;
3241 vlan = nla_data(a);
3242 if (!eth_type_vlan(vlan->vlan_tpid))
3243 return -EINVAL;
3244 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3245 return -EINVAL;
3246 vlan_tci = vlan->vlan_tci;
3247 break;
3248
3249 case OVS_ACTION_ATTR_RECIRC:
3250 break;
3251
3252 case OVS_ACTION_ATTR_ADD_MPLS: {
3253 const struct ovs_action_add_mpls *mpls = nla_data(a);
3254
3255 if (!eth_p_mpls(mpls->mpls_ethertype))
3256 return -EINVAL;
3257
3258 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3259 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3260 (eth_type != htons(ETH_P_IP) &&
3261 eth_type != htons(ETH_P_IPV6) &&
3262 eth_type != htons(ETH_P_ARP) &&
3263 eth_type != htons(ETH_P_RARP) &&
3264 !eth_p_mpls(eth_type)))
3265 return -EINVAL;
3266 mpls_label_count++;
3267 } else {
3268 if (mac_proto == MAC_PROTO_ETHERNET) {
3269 mpls_label_count = 1;
3270 mac_proto = MAC_PROTO_NONE;
3271 } else {
3272 mpls_label_count++;
3273 }
3274 }
3275 eth_type = mpls->mpls_ethertype;
3276 break;
3277 }
3278
3279 case OVS_ACTION_ATTR_PUSH_MPLS: {
3280 const struct ovs_action_push_mpls *mpls = nla_data(a);
3281
3282 if (!eth_p_mpls(mpls->mpls_ethertype))
3283 return -EINVAL;
3284 /* Prohibit push MPLS other than to a white list
3285 * for packets that have a known tag order.
3286 */
3287 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3288 (eth_type != htons(ETH_P_IP) &&
3289 eth_type != htons(ETH_P_IPV6) &&
3290 eth_type != htons(ETH_P_ARP) &&
3291 eth_type != htons(ETH_P_RARP) &&
3292 !eth_p_mpls(eth_type)))
3293 return -EINVAL;
3294 eth_type = mpls->mpls_ethertype;
3295 mpls_label_count++;
3296 break;
3297 }
3298
3299 case OVS_ACTION_ATTR_POP_MPLS: {
3300 __be16 proto;
3301 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3302 !eth_p_mpls(eth_type))
3303 return -EINVAL;
3304
3305 /* Disallow subsequent L2.5+ set actions and mpls_pop
3306 * actions once the last MPLS label in the packet is
3307 * popped as there is no check here to ensure that
3308 * the new eth type is valid and thus set actions could
3309 * write off the end of the packet or otherwise corrupt
3310 * it.
3311 *
3312 * Support for these actions is planned using packet
3313 * recirculation.
3314 */
3315 proto = nla_get_be16(a);
3316
3317 if (proto == htons(ETH_P_TEB) &&
3318 mac_proto != MAC_PROTO_NONE)
3319 return -EINVAL;
3320
3321 mpls_label_count--;
3322
3323 if (!eth_p_mpls(proto) || !mpls_label_count)
3324 eth_type = htons(0);
3325 else
3326 eth_type = proto;
3327
3328 break;
3329 }
3330
3331 case OVS_ACTION_ATTR_SET:
3332 err = validate_set(a, key, sfa,
3333 &skip_copy, mac_proto, eth_type,
3334 false, log);
3335 if (err)
3336 return err;
3337 break;
3338
3339 case OVS_ACTION_ATTR_SET_MASKED:
3340 err = validate_set(a, key, sfa,
3341 &skip_copy, mac_proto, eth_type,
3342 true, log);
3343 if (err)
3344 return err;
3345 break;
3346
3347 case OVS_ACTION_ATTR_SAMPLE: {
3348 bool last = nla_is_last(a, rem);
3349
3350 err = validate_and_copy_sample(net, a, key, sfa,
3351 eth_type, vlan_tci,
3352 mpls_label_count,
3353 log, last);
3354 if (err)
3355 return err;
3356 skip_copy = true;
3357 break;
3358 }
3359
3360 case OVS_ACTION_ATTR_CT:
3361 err = ovs_ct_copy_action(net, a, key, sfa, log);
3362 if (err)
3363 return err;
3364 skip_copy = true;
3365 break;
3366
3367 case OVS_ACTION_ATTR_CT_CLEAR:
3368 break;
3369
3370 case OVS_ACTION_ATTR_PUSH_ETH:
3371 /* Disallow pushing an Ethernet header if one
3372 * is already present */
