1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13
14 #include "otx2_reg.h"
15 #include "otx2_common.h"
16 #include "otx2_struct.h"
17 #include "cn10k.h"
18
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 struct otx2_nic *pfvf, int qidx)
21 {
22 u64 incr = (u64)qidx << 32;
23 u64 *ptr;
24
25 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 stats->bytes = otx2_atomic64_add(incr, ptr);
27
28 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 struct otx2_nic *pfvf, int qidx)
34 {
35 u64 incr = (u64)qidx << 32;
36 u64 *ptr;
37
38 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 stats->bytes = otx2_atomic64_add(incr, ptr);
40
41 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44
otx2_update_lmac_stats(struct otx2_nic * pfvf)45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 struct msg_req *req;
48
49 if (!netif_running(pfvf->netdev))
50 return;
51
52 mutex_lock(&pfvf->mbox.lock);
53 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 if (!req) {
55 mutex_unlock(&pfvf->mbox.lock);
56 return;
57 }
58
59 otx2_sync_mbox_msg(&pfvf->mbox);
60 mutex_unlock(&pfvf->mbox.lock);
61 }
62
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)63 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
64 {
65 struct msg_req *req;
66
67 if (!netif_running(pfvf->netdev))
68 return;
69 mutex_lock(&pfvf->mbox.lock);
70 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
71 if (req)
72 otx2_sync_mbox_msg(&pfvf->mbox);
73 mutex_unlock(&pfvf->mbox.lock);
74 }
75
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)76 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
77 {
78 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
79
80 if (!pfvf->qset.rq)
81 return 0;
82
83 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
84 return 1;
85 }
86
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)87 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
88 {
89 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
90
91 if (!pfvf->qset.sq)
92 return 0;
93
94 if (qidx >= pfvf->hw.non_qos_queues) {
95 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
96 return 0;
97 }
98
99 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
100 return 1;
101 }
102
otx2_get_dev_stats(struct otx2_nic * pfvf)103 void otx2_get_dev_stats(struct otx2_nic *pfvf)
104 {
105 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
106
107 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
108 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
109 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
110 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
111 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
112 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
113 dev_stats->rx_mcast_frames +
114 dev_stats->rx_ucast_frames;
115
116 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
117 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
118 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
119 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
120 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
121 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
122 dev_stats->tx_mcast_frames +
123 dev_stats->tx_ucast_frames;
124 }
125
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)126 void otx2_get_stats64(struct net_device *netdev,
127 struct rtnl_link_stats64 *stats)
128 {
129 struct otx2_nic *pfvf = netdev_priv(netdev);
130 struct otx2_dev_stats *dev_stats;
131
132 otx2_get_dev_stats(pfvf);
133
134 dev_stats = &pfvf->hw.dev_stats;
135 stats->rx_bytes = dev_stats->rx_bytes;
136 stats->rx_packets = dev_stats->rx_frames;
137 stats->rx_dropped = dev_stats->rx_drops;
138 stats->multicast = dev_stats->rx_mcast_frames;
139
140 stats->tx_bytes = dev_stats->tx_bytes;
141 stats->tx_packets = dev_stats->tx_frames;
142 stats->tx_dropped = dev_stats->tx_drops;
143 }
144 EXPORT_SYMBOL(otx2_get_stats64);
145
146 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)147 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
148 {
149 struct nix_set_mac_addr *req;
150 int err;
151
152 mutex_lock(&pfvf->mbox.lock);
153 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
154 if (!req) {
155 mutex_unlock(&pfvf->mbox.lock);
156 return -ENOMEM;
157 }
158
159 ether_addr_copy(req->mac_addr, mac);
160
161 err = otx2_sync_mbox_msg(&pfvf->mbox);
162 mutex_unlock(&pfvf->mbox.lock);
163 return err;
164 }
165
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)166 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
167 struct net_device *netdev)
168 {
169 struct nix_get_mac_addr_rsp *rsp;
