1 /*
2 * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 /*
19 * Oracle Data Analytics Accelerator (DAX)
20 *
21 * DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8
22 * (DAX2) processor chips, and has direct access to the CPU's L3
23 * caches as well as physical memory. It can perform several
24 * operations on data streams with various input and output formats.
25 * The driver provides a transport mechanism only and has limited
26 * knowledge of the various opcodes and data formats. A user space
27 * library provides high level services and translates these into low
28 * level commands which are then passed into the driver and
29 * subsequently the hypervisor and the coprocessor. The library is
30 * the recommended way for applications to use the coprocessor, and
31 * the driver interface is not intended for general use.
32 *
33 * See Documentation/sparc/oradax/oracle-dax.txt for more details.
34 */
35
36 #include <linux/uaccess.h>
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/cdev.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42
43 #include <asm/hypervisor.h>
44 #include <asm/mdesc.h>
45 #include <asm/oradax.h>
46
47 MODULE_LICENSE("GPL");
48 MODULE_DESCRIPTION("Driver for Oracle Data Analytics Accelerator");
49
50 #define DAX_DBG_FLG_BASIC 0x01
51 #define DAX_DBG_FLG_STAT 0x02
52 #define DAX_DBG_FLG_INFO 0x04
53 #define DAX_DBG_FLG_ALL 0xff
54
55 #define dax_err(fmt, ...) pr_err("%s: " fmt "\n", __func__, ##__VA_ARGS__)
56 #define dax_info(fmt, ...) pr_info("%s: " fmt "\n", __func__, ##__VA_ARGS__)
57
58 #define dax_dbg(fmt, ...) do { \
59 if (dax_debug & DAX_DBG_FLG_BASIC)\
60 dax_info(fmt, ##__VA_ARGS__); \
61 } while (0)
62 #define dax_stat_dbg(fmt, ...) do { \
63 if (dax_debug & DAX_DBG_FLG_STAT) \
64 dax_info(fmt, ##__VA_ARGS__); \
65 } while (0)
66 #define dax_info_dbg(fmt, ...) do { \
67 if (dax_debug & DAX_DBG_FLG_INFO) \
68 dax_info(fmt, ##__VA_ARGS__); \
69 } while (0)
70
71 #define DAX1_MINOR 1
72 #define DAX1_MAJOR 1
73 #define DAX2_MINOR 0
74 #define DAX2_MAJOR 2
75
76 #define DAX1_STR "ORCL,sun4v-dax"
77 #define DAX2_STR "ORCL,sun4v-dax2"
78
79 #define DAX_CA_ELEMS (DAX_MMAP_LEN / sizeof(struct dax_cca))
80
81 #define DAX_CCB_USEC 100
82 #define DAX_CCB_RETRIES 10000
83
84 /* stream types */
85 enum {
86 OUT,
87 PRI,
88 SEC,
89 TBL,
90 NUM_STREAM_TYPES
91 };
92
93 /* completion status */
94 #define CCA_STAT_NOT_COMPLETED 0
95 #define CCA_STAT_COMPLETED 1
96 #define CCA_STAT_FAILED 2
97 #define CCA_STAT_KILLED 3
98 #define CCA_STAT_NOT_RUN 4
99 #define CCA_STAT_PIPE_OUT 5
100 #define CCA_STAT_PIPE_SRC 6
101 #define CCA_STAT_PIPE_DST 7
102
103 /* completion err */
104 #define CCA_ERR_SUCCESS 0x0 /* no error */
105 #define CCA_ERR_OVERFLOW 0x1 /* buffer overflow */
106 #define CCA_ERR_DECODE 0x2 /* CCB decode error */
107 #define CCA_ERR_PAGE_OVERFLOW 0x3 /* page overflow */
108 #define CCA_ERR_KILLED 0x7 /* command was killed */
109 #define CCA_ERR_TIMEOUT 0x8 /* Timeout */
110 #define CCA_ERR_ADI 0x9 /* ADI error */
111 #define CCA_ERR_DATA_FMT 0xA /* data format error */
112 #define CCA_ERR_OTHER_NO_RETRY 0xE /* Other error, do not retry */
113 #define CCA_ERR_OTHER_RETRY 0xF /* Other error, retry */
114 #define CCA_ERR_PARTIAL_SYMBOL 0x80 /* QP partial symbol warning */
115
116 /* CCB address types */
117 #define DAX_ADDR_TYPE_NONE 0
118 #define DAX_ADDR_TYPE_VA_ALT 1 /* secondary context */
119 #define DAX_ADDR_TYPE_RA 2 /* real address */
120 #define DAX_ADDR_TYPE_VA 3 /* virtual address */
121
122 /* dax_header_t opcode */
123 #define DAX_OP_SYNC_NOP 0x0
124 #define DAX_OP_EXTRACT 0x1
125 #define DAX_OP_SCAN_VALUE 0x2
126 #define DAX_OP_SCAN_RANGE 0x3
127 #define DAX_OP_TRANSLATE 0x4
128 #define DAX_OP_SELECT 0x5
129 #define DAX_OP_INVERT 0x10 /* OR with translate, scan opcodes */
130
131 struct dax_header {
132 u32 ccb_version:4; /* 31:28 CCB Version */
133 /* 27:24 Sync Flags */
134 u32 pipe:1; /* Pipeline */
135 u32 longccb:1; /* Longccb. Set for scan with lu2, lu3, lu4. */
136 u32 cond:1; /* Conditional */
137 u32 serial:1; /* Serial */
138 u32 opcode:8; /* 23:16 Opcode */
139 /* 15:0 Address Type. */
140 u32 reserved:3; /* 15:13 reserved */
141 u32 table_addr_type:2; /* 12:11 Huffman Table Address Type */
142 u32 out_addr_type:3; /* 10:8 Destination Address Type */
143 u32 sec_addr_type:3; /* 7:5 Secondary Source Address Type */
144 u32 pri_addr_type:3; /* 4:2 Primary Source Address Type */
145 u32 cca_addr_type:2; /* 1:0 Completion Address Type */
146 };
147
148 struct dax_control {
149 u32 pri_fmt:4; /* 31:28 Primary Input Format */
150 u32 pri_elem_size:5; /* 27:23 Primary Input Element Size(less1) */
151 u32 pri_offset:3; /* 22:20 Primary Input Starting Offset */
152 u32 sec_encoding:1; /* 19 Secondary Input Encoding */
153 /* (must be 0 for Select) */
154 u32 sec_offset:3; /* 18:16 Secondary Input Starting Offset */
155 u32 sec_elem_size:2; /* 15:14 Secondary Input Element Size */
156 /* (must be 0 for Select) */
157 u32 out_fmt:2; /* 13:12 Output Format */
158 u32 out_elem_size:2; /* 11:10 Output Element Size */
159 u32 misc:10; /* 9:0 Opcode specific info */
160 };
161
162 struct dax_data_access {
163 u64 flow_ctrl:2; /* 63:62 Flow Control Type */
164 u64 pipe_target:2; /* 61:60 Pipeline Target */
165 u64 out_buf_size:20; /* 59:40 Output Buffer Size */
166 /* (cachelines less 1) */
167 u64 unused1:8; /* 39:32 Reserved, Set to 0 */
168 u64 out_alloc:5; /* 31:27 Output Allocation */
169 u64 unused2:1; /* 26 Reserved */
170 u64 pri_len_fmt:2; /* 25:24 Input Length Format */
171 u64 pri_len:24; /* 23:0 Input Element/Byte/Bit Count */
172 /* (less 1) */
173 };
174
175 struct dax_ccb {
176 struct dax_header hdr; /* CCB Header */
177 struct dax_control ctrl;/* Control Word */
178 void *ca; /* Completion Address */
179 void *pri; /* Primary Input Address */
180 struct dax_data_access dac; /* Data Access Control */
181 void *sec; /* Secondary Input Address */
182 u64 dword5; /* depends on opcode */
183 void *out; /* Output Address */
184 void *tbl; /* Table Address or bitmap */
185 };
186
187 struct dax_cca {
188 u8 status; /* user may mwait on this address */
189 u8 err; /* user visible error notification */
190 u8 rsvd[2]; /* reserved */
191 u32 n_remaining; /* for QP partial symbol warning */
192 u32 output_sz; /* output in bytes */
193 u32 rsvd2; /* reserved */
194 u64 run_cycles; /* run time in OCND2 cycles */
195 u64 run_stats; /* nothing reported in version 1.0 */
196 u32 n_processed; /* number input elements */
197 u32 rsvd3[5]; /* reserved */
198 u64 retval; /* command return value */
199 u64 rsvd4[8]; /* reserved */
200 };
201
202 /* per thread CCB context */
203 struct dax_ctx {
204 struct dax_ccb *ccb_buf;
205 u64 ccb_buf_ra; /* cached RA of ccb_buf */
206 struct dax_cca *ca_buf;
207 u64 ca_buf_ra; /* cached RA of ca_buf */
208 struct page *pages[DAX_CA_ELEMS][NUM_STREAM_TYPES];
209 /* array of locked pages */
210 struct task_struct *owner; /* thread that owns ctx */
211 struct task_struct *client; /* requesting thread */
212 union ccb_result result;
213 u32 ccb_count;
214 u32 fail_count;
215 };
216
217 /* driver public entry points */
218 static int dax_open(struct inode *inode, struct file *file);
219 static ssize_t dax_read(struct file *filp, char __user *buf,
220 size_t count, loff_t *ppos);
221 static ssize_t dax_write(struct file *filp, const char __user *buf,
222 size_t count, loff_t *ppos);
223 static int dax_devmap(struct file *f, struct vm_area_struct *vma);
224 static int dax_close(struct inode *i, struct file *f);
225
226 static const struct file_operations dax_fops = {
227 .owner = THIS_MODULE,
228 .open = dax_open,
229 .read = dax_read,
230 .write = dax_write,
231 .mmap = dax_devmap,
232 .release = dax_close,
233 };
234
235 static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf,
236 size_t count, loff_t *ppos);
237 static int dax_ccb_info(u64 ca, struct ccb_info_result *info);
238 static int dax_ccb_kill(u64 ca, u16 *kill_res);
239
240 static struct cdev c_dev;
241 static struct class *cl;
242 static dev_t first;
243
244 static int max_ccb_version;
245 static int dax_debug;
246 module_param(dax_debug, int, 0644);
247 MODULE_PARM_DESC(dax_debug, "Debug flags");
248
dax_attach(void)249 static int __init dax_attach(void)
250 {
251 unsigned long dummy, hv_rv, major, minor, minor_requested, max_ccbs;
252 struct mdesc_handle *hp = mdesc_grab();
253 char *prop, *dax_name;
254 bool found = false;
255 int len, ret = 0;
256 u64 pn;
257
258 if (hp == NULL) {
259 dax_err("Unable to grab mdesc");
260 return -ENODEV;
261 }
262
263 mdesc_for_each_node_by_name(hp, pn, "virtual-device") {
264 prop = (char *)mdesc_get_property(hp, pn, "name", &len);
265 if (prop == NULL)
266 continue;
267 if (strncmp(prop, "dax", strlen("dax")))
268 continue;
269 dax_dbg("Found node 0x%llx = %s", pn, prop);
270
271 prop = (char *)mdesc_get_property(hp, pn, "compatible", &len);
272 if (prop == NULL)
273 continue;
274 dax_dbg("Found node 0x%llx = %s", pn, prop);
275 found = true;
276 break;
277 }
278
279 if (!found) {
280 dax_err("No DAX device found");
281 ret = -ENODEV;
282 goto done;
283 }
284
285 if (strncmp(prop, DAX2_STR, strlen(DAX2_STR)) == 0) {
286 dax_name = DAX_NAME "2";
287 major = DAX2_MAJOR;
288 minor_requested = DAX2_MINOR;
289 max_ccb_version = 1;
290 dax_dbg("MD indicates DAX2 coprocessor");
291 } else if (strncmp(prop, DAX1_STR, strlen(DAX1_STR)) == 0) {
292 dax_name = DAX_NAME "1";
293 major = DAX1_MAJOR;
294 minor_requested = DAX1_MINOR;
295 max_ccb_version = 0;
296 dax_dbg("MD indicates DAX1 coprocessor");
297 } else {
298 dax_err("Unknown dax type: %s", prop);
299 ret = -ENODEV;
300 goto done;
301 }
302
303 minor = minor_requested;
304 dax_dbg("Registering DAX HV api with major %ld minor %ld", major,
305 minor);
306 if (sun4v_hvapi_register(HV_GRP_DAX, major, &minor)) {
307 dax_err("hvapi_register failed");
308 ret = -ENODEV;
309 goto done;
310 } else {
311 dax_dbg("Max minor supported by HV = %ld (major %ld)", minor,
312 major);
313 minor = min(minor, minor_requested);
314 dax_dbg("registered DAX major %ld minor %ld", major, minor);
315 }
316
317 /* submit a zero length ccb array to query coprocessor queue size */
318 hv_rv = sun4v_ccb_submit(0, 0, HV_CCB_QUERY_CMD, 0, &max_ccbs, &dummy);
319 if (hv_rv != 0) {
320 dax_err("get_hwqueue_size failed with status=%ld and max_ccbs=%ld",
321 hv_rv, max_ccbs);
322 ret = -ENODEV;
323 goto done;
324 }
325
326 if (max_ccbs != DAX_MAX_CCBS) {
327 dax_err("HV reports unsupported max_ccbs=%ld", max_ccbs);
328 ret = -ENODEV;
329 goto done;
330 }
331
332 if (alloc_chrdev_region(&first, 0, 1, DAX_NAME) < 0) {
333 dax_err("alloc_chrdev_region failed");
334 ret = -ENXIO;
335 goto done;
336 }
337
338 cl = class_create(THIS_MODULE, DAX_NAME);
339 if (IS_ERR(cl)) {
340 dax_err("class_create failed");
341 ret = PTR_ERR(cl);
342 goto class_error;
343 }
344
345 if (device_create(cl, NULL, first, NULL, dax_name) == NULL) {
346 dax_err("device_create failed");
347 ret = -ENXIO;
348 goto device_error;
349 }
350
351 cdev_init(&c_dev, &dax_fops);
352 if (cdev_add(&c_dev, first, 1) == -1) {
353 dax_err("cdev_add failed");
354 ret = -ENXIO;
355 goto cdev_error;
356 }
357
358 pr_info("Attached DAX module\n");
359 goto done;
360
361 cdev_error:
362 device_destroy(cl, first);
363 device_error:
364 class_destroy(cl);
365 class_error:
366 unregister_chrdev_region(first, 1);
367 done:
368 mdesc_release(hp);
369 return ret;
370 }
371 module_init(dax_attach);
372
dax_detach(void)373 static void __exit dax_detach(void)
374 {
375 pr_info("Cleaning up DAX module\n");
376 cdev_del(&c_dev);
377 device_destroy(cl, first);
378 class_destroy(cl);
379 unregister_chrdev_region(first, 1);
380 }
381 module_exit(dax_detach);
382
383 /* map completion area */
dax_devmap(struct file * f,struct vm_area_struct * vma)384 static int dax_devmap(struct file *f, struct vm_area_struct *vma)
385 {
386 struct dax_ctx *ctx = (struct dax_ctx *)f->private_data;
387 size_t len = vma->vm_end - vma->vm_start;
388
389 dax_dbg("len=0x%lx, flags=0x%lx", len, vma->vm_flags);
390
391 if (ctx->owner != current) {
392 dax_dbg("devmap called from wrong thread");
393 return -EINVAL;
394 }
395
396 if (len != DAX_MMAP_LEN) {
397 dax_dbg("len(%lu) != DAX_MMAP_LEN(%d)", len, DAX_MMAP_LEN);
398 return -EINVAL;
399 }
400
401 /* completion area is mapped read-only for user */
402 if (vma->vm_flags & VM_WRITE)
403 return -EPERM;
404 vma->vm_flags &= ~VM_MAYWRITE;
405
406 if (remap_pfn_range(vma, vma->vm_start, ctx->ca_buf_ra >> PAGE_SHIFT,
407 len, vma->vm_page_prot))
408 return -EAGAIN;
409
410 dax_dbg("mmapped completion area at uva 0x%lx", vma->vm_start);
411 return 0;
412 }
413
414 /* Unlock user pages. Called during dequeue or device close */
dax_unlock_pages(struct dax_ctx * ctx,int ccb_index,int nelem)415 static void dax_unlock_pages(struct dax_ctx *ctx, int ccb_index, int nelem)
416 {
417 int i, j;
418
419 for (i = ccb_index; i < ccb_index + nelem; i++) {
420 for (j = 0; j < NUM_STREAM_TYPES; j++) {
421 struct page *p = ctx->pages[i][j];
422
423 if (p) {
424 dax_dbg("freeing page %p", p);
425 if (j == OUT)
426 set_page_dirty(p);
427 put_page(p);
428 ctx->pages[i][j] = NULL;
429 }
430 }
431 }
432 }
433
dax_lock_page(void * va,struct page ** p)434 static int dax_lock_page(void *va, struct page **p)
435 {
436 int ret;
437
438 dax_dbg("uva %p", va);
439
440 ret = get_user_pages_fast((unsigned long)va, 1, 1, p);
441 if (ret == 1) {
442 dax_dbg("locked page %p, for VA %p", *p, va);
443 return 0;
444 }
445
446 dax_dbg("get_user_pages failed, va=%p, ret=%d", va, ret);
447 return -1;
448 }
449
dax_lock_pages(struct dax_ctx * ctx,int idx,int nelem,u64 * err_va)450 static int dax_lock_pages(struct dax_ctx *ctx, int idx,
451 int nelem, u64 *err_va)
452 {
453 int i;
454
455 for (i = 0; i < nelem; i++) {
456 struct dax_ccb *ccbp = &ctx->ccb_buf[i];
457
458 /*
459 * For each address in the CCB whose type is virtual,
460 * lock the page and change the type to virtual alternate
461 * context. On error, return the offending address in
462 * err_va.
463 */
464 if (ccbp->hdr.out_addr_type == DAX_ADDR_TYPE_VA) {
465 dax_dbg("output");
466 if (dax_lock_page(ccbp->out,
467 &ctx->pages[i + idx][OUT]) != 0) {
468 *err_va = (u64)ccbp->out;
469 goto error;
470 }
471 ccbp->hdr.out_addr_type = DAX_ADDR_TYPE_VA_ALT;
472 }
473
474 if (ccbp->hdr.pri_addr_type == DAX_ADDR_TYPE_VA) {
475 dax_dbg("input");
476 if (dax_lock_page(ccbp->pri,
477 &ctx->pages[i + idx][PRI]) != 0) {
478 *err_va = (u64)ccbp->pri;
479 goto error;
480 }
481 ccbp->hdr.pri_addr_type = DAX_ADDR_TYPE_VA_ALT;
482 }
483
484 if (ccbp->hdr.sec_addr_type == DAX_ADDR_TYPE_VA) {
485 dax_dbg("sec input");
486 if (dax_lock_page(ccbp->sec,
487 &ctx->pages[i + idx][SEC]) != 0) {
488 *err_va = (u64)ccbp->sec;
489 goto error;
490 }
491 ccbp->hdr.sec_addr_type = DAX_ADDR_TYPE_VA_ALT;
492 }
493
494 if (ccbp->hdr.table_addr_type == DAX_ADDR_TYPE_VA) {
495 dax_dbg("tbl");
496 if (dax_lock_page(ccbp->tbl,
497 &ctx->pages[i + idx][TBL]) != 0) {
498 *err_va = (u64)ccbp->tbl;
499 goto error;
500 }
501 ccbp->hdr.table_addr_type = DAX_ADDR_TYPE_VA_ALT;
502 }
503
504 /* skip over 2nd 64 bytes of long CCB */
505 if (ccbp->hdr.longccb)
506 i++;
507 }
508 return DAX_SUBMIT_OK;
509
510 error:
511 dax_unlock_pages(ctx, idx, nelem);
512 return DAX_SUBMIT_ERR_NOACCESS;
513 }
514
dax_ccb_wait(struct dax_ctx * ctx,int idx)515 static void dax_ccb_wait(struct dax_ctx *ctx, int idx)
516 {
517 int ret, nretries;
518 u16 kill_res;
519
520 dax_dbg("idx=%d", idx);
521
522 for (nretries = 0; nretries < DAX_CCB_RETRIES; nretries++) {
523 if (ctx->ca_buf[idx].status == CCA_STAT_NOT_COMPLETED)
524 udelay(DAX_CCB_USEC);
525 else
526 return;
527 }
528 dax_dbg("ctx (%p): CCB[%d] timed out, wait usec=%d, retries=%d. Killing ccb",
529 (void *)ctx, idx, DAX_CCB_USEC, DAX_CCB_RETRIES);
530
531 ret = dax_ccb_kill(ctx->ca_buf_ra + idx * sizeof(struct dax_cca),
532 &kill_res);
533 dax_dbg("Kill CCB[%d] %s", idx, ret ? "failed" : "succeeded");
534 }
535
dax_close(struct inode * ino,struct file * f)536 static int dax_close(struct inode *ino, struct file *f)
537 {
538 struct dax_ctx *ctx = (struct dax_ctx *)f->private_data;
539 int i;
540
541 f->private_data = NULL;
542
543 for (i = 0; i < DAX_CA_ELEMS; i++) {
544 if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) {
545 dax_dbg("CCB[%d] not completed", i);
546 dax_ccb_wait(ctx, i);
547 }
548 dax_unlock_pages(ctx, i, 1);
549 }
550
551 kfree(ctx->ccb_buf);
552 kfree(ctx->ca_buf);
553 dax_stat_dbg("CCBs: %d good, %d bad", ctx->ccb_count, ctx->fail_count);
554 kfree(ctx);
555
556 return 0;
557 }
558
dax_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)559 static ssize_t dax_read(struct file *f, char __user *buf,
560 size_t count, loff_t *ppos)
561 {
562 struct dax_ctx *ctx = f->private_data;
563
564 if (ctx->client != current)
565 return -EUSERS;
566
567 ctx->client = NULL;
568
569 if (count != sizeof(union ccb_result))
570 return -EINVAL;
571 if (copy_to_user(buf, &ctx->result, sizeof(union ccb_result)))
572 return -EFAULT;
573 return count;
574 }
575
dax_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)576 static ssize_t dax_write(struct file *f, const char __user *buf,
577 size_t count, loff_t *ppos)
578 {
579 struct dax_ctx *ctx = f->private_data;
580 struct dax_command hdr;
581 unsigned long ca;
582 int i, idx, ret;
583
584 if (ctx->client != NULL)
585 return -EINVAL;
586
587 if (count == 0 || count > DAX_MAX_CCBS * sizeof(struct dax_ccb))
588 return -EINVAL;
589
590 if (count % sizeof(struct dax_ccb) == 0)
591 return dax_ccb_exec(ctx, buf, count, ppos); /* CCB EXEC */
592
593 if (count != sizeof(struct dax_command))
594 return -EINVAL;
595
596 /* immediate command */
597 if (ctx->owner != current)
598 return -EUSERS;
599
600 if (copy_from_user(&hdr, buf, sizeof(hdr)))
601 return -EFAULT;
602
603 ca = ctx->ca_buf_ra + hdr.ca_offset;
604
605 switch (hdr.command) {
606 case CCB_KILL:
607 if (hdr.ca_offset >= DAX_MMAP_LEN) {
608 dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)",
609 hdr.ca_offset, DAX_MMAP_LEN);
610 return -EINVAL;
611 }
612
613 ret = dax_ccb_kill(ca, &ctx->result.kill.action);
614 if (ret != 0) {
615 dax_dbg("dax_ccb_kill failed (ret=%d)", ret);
616 return ret;
617 }
618
619 dax_info_dbg("killed (ca_offset %d)", hdr.ca_offset);
620 idx = hdr.ca_offset / sizeof(struct dax_cca);
621 ctx->ca_buf[idx].status = CCA_STAT_KILLED;
622 ctx->ca_buf[idx].err = CCA_ERR_KILLED;
623 ctx->client = current;
624 return count;
625
626 case CCB_INFO:
627 if (hdr.ca_offset >= DAX_MMAP_LEN) {
628 dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)",
629 hdr.ca_offset, DAX_MMAP_LEN);
630 return -EINVAL;
631 }
632
633 ret = dax_ccb_info(ca, &ctx->result.info);
634 if (ret != 0) {
635 dax_dbg("dax_ccb_info failed (ret=%d)", ret);
636 return ret;
637 }
638
639 dax_info_dbg("info succeeded on ca_offset %d", hdr.ca_offset);
640 ctx->client = current;
641 return count;
642
643 case CCB_DEQUEUE:
644 for (i = 0; i < DAX_CA_ELEMS; i++) {
645 if (ctx->ca_buf[i].status !=
646 CCA_STAT_NOT_COMPLETED)
647 dax_unlock_pages(ctx, i, 1);
648 }
649 return count;
650
651 default:
652 return -EINVAL;
653 }
654 }
655
dax_open(struct inode * inode,struct file * f)656 static int dax_open(struct inode *inode, struct file *f)
657 {
658 struct dax_ctx *ctx = NULL;
659 int i;
660
661 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
662 if (ctx == NULL)
663 goto done;
664
665 ctx->ccb_buf = kcalloc(DAX_MAX_CCBS, sizeof(struct dax_ccb),
666 GFP_KERNEL);
667 if (ctx->ccb_buf == NULL)
668 goto done;
669
670 ctx->ccb_buf_ra = virt_to_phys(ctx->ccb_buf);
671 dax_dbg("ctx->ccb_buf=0x%p, ccb_buf_ra=0x%llx",
672 (void *)ctx->ccb_buf, ctx->ccb_buf_ra);
673
674 /* allocate CCB completion area buffer */
675 ctx->ca_buf = kzalloc(DAX_MMAP_LEN, GFP_KERNEL);
676 if (ctx->ca_buf == NULL)
677 goto alloc_error;
678 for (i = 0; i < DAX_CA_ELEMS; i++)
679 ctx->ca_buf[i].status = CCA_STAT_COMPLETED;
680
681 ctx->ca_buf_ra = virt_to_phys(ctx->ca_buf);
682 dax_dbg("ctx=0x%p, ctx->ca_buf=0x%p, ca_buf_ra=0x%llx",
683 (void *)ctx, (void *)ctx->ca_buf, ctx->ca_buf_ra);
684
685 ctx->owner = current;
686 f->private_data = ctx;
687 return 0;
688
689 alloc_error:
690 kfree(ctx->ccb_buf);
691 done:
692 kfree(ctx);
693 return -ENOMEM;
694 }
695
dax_hv_errno(unsigned long hv_ret,int * ret)696 static char *dax_hv_errno(unsigned long hv_ret, int *ret)
697 {
698 switch (hv_ret) {
699 case HV_EBADALIGN:
700 *ret = -EFAULT;
701 return "HV_EBADALIGN";
702 case HV_ENORADDR:
703 *ret = -EFAULT;
704 return "HV_ENORADDR";
705 case HV_EINVAL:
706 *ret = -EINVAL;
707 return "HV_EINVAL";
708 case HV_EWOULDBLOCK:
709 *ret = -EAGAIN;
710 return "HV_EWOULDBLOCK";
711 case HV_ENOACCESS:
712 *ret = -EPERM;
713 return "HV_ENOACCESS";
714 default:
715 break;
716 }
717
718 *ret = -EIO;
719 return "UNKNOWN";
720 }
721
dax_ccb_kill(u64 ca,u16 * kill_res)722 static int dax_ccb_kill(u64 ca, u16 *kill_res)
723 {
724 unsigned long hv_ret;
725 int count, ret = 0;
726 char *err_str;
727
728 for (count = 0; count < DAX_CCB_RETRIES; count++) {
729 dax_dbg("attempting kill on ca_ra 0x%llx", ca);
730 hv_ret = sun4v_ccb_kill(ca, kill_res);
731
732 if (hv_ret == HV_EOK) {
733 dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca,
734 *kill_res);
735 } else {
736 err_str = dax_hv_errno(hv_ret, &ret);
737 dax_dbg("%s (ca_ra 0x%llx)", err_str, ca);
738 }
739
740 if (ret != -EAGAIN)
741 return ret;
742 dax_info_dbg("ccb_kill count = %d", count);
743 udelay(DAX_CCB_USEC);
744 }
745
746 return -EAGAIN;
747 }
748
dax_ccb_info(u64 ca,struct ccb_info_result * info)749 static int dax_ccb_info(u64 ca, struct ccb_info_result *info)
750 {
751 unsigned long hv_ret;
752 char *err_str;
753 int ret = 0;
754
755 dax_dbg("attempting info on ca_ra 0x%llx", ca);
756 hv_ret = sun4v_ccb_info(ca, info);
757
758 if (hv_ret == HV_EOK) {
759 dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, info->state);
760 if (info->state == DAX_CCB_ENQUEUED) {
761 dax_info_dbg("dax_unit %d, queue_num %d, queue_pos %d",
762 info->inst_num, info->q_num, info->q_pos);
763 }
764 } else {
765 err_str = dax_hv_errno(hv_ret, &ret);
766 dax_dbg("%s (ca_ra 0x%llx)", err_str, ca);
767 }
768
769 return ret;
770 }
771
dax_prt_ccbs(struct dax_ccb * ccb,int nelem)772 static void dax_prt_ccbs(struct dax_ccb *ccb, int nelem)
773 {
774 int i, j;
775 u64 *ccbp;
776
777 dax_dbg("ccb buffer:");
778 for (i = 0; i < nelem; i++) {
779 ccbp = (u64 *)&ccb[i];
780 dax_dbg(" %sccb[%d]", ccb[i].hdr.longccb ? "long " : "", i);
781 for (j = 0; j < 8; j++)
782 dax_dbg("\tccb[%d].dwords[%d]=0x%llx",
783 i, j, *(ccbp + j));
784 }
785 }
786
787 /*
788 * Validates user CCB content. Also sets completion address and address types
789 * for all addresses contained in CCB.
790 */
dax_preprocess_usr_ccbs(struct dax_ctx * ctx,int idx,int nelem)791 static int dax_preprocess_usr_ccbs(struct dax_ctx *ctx, int idx, int nelem)
792 {
793 int i;
794
795 /*
796 * The user is not allowed to specify real address types in
797 * the CCB header. This must be enforced by the kernel before
798 * submitting the CCBs to HV. The only allowed values for all
799 * address fields are VA or IMM
800 */
801 for (i = 0; i < nelem; i++) {
802 struct dax_ccb *ccbp = &ctx->ccb_buf[i];
803 unsigned long ca_offset;
804
805 if (ccbp->hdr.ccb_version > max_ccb_version)
806 return DAX_SUBMIT_ERR_CCB_INVAL;
807
808 switch (ccbp->hdr.opcode) {
809 case DAX_OP_SYNC_NOP:
810 case DAX_OP_EXTRACT:
811 case DAX_OP_SCAN_VALUE:
812 case DAX_OP_SCAN_RANGE:
813 case DAX_OP_TRANSLATE:
814 case DAX_OP_SCAN_VALUE | DAX_OP_INVERT:
815 case DAX_OP_SCAN_RANGE | DAX_OP_INVERT:
816 case DAX_OP_TRANSLATE | DAX_OP_INVERT:
817 case DAX_OP_SELECT:
818 break;
819 default:
820 return DAX_SUBMIT_ERR_CCB_INVAL;
821 }
822
823 if (ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_VA &&
824 ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_NONE) {
825 dax_dbg("invalid out_addr_type in user CCB[%d]", i);
826 return DAX_SUBMIT_ERR_CCB_INVAL;
827 }
828
829 if (ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_VA &&
830 ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_NONE) {
831 dax_dbg("invalid pri_addr_type in user CCB[%d]", i);
832 return DAX_SUBMIT_ERR_CCB_INVAL;
833 }
834
835 if (ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_VA &&
836 ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_NONE) {
837 dax_dbg("invalid sec_addr_type in user CCB[%d]", i);
838 return DAX_SUBMIT_ERR_CCB_INVAL;
839 }
840
841 if (ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_VA &&
842 ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_NONE) {
843 dax_dbg("invalid table_addr_type in user CCB[%d]", i);
844 return DAX_SUBMIT_ERR_CCB_INVAL;
845 }
846
847 /* set completion (real) address and address type */
848 ccbp->hdr.cca_addr_type = DAX_ADDR_TYPE_RA;
849 ca_offset = (idx + i) * sizeof(struct dax_cca);
850 ccbp->ca = (void *)ctx->ca_buf_ra + ca_offset;
851 memset(&ctx->ca_buf[idx + i], 0, sizeof(struct dax_cca));
852
853 dax_dbg("ccb[%d]=%p, ca_offset=0x%lx, compl RA=0x%llx",
854 i, ccbp, ca_offset, ctx->ca_buf_ra + ca_offset);
855
856 /* skip over 2nd 64 bytes of long CCB */
857 if (ccbp->hdr.longccb)
858 i++;
859 }
860
861 return DAX_SUBMIT_OK;
862 }
863
dax_ccb_exec(struct dax_ctx * ctx,const char __user * buf,size_t count,loff_t * ppos)864 static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf,
865 size_t count, loff_t *ppos)
866 {
867 unsigned long accepted_len, hv_rv;
868 int i, idx, nccbs, naccepted;
869
870 ctx->client = current;
871 idx = *ppos;
872 nccbs = count / sizeof(struct dax_ccb);
873
874 if (ctx->owner != current) {
875 dax_dbg("wrong thread");
876 ctx->result.exec.status = DAX_SUBMIT_ERR_THR_INIT;
877 return 0;
878 }
879 dax_dbg("args: ccb_buf_len=%ld, idx=%d", count, idx);
880
881 /* for given index and length, verify ca_buf range exists */
882 if (idx < 0 || idx > (DAX_CA_ELEMS - nccbs)) {
883 ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL;
884 return 0;
885 }
886
887 /*
888 * Copy CCBs into kernel buffer to prevent modification by the
889 * user in between validation and submission.
890 */
891 if (copy_from_user(ctx->ccb_buf, buf, count)) {
892 dax_dbg("copyin of user CCB buffer failed");
893 ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_ARR_MMU_MISS;
894 return 0;
895 }
896
897 /* check to see if ca_buf[idx] .. ca_buf[idx + nccbs] are available */
898 for (i = idx; i < idx + nccbs; i++) {
899 if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) {
900 dax_dbg("CA range not available, dequeue needed");
901 ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL;
902 return 0;
903 }
904 }
905 dax_unlock_pages(ctx, idx, nccbs);
906
907 ctx->result.exec.status = dax_preprocess_usr_ccbs(ctx, idx, nccbs);
908 if (ctx->result.exec.status != DAX_SUBMIT_OK)
909 return 0;
910
911 ctx->result.exec.status = dax_lock_pages(ctx, idx, nccbs,
912 &ctx->result.exec.status_data);
913 if (ctx->result.exec.status != DAX_SUBMIT_OK)
914 return 0;
915
916 if (dax_debug & DAX_DBG_FLG_BASIC)
917 dax_prt_ccbs(ctx->ccb_buf, nccbs);
918
919 hv_rv = sun4v_ccb_submit(ctx->ccb_buf_ra, count,
920 HV_CCB_QUERY_CMD | HV_CCB_VA_SECONDARY, 0,
921 &accepted_len, &ctx->result.exec.status_data);
922
923 switch (hv_rv) {
924 case HV_EOK:
925 /*
926 * Hcall succeeded with no errors but the accepted
927 * length may be less than the requested length. The
928 * only way the driver can resubmit the remainder is
929 * to wait for completion of the submitted CCBs since
930 * there is no way to guarantee the ordering semantics
931 * required by the client applications. Therefore we
932 * let the user library deal with resubmissions.
933 */
934 ctx->result.exec.status = DAX_SUBMIT_OK;
935 break;
936 case HV_EWOULDBLOCK:
937 /*
938 * This is a transient HV API error. The user library
939 * can retry.
940 */
941 dax_dbg("hcall returned HV_EWOULDBLOCK");
942 ctx->result.exec.status = DAX_SUBMIT_ERR_WOULDBLOCK;
943 break;
944 case HV_ENOMAP:
945 /*
946 * HV was unable to translate a VA. The VA it could
947 * not translate is returned in the status_data param.
948 */
949 dax_dbg("hcall returned HV_ENOMAP");
950 ctx->result.exec.status = DAX_SUBMIT_ERR_NOMAP;
951 break;
952 case HV_EINVAL:
953 /*
954 * This is the result of an invalid user CCB as HV is
955 * validating some of the user CCB fields. Pass this
956 * error back to the user. There is no supporting info
957 * to isolate the invalid field.
958 */
959 dax_dbg("hcall returned HV_EINVAL");
960 ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_INVAL;
961 break;
962 case HV_ENOACCESS:
963 /*
964 * HV found a VA that did not have the appropriate
965 * permissions (such as the w bit). The VA in question
966 * is returned in status_data param.
967 */
968 dax_dbg("hcall returned HV_ENOACCESS");
969 ctx->result.exec.status = DAX_SUBMIT_ERR_NOACCESS;
970 break;
971 case HV_EUNAVAILABLE:
972 /*
973 * The requested CCB operation could not be performed
974 * at this time. Return the specific unavailable code
975 * in the status_data field.
976 */
977 dax_dbg("hcall returned HV_EUNAVAILABLE");
978 ctx->result.exec.status = DAX_SUBMIT_ERR_UNAVAIL;
979 break;
980 default:
981 ctx->result.exec.status = DAX_SUBMIT_ERR_INTERNAL;
982 dax_dbg("unknown hcall return value (%ld)", hv_rv);
983 break;
984 }
985
986 /* unlock pages associated with the unaccepted CCBs */
987 naccepted = accepted_len / sizeof(struct dax_ccb);
988 dax_unlock_pages(ctx, idx + naccepted, nccbs - naccepted);
989
990 /* mark unaccepted CCBs as not completed */
991 for (i = idx + naccepted; i < idx + nccbs; i++)
992 ctx->ca_buf[i].status = CCA_STAT_COMPLETED;
993
994 ctx->ccb_count += naccepted;
995 ctx->fail_count += nccbs - naccepted;
996
997 dax_dbg("hcall rv=%ld, accepted_len=%ld, status_data=0x%llx, ret status=%d",
998 hv_rv, accepted_len, ctx->result.exec.status_data,
999 ctx->result.exec.status);
1000
1001 if (count == accepted_len)
1002 ctx->client = NULL; /* no read needed to complete protocol */
1003 return accepted_len;
1004 }
1005