3373 if (mac_proto != MAC_PROTO_NONE)
3374 return -EINVAL;
3375 mac_proto = MAC_PROTO_ETHERNET;
3376 break;
3377
3378 case OVS_ACTION_ATTR_POP_ETH:
3379 if (mac_proto != MAC_PROTO_ETHERNET)
3380 return -EINVAL;
3381 if (vlan_tci & htons(VLAN_CFI_MASK))
3382 return -EINVAL;
3383 mac_proto = MAC_PROTO_NONE;
3384 break;
3385
3386 case OVS_ACTION_ATTR_PUSH_NSH:
3387 if (mac_proto != MAC_PROTO_ETHERNET) {
3388 u8 next_proto;
3389
3390 next_proto = tun_p_from_eth_p(eth_type);
3391 if (!next_proto)
3392 return -EINVAL;
3393 }
3394 mac_proto = MAC_PROTO_NONE;
3395 if (!validate_nsh(nla_data(a), false, true, true))
3396 return -EINVAL;
3397 break;
3398
3399 case OVS_ACTION_ATTR_POP_NSH: {
3400 __be16 inner_proto;
3401
3402 if (eth_type != htons(ETH_P_NSH))
3403 return -EINVAL;
3404 inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3405 if (!inner_proto)
3406 return -EINVAL;
3407 if (key->nsh.base.np == TUN_P_ETHERNET)
3408 mac_proto = MAC_PROTO_ETHERNET;
3409 else
3410 mac_proto = MAC_PROTO_NONE;
3411 break;
3412 }
3413
3414 case OVS_ACTION_ATTR_METER:
3415 /* Non-existent meters are simply ignored. */
3416 break;
3417
3418 case OVS_ACTION_ATTR_CLONE: {
3419 bool last = nla_is_last(a, rem);
3420
3421 err = validate_and_copy_clone(net, a, key, sfa,
3422 eth_type, vlan_tci,
3423 mpls_label_count,
3424 log, last);
3425 if (err)
3426 return err;
3427 skip_copy = true;
3428 break;
3429 }
3430
3431 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3432 bool last = nla_is_last(a, rem);
3433
3434 err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3435 eth_type,
3436 vlan_tci,
3437 mpls_label_count,
3438 log, last);
3439 if (err)
3440 return err;
3441 skip_copy = true;
3442 break;
3443 }
3444
3445 case OVS_ACTION_ATTR_DEC_TTL:
3446 err = validate_and_copy_dec_ttl(net, a, key, sfa,
3447 eth_type, vlan_tci,
3448 mpls_label_count, log);
3449 if (err)
3450 return err;
3451 skip_copy = true;
3452 break;
3453
3454 default:
3455 OVS_NLERR(log, "Unknown Action type %d", type);
3456 return -EINVAL;
3457 }
3458 if (!skip_copy) {
3459 err = copy_action(a, sfa, log);
3460 if (err)
3461 return err;
3462 }
3463 }
3464
3465 if (rem > 0)
3466 return -EINVAL;
3467
3468 return 0;
3469 }
3470
3471 /* 'key' must be the masked key. */
ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)3472 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3473 const struct sw_flow_key *key,
3474 struct sw_flow_actions **sfa, bool log)
3475 {
3476 int err;
3477 u32 mpls_label_count = 0;
3478
3479 *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3480 if (IS_ERR(*sfa))
3481 return PTR_ERR(*sfa);
3482
3483 if (eth_p_mpls(key->eth.type))
3484 mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3485
3486 (*sfa)->orig_len = nla_len(attr);
3487 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3488 key->eth.vlan.tci, mpls_label_count, log);
3489 if (err)
3490 ovs_nla_free_flow_actions(*sfa);
3491
3492 return err;
3493 }
3494
sample_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3495 static int sample_action_to_attr(const struct nlattr *attr,
3496 struct sk_buff *skb)
3497 {
3498 struct nlattr *start, *ac_start = NULL, *sample_arg;
3499 int err = 0, rem = nla_len(attr);
3500 const struct sample_arg *arg;
3501 struct nlattr *actions;
3502
3503 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3504 if (!start)
3505 return -EMSGSIZE;
3506
3507 sample_arg = nla_data(attr);
3508 arg = nla_data(sample_arg);
3509 actions = nla_next(sample_arg, &rem);
3510
3511 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3512 err = -EMSGSIZE;
3513 goto out;
3514 }
3515
3516 ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3517 if (!ac_start) {
3518 err = -EMSGSIZE;
3519 goto out;
3520 }
3521
3522 err = ovs_nla_put_actions(actions, rem, skb);
3523
3524 out:
3525 if (err) {
3526 nla_nest_cancel(skb, ac_start);
3527 nla_nest_cancel(skb, start);
3528 } else {
3529 nla_nest_end(skb, ac_start);
3530 nla_nest_end(skb, start);
3531 }
3532
3533 return err;
3534 }
3535
clone_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3536 static int clone_action_to_attr(const struct nlattr *attr,
3537 struct sk_buff *skb)
3538 {
3539 struct nlattr *start;
3540 int err = 0, rem = nla_len(attr);
3541
3542 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3543 if (!start)
3544 return -EMSGSIZE;
3545
3546 /* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3547 attr = nla_next(nla_data(attr), &rem);
3548 err = ovs_nla_put_actions(attr, rem, skb);
3549
3550 if (err)
3551 nla_nest_cancel(skb, start);
3552 else
3553 nla_nest_end(skb, start);
3554
3555 return err;
3556 }
3557
check_pkt_len_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3558 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3559 struct sk_buff *skb)
3560 {
3561 struct nlattr *start, *ac_start = NULL;
3562 const struct check_pkt_len_arg *arg;
3563 const struct nlattr *a, *cpl_arg;
3564 int err = 0, rem = nla_len(attr);
3565
3566 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3567 if (!start)
3568 return -EMSGSIZE;
3569
3570 /* The first nested attribute in 'attr' is always
3571 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3572 */
3573 cpl_arg = nla_data(attr);
3574 arg = nla_data(cpl_arg);
3575
3576 if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3577 err = -EMSGSIZE;
3578 goto out;
3579 }
3580
3581 /* Second nested attribute in 'attr' is always
3582 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3583 */
3584 a = nla_next(cpl_arg, &rem);
3585 ac_start = nla_nest_start_noflag(skb,
3586 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3587 if (!ac_start) {
3588 err = -EMSGSIZE;
3589 goto out;
3590 }
3591
3592 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3593 if (err) {
3594 nla_nest_cancel(skb, ac_start);
3595 goto out;
3596 } else {
3597 nla_nest_end(skb, ac_start);
3598 }
3599
3600 /* Third nested attribute in 'attr' is always
3601 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3602 */
3603 a = nla_next(a, &rem);
3604 ac_start = nla_nest_start_noflag(skb,
3605 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3606 if (!ac_start) {
3607 err = -EMSGSIZE;
3608 goto out;
3609 }
3610
3611 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3612 if (err) {
3613 nla_nest_cancel(skb, ac_start);
3614 goto out;
3615 } else {
3616 nla_nest_end(skb, ac_start);
3617 }
3618
3619 nla_nest_end(skb, start);
3620 return 0;
3621
3622 out:
3623 nla_nest_cancel(skb, start);
3624 return err;
3625 }
3626
dec_ttl_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3627 static int dec_ttl_action_to_attr(const struct nlattr *attr,
3628 struct sk_buff *skb)
3629 {
3630 struct nlattr *start, *action_start;
3631 const struct nlattr *a;
3632 int err = 0, rem;
3633
3634 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3635 if (!start)
3636 return -EMSGSIZE;
3637
3638 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3639 switch (nla_type(a)) {
3640 case OVS_DEC_TTL_ATTR_ACTION:
3641
3642 action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3643 if (!action_start) {
3644 err = -EMSGSIZE;
3645 goto out;
3646 }
3647
3648 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3649 if (err)
3650 goto out;
3651
3652 nla_nest_end(skb, action_start);
3653 break;
3654
3655 default:
3656 /* Ignore all other option to be future compatible */
3657 break;
3658 }
3659 }
3660
3661 nla_nest_end(skb, start);
3662 return 0;
3663
3664 out:
3665 nla_nest_cancel(skb, start);
3666 return err;
3667 }
3668
set_action_to_attr(const struct nlattr * a,struct sk_buff * skb)3669 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3670 {
3671 const struct nlattr *ovs_key = nla_data(a);
3672 int key_type = nla_type(ovs_key);
3673 struct nlattr *start;
3674 int err;
3675
3676 switch (key_type) {
3677 case OVS_KEY_ATTR_TUNNEL_INFO: {
3678 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3679 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3680
3681 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3682 if (!start)
3683 return -EMSGSIZE;
3684
3685 err = ip_tun_to_nlattr(skb, &tun_info->key,
3686 ip_tunnel_info_opts(tun_info),
3687 tun_info->options_len,
3688 ip_tunnel_info_af(tun_info), tun_info->mode);
3689 if (err)
3690 return err;
3691 nla_nest_end(skb, start);
3692 break;
3693 }
3694 default:
3695 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3696 return -EMSGSIZE;
3697 break;
3698 }
3699
3700 return 0;
3701 }
3702
masked_set_action_to_set_action_attr(const struct nlattr * a,struct sk_buff * skb)3703 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3704 struct sk_buff *skb)
3705 {
3706 const struct nlattr *ovs_key = nla_data(a);
3707 struct nlattr *nla;
3708 size_t key_len = nla_len(ovs_key) / 2;
3709
3710 /* Revert the conversion we did from a non-masked set action to
3711 * masked set action.
3712 */
3713 nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3714 if (!nla)
3715 return -EMSGSIZE;
3716
3717 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3718 return -EMSGSIZE;
3719
3720 nla_nest_end(skb, nla);
3721 return 0;
3722 }
3723
ovs_nla_put_actions(const struct nlattr * attr,int len,struct sk_buff * skb)3724 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3725 {
3726 const struct nlattr *a;
3727 int rem, err;
3728
3729 nla_for_each_attr(a, attr, len, rem) {
3730 int type = nla_type(a);
3731
3732 switch (type) {
3733 case OVS_ACTION_ATTR_SET:
3734 err = set_action_to_attr(a, skb);
3735 if (err)
3736 return err;
3737 break;
3738
3739 case OVS_ACTION_ATTR_SET_TO_MASKED:
3740 err = masked_set_action_to_set_action_attr(a, skb);
3741 if (err)
3742 return err;
3743 break;
3744
3745 case OVS_ACTION_ATTR_SAMPLE:
3746 err = sample_action_to_attr(a, skb);
3747 if (err)
3748 return err;
3749 break;
3750
3751 case OVS_ACTION_ATTR_CT:
3752 err = ovs_ct_action_to_attr(nla_data(a), skb);
3753 if (err)
3754 return err;
3755 break;
3756
3757 case OVS_ACTION_ATTR_CLONE:
3758 err = clone_action_to_attr(a, skb);
3759 if (err)
3760 return err;
3761 break;
3762
3763 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3764 err = check_pkt_len_action_to_attr(a, skb);
3765 if (err)
3766 return err;
3767 break;
3768
3769 case OVS_ACTION_ATTR_DEC_TTL:
3770 err = dec_ttl_action_to_attr(a, skb);
3771 if (err)
3772 return err;
3773 break;
3774
3775 default:
3776 if (nla_put(skb, type, nla_len(a), nla_data(a)))
3777 return -EMSGSIZE;
3778 break;
3779 }
3780 }
3781
3782 return 0;
3783 }
3784