170 struct mbox_msghdr *msghdr;
171 struct msg_req *req;
172 int err;
173
174 mutex_lock(&pfvf->mbox.lock);
175 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
176 if (!req) {
177 mutex_unlock(&pfvf->mbox.lock);
178 return -ENOMEM;
179 }
180
181 err = otx2_sync_mbox_msg(&pfvf->mbox);
182 if (err) {
183 mutex_unlock(&pfvf->mbox.lock);
184 return err;
185 }
186
187 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
188 if (IS_ERR(msghdr)) {
189 mutex_unlock(&pfvf->mbox.lock);
190 return PTR_ERR(msghdr);
191 }
192 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
193 eth_hw_addr_set(netdev, rsp->mac_addr);
194 mutex_unlock(&pfvf->mbox.lock);
195
196 return 0;
197 }
198
otx2_set_mac_address(struct net_device * netdev,void * p)199 int otx2_set_mac_address(struct net_device *netdev, void *p)
200 {
201 struct otx2_nic *pfvf = netdev_priv(netdev);
202 struct sockaddr *addr = p;
203
204 if (!is_valid_ether_addr(addr->sa_data))
205 return -EADDRNOTAVAIL;
206
207 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
208 eth_hw_addr_set(netdev, addr->sa_data);
209 /* update dmac field in vlan offload rule */
210 if (netif_running(netdev) &&
211 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
212 otx2_install_rxvlan_offload_flow(pfvf);
213 /* update dmac address in ntuple and DMAC filter list */
214 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
215 otx2_dmacflt_update_pfmac_flow(pfvf);
216 } else {
217 return -EPERM;
218 }
219
220 return 0;
221 }
222 EXPORT_SYMBOL(otx2_set_mac_address);
223
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)224 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
225 {
226 struct nix_frs_cfg *req;
227 u16 maxlen;
228 int err;
229
230 maxlen = otx2_get_max_mtu(pfvf) + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
231
232 mutex_lock(&pfvf->mbox.lock);
233 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
234 if (!req) {
235 mutex_unlock(&pfvf->mbox.lock);
236 return -ENOMEM;
237 }
238
239 req->maxlen = pfvf->netdev->mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
240
241 /* Use max receive length supported by hardware for loopback devices */
242 if (is_otx2_lbkvf(pfvf->pdev))
243 req->maxlen = maxlen;
244
245 err = otx2_sync_mbox_msg(&pfvf->mbox);
246 mutex_unlock(&pfvf->mbox.lock);
247 return err;
248 }
249
otx2_config_pause_frm(struct otx2_nic * pfvf)250 int otx2_config_pause_frm(struct otx2_nic *pfvf)
251 {
252 struct cgx_pause_frm_cfg *req;
253 int err;
254
255 if (is_otx2_lbkvf(pfvf->pdev))
256 return 0;
257
258 mutex_lock(&pfvf->mbox.lock);
259 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
260 if (!req) {
261 err = -ENOMEM;
262 goto unlock;
263 }
264
265 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
266 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
267 req->set = 1;
268
269 err = otx2_sync_mbox_msg(&pfvf->mbox);
270 unlock:
271 mutex_unlock(&pfvf->mbox.lock);
272 return err;
273 }
274 EXPORT_SYMBOL(otx2_config_pause_frm);
275
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)276 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
277 {
278 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
279 struct nix_rss_flowkey_cfg_rsp *rsp;
280 struct nix_rss_flowkey_cfg *req;
281 int err;
282
283 mutex_lock(&pfvf->mbox.lock);
284 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
285 if (!req) {
286 mutex_unlock(&pfvf->mbox.lock);
287 return -ENOMEM;
288 }
289 req->mcam_index = -1; /* Default or reserved index */
290 req->flowkey_cfg = rss->flowkey_cfg;
291 req->group = DEFAULT_RSS_CONTEXT_GROUP;
292
293 err = otx2_sync_mbox_msg(&pfvf->mbox);
294 if (err)
295 goto fail;
296
297 rsp = (struct nix_rss_flowkey_cfg_rsp *)
298 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
299 if (IS_ERR(rsp)) {
300 err = PTR_ERR(rsp);
301 goto fail;
302 }
303
304 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
305 fail:
306 mutex_unlock(&pfvf->mbox.lock);
307 return err;
308 }
309
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id)310 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
311 {
312 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
313 const int index = rss->rss_size * ctx_id;
314 struct mbox *mbox = &pfvf->mbox;
315 struct otx2_rss_ctx *rss_ctx;
316 struct nix_aq_enq_req *aq;
317 int idx, err;
318
319 mutex_lock(&mbox->lock);
320 rss_ctx = rss->rss_ctx[ctx_id];
321 /* Get memory to put this msg */
322 for (idx = 0; idx < rss->rss_size; idx++) {
323 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
324 if (!aq) {
325 /* The shared memory buffer can be full.
326 * Flush it and retry
327 */
328 err = otx2_sync_mbox_msg(mbox);
329 if (err) {
330 mutex_unlock(&mbox->lock);
331 return err;
332 }
333 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
334 if (!aq) {
335 mutex_unlock(&mbox->lock);
336 return -ENOMEM;
337 }
338 }
339
340 aq->rss.rq = rss_ctx->ind_tbl[idx];
341
342 /* Fill AQ info */
343 aq->qidx = index + idx;
344 aq->ctype = NIX_AQ_CTYPE_RSS;
345 aq->op = NIX_AQ_INSTOP_INIT;
346 }
347 err = otx2_sync_mbox_msg(mbox);
348 mutex_unlock(&mbox->lock);
349 return err;
350 }
351
otx2_set_rss_key(struct otx2_nic * pfvf)352 void otx2_set_rss_key(struct otx2_nic *pfvf)
353 {
354 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
355 u64 *key = (u64 *)&rss->key[4];
356 int idx;
357
358 /* 352bit or 44byte key needs to be configured as below
359 * NIX_LF_RX_SECRETX0 = key<351:288>
360 * NIX_LF_RX_SECRETX1 = key<287:224>
361 * NIX_LF_RX_SECRETX2 = key<223:160>
362 * NIX_LF_RX_SECRETX3 = key<159:96>
363 * NIX_LF_RX_SECRETX4 = key<95:32>
364 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
365 */
366 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
367 (u64)(*((u32 *)&rss->key)) << 32);
368 idx = sizeof(rss->key) / sizeof(u64);
369 while (idx > 0) {
370 idx--;
371 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
372 }
373 }
374
otx2_rss_init(struct otx2_nic * pfvf)375 int otx2_rss_init(struct otx2_nic *pfvf)
376 {
377 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
378 struct otx2_rss_ctx *rss_ctx;
379 int idx, ret = 0;
380
381 rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
382
383 /* Init RSS key if it is not setup already */
384 if (!rss->enable)
385 netdev_rss_key_fill(rss->key, sizeof(rss->key));
386 otx2_set_rss_key(pfvf);
387
388 if (!netif_is_rxfh_configured(pfvf->netdev)) {
389 /* Set RSS group 0 as default indirection table */
390 rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
391 GFP_KERNEL);
392 if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
393 return -ENOMEM;
394
395 rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
396 for (idx = 0; idx < rss->rss_size; idx++)
397 rss_ctx->ind_tbl[idx] =
398 ethtool_rxfh_indir_default(idx,
399 pfvf->hw.rx_queues);
400 }
401 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
402 if (ret)
403 return ret;
404
405 /* Flowkey or hash config to be used for generating flow tag */
406 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
407 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
408 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
409 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
410 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
411
412 ret = otx2_set_flowkey_cfg(pfvf);
413 if (ret)
414 return ret;
415
416 rss->enable = true;
417 return 0;
418 }
419
420 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)421 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
422 {
423 struct nix_lso_format *field;
424
425 field = (struct nix_lso_format *)&lso->fields[0];
426 lso->field_mask = GENMASK(18, 0);
427
428 /* IP's Length field */
429 field->layer = NIX_TXLAYER_OL3;
430 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
431 field->offset = v4 ? 2 : 4;
432 field->sizem1 = 1; /* i.e 2 bytes */
433 field->alg = NIX_LSOALG_ADD_PAYLEN;
434 field++;
435
436 /* No ID field in IPv6 header */
437 if (v4) {
438 /* Increment IPID */
439 field->layer = NIX_TXLAYER_OL3;
440 field->offset = 4;
441 field->sizem1 = 1; /* i.e 2 bytes */
442 field->alg = NIX_LSOALG_ADD_SEGNUM;
443 field++;
444 }
445
446 /* Update length in UDP header */
447 field->layer = NIX_TXLAYER_OL4;
448 field->offset = 4;
449 field->sizem1 = 1;
450 field->alg = NIX_LSOALG_ADD_PAYLEN;
451 }
452
453 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)454 void otx2_setup_segmentation(struct otx2_nic *pfvf)
455 {
456 struct nix_lso_format_cfg_rsp *rsp;
457 struct nix_lso_format_cfg *lso;
458 struct otx2_hw *hw = &pfvf->hw;
459 int err;
460
461 mutex_lock(&pfvf->mbox.lock);
462
463 /* UDPv4 segmentation */
464 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
465 if (!lso)
466 goto fail;
467
468 /* Setup UDP/IP header fields that HW should update per segment */
469 otx2_setup_udp_segmentation(lso, true);
470
471 err = otx2_sync_mbox_msg(&pfvf->mbox);
472 if (err)
473 goto fail;
474
475 rsp = (struct nix_lso_format_cfg_rsp *)
476 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
477 if (IS_ERR(rsp))
478 goto fail;
479
480 hw->lso_udpv4_idx = rsp->lso_format_idx;
481
482 /* UDPv6 segmentation */
483 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
484 if (!lso)
485 goto fail;
486
487 /* Setup UDP/IP header fields that HW should update per segment */
488 otx2_setup_udp_segmentation(lso, false);
489
490 err = otx2_sync_mbox_msg(&pfvf->mbox);
491 if (err)
492 goto fail;
493
494 rsp = (struct nix_lso_format_cfg_rsp *)
495 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
496 if (IS_ERR(rsp))
497 goto fail;
498
499 hw->lso_udpv6_idx = rsp->lso_format_idx;
500 mutex_unlock(&pfvf->mbox.lock);
501 return;
502 fail:
503 mutex_unlock(&pfvf->mbox.lock);
504 netdev_info(pfvf->netdev,
505 "Failed to get LSO index for UDP GSO offload, disabling\n");
506 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
507 }
508
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)509 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
510 {
511 /* Configure CQE interrupt coalescing parameters
512 *
513 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
514 * set 1 less than cq_ecount_wait. And cq_time_wait is in
515 * usecs, convert that to 100ns count.
516 */
517 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
518 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
519 ((u64)pfvf->hw.cq_qcount_wait << 32) |
520 (pfvf->hw.cq_ecount_wait - 1));
521 }
522
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)523 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
524 dma_addr_t *dma)
525 {
526 unsigned int offset = 0;
527 struct page *page;
528 size_t sz;
529
530 sz = SKB_DATA_ALIGN(pool->rbsize);
531 sz = ALIGN(sz, OTX2_ALIGN);
532
533 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
534 if (unlikely(!page))
535 return -ENOMEM;
536
537 *dma = page_pool_get_dma_addr(page) + offset;
538 return 0;
539 }
540
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)541 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
542 dma_addr_t *dma)
543 {
544 u8 *buf;
545
546 if (pool->page_pool)
547 return otx2_alloc_pool_buf(pfvf, pool, dma);
548
549 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
550 if (unlikely(!buf))
551 return -ENOMEM;
552
553 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
554 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
555 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
556 page_frag_free(buf);
557 return -ENOMEM;
558 }
559
560 return 0;
561 }
562
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)563 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
564 dma_addr_t *dma)
565 {
566 int ret;
567
568 local_bh_disable();
569 ret = __otx2_alloc_rbuf(pfvf, pool, dma);
570 local_bh_enable();
571 return ret;
572 }
573
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)574 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
575 dma_addr_t *dma)
576 {
577 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma)))
578 return -ENOMEM;
579 return 0;
580 }
581
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)582 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
583 {
584 struct otx2_nic *pfvf = netdev_priv(netdev);
585
586 schedule_work(&pfvf->reset_task);
587 }
588 EXPORT_SYMBOL(otx2_tx_timeout);
589
otx2_get_mac_from_af(struct net_device * netdev)590 void otx2_get_mac_from_af(struct net_device *netdev)
591 {
592 struct otx2_nic *pfvf = netdev_priv(netdev);
593 int err;
594
595 err = otx2_hw_get_mac_addr(pfvf, netdev);
596 if (err)
597 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
598
599 /* If AF doesn't provide a valid MAC, generate a random one */
600 if (!is_valid_ether_addr(netdev->dev_addr))
601 eth_hw_addr_random(netdev);
602 }
603 EXPORT_SYMBOL(otx2_get_mac_from_af);
604
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)605 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
606 {
607 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
608 struct otx2_hw *hw = &pfvf->hw;
609 struct nix_txschq_config *req;
610 u64 schq, parent;
611 u64 dwrr_val;
612
613 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
614
615 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
616 if (!req)
617 return -ENOMEM;
618
619 req->lvl = lvl;
620 req->num_regs = 1;
621
622 schq_list = hw->txschq_list;
623 #ifdef CONFIG_DCB
624 if (txschq_for_pfc)
625 schq_list = pfvf->pfc_schq_list;
626 #endif
627
628 schq = schq_list[lvl][prio];
629 /* Set topology e.t.c configuration */
630 if (lvl == NIX_TXSCH_LVL_SMQ) {
631 req->reg[0] = NIX_AF_SMQX_CFG(schq);
632 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
633 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
634 (0x2ULL << 36);
635 /* Set link type for DWRR MTU selection on CN10K silicons */
636 if (!is_dev_otx2(pfvf->pdev))
637 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
638 (u64)hw->smq_link_type);
639 req->num_regs++;
640 /* MDQ config */
641 parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
642 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
643 req->regval[1] = parent << 16;
644 req->num_regs++;
645 /* Set DWRR quantum */
646 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
647 req->regval[2] = dwrr_val;
648 } else if (lvl == NIX_TXSCH_LVL_TL4) {
649 parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
650 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
651 req->regval[0] = parent << 16;
652 req->num_regs++;
653 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
654 req->regval[1] = dwrr_val;
655 } else if (lvl == NIX_TXSCH_LVL_TL3) {
656 parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
657 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
658 req->regval[0] = parent << 16;
659 req->num_regs++;
660 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
661 req->regval[1] = dwrr_val;
662 if (lvl == hw->txschq_link_cfg_lvl) {
663 req->num_regs++;
664 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
665 /* Enable this queue and backpressure
666 * and set relative channel
667 */
668 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
669 }
670 } else if (lvl == NIX_TXSCH_LVL_TL2) {
671 parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
672 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
673 req->regval[0] = parent << 16;
674
675 req->num_regs++;
676 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
677 req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | dwrr_val;
678
679 if (lvl == hw->txschq_link_cfg_lvl) {
680 req->num_regs++;
681 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
682 /* Enable this queue and backpressure
683 * and set relative channel
684 */
685 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
686 }
687 } else if (lvl == NIX_TXSCH_LVL_TL1) {
688 /* Default config for TL1.
689 * For VF this is always ignored.
690 */
691
692 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
693 * clip it to 16384, so configuring a 24bit max value
694 * will work on both OTx2 and CN10K.
695 */
696 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
697 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
698
699 req->num_regs++;
700 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
701 req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
702
703 req->num_regs++;
704 req->reg[2] = NIX_AF_TL1X_CIR(schq);
705 req->regval[2] = 0;
706 }
707
708 return otx2_sync_mbox_msg(&pfvf->mbox);
709 }
710 EXPORT_SYMBOL(otx2_txschq_config);
711
otx2_smq_flush(struct otx2_nic * pfvf,int smq)712 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
713 {
714 struct nix_txschq_config *req;
715 int rc;
716
717 mutex_lock(&pfvf->mbox.lock);
718
719 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
720 if (!req) {
721 mutex_unlock(&pfvf->mbox.lock);
722 return -ENOMEM;
723 }
724
725 req->lvl = NIX_TXSCH_LVL_SMQ;
726 req->reg[0] = NIX_AF_SMQX_CFG(smq);
727 req->regval[0] |= BIT_ULL(49);
728 req->num_regs++;
729
730 rc = otx2_sync_mbox_msg(&pfvf->mbox);
731 mutex_unlock(&pfvf->mbox.lock);
732 return rc;
733 }
734 EXPORT_SYMBOL(otx2_smq_flush);
735
otx2_txsch_alloc(struct otx2_nic * pfvf)736 int otx2_txsch_alloc(struct otx2_nic *pfvf)
737 {
738 struct nix_txsch_alloc_req *req;
739 struct nix_txsch_alloc_rsp *rsp;
740 int lvl, schq, rc;
741
742 /* Get memory to put this msg */
743 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
744 if (!req)
745 return -ENOMEM;
746
747 /* Request one schq per level */
748 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
749 req->schq[lvl] = 1;
750 rc = otx2_sync_mbox_msg(&pfvf->mbox);
751 if (rc)
752 return rc;
753
754 rsp = (struct nix_txsch_alloc_rsp *)
755 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
756 if (IS_ERR(rsp))
757 return PTR_ERR(rsp);
758
759 /* Setup transmit scheduler list */
760 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
761 for (schq = 0; schq < rsp->schq[lvl]; schq++)
762 pfvf->hw.txschq_list[lvl][schq] =
763 rsp->schq_list[lvl][schq];
764
765 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
766 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
767
768 return 0;
769 }
770
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)771 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
772 {
773 struct nix_txsch_free_req *free_req;
774 int err;
775
776 mutex_lock(&pfvf->mbox.lock);
777
778 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
779 if (!free_req) {
780 mutex_unlock(&pfvf->mbox.lock);
781 netdev_err(pfvf->netdev,
782 "Failed alloc txschq free req\n");
783 return;
784 }
785
786 free_req->schq_lvl = lvl;
787 free_req->schq = schq;
788
789 err = otx2_sync_mbox_msg(&pfvf->mbox);
790 if (err) {
791 netdev_err(pfvf->netdev,
792 "Failed stop txschq %d at level %d\n", schq, lvl);
793 }
794
795 mutex_unlock(&pfvf->mbox.lock);
796 }
797 EXPORT_SYMBOL(otx2_txschq_free_one);
798
otx2_txschq_stop(struct otx2_nic * pfvf)799 void otx2_txschq_stop(struct otx2_nic *pfvf)
800 {
801 int lvl, schq;
802
803 /* free non QOS TLx nodes */
804 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
805 otx2_txschq_free_one(pfvf, lvl,
806 pfvf->hw.txschq_list[lvl][0]);
807
808 /* Clear the txschq list */
809 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
810 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
811 pfvf->hw.txschq_list[lvl][schq] = 0;
812 }
813
814 }
815
otx2_sqb_flush(struct otx2_nic * pfvf)816 void otx2_sqb_flush(struct otx2_nic *pfvf)
817 {
818 int qidx, sqe_tail, sqe_head;
819 struct otx2_snd_queue *sq;
820 u64 incr, *ptr, val;
821 int timeout = 1000;
822
823 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
824 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
825 sq = &pfvf->qset.sq[qidx];
826 if (!sq->sqb_ptrs)
827 continue;
828
829 incr = (u64)qidx << 32;
830 while (timeout) {
831 val = otx2_atomic64_add(incr, ptr);
832 sqe_head = (val >> 20) & 0x3F;
833 sqe_tail = (val >> 28) & 0x3F;
834 if (sqe_head == sqe_tail)
835 break;
836 usleep_range(1, 3);
837 timeout--;
838 }
839 }
840 }
841
842 /* RED and drop levels of CQ on packet reception.
843 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
844 */
845 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
846 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
847
848 /* RED and drop levels of AURA for packet reception.
849 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
850 * Eg: For RQ length 1K, for pass/drop level 204/230.
851 * RED accepts pkts if free pointers > 102 & <= 205.
852 * Drops pkts if free pointers < 102.
853 */
854 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
855 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
856 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
857
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)858 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
859 {
860 struct otx2_qset *qset = &pfvf->qset;
861 struct nix_aq_enq_req *aq;
862
863 /* Get memory to put this msg */
864 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
865 if (!aq)
866 return -ENOMEM;
867
868 aq->rq.cq = qidx;
869 aq->rq.ena = 1;
870 aq->rq.pb_caching = 1;
871 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
872 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
873 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
874 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
875 aq->rq.qint_idx = 0;
876 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
877 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
878 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
879 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
880 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
881 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
882
883 /* Fill AQ info */
884 aq->qidx = qidx;
885 aq->ctype = NIX_AQ_CTYPE_RQ;
886 aq->op = NIX_AQ_INSTOP_INIT;
887
888 return otx2_sync_mbox_msg(&pfvf->mbox);
889 }
890
otx2_sq_aq_init(void * dev,u16 qidx,u16 sqb_aura)891 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
892 {
893 struct otx2_nic *pfvf = dev;
894 struct otx2_snd_queue *sq;
895 struct nix_aq_enq_req *aq;
896
897 sq = &pfvf->qset.sq[qidx];
898 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
899 /* Get memory to put this msg */
900 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
901 if (!aq)
902 return -ENOMEM;
903
904 aq->sq.cq = pfvf->hw.rx_queues + qidx;
905 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
906 aq->sq.cq_ena = 1;
907 aq->sq.ena = 1;
908 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
909 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
910 aq->sq.default_chan = pfvf->hw.tx_chan_base;
911 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
912 aq->sq.sqb_aura = sqb_aura;
913 aq->sq.sq_int_ena = NIX_SQINT_BITS;
914 aq->sq.qint_idx = 0;
915 /* Due pipelining impact minimum 2000 unused SQ CQE's
916 * need to maintain to avoid CQ overflow.
917 */
918 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
919
920 /* Fill AQ info */
921 aq->qidx = qidx;
922 aq->ctype = NIX_AQ_CTYPE_SQ;
923 aq->op = NIX_AQ_INSTOP_INIT;
924
925 return otx2_sync_mbox_msg(&pfvf->mbox);
926 }
927
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)928 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
929 {
930 struct otx2_qset *qset = &pfvf->qset;
931 struct otx2_snd_queue *sq;
932 struct otx2_pool *pool;
933 int err;
934
935 pool = &pfvf->qset.pool[sqb_aura];
936 sq = &qset->sq[qidx];
937 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
938 sq->sqe_cnt = qset->sqe_cnt;
939
940 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
941 if (err)
942 return err;
943
944 if (qidx < pfvf->hw.tx_queues) {
945 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
946 TSO_HEADER_SIZE);
947 if (err)
948 return err;
949 }
950
951 sq->sqe_base = sq->sqe->base;
952 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
953 if (!sq->sg)
954 return -ENOMEM;
955
956 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
957 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
958 sizeof(*sq->timestamps));
959 if (err)
960 return err;
961 }
962
963 sq->head = 0;
964 sq->cons_head = 0;
965 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
966 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
967 /* Set SQE threshold to 10% of total SQEs */
968 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
969 sq->aura_id = sqb_aura;
970 sq->aura_fc_addr = pool->fc_addr->base;
971 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
972
973 sq->stats.bytes = 0;
974 sq->stats.pkts = 0;
975
976 return pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
977
978 }
979
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)980 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
981 {
982 struct otx2_qset *qset = &pfvf->qset;
983 int err, pool_id, non_xdp_queues;
984 struct nix_aq_enq_req *aq;
985 struct otx2_cq_queue *cq;
986
987 cq = &qset->cq[qidx];
988 cq->cq_idx = qidx;
989 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
990 if (qidx < pfvf->hw.rx_queues) {
991 cq->cq_type = CQ_RX;
992 cq->cint_idx = qidx;
993 cq->cqe_cnt = qset->rqe_cnt;
994 if (pfvf->xdp_prog)
995 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
996 } else if (qidx < non_xdp_queues) {
997 cq->cq_type = CQ_TX;
998 cq->cint_idx = qidx - pfvf->hw.rx_queues;
999 cq->cqe_cnt = qset->sqe_cnt;
1000 } else {
1001 if (pfvf->hw.xdp_queues &&
1002 qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1003 cq->cq_type = CQ_XDP;
1004 cq->cint_idx = qidx - non_xdp_queues;
1005 cq->cqe_cnt = qset->sqe_cnt;
1006 } else {
1007 cq->cq_type = CQ_QOS;
1008 cq->cint_idx = qidx - non_xdp_queues -
1009 pfvf->hw.xdp_queues;
1010 cq->cqe_cnt = qset->sqe_cnt;
1011 }
1012 }
1013 cq->cqe_size = pfvf->qset.xqe_size;
1014
1015 /* Allocate memory for CQEs */
1016 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1017 if (err)
1018 return err;
1019
1020 /* Save CQE CPU base for faster reference */
1021 cq->cqe_base = cq->cqe->base;
1022 /* In case where all RQs auras point to single pool,
1023 * all CQs receive buffer pool also point to same pool.
1024 */
1025 pool_id = ((cq->cq_type == CQ_RX) &&
1026 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1027 cq->rbpool = