1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell International Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <net/tso.h>
14
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 struct otx2_nic *pfvf, int qidx)
21 {
22 u64 incr = (u64)qidx << 32;
23 u64 *ptr;
24
25 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 stats->bytes = otx2_atomic64_add(incr, ptr);
27
28 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 struct otx2_nic *pfvf, int qidx)
34 {
35 u64 incr = (u64)qidx << 32;
36 u64 *ptr;
37
38 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 stats->bytes = otx2_atomic64_add(incr, ptr);
40
41 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44
otx2_update_lmac_stats(struct otx2_nic * pfvf)45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 struct msg_req *req;
48
49 if (!netif_running(pfvf->netdev))
50 return;
51
52 mutex_lock(&pfvf->mbox.lock);
53 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 if (!req) {
55 mutex_unlock(&pfvf->mbox.lock);
56 return;
57 }
58
59 otx2_sync_mbox_msg(&pfvf->mbox);
60 mutex_unlock(&pfvf->mbox.lock);
61 }
62
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)63 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
64 {
65 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
66
67 if (!pfvf->qset.rq)
68 return 0;
69
70 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
71 return 1;
72 }
73
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)74 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
75 {
76 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
77
78 if (!pfvf->qset.sq)
79 return 0;
80
81 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
82 return 1;
83 }
84
otx2_get_dev_stats(struct otx2_nic * pfvf)85 void otx2_get_dev_stats(struct otx2_nic *pfvf)
86 {
87 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
88
89 #define OTX2_GET_RX_STATS(reg) \
90 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
91 #define OTX2_GET_TX_STATS(reg) \
92 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
93
94 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
95 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
96 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
97 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
98 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
99 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
100 dev_stats->rx_mcast_frames +
101 dev_stats->rx_ucast_frames;
102
103 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
104 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
105 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
106 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
107 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
108 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
109 dev_stats->tx_mcast_frames +
110 dev_stats->tx_ucast_frames;
111 }
112
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)113 void otx2_get_stats64(struct net_device *netdev,
114 struct rtnl_link_stats64 *stats)
115 {
116 struct otx2_nic *pfvf = netdev_priv(netdev);
117 struct otx2_dev_stats *dev_stats;
118
119 otx2_get_dev_stats(pfvf);
120
121 dev_stats = &pfvf->hw.dev_stats;
122 stats->rx_bytes = dev_stats->rx_bytes;
123 stats->rx_packets = dev_stats->rx_frames;
124 stats->rx_dropped = dev_stats->rx_drops;
125 stats->multicast = dev_stats->rx_mcast_frames;
126
127 stats->tx_bytes = dev_stats->tx_bytes;
128 stats->tx_packets = dev_stats->tx_frames;
129 stats->tx_dropped = dev_stats->tx_drops;
130 }
131 EXPORT_SYMBOL(otx2_get_stats64);
132
133 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)134 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
135 {
136 struct nix_set_mac_addr *req;
137 int err;
138
139 mutex_lock(&pfvf->mbox.lock);
140 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
141 if (!req) {
142 mutex_unlock(&pfvf->mbox.lock);
143 return -ENOMEM;
144 }
145
146 ether_addr_copy(req->mac_addr, mac);
147
148 err = otx2_sync_mbox_msg(&pfvf->mbox);
149 mutex_unlock(&pfvf->mbox.lock);
150 return err;
151 }
152
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)153 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
154 struct net_device *netdev)
155 {
156 struct nix_get_mac_addr_rsp *rsp;
157 struct mbox_msghdr *msghdr;
158 struct msg_req *req;
159 int err;
160
161 mutex_lock(&pfvf->mbox.lock);
162 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
163 if (!req) {
164 mutex_unlock(&pfvf->mbox.lock);
165 return -ENOMEM;
166 }
167
168 err = otx2_sync_mbox_msg(&pfvf->mbox);
169 if (err) {
170 mutex_unlock(&pfvf->mbox.lock);
171 return err;
172 }
173
174 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
175 if (IS_ERR(msghdr)) {
176 mutex_unlock(&pfvf->mbox.lock);
177 return PTR_ERR(msghdr);
178 }
179 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
180 ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
181 mutex_unlock(&pfvf->mbox.lock);
182
183 return 0;
184 }
185
otx2_set_mac_address(struct net_device * netdev,void * p)186 int otx2_set_mac_address(struct net_device *netdev, void *p)
187 {
188 struct otx2_nic *pfvf = netdev_priv(netdev);
189 struct sockaddr *addr = p;
190
191 if (!is_valid_ether_addr(addr->sa_data))
192 return -EADDRNOTAVAIL;
193
194 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data))
195 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
196 else
197 return -EPERM;
198
199 return 0;
200 }
201 EXPORT_SYMBOL(otx2_set_mac_address);
202
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)203 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
204 {
205 struct nix_frs_cfg *req;
206 int err;
207
208 mutex_lock(&pfvf->mbox.lock);
209 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
210 if (!req) {
211 mutex_unlock(&pfvf->mbox.lock);
212 return -ENOMEM;
213 }
214
215 pfvf->max_frs = mtu + OTX2_ETH_HLEN;
216 req->maxlen = pfvf->max_frs;
217
218 err = otx2_sync_mbox_msg(&pfvf->mbox);
219 mutex_unlock(&pfvf->mbox.lock);
220 return err;
221 }
222
otx2_config_pause_frm(struct otx2_nic * pfvf)223 int otx2_config_pause_frm(struct otx2_nic *pfvf)
224 {
225 struct cgx_pause_frm_cfg *req;
226 int err;
227
228 if (is_otx2_lbkvf(pfvf->pdev))
229 return 0;
230
231 mutex_lock(&pfvf->mbox.lock);
232 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
233 if (!req) {
234 err = -ENOMEM;
235 goto unlock;
236 }
237
238 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
239 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
240 req->set = 1;
241
242 err = otx2_sync_mbox_msg(&pfvf->mbox);
243 unlock:
244 mutex_unlock(&pfvf->mbox.lock);
245 return err;
246 }
247
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)248 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
249 {
250 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
251 struct nix_rss_flowkey_cfg *req;
252 int err;
253
254 mutex_lock(&pfvf->mbox.lock);
255 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
256 if (!req) {
257 mutex_unlock(&pfvf->mbox.lock);
258 return -ENOMEM;
259 }
260 req->mcam_index = -1; /* Default or reserved index */
261 req->flowkey_cfg = rss->flowkey_cfg;
262 req->group = DEFAULT_RSS_CONTEXT_GROUP;
263
264 err = otx2_sync_mbox_msg(&pfvf->mbox);
265 mutex_unlock(&pfvf->mbox.lock);
266 return err;
267 }
268
otx2_set_rss_table(struct otx2_nic * pfvf)269 int otx2_set_rss_table(struct otx2_nic *pfvf)
270 {
271 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
272 struct mbox *mbox = &pfvf->mbox;
273 struct nix_aq_enq_req *aq;
274 int idx, err;
275
276 mutex_lock(&mbox->lock);
277 /* Get memory to put this msg */
278 for (idx = 0; idx < rss->rss_size; idx++) {
279 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
280 if (!aq) {
281 /* The shared memory buffer can be full.
