1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35 
36 #include <asm/early_ioremap.h>
37 
38 struct efi __read_mostly efi = {
39 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
40 	.acpi			= EFI_INVALID_TABLE_ADDR,
41 	.acpi20			= EFI_INVALID_TABLE_ADDR,
42 	.smbios			= EFI_INVALID_TABLE_ADDR,
43 	.smbios3		= EFI_INVALID_TABLE_ADDR,
44 	.esrt			= EFI_INVALID_TABLE_ADDR,
45 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
46 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
47 #ifdef CONFIG_LOAD_UEFI_KEYS
48 	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
49 #endif
50 #ifdef CONFIG_EFI_COCO_SECRET
51 	.coco_secret		= EFI_INVALID_TABLE_ADDR,
52 #endif
53 };
54 EXPORT_SYMBOL(efi);
55 
56 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
57 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
58 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
59 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
60 
61 struct mm_struct efi_mm = {
62 	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
63 	.mm_users		= ATOMIC_INIT(2),
64 	.mm_count		= ATOMIC_INIT(1),
65 	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
66 	MMAP_LOCK_INITIALIZER(efi_mm)
67 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
68 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
69 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
70 };
71 
72 struct workqueue_struct *efi_rts_wq;
73 
74 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
setup_noefi(char * arg)75 static int __init setup_noefi(char *arg)
76 {
77 	disable_runtime = true;
78 	return 0;
79 }
80 early_param("noefi", setup_noefi);
81 
efi_runtime_disabled(void)82 bool efi_runtime_disabled(void)
83 {
84 	return disable_runtime;
85 }
86 
__efi_soft_reserve_enabled(void)87 bool __pure __efi_soft_reserve_enabled(void)
88 {
89 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
90 }
91 
parse_efi_cmdline(char * str)92 static int __init parse_efi_cmdline(char *str)
93 {
94 	if (!str) {
95 		pr_warn("need at least one option\n");
96 		return -EINVAL;
97 	}
98 
99 	if (parse_option_str(str, "debug"))
100 		set_bit(EFI_DBG, &efi.flags);
101 
102 	if (parse_option_str(str, "noruntime"))
103 		disable_runtime = true;
104 
105 	if (parse_option_str(str, "runtime"))
106 		disable_runtime = false;
107 
108 	if (parse_option_str(str, "nosoftreserve"))
109 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
110 
111 	return 0;
112 }
113 early_param("efi", parse_efi_cmdline);
114 
115 struct kobject *efi_kobj;
116 
117 /*
118  * Let's not leave out systab information that snuck into
119  * the efivars driver
120  * Note, do not add more fields in systab sysfs file as it breaks sysfs
121  * one value per file rule!
122  */
systab_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)123 static ssize_t systab_show(struct kobject *kobj,
124 			   struct kobj_attribute *attr, char *buf)
125 {
126 	char *str = buf;
127 
128 	if (!kobj || !buf)
129 		return -EINVAL;
130 
131 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
132 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
133 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
134 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
135 	/*
136 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
137 	 * SMBIOS3 entry point shall be preferred, so we list it first to
138 	 * let applications stop parsing after the first match.
139 	 */
140 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
141 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
142 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
143 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
144 
145 	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
146 		str = efi_systab_show_arch(str);
147 
148 	return str - buf;
149 }
150 
151 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
152 
fw_platform_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)153 static ssize_t fw_platform_size_show(struct kobject *kobj,
154 				     struct kobj_attribute *attr, char *buf)
155 {
156 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
157 }
158 
159 extern __weak struct kobj_attribute efi_attr_fw_vendor;
160 extern __weak struct kobj_attribute efi_attr_runtime;
161 extern __weak struct kobj_attribute efi_attr_config_table;
162 static struct kobj_attribute efi_attr_fw_platform_size =
163 	__ATTR_RO(fw_platform_size);
164 
165 static struct attribute *efi_subsys_attrs[] = {
166 	&efi_attr_systab.attr,
167 	&efi_attr_fw_platform_size.attr,
168 	&efi_attr_fw_vendor.attr,
169 	&efi_attr_runtime.attr,
170 	&efi_attr_config_table.attr,
171 	NULL,
172 };
173 
efi_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)174 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
175 				   int n)
176 {
177 	return attr->mode;
178 }
179 
180 static const struct attribute_group efi_subsys_attr_group = {
181 	.attrs = efi_subsys_attrs,
182 	.is_visible = efi_attr_is_visible,
183 };
184 
185 static struct efivars generic_efivars;
186 static struct efivar_operations generic_ops;
187 
generic_ops_register(void)188 static int generic_ops_register(void)
189 {
190 	generic_ops.get_variable = efi.get_variable;
191 	generic_ops.get_next_variable = efi.get_next_variable;
192 	generic_ops.query_variable_store = efi_query_variable_store;
193 
194 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
195 		generic_ops.set_variable = efi.set_variable;
196 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
197 	}
198 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
199 }
200 
generic_ops_unregister(void)201 static void generic_ops_unregister(void)
202 {
203 	efivars_unregister(&generic_efivars);
204 }
205 
206 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
207 #define EFIVAR_SSDT_NAME_MAX	16UL
208 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
efivar_ssdt_setup(char * str)209 static int __init efivar_ssdt_setup(char *str)
210 {
211 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
212 
213 	if (ret)
214 		return ret;
215 
216 	if (strlen(str) < sizeof(efivar_ssdt))
217 		memcpy(efivar_ssdt, str, strlen(str));
218 	else
219 		pr_warn("efivar_ssdt: name too long: %s\n", str);
220 	return 1;
221 }
222 __setup("efivar_ssdt=", efivar_ssdt_setup);
223 
efivar_ssdt_load(void)224 static __init int efivar_ssdt_load(void)
225 {
226 	unsigned long name_size = 256;
227 	efi_char16_t *name = NULL;
228 	efi_status_t status;
229 	efi_guid_t guid;
230 
231 	if (!efivar_ssdt[0])
232 		return 0;
233 
234 	name = kzalloc(name_size, GFP_KERNEL);
235 	if (!name)
236 		return -ENOMEM;
237 
238 	for (;;) {
239 		char utf8_name[EFIVAR_SSDT_NAME_MAX];
240 		unsigned long data_size = 0;
241 		void *data;
242 		int limit;
243 
244 		status = efi.get_next_variable(&name_size, name, &guid);
245 		if (status == EFI_NOT_FOUND) {
246 			break;
247 		} else if (status == EFI_BUFFER_TOO_SMALL) {
248 			name = krealloc(name, name_size, GFP_KERNEL);
249 			if (!name)
250 				return -ENOMEM;
251 			continue;
252 		}
253 
254 		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
255 		ucs2_as_utf8(utf8_name, name, limit - 1);
256 		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
257 			continue;
258 
259 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
260 
261 		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
262 		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
263 			return -EIO;
264 
265 		data = kmalloc(data_size, GFP_KERNEL);
266 		if (!data)
267 			return -ENOMEM;
268 
269 		status = efi.get_variable(name, &guid, NULL, &data_size, data);
270 		if (status == EFI_SUCCESS) {
271 			acpi_status ret = acpi_load_table(data, NULL);
272 			if (ret)
273 				pr_err("failed to load table: %u\n", ret);
274 			else
275 				continue;
276 		} else {
277 			pr_err("failed to get var data: 0x%lx\n", status);
278 		}
279 		kfree(data);
280 	}
281 	return 0;
282 }
283 #else
efivar_ssdt_load(void)284 static inline int efivar_ssdt_load(void) { return 0; }
285 #endif
286 
287 #ifdef CONFIG_DEBUG_FS
288 
289 #define EFI_DEBUGFS_MAX_BLOBS 32
290 
291 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
292 
efi_debugfs_init(void)293 static void __init efi_debugfs_init(void)
294 {
295 	struct dentry *efi_debugfs;
296 	efi_memory_desc_t *md;
297 	char name[32];
298 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
299 	int i = 0;
300 
301 	efi_debugfs = debugfs_create_dir("efi", NULL);
302 	if (IS_ERR_OR_NULL(efi_debugfs))
303 		return;
304 
305 	for_each_efi_memory_desc(md) {
306 		switch (md->type) {
307 		case EFI_BOOT_SERVICES_CODE:
308 			snprintf(name, sizeof(name), "boot_services_code%d",
309 				 type_count[md->type]++);
310 			break;
311 		case EFI_BOOT_SERVICES_DATA:
312 			snprintf(name, sizeof(name), "boot_services_data%d",
313 				 type_count[md->type]++);
314 			break;
315 		default:
316 			continue;
317 		}
318 
319 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
320 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
321 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
322 			break;
323 		}
324 
325 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
326 		debugfs_blob[i].data = memremap(md->phys_addr,
327 						debugfs_blob[i].size,
328 						MEMREMAP_WB);
329 		if (!debugfs_blob[i].data)
330 			continue;
331 
332 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
333 		i++;
334 	}
335 }
336 #else
efi_debugfs_init(void)337 static inline void efi_debugfs_init(void) {}
338 #endif
339 
340 /*
341  * We register the efi subsystem with the firmware subsystem and the
342  * efivars subsystem with the efi subsystem, if the system was booted with
343  * EFI.
344  */
efisubsys_init(void)345 static int __init efisubsys_init(void)
346 {
347 	int error;
348 
349 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
350 		efi.runtime_supported_mask = 0;
351 
352 	if (!efi_enabled(EFI_BOOT))
353 		return 0;
354 
355 	if (efi.runtime_supported_mask) {
356 		/*
357 		 * Since we process only one efi_runtime_service() at a time, an
358 		 * ordered workqueue (which creates only one execution context)
359 		 * should suffice for all our needs.
360 		 */
361 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
362 		if (!efi_rts_wq) {
363 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
364 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
365 			efi.runtime_supported_mask = 0;
366 			return 0;
367 		}
368 	}
369 
370 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
371 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
372 
373 	/* We register the efi directory at /sys/firmware/efi */
374 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
375 	if (!efi_kobj) {
376 		pr_err("efi: Firmware registration failed.\n");
377 		destroy_workqueue(efi_rts_wq);
378 		return -ENOMEM;
379 	}
380 
381 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
382 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
383 		error = generic_ops_register();
384 		if (error)
385 			goto err_put;
386 		efivar_ssdt_load();
387 		platform_device_register_simple("efivars", 0, NULL, 0);
388 	}
389 
390 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
391 	if (error) {
392 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
393 		       error);
394 		goto err_unregister;
395 	}
396 
397 	error = efi_runtime_map_init(efi_kobj);
398 	if (error)
399 		goto err_remove_group;
400 
401 	/* and the standard mountpoint for efivarfs */
402 	error = sysfs_create_mount_point(efi_kobj, "efivars");
403 	if (error) {
404 		pr_err("efivars: Subsystem registration failed.\n");
405 		goto err_remove_group;
406 	}
407 
408 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
409 		efi_debugfs_init();
410 
411 #ifdef CONFIG_EFI_COCO_SECRET
412 	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
413 		platform_device_register_simple("efi_secret", 0, NULL, 0);
414 #endif
415 
416 	return 0;
417 
418 err_remove_group:
419 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
420 err_unregister:
421 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
422 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
423 		generic_ops_unregister();
424 err_put:
425 	kobject_put(efi_kobj);
426 	destroy_workqueue(efi_rts_wq);
427 	return error;
428 }
429 
430 subsys_initcall(efisubsys_init);
431 
efi_find_mirror(void)432 void __init efi_find_mirror(void)
433 {
434 	efi_memory_desc_t *md;
435 	u64 mirror_size = 0, total_size = 0;
436 
437 	if (!efi_enabled(EFI_MEMMAP))
438 		return;
439 
440 	for_each_efi_memory_desc(md) {
441 		unsigned long long start = md->phys_addr;
442 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
443 
444 		total_size += size;
445 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
446 			memblock_mark_mirror(start, size);
447 			mirror_size += size;
448 		}
449 	}
450 	if (mirror_size)
451 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
452 			mirror_size>>20, total_size>>20);
453 }
454 
455 /*
456  * Find the efi memory descriptor for a given physical address.  Given a
457  * physical address, determine if it exists within an EFI Memory Map entry,
458  * and if so, populate the supplied memory descriptor with the appropriate
459  * data.
460  */
efi_mem_desc_lookup(u64 phys_addr,efi_memory_desc_t * out_md)461 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
462 {
463 	efi_memory_desc_t *md;
464 
465 	if (!efi_enabled(EFI_MEMMAP)) {
466 		pr_err_once("EFI_MEMMAP is not enabled.\n");
467 		return -EINVAL;
468 	}
469 
470 	if (!out_md) {
471 		pr_err_once("out_md is null.\n");
472 		return -EINVAL;
473         }
474 
475 	for_each_efi_memory_desc(md) {
476 		u64 size;
477 		u64 end;
478 
479 		size = md->num_pages << EFI_PAGE_SHIFT;
480 		end = md->phys_addr + size;
481 		if (phys_addr >= md->phys_addr && phys_addr < end) {
482 			memcpy(out_md, md, sizeof(*out_md));
483 			return 0;
484 		}
485 	}
486 	return -ENOENT;
487 }
488 
489 /*
490  * Calculate the highest address of an efi memory descriptor.
491  */
efi_mem_desc_end(efi_memory_desc_t * md)492 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
493 {
494 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
495 	u64 end = md->phys_addr + size;
496 	return end;
497 }
498 
efi_arch_mem_reserve(phys_addr_t addr,u64 size)499 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
500 
501 /**
502  * efi_mem_reserve - Reserve an EFI memory region
503  * @addr: Physical address to reserve
504  * @size: Size of reservation
505  *
506  * Mark a region as reserved from general kernel allocation and
507  * prevent it being released by efi_free_boot_services().
508  *
509  * This function should be called drivers once they've parsed EFI
510  * configuration tables to figure out where their data lives, e.g.
511  * efi_esrt_init().
512  */
efi_mem_reserve(phys_addr_t addr,u64 size)513 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
514 {
515 	if (!memblock_is_region_reserved(addr, size))
516 		memblock_reserve(addr, size);
517 
518 	/*
519 	 * Some architectures (x86) reserve all boot services ranges
520 	 * until efi_free_boot_services() because of buggy firmware
521 	 * implementations. This means the above memblock_reserve() is
522 	 * superfluous on x86 and instead what it needs to do is
523 	 * ensure the @start, @size is not freed.
524 	 */
525 	efi_arch_mem_reserve(addr, size);
526 }
527 
528 static const efi_config_table_type_t common_tables[] __initconst = {
529 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
530 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
531 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
532 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
533 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
534 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
535 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
536 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
537 	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
538 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
539 	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
540 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
541 #ifdef CONFIG_EFI_RCI2_TABLE
542 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
543 #endif
544 #ifdef CONFIG_LOAD_UEFI_KEYS
545 	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
546 #endif
547 #ifdef CONFIG_EFI_COCO_SECRET
548 	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
549 #endif
550 	{},
551 };
552 
match_config_table(const efi_guid_t * guid,unsigned long table,const efi_config_table_type_t * table_types)553 static __init int match_config_table(const efi_guid_t *guid,
554 				     unsigned long table,
555 				     const efi_config_table_type_t *table_types)
556 {
557 	int i;
558 
559 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
560 		if (!efi_guidcmp(*guid, table_types[i].guid)) {
561 			*(table_types[i].ptr) = table;
562 			if (table_types[i].name[0])
563 				pr_cont("%s=0x%lx ",
564 					table_types[i].name, table);
565 			return 1;
566 		}
567 	}
568 
569 	return 0;
570 }
571 
efi_config_parse_tables(const efi_config_table_t * config_tables,int count,const efi_config_table_type_t * arch_tables)572 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
573 				   int count,
574 				   const efi_config_table_type_t *arch_tables)
575 {
576 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
577 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
578 	const efi_guid_t *guid;
579 	unsigned long table;
580 	int i;
581 
582 	pr_info("");
583 	for (i = 0; i < count; i++) {
584 		if (!IS_ENABLED(CONFIG_X86)) {
585 			guid = &config_tables[i].guid;
586 			table = (unsigned long)config_tables[i].table;
587 		} else if (efi_enabled(EFI_64BIT)) {
588 			guid = &tbl64[i].guid;
589 			table = tbl64[i].table;
590 
591 			if (IS_ENABLED(CONFIG_X86_32) &&
592 			    tbl64[i].table > U32_MAX) {
593 				pr_cont("\n");
594 				pr_err("Table located above 4GB, disabling EFI.\n");
595 				return -EINVAL;
596 			}
597 		} else {
598 			guid = &tbl32[i].guid;
599 			table = tbl32[i].table;
600 		}
601 
602 		if (!match_config_table(guid, table, common_tables) && arch_tables)
603 			match_config_table(guid, table, arch_tables);
604 	}
605 	pr_cont("\n");
606 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
607 
608 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
609 		struct linux_efi_random_seed *seed;
610 		u32 size = 0;
611 
612 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
613 		if (seed != NULL) {
614 			size = min(seed->size, EFI_RANDOM_SEED_SIZE);
615 			early_memunmap(seed, sizeof(*seed));
616 		} else {
617 			pr_err("Could not map UEFI random seed!\n");
618 		}
619 		if (size > 0) {
620 			seed = early_memremap(efi_rng_seed,
621 					      sizeof(*seed) + size);
622 			if (seed != NULL) {
623 				pr_notice("seeding entropy pool\n");
624 				add_bootloader_randomness(seed->bits, size);
625 				early_memunmap(seed, sizeof(*seed) + size);
626 			} else {
627 				pr_err("Could not map UEFI random seed!\n");
628 			}
629 		}
630 	}
631 
632 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
633 		efi_memattr_init();
634 
635 	efi_tpm_eventlog_init();
636 
637 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
638 		unsigned long prsv = mem_reserve;
639 
640 		while (prsv) {
641 			struct linux_efi_memreserve *rsv;
642 			u8 *p;
643 
644 			/*
645 			 * Just map a full page: that is what we will get
646 			 * anyway, and it permits us to map the entire entry
647 			 * before knowing its size.
648 			 */
649 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
650 					   PAGE_SIZE);
651 			if (p == NULL) {
652 				pr_err("Could not map UEFI memreserve entry!\n");
653 				return -ENOMEM;
654 			}
655 
656 			rsv = (void *)(p + prsv % PAGE_SIZE);
657 
658 			/* reserve the entry itself */
659 			memblock_reserve(prsv,
660 					 struct_size(rsv, entry, rsv->size));
661 
662 			for (i = 0; i < atomic_read(&rsv->count); i++) {
663 				memblock_reserve(rsv->entry[i].base,
664 						 rsv->entry[i].size);
665 			}
666 
667 			prsv = rsv->next;
668 			early_memunmap(p, PAGE_SIZE);
669 		}
670 	}
671 
672 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
673 		efi_rt_properties_table_t *tbl;
674 
675 		tbl = early_memremap(rt_prop, sizeof(*tbl));
676 		if (tbl) {
677 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
678 			early_memunmap(tbl, sizeof(*tbl));
679 		}
680 	}
681 
682 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
683 	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
684 		struct linux_efi_initrd *tbl;
685 
686 		tbl = early_memremap(initrd, sizeof(*tbl));
687 		if (tbl) {
688 			phys_initrd_start = tbl->base;
689 			phys_initrd_size = tbl->size;
690 			early_memunmap(tbl, sizeof(*tbl));
691 		}
692 	}
693 
694 	return 0;
695 }
696 
efi_systab_check_header(const efi_table_hdr_t * systab_hdr,int min_major_version)697 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
698 				   int min_major_version)
699 {
700 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
701 		pr_err("System table signature incorrect!\n");
702 		return -EINVAL;
703 	}
704 
705 	if ((systab_hdr->revision >> 16) < min_major_version)
706 		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
707 		       systab_hdr->revision >> 16,
708 		       systab_hdr->revision & 0xffff,
709 		       min_major_version);
710 
711 	return 0;
712 }
713 
714 #ifndef CONFIG_IA64
map_fw_vendor(unsigned long fw_vendor,size_t size)715 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
716 						size_t size)
717 {
718 	const efi_char16_t *ret;
719 
720 	ret = early_memremap_ro(fw_vendor, size);
721 	if (!ret)
722 		pr_err("Could not map the firmware vendor!\n");
723 	return ret;
724 }
725 
unmap_fw_vendor(const void * fw_vendor,size_t size)726 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
727 {
728 	early_memunmap((void *)fw_vendor, size);
729 }
730 #else
731 #define map_fw_vendor(p, s)	__va(p)
732 #define unmap_fw_vendor(v, s)
733 #endif
734 
efi_systab_report_header(const efi_table_hdr_t * systab_hdr,unsigned long fw_vendor)735 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
736 				     unsigned long fw_vendor)
737 {
738 	char vendor[100] = "unknown";
739 	const efi_char16_t *c16;
740 	size_t i;
741 
742 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
743 	if (c16) {
744 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
745 			vendor[i] = c16[i];
746 		vendor[i] = '\0';
747 
748 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
749 	}
750 
751 	pr_info("EFI v%u.%.02u by %s\n",
752 		systab_hdr->revision >> 16,
753 		systab_hdr->revision & 0xffff,
754 		vendor);
755 
756 	if (IS_ENABLED(CONFIG_X86_64) &&
757 	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
758 	    !strcmp(vendor, "Apple")) {
759 		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
760 		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
761 	}
762 }
763 
764 static __initdata char memory_type_name[][13] = {
765 	"Reserved",
766 	"Loader Code",
767 	"Loader Data",
768 	"Boot Code",
769 	"Boot Data",
770 	"Runtime Code",
771 	"Runtime Data",
772 	"Conventional",
773 	"Unusable",
774 	"ACPI Reclaim",
775 	"ACPI Mem NVS",
776 	"MMIO",
777 	"MMIO Port",
778 	"PAL Code",
779 	"Persistent",
780 };
781 
efi_md_typeattr_format(char * buf,size_t size,const efi_memory_desc_t * md)782 char * __init efi_md_typeattr_format(char *buf, size_t size,
783 				     const efi_memory_desc_t *md)
784 {
785 	char *pos;
786 	int type_len;
787 	u64 attr;
788 
789 	pos = buf;
790 	if (md->type >= ARRAY_SIZE(memory_type_name))
791 		type_len = snprintf(pos, size, "[type=%u", md->type);
792 	else
793 		type_len = snprintf(pos, size, "[%-*s",
794 				    (int)(sizeof(memory_type_name[0]) - 1),
795 				    memory_type_name[md->type]);
796 	if (type_len >= size)
797 		return buf;
798 
799 	pos += type_len;
800 	size -= type_len;
801 
802 	attr = md->attribute;
803 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
804 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
805 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
806 		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
807 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
808 		snprintf(pos, size, "|attr=0x%016llx]",
809 			 (unsigned long long)attr);
810 	else
811 		snprintf(pos, size,
812 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
813 			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
814 			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
815 			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
816 			 attr & EFI_MEMORY_SP			? "SP"  : "",
817 			 attr & EFI_MEMORY_NV			? "NV"  : "",
818 			 attr & EFI_MEMORY_XP			? "XP"  : "",
819 			 attr & EFI_MEMORY_RP			? "RP"  : "",
820 			 attr & EFI_MEMORY_WP			? "WP"  : "",
821 			 attr & EFI_MEMORY_RO			? "RO"  : "",
822 			 attr & EFI_MEMORY_UCE			? "UCE" : "",
823 			 attr & EFI_MEMORY_WB			? "WB"  : "",
824 			 attr & EFI_MEMORY_WT			? "WT"  : "",
825 			 attr & EFI_MEMORY_WC			? "WC"  : "",
826 			 attr & EFI_MEMORY_UC			? "UC"  : "");
827 	return buf;
828 }
829 
830 /*
831  * IA64 has a funky EFI memory map that doesn't work the same way as
832  * other architectures.
833  */
834 #ifndef CONFIG_IA64
835 /*
836  * efi_mem_attributes - lookup memmap attributes for physical address
837  * @phys_addr: the physical address to lookup
838  *
839  * Search in the EFI memory map for the region covering
840  * @phys_addr. Returns the EFI memory attributes if the region
841  * was found in the memory map, 0 otherwise.
842  */
efi_mem_attributes(unsigned long phys_addr)843 u64 efi_mem_attributes(unsigned long phys_addr)
844 {
845 	efi_memory_desc_t *md;
846 
847 	if (!efi_enabled(EFI_MEMMAP))
848 		return 0;
849 
850 	for_each_efi_memory_desc(md) {
851 		if ((md->phys_addr <= phys_addr) &&
852 		    (phys_addr < (md->phys_addr +
853 		    (md->num_pages << EFI_PAGE_SHIFT))))
854 			return md->attribute;
855 	}
856 	return 0;
857 }
858 
859 /*
860  * efi_mem_type - lookup memmap type for physical address
861  * @phys_addr: the physical address to lookup
862  *
863  * Search in the EFI memory map for the region covering @phys_addr.
864  * Returns the EFI memory type if the region was found in the memory
865  * map, -EINVAL otherwise.
866  */
efi_mem_type(unsigned long phys_addr)867 int efi_mem_type(unsigned long phys_addr)
868 {
869 	const efi_memory_desc_t *md;
870 
871 	if (!efi_enabled(EFI_MEMMAP))
872 		return -ENOTSUPP;
873 
874 	for_each_efi_memory_desc(md) {
875 		if ((md->phys_addr <= phys_addr) &&
876 		    (phys_addr < (md->phys_addr +
877 				  (md->num_pages << EFI_PAGE_SHIFT))))
878 			return md->type;
879 	}
880 	return -EINVAL;
881 }
882 #endif
883 
efi_status_to_err(efi_status_t status)884 int efi_status_to_err(efi_status_t status)
885 {
886 	int err;
887 
888 	switch (status) {
889 	case EFI_SUCCESS:
890 		err = 0;
891 		break;
892 	case EFI_INVALID_PARAMETER:
893 		err = -EINVAL;
894 		break;
895 	case EFI_OUT_OF_RESOURCES:
896 		err = -ENOSPC;
897 		break;
898 	case EFI_DEVICE_ERROR:
899 		err = -EIO;
900 		break;
901 	case EFI_WRITE_PROTECTED:
902 		err = -EROFS;
903 		break;
904 	case EFI_SECURITY_VIOLATION:
905 		err = -EACCES;
906 		break;
907 	case EFI_NOT_FOUND:
908 		err = -ENOENT;
909 		break;
910 	case EFI_ABORTED:
911 		err = -EINTR;
912 		break;
913 	default:
914 		err = -EINVAL;
915 	}
916 
917 	return err;
918 }
919 EXPORT_SYMBOL_GPL(efi_status_to_err);
920 
921 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
922 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
923 
efi_memreserve_map_root(void)924 static int __init efi_memreserve_map_root(void)
925 {
926 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
927 		return -ENODEV;
928 
929 	efi_memreserve_root = memremap(mem_reserve,
930 				       sizeof(*efi_memreserve_root),
931 				       MEMREMAP_WB);
932 	if (WARN_ON_ONCE(!efi_memreserve_root))
933 		return -ENOMEM;
934 	return 0;
935 }
936 
efi_mem_reserve_iomem(phys_addr_t addr,u64 size)937 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
938 {
939 	struct resource *res, *parent;
940 	int ret;
941 
942 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
943 	if (!res)
944 		return -ENOMEM;
945 
946 	res->name	= "reserved";
947 	res->flags	= IORESOURCE_MEM;
948 	res->start	= addr;
949 	res->end	= addr + size - 1;
950 
951 	/* we expect a conflict with a 'System RAM' region */
952 	parent = request_resource_conflict(&iomem_resource, res);
953 	ret = parent ? request_resource(parent, res) : 0;
954 
955 	/*
956 	 * Given that efi_mem_reserve_iomem() can be called at any
957 	 * time, only call memblock_reserve() if the architecture
958 	 * keeps the infrastructure around.
959 	 */
960 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
961 		memblock_reserve(addr, size);
962 
963 	return ret;
964 }
965 
efi_mem_reserve_persistent(phys_addr_t addr,u64 size)966 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
967 {
968 	struct linux_efi_memreserve *rsv;
969 	unsigned long prsv;
970 	int rc, index;
971 
972 	if (efi_memreserve_root == (void *)ULONG_MAX)
973 		return -ENODEV;
974 
975 	if (!efi_memreserve_root) {
976 		rc = efi_memreserve_map_root();
977 		if (rc)
978 			return rc;
979 	}
980 
981 	/* first try to find a slot in an existing linked list entry */
982 	for (prsv = efi_memreserve_root->next; prsv; ) {
983 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
984 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
985 		if (index < rsv->size) {
986 			rsv->entry[index].base = addr;
987 			rsv->entry[index].size = size;
988 
989 			memunmap(rsv);
990 			return efi_mem_reserve_iomem(addr, size);
991 		}
992 		prsv = rsv->next;
993 		memunmap(rsv);
994 	}
995 
996 	/* no slot found - allocate a new linked list entry */
997 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
998 	if (!rsv)
999 		return -ENOMEM;
1000 
1001 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1002 	if (rc) {
1003 		free_page((unsigned long)rsv);
1004 		return rc;
1005 	}
1006 
1007 	/*
1008 	 * The memremap() call above assumes that a linux_efi_memreserve entry
1009 	 * never crosses a page boundary, so let's ensure that this remains true
1010 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1011 	 * using SZ_4K explicitly in the size calculation below.
1012 	 */
1013 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1014 	atomic_set(&rsv->count, 1);
1015 	rsv->entry[0].base = addr;
1016 	rsv->entry[0].size = size;
1017 
1018 	spin_lock(&efi_mem_reserve_persistent_lock);
1019 	rsv->next = efi_memreserve_root->next;
1020 	efi_memreserve_root->next = __pa(rsv);
1021 	spin_unlock(&efi_mem_reserve_persistent_lock);
1022 
1023 	return efi_mem_reserve_iomem(addr, size);
1024 }
1025 
efi_memreserve_root_init(void)1026 static int __init efi_memreserve_root_init(void)
1027 {
1028 	if (efi_memreserve_root)
1029 		return 0;
1030 	if (efi_memreserve_map_root())
1031 		efi_memreserve_root = (void *)ULONG_MAX;
1032 	return 0;
1033 }
1034 early_initcall(efi_memreserve_root_init);
1035 
1036 #ifdef CONFIG_KEXEC
update_efi_random_seed(struct notifier_block * nb,unsigned long code,void * unused)1037 static int update_efi_random_seed(struct notifier_block *nb,
1038 				  unsigned long code, void *unused)
1039 {
1040 	struct linux_efi_random_seed *seed;
1041 	u32 size = 0;
1042 
1043 	if (!kexec_in_progress)
1044 		return NOTIFY_DONE;
1045 
1046 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1047 	if (seed != NULL) {
1048 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1049 		memunmap(seed);
1050 	} else {
1051 		pr_err("Could not map UEFI random seed!\n");
1052 	}
1053 	if (size > 0) {
1054 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1055 				MEMREMAP_WB);
1056 		if (seed != NULL) {
1057 			seed->size = size;
1058 			get_random_bytes(seed->bits, seed->size);
1059 			memunmap(seed);
1060 		} else {
1061 			pr_err("Could not map UEFI random seed!\n");
1062 		}
1063 	}
1064 	return NOTIFY_DONE;
1065 }
1066 
1067 static struct notifier_block efi_random_seed_nb = {
1068 	.notifier_call = update_efi_random_seed,
1069 };
1070 
register_update_efi_random_seed(void)1071 static int __init register_update_efi_random_seed(void)
1072 {
1073 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1074 		return 0;
1075 	return register_reboot_notifier(&efi_random_seed_nb);
1076 }
1077 late_initcall(register_update_efi_random_seed);
1078 #endif
1079