282 * Flush it and retry
283 */
284 err = otx2_sync_mbox_msg(mbox);
285 if (err) {
286 mutex_unlock(&mbox->lock);
287 return err;
288 }
289 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
290 if (!aq) {
291 mutex_unlock(&mbox->lock);
292 return -ENOMEM;
293 }
294 }
295
296 aq->rss.rq = rss->ind_tbl[idx];
297
298 /* Fill AQ info */
299 aq->qidx = idx;
300 aq->ctype = NIX_AQ_CTYPE_RSS;
301 aq->op = NIX_AQ_INSTOP_INIT;
302 }
303 err = otx2_sync_mbox_msg(mbox);
304 mutex_unlock(&mbox->lock);
305 return err;
306 }
307
otx2_set_rss_key(struct otx2_nic * pfvf)308 void otx2_set_rss_key(struct otx2_nic *pfvf)
309 {
310 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
311 u64 *key = (u64 *)&rss->key[4];
312 int idx;
313
314 /* 352bit or 44byte key needs to be configured as below
315 * NIX_LF_RX_SECRETX0 = key<351:288>
316 * NIX_LF_RX_SECRETX1 = key<287:224>
317 * NIX_LF_RX_SECRETX2 = key<223:160>
318 * NIX_LF_RX_SECRETX3 = key<159:96>
319 * NIX_LF_RX_SECRETX4 = key<95:32>
320 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
321 */
322 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
323 (u64)(*((u32 *)&rss->key)) << 32);
324 idx = sizeof(rss->key) / sizeof(u64);
325 while (idx > 0) {
326 idx--;
327 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
328 }
329 }
330
otx2_rss_init(struct otx2_nic * pfvf)331 int otx2_rss_init(struct otx2_nic *pfvf)
332 {
333 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
334 int idx, ret = 0;
335
336 rss->rss_size = sizeof(rss->ind_tbl);
337
338 /* Init RSS key if it is not setup already */
339 if (!rss->enable)
340 netdev_rss_key_fill(rss->key, sizeof(rss->key));
341 otx2_set_rss_key(pfvf);
342
343 if (!netif_is_rxfh_configured(pfvf->netdev)) {
344 /* Default indirection table */
345 for (idx = 0; idx < rss->rss_size; idx++)
346 rss->ind_tbl[idx] =
347 ethtool_rxfh_indir_default(idx,
348 pfvf->hw.rx_queues);
349 }
350 ret = otx2_set_rss_table(pfvf);
351 if (ret)
352 return ret;
353
354 /* Flowkey or hash config to be used for generating flow tag */
355 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
356 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
357 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
358 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN;
359
360 ret = otx2_set_flowkey_cfg(pfvf);
361 if (ret)
362 return ret;
363
364 rss->enable = true;
365 return 0;
366 }
367
368 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)369 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
370 {
371 struct nix_lso_format *field;
372
373 field = (struct nix_lso_format *)&lso->fields[0];
374 lso->field_mask = GENMASK(18, 0);
375
376 /* IP's Length field */
377 field->layer = NIX_TXLAYER_OL3;
378 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
379 field->offset = v4 ? 2 : 4;
380 field->sizem1 = 1; /* i.e 2 bytes */
381 field->alg = NIX_LSOALG_ADD_PAYLEN;
382 field++;
383
384 /* No ID field in IPv6 header */
385 if (v4) {
386 /* Increment IPID */
387 field->layer = NIX_TXLAYER_OL3;
388 field->offset = 4;
389 field->sizem1 = 1; /* i.e 2 bytes */
390 field->alg = NIX_LSOALG_ADD_SEGNUM;
391 field++;
392 }
393
394 /* Update length in UDP header */
395 field->layer = NIX_TXLAYER_OL4;
396 field->offset = 4;
397 field->sizem1 = 1;
398 field->alg = NIX_LSOALG_ADD_PAYLEN;
399 }
400
401 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)402 void otx2_setup_segmentation(struct otx2_nic *pfvf)
403 {
404 struct nix_lso_format_cfg_rsp *rsp;
405 struct nix_lso_format_cfg *lso;
406 struct otx2_hw *hw = &pfvf->hw;
407 int err;
408
409 mutex_lock(&pfvf->mbox.lock);
410
411 /* UDPv4 segmentation */
412 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
413 if (!lso)
414 goto fail;
415
416 /* Setup UDP/IP header fields that HW should update per segment */
417 otx2_setup_udp_segmentation(lso, true);
418
419 err = otx2_sync_mbox_msg(&pfvf->mbox);
420 if (err)
421 goto fail;
422
423 rsp = (struct nix_lso_format_cfg_rsp *)
424 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
425 if (IS_ERR(rsp))
426 goto fail;
427
428 hw->lso_udpv4_idx = rsp->lso_format_idx;
429
430 /* UDPv6 segmentation */
431 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
432 if (!lso)
433 goto fail;
434
435 /* Setup UDP/IP header fields that HW should update per segment */
436 otx2_setup_udp_segmentation(lso, false);
437
438 err = otx2_sync_mbox_msg(&pfvf->mbox);
439 if (err)
440 goto fail;
441
442 rsp = (struct nix_lso_format_cfg_rsp *)
443 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
444 if (IS_ERR(rsp))
445 goto fail;
446
447 hw->lso_udpv6_idx = rsp->lso_format_idx;
448 mutex_unlock(&pfvf->mbox.lock);
449 return;
450 fail:
451 mutex_unlock(&pfvf->mbox.lock);
452 netdev_info(pfvf->netdev,
453 "Failed to get LSO index for UDP GSO offload, disabling\n");
454 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
455 }
456
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)457 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
458 {
459 /* Configure CQE interrupt coalescing parameters
460 *
461 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
462 * set 1 less than cq_ecount_wait. And cq_time_wait is in
463 * usecs, convert that to 100ns count.
464 */
465 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
466 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
467 ((u64)pfvf->hw.cq_qcount_wait << 32) |
468 (pfvf->hw.cq_ecount_wait - 1));
469 }
470
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool)471 dma_addr_t __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool)
472 {
473 dma_addr_t iova;
474 u8 *buf;
475
476 buf = napi_alloc_frag(pool->rbsize);
477 if (unlikely(!buf))
478 return -ENOMEM;
479
480 iova = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
481 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
482 if (unlikely(dma_mapping_error(pfvf->dev, iova))) {
483 page_frag_free(buf);
484 return -ENOMEM;
485 }
486
487 return iova;
488 }
489
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool)490 static dma_addr_t otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool)
491 {
492 dma_addr_t addr;
493
494 local_bh_disable();
495 addr = __otx2_alloc_rbuf(pfvf, pool);
496 local_bh_enable();
497 return addr;
498 }
499
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)500 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
501 {
502 struct otx2_nic *pfvf = netdev_priv(netdev);
503
504 schedule_work(&pfvf->reset_task);
505 }
506 EXPORT_SYMBOL(otx2_tx_timeout);
507
otx2_get_mac_from_af(struct net_device * netdev)508 void otx2_get_mac_from_af(struct net_device *netdev)
509 {
510 struct otx2_nic *pfvf = netdev_priv(netdev);
511 int err;
512
513 err = otx2_hw_get_mac_addr(pfvf, netdev);
514 if (err)
515 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
516
517 /* If AF doesn't provide a valid MAC, generate a random one */
518 if (!is_valid_ether_addr(netdev->dev_addr))
519 eth_hw_addr_random(netdev);
520 }
521 EXPORT_SYMBOL(otx2_get_mac_from_af);
522
otx2_get_link(struct otx2_nic * pfvf)523 static int otx2_get_link(struct otx2_nic *pfvf)
524 {
525 int link = 0;
526 u16 map;
527
528 /* cgx lmac link */
529 if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
530 map = pfvf->hw.tx_chan_base & 0x7FF;
531 link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
532 }
533 /* LBK channel */
534 if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE)
535 link = 12;
536
537 return link;
538 }
539
otx2_txschq_config(struct otx2_nic * pfvf,int lvl)540 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
541 {
542 struct otx2_hw *hw = &pfvf->hw;
543 struct nix_txschq_config *req;
544 u64 schq, parent;
545
546 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
547 if (!req)
548 return -ENOMEM;
549
550 req->lvl = lvl;
551 req->num_regs = 1;
552
553 schq = hw->txschq_list[lvl][0];
554 /* Set topology e.t.c configuration */
555 if (lvl == NIX_TXSCH_LVL_SMQ) {
556 req->reg[0] = NIX_AF_SMQX_CFG(schq);
557 req->regval[0] = ((OTX2_MAX_MTU + OTX2_ETH_HLEN) << 8) |
558 OTX2_MIN_MTU;
559
560 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
561 (0x2ULL << 36);
562 req->num_regs++;
563 /* MDQ config */
564 parent = hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
565 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
566 req->regval[1] = parent << 16;
567 req->num_regs++;
568 /* Set DWRR quantum */
569 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
570 req->regval[2] = DFLT_RR_QTM;
571 } else if (lvl == NIX_TXSCH_LVL_TL4) {
572 parent = hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
573 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
574 req->regval[0] = parent << 16;
575 req->num_regs++;
576 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
577 req->regval[1] = DFLT_RR_QTM;
578 } else if (lvl == NIX_TXSCH_LVL_TL3) {
579 parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
580 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
581 req->regval[0] = parent << 16;
582 req->num_regs++;
583 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
584 req->regval[1] = DFLT_RR_QTM;
585 } else if (lvl == NIX_TXSCH_LVL_TL2) {
586 parent = hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
587 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
588 req->regval[0] = parent << 16;
589
590 req->num_regs++;
591 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
592 req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;
593
594 req->num_regs++;
595 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
596 otx2_get_link(pfvf));
597 /* Enable this queue and backpressure */
598 req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
599
600 } else if (lvl == NIX_TXSCH_LVL_TL1) {
601 /* Default config for TL1.
602 * For VF this is always ignored.
603 */
604
605 /* Set DWRR quantum */
606 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
607 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
608
609 req->num_regs++;
610 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
611 req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
612
613 req->num_regs++;
614 req->reg[2] = NIX_AF_TL1X_CIR(schq);
615 req->regval[2] = 0;
616 }
617
618 return otx2_sync_mbox_msg(&pfvf->mbox);
619 }
620
otx2_txsch_alloc(struct otx2_nic * pfvf)621 int otx2_txsch_alloc(struct otx2_nic *pfvf)
622 {
623 struct nix_txsch_alloc_req *req;
624 int lvl;
625
626 /* Get memory to put this msg */
627 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
628 if (!req)
629 return -ENOMEM;
630
631 /* Request one schq per level */
632 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
633 req->schq[lvl] = 1;
634
635 return otx2_sync_mbox_msg(&pfvf->mbox);
636 }
637
otx2_txschq_stop(struct otx2_nic * pfvf)638 int otx2_txschq_stop(struct otx2_nic *pfvf)
639 {
640 struct nix_txsch_free_req *free_req;
641 int lvl, schq, err;
642
643 mutex_lock(&pfvf->mbox.lock);
644 /* Free the transmit schedulers */
645 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
646 if (!free_req) {
647 mutex_unlock(&pfvf->mbox.lock);
648 return -ENOMEM;
649 }
650
651 free_req->flags = TXSCHQ_FREE_ALL;
652 err = otx2_sync_mbox_msg(&pfvf->mbox);
653 mutex_unlock(&pfvf->mbox.lock);
654
655 /* Clear the txschq list */
656 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
657 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
658 pfvf->hw.txschq_list[lvl][schq] = 0;
659 }
660 return err;
661 }
662
otx2_sqb_flush(struct otx2_nic * pfvf)663 void otx2_sqb_flush(struct otx2_nic *pfvf)
664 {
665 int qidx, sqe_tail, sqe_head;
666 u64 incr, *ptr, val;
667 int timeout = 1000;
668
669 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
670 for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
671 incr = (u64)qidx << 32;
672 while (timeout) {
673 val = otx2_atomic64_add(incr, ptr);
674 sqe_head = (val >> 20) & 0x3F;
675 sqe_tail = (val >> 28) & 0x3F;
676 if (sqe_head == sqe_tail)
677 break;
678 usleep_range(1, 3);
679 timeout--;
680 }
681 }
682 }
683
684 /* RED and drop levels of CQ on packet reception.
685 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
686 */
687 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
688 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
689
690 /* RED and drop levels of AURA for packet reception.
691 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
692 * Eg: For RQ length 1K, for pass/drop level 204/230.
693 * RED accepts pkts if free pointers > 102 & <= 205.
694 * Drops pkts if free pointers < 102.
695 */
696 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
697 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
698 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
699
700 /* Send skid of 2000 packets required for CQ size of 4K CQEs. */
701 #define SEND_CQ_SKID 2000
702
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)703 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
704 {
705 struct otx2_qset *qset = &pfvf->qset;
706 struct nix_aq_enq_req *aq;
707
708 /* Get memory to put this msg */
709 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
710 if (!aq)
711 return -ENOMEM;
712
713 aq->rq.cq = qidx;
714 aq->rq.ena = 1;
715 aq->rq.pb_caching = 1;
716 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
717 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
718 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
719 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
720 aq->rq.qint_idx = 0;
721 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
722 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
723 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
724 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
725 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
726 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
727
728 /* Fill AQ info */
729 aq->qidx = qidx;
730 aq->ctype = NIX_AQ_CTYPE_RQ;
731 aq->op = NIX_AQ_INSTOP_INIT;
732
733 return otx2_sync_mbox_msg(&pfvf->mbox);
734 }
735
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)736 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
737 {
738 struct otx2_qset *qset = &pfvf->qset;
739 struct otx2_snd_queue *sq;
740 struct nix_aq_enq_req *aq;
741 struct otx2_pool *pool;
742 int err;
743
744 pool = &pfvf->qset.pool[sqb_aura];
745 sq = &qset->sq[qidx];
746 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
747 sq->sqe_cnt = qset->sqe_cnt;
748
749 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
750 if (err)
751 return err;
752
753 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
754 TSO_HEADER_SIZE);
755 if (err)
756 return err;
757
758 sq->sqe_base = sq->sqe->base;
759 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
760 if (!sq->sg)
761 return -ENOMEM;
762
763 if (pfvf->ptp) {
764 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
765 sizeof(*sq->timestamps));
766 if (err)
767 return err;
768 }
769
770 sq->head = 0;
771 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
772 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
773 /* Set SQE threshold to 10% of total SQEs */
774 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
775 sq->aura_id = sqb_aura;
776 sq->aura_fc_addr = pool->fc_addr->base;
777 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
778 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
779
780 sq->stats.bytes = 0;
781 sq->stats.pkts = 0;
782
783 /* Get memory to put this msg */
784 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
785 if (!aq)
786 return -ENOMEM;
787
788 aq->sq.cq = pfvf->hw.rx_queues + qidx;
789 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
790 aq->sq.cq_ena = 1;
791 aq->sq.ena = 1;
792 /* Only one SMQ is allocated, map all SQ's to that SMQ */
793 aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
794 aq->sq.smq_rr_quantum = DFLT_RR_QTM;
795 aq->sq.default_chan = pfvf->hw.tx_chan_base;
796 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
797 aq->sq.sqb_aura = sqb_aura;
798 aq->sq.sq_int_ena = NIX_SQINT_BITS;
799 aq->sq.qint_idx = 0;
800 /* Due pipelining impact minimum 2000 unused SQ CQE's
801 * need to maintain to avoid CQ overflow.
802 */
803 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (sq->sqe_cnt));
804
805 /* Fill AQ info */
806 aq->qidx = qidx;
807 aq->ctype = NIX_AQ_CTYPE_SQ;
808 aq->op = NIX_AQ_INSTOP_INIT;
809
810 return otx2_sync_mbox_msg(&pfvf->mbox);
811 }
812
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)813 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
814 {
815 struct otx2_qset *qset = &pfvf->qset;
816 struct nix_aq_enq_req *aq;
817 struct otx2_cq_queue *cq;
818 int err, pool_id;
819
820 cq = &qset->cq[qidx];
821 cq->cq_idx = qidx;
822 if (qidx < pfvf->hw.rx_queues) {
823 cq->cq_type = CQ_RX;
824 cq->cint_idx = qidx;
825 cq->cqe_cnt = qset->rqe_cnt;
826 } else {
827 cq->cq_type = CQ_TX;
828 cq->cint_idx = qidx - pfvf->hw.rx_queues;
829 cq->cqe_cnt = qset->sqe_cnt;
830 }
831 cq->cqe_size = pfvf->qset.xqe_size;
832
833 /* Allocate memory for CQEs */
834 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
835 if (err)
836 return err;
837
838 /* Save CQE CPU base for faster reference */
839 cq->cqe_base = cq->cqe->base;
840 /* In case where all RQs auras point to single pool,
841 * all CQs receive buffer pool also point to same pool.
842 */
843 pool_id = ((cq->cq_type == CQ_RX) &&
844 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
845 cq->rbpool = &qset->pool[pool_id];
846 cq->refill_task_sched = false;
847
848 /* Get memory to put this msg */
849 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
850 if (!aq)
851 return -ENOMEM;
852
853 aq->cq.ena = 1;
854 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
855 aq->cq.caching = 1;
856 aq->cq.base = cq->cqe->iova;
857 aq->cq.cint_idx = cq->cint_idx;
858 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
859 aq->cq.qint_idx = 0;
860 aq->cq.avg_level = 255;
861
862 if (qidx < pfvf->hw.rx_queues) {
863 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
864 aq->cq.drop_ena = 1;
865
866 /* Enable receive CQ backpressure */
867 aq->cq.bp_ena = 1;
868 aq->cq.bpid = pfvf->bpid[0];
869
870 /* Set backpressure level is same as cq pass level */
871 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
872 }
873
874 /* Fill AQ info */
875 aq->qidx = qidx;
876 aq->ctype = NIX_AQ_CTYPE_CQ;
877 aq->op = NIX_AQ_INSTOP_INIT;
878
879 return otx2_sync_mbox_msg(&pfvf->mbox);
880 }
881
otx2_pool_refill_task(struct work_struct * work)882 static void otx2_pool_refill_task(struct work_struct *work)
883 {
884 struct otx2_cq_queue *cq;
885 struct otx2_pool *rbpool;
886 struct refill_work *wrk;
887 int qidx, free_ptrs = 0;
888 struct otx2_nic *pfvf;
889 s64 bufptr;
890
891 wrk = container_of(work, struct refill_work, pool_refill_work.work);
892 pfvf = wrk->pf;
893 qidx = wrk - pfvf->refill_wrk;
894 cq = &pfvf->qset.cq[qidx];
895 rbpool = cq->rbpool;
896 free_ptrs = cq->pool_ptrs;
897
898 while (cq->pool_ptrs) {
899 bufptr = otx2_alloc_rbuf(pfvf, rbpool);
900 if (bufptr <= 0) {
901 /* Schedule a WQ if we fails to free atleast half of the
902 * pointers else enable napi for this RQ.
903 */
904 if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
905 struct delayed_work *dwork;
906
907 dwork = &wrk->pool_refill_work;
908 schedule_delayed_work(dwork,
909 msecs_to_jiffies(100));
910 } else {
911 cq->refill_task_sched = false;
912 }
913 return;
914 }
915 otx2_aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
916 cq->pool_ptrs--;
917 }
918 cq->refill_task_sched = false;
919 }
920
otx2_config_nix_queues(struct otx2_nic * pfvf)921 int otx2_config_nix_queues(struct otx2_nic *pfvf)
922 {
923 int qidx, err;
924
925 /* Initialize RX queues */
926 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
927 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
928
929 err = otx2_rq_init(pfvf, qidx, lpb_aura);
930 if (err)
931 return err;
932 }
933
934 /* Initialize TX queues */
935 for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
936 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
937
938 err = otx2_sq_init(pfvf, qidx, sqb_aura);
939 if (err)
940 return err;
941 }
942
943 /* Initialize completion queues */
944 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
945 err = otx2_cq_init(pfvf, qidx);
946 if (err)
947 return err;
948 }
949
950 /* Initialize work queue for receive buffer refill */
951 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
952 sizeof(struct refill_work), GFP_KERNEL);
953 if (!pfvf->refill_wrk)
954 return -ENOMEM;
955
956 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
957 pfvf->refill_wrk[qidx].pf = pfvf;
958 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
959 otx2_pool_refill_task);
960 }
961 return 0;
962 }
963
otx2_config_nix(struct otx2_nic * pfvf)964 int otx2_config_nix(struct otx2_nic *pfvf)
965 {
966 struct nix_lf_alloc_req *nixlf;
967 struct nix_lf_alloc_rsp *rsp;
968 int err;
969
970 pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
971
972 /* Get memory to put this msg */
973 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
974 if (!nixlf)
975 return -ENOMEM;
976
977 /* Set RQ/SQ/CQ counts */
978 nixlf->rq_cnt = pfvf->hw.rx_queues;
979 nixlf->sq_cnt = pfvf->hw.tx_queues;
980 nixlf->cq_cnt = pfvf->qset.cq_cnt;
981 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
982 nixlf->rss_grps = 1; /* Single RSS indir table supported, for now */
983 nixlf->xqe_sz = NIX_XQESZ_W16;
984 /* We don't know absolute NPA LF idx attached.
985 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
986 * NPA LF attached to this RVU PF/VF.
987 */
988 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
989 /* Disable alignment pad, enable L2 length check,
990 * enable L4 TCP/UDP checksum verification.
991 */
992 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
993
994 err = otx2_sync_mbox_msg(&pfvf->mbox);
995 if (err)
996 return err;
997
998 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
999 &nixlf->hdr);
1000 if (IS_ERR(rsp))
1001 return PTR_ERR(rsp);
1002
1003 if (rsp->qints < 1)
1004 return -ENXIO;
1005
1006 return rsp->hdr.rc;
1007 }
1008
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1009 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1010 {
1011 struct otx2_qset *qset = &pfvf->qset;
1012 struct otx2_hw *hw = &pfvf->hw;
1013 struct otx2_snd_queue *sq;
1014 int sqb, qidx;
1015 u64 iova, pa;
1016
1017 for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1018 sq = &qset->sq[qidx];
1019 if (!sq->sqb_ptrs)
1020 continue;
1021 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1022 if (!sq->sqb_ptrs[sqb])
1023 continue;
1024 iova = sq->sqb_ptrs[sqb];
1025 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1026 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1027 DMA_FROM_DEVICE,
1028 DMA_ATTR_SKIP_CPU_SYNC);
1029 put_page(virt_to_page(phys_to_virt(pa)));
1030 }
1031 sq->sqb_count = 0;
1032 }
1033 }
1034
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1035 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1036 {
1037 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1038 u64 iova, pa;
1039
1040 if (type == AURA_NIX_SQ) {
1041 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1042 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1043 size = pfvf->hw.sqb_size;
1044 }
1045 if (type == AURA_NIX_RQ) {
1046 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1047 pool_end = pfvf->hw.rqpool_cnt;
1048 size = pfvf->rbsize;
1049 }
1050
1051 /* Free SQB and RQB pointers from the aura pool */
1052 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1053 iova = otx2_aura_allocptr(pfvf, pool_id);
1054 while (iova) {
1055 if (type == AURA_NIX_RQ)
1056 iova -= OTX2_HEAD_ROOM;
1057
1058 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1059 dma_unmap_page_attrs(pfvf->dev, iova, size,
1060 DMA_FROM_DEVICE,
1061 DMA_ATTR_SKIP_CPU_SYNC);
1062 put_page(virt_to_page(phys_to_virt(pa)));
1063 iova = otx2_aura_allocptr(pfvf, pool_id);
1064 }
1065 }
1066 }
1067
otx2_aura_pool_free(struct otx2_nic * pfvf)1068 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1069 {
1070 struct otx2_pool *pool;
1071 int pool_id;
1072
1073 if (!pfvf->qset.pool)
1074 return;
1075
1076 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1077 pool = &pfvf->qset.pool[pool_id];
1078 qmem_free(pfvf->dev, pool->stack);
1079 qmem_free(pfvf->dev, pool->fc_addr);
1080 }
1081 devm_kfree(pfvf->dev, pfvf->qset.pool);
1082 pfvf->qset.pool = NULL;
1083 }
1084
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1085 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1086 int pool_id, int numptrs)
1087 {
1088 struct npa_aq_enq_req *aq;
1089 struct otx2_pool *pool;
1090 int err;
1091
1092 pool = &pfvf->qset.pool[pool_id];
1093
1094 /* Allocate memory for HW to update Aura count.
1095 * Alloc one cache line, so that it fits all FC_STYPE modes.
1096 */
1097 if (!pool->fc_addr) {
1098 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1099 if (err)
1100 return err;
1101 }
1102
1103 /* Initialize this aura's context via AF */
1104 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1105 if (!aq) {
1106 /* Shared mbox memory buffer is full, flush it and retry */
1107 err = otx2_sync_mbox_msg(&pfvf->mbox);
1108 if (err)
1109 return err;
1110 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1111 if (!aq)
1112 return -ENOMEM;
1113 }
1114
1115 aq->aura_id = aura_id;
1116 /* Will be filled by AF with correct pool context address */
1117 aq->aura.pool_addr = pool_id;
1118 aq->aura.pool_caching = 1;
1119 aq->aura.shift = ilog2(numptrs) - 8;
1120 aq->aura.count = numptrs;
1121 aq->aura.limit = numptrs;
1122 aq->aura.avg_level = 255;
1123 aq->aura.ena = 1;
1124 aq->aura.fc_ena = 1;
1125 aq->aura.fc_addr = pool->fc_addr->iova;
1126 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1127
1128 /* Enable backpressure for RQ aura */
1129 if (aura_id < pfvf->hw.rqpool_cnt) {
1130 aq->aura.bp_ena = 0;
1131 aq->aura.nix0_bpid = pfvf->bpid[0];
1132 /* Set backpressure level for RQ's Aura */
1133 aq->aura.bp = RQ_BP_LVL_AURA;
1134 }
1135
1136 /* Fill AQ info */
1137 aq->ctype = NPA_AQ_CTYPE_AURA;
1138 aq->op = NPA_AQ_INSTOP_INIT;
1139
1140 return 0;
1141 }
1142
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size)1143 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1144 int stack_pages, int numptrs, int buf_size)
1145 {
1146 struct npa_aq_enq_req *aq;
1147 struct otx2_pool *pool;
1148 int err;
1149
1150 pool = &pfvf->qset.pool[pool_id];
1151 /* Alloc memory for stack which is used to store buffer pointers */
1152 err = qmem_alloc(pfvf->dev, &pool->stack,
1153 stack_pages, pfvf->hw.stack_pg_bytes);
1154 if (err)
1155 return err;
1156
1157 pool->rbsize = buf_size;
1158
1159 /* Initialize this pool's context via AF */
1160 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1161 if (!aq) {
1162 /* Shared mbox memory buffer is full, flush it and retry */
1163 err = otx2_sync_mbox_msg(&pfvf->mbox);
1164 if (err) {
1165 qmem_free(pfvf->dev, pool->stack);
1166 return err;
1167 }
1168 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1169 if (!aq) {
1170 qmem_free(pfvf->dev, pool->stack);
1171 return -ENOMEM;
1172 }
1173 }
1174
1175 aq->aura_id = pool_id;
1176 aq->pool.stack_base = pool->stack->iova;
1177 aq->pool.stack_caching = 1;
1178 aq->pool.ena = 1;
1179 aq->pool.buf_size = buf_size / 128;
1180 aq->pool.stack_max_pages = stack_pages;
1181 aq->pool.shift = ilog2(numptrs) - 8;
1182 aq->pool.ptr_start = 0;
1183 aq->pool.ptr_end = ~0ULL;
1184
1185 /* Fill AQ info */
1186 aq->ctype = NPA_AQ_CTYPE_POOL;
1187 aq->op = NPA_AQ_INSTOP_INIT;
1188
1189 return 0;
1190 }
1191
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1192 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1193 {
1194 int qidx, pool_id, stack_pages, num_sqbs;
1195 struct otx2_qset *qset = &pfvf->qset;
1196 struct otx2_hw *hw = &pfvf->hw;
1197 struct otx2_snd_queue *sq;
1198 struct otx2_pool *pool;
1199 int err, ptr;
1200 s64 bufptr;
1201
1202 /* Calculate number of SQBs needed.
1203 *
1204 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1205 * Last SQE is used for pointing to next SQB.
1206 */
1207 num_sqbs = (hw->sqb_size / 128) - 1;
1208 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1209
1210 /* Get no of stack pages needed */
1211 stack_pages =
1212 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1213
1214 for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1215 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1216 /* Initialize aura context */
1217 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1218 if (err)
1219 goto fail;
1220
1221 /* Initialize pool context */
1222 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1223 num_sqbs, hw->sqb_size);
1224 if (err)
1225 goto fail;
1226 }
1227
1228 /* Flush accumulated messages */
1229 err = otx2_sync_mbox_msg(&pfvf->mbox);
1230 if (err)
1231 goto fail;
1232
1233 /* Allocate pointers and free them to aura/pool */
1234 for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1235 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1236 pool = &pfvf->qset.pool[pool_id];
1237
1238 sq = &qset->sq[qidx];
1239 sq->sqb_count = 0;
1240 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(u64 *), GFP_KERNEL);
1241 if (!sq->sqb_ptrs)
1242 return -ENOMEM;
1243
1244 for (ptr = 0; ptr < num_sqbs; ptr++) {
1245 bufptr = otx2_alloc_rbuf(pfvf, pool);
1246 if (bufptr <= 0)
1247 return bufptr;
1248 otx2_aura_freeptr(pfvf, pool_id, bufptr);
1249 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1250 }
1251 }
1252
1253 return 0;
1254 fail:
1255 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1256 otx2_aura_pool_free(pfvf);
1257 return err;
1258 }
1259
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1260 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1261 {
1262 struct otx2_hw *hw = &pfvf->hw;
1263 int stack_pages, pool_id, rq;
1264 struct otx2_pool *pool;
1265 int err, ptr, num_ptrs;
1266 s64 bufptr;
1267
1268 num_ptrs = pfvf->qset.rqe_cnt;
1269
1270 stack_pages =
1271 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1272
1273 for (rq = 0; rq < hw->rx_queues; rq++) {
1274 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1275 /* Initialize aura context */
1276 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1277 if (err)
1278 goto fail;
1279 }
1280 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1281 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1282 num_ptrs, pfvf->rbsize);
1283 if (err)
1284 goto fail;
1285 }
1286
1287 /* Flush accumulated messages */
1288 err = otx2_sync_mbox_msg(&pfvf->mbox);
1289 if (err)
1290 goto fail;
1291
1292 /* Allocate pointers and free them to aura/pool */
1293 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1294 pool = &pfvf->qset.pool[pool_id];
1295 for (ptr = 0; ptr < num_ptrs; ptr++) {
1296 bufptr = otx2_alloc_rbuf(pfvf, pool);
1297 if (bufptr <= 0)
1298 return bufptr;
1299 otx2_aura_freeptr(pfvf, pool_id,
1300 bufptr + OTX2_HEAD_ROOM);
1301 }
1302 }
1303
1304 return 0;
1305 fail:
1306 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1307 otx2_aura_pool_free(pfvf);
1308 return err;
1309 }
1310
otx2_config_npa(struct otx2_nic * pfvf)1311 int otx2_config_npa(struct otx2_nic *pfvf)
1312 {
1313 struct otx2_qset *qset = &pfvf->qset;
1314 struct npa_lf_alloc_req *npalf;
1315 struct otx2_hw *hw = &pfvf->hw;
1316 int aura_cnt;
1317
1318 /* Pool - Stack of free buffer pointers
1319 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1320 */
1321
1322 if (!hw->pool_cnt)
1323 return -EINVAL;
1324
1325 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1326 sizeof(struct otx2_pool), GFP_KERNEL);
1327 if (!qset->pool)
1328 return -ENOMEM;
1329
1330 /* Get memory to put this msg */
1331 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1332 if (!npalf)
1333 return -ENOMEM;
1334
1335 /* Set aura and pool counts */
1336 npalf->nr_pools = hw->pool_cnt;
1337 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1338 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1339
1340 return otx2_sync_mbox_msg(&pfvf->mbox);
1341 }
1342
otx2_detach_resources(struct mbox * mbox)1343 int otx2_detach_resources(struct mbox *mbox)
1344 {
1345 struct rsrc_detach *detach;
1346
1347 mutex_lock(&mbox->lock);
1348 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1349 if (!detach) {
1350 mutex_unlock(&mbox->lock);
1351 return -ENOMEM;
1352 }
1353
1354 /* detach all */
1355 detach->partial = false;
1356
1357 /* Send detach request to AF */
1358 otx2_mbox_msg_send(&mbox->mbox, 0);
1359 mutex_unlock(&mbox->lock);
1360 return 0;
1361 }
1362 EXPORT_SYMBOL(otx2_detach_resources);
1363
otx2_attach_npa_nix(struct otx2_nic * pfvf)1364 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1365 {
1366 struct rsrc_attach *attach;
1367 struct msg_req *msix;
1368 int err;
1369
1370 mutex_lock(&pfvf->mbox.lock);
1371 /* Get memory to put this msg */
1372 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1373 if (!attach) {
1374 mutex_unlock(&pfvf->mbox.lock);
1375 return -ENOMEM;
1376 }
1377
1378 attach->npalf = true;
1379 attach->nixlf = true;
1380
1381 /* Send attach request to AF */
1382 err = otx2_sync_mbox_msg(&pfvf->mbox);
1383 if (err) {
1384 mutex_unlock(&pfvf->mbox.lock);
1385 return err;
1386 }
1387
1388 pfvf->nix_blkaddr = BLKADDR_NIX0;
1389
1390 /* If the platform has two NIX blocks then LF may be
1391 * allocated from NIX1.
1392 */
1393 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1394 pfvf->nix_blkaddr = BLKADDR_NIX1;
1395
1396 /* Get NPA and NIX MSIX vector offsets */
1397 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1398 if (!msix) {
1399 mutex_unlock(&pfvf->mbox.lock);
1400 return -ENOMEM;
1401 }
1402
1403 err = otx2_sync_mbox_msg(&pfvf->mbox);
1404 if (err) {
1405 mutex_unlock(&pfvf->mbox.lock);
1406 return err;
1407 }
1408 mutex_unlock(&pfvf->mbox.lock);
1409
1410 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1411 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1412 dev_err(pfvf->dev,
1413 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1414 return -EINVAL;
1415 }
1416
1417 return 0;
1418 }
1419 EXPORT_SYMBOL(otx2_attach_npa_nix);
1420
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1421 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1422 {
1423 struct hwctx_disable_req *req;
1424
1425 mutex_lock(&mbox->lock);
1426 /* Request AQ to disable this context */
1427 if (npa)
1428 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1429 else
1430 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1431
1432 if (!req) {
1433 mutex_unlock(&mbox->lock);
1434 return;
1435 }
1436
1437 req->ctype = type;
1438
1439 if (otx2_sync_mbox_msg(mbox))
1440 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1441 __func__);
1442
1443 mutex_unlock(&mbox->lock);
1444 }
1445
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1446 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1447 {
1448 struct nix_bp_cfg_req *req;
1449
1450 if (enable)
1451 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1452 else
1453 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1454
1455 if (!req)
1456 return -ENOMEM;
1457
1458 req->chan_base = 0;
1459 req->chan_cnt = 1;
1460 req->bpid_per_chan = 0;
1461
1462 return otx2_sync_mbox_msg(&pfvf->mbox);
1463 }
1464
1465 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1466 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1467 struct cgx_stats_rsp *rsp)
1468 {
1469 int id;
1470
1471 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1472 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1473 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1474 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1475 }
1476
mbox_handler_nix_txsch_alloc(struct otx2_nic * pf,struct nix_txsch_alloc_rsp * rsp)1477 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1478 struct nix_txsch_alloc_rsp *rsp)
1479 {
1480 int lvl, schq;
1481
1482 /* Setup transmit scheduler list */
1483 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1484 for (schq = 0; schq < rsp->schq[lvl]; schq++)
1485 pf->hw.txschq_list[lvl][schq] =
1486 rsp->schq_list[lvl][schq];
1487 }
1488 EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1489
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1490 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1491 struct npa_lf_alloc_rsp *rsp)
1492 {
1493 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1494 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1495 }
1496 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1497
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1498 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1499 struct nix_lf_alloc_rsp *rsp)
1500 {
1501 pfvf->hw.sqb_size = rsp->sqb_size;
1502 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1503 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1504 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1505 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1506 }
1507 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1508
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1509 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1510 struct msix_offset_rsp *rsp)
1511 {
1512 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1513 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1514 }
1515 EXPORT_SYMBOL(mbox_handler_msix_offset);
1516
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1517 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1518 struct nix_bp_cfg_rsp *rsp)
1519 {
1520 int chan, chan_id;
1521
1522 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1523 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1524 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1525 }
1526 }
1527 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1528
otx2_free_cints(struct otx2_nic * pfvf,int n)1529 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1530 {
1531 struct otx2_qset *qset = &pfvf->qset;
1532 struct otx2_hw *hw = &pfvf->hw;
1533 int irq, qidx;
1534
1535 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1536 qidx < n;
1537 qidx++, irq++) {
1538 int vector = pci_irq_vector(pfvf->pdev, irq);
1539
1540 irq_set_affinity_hint(vector, NULL);
1541 free_cpumask_var(hw->affinity_mask[irq]);
1542 free_irq(vector, &qset->napi[qidx]);
1543 }
1544 }
1545
otx2_set_cints_affinity(struct otx2_nic * pfvf)1546 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1547 {
1548 struct otx2_hw *hw = &pfvf->hw;
1549 int vec, cpu, irq, cint;
1550
1551 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1552 cpu = cpumask_first(cpu_online_mask);
1553
1554 /* CQ interrupts */
1555 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1556 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1557 return;
1558
1559 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1560
1561 irq = pci_irq_vector(pfvf->pdev, vec);
1562 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1563
1564 cpu = cpumask_next(cpu, cpu_online_mask);
1565 if (unlikely(cpu >= nr_cpu_ids))
1566 cpu = 0;
1567 }
1568 }
1569
1570 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
1571 int __weak \
1572 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
1573 struct _req_type *req, \
1574 struct _rsp_type *rsp) \
1575 { \
1576 /* Nothing to do here */ \
1577 return 0; \
1578 } \
1579 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1580 MBOX_UP_CGX_MESSAGES
1581 #undef M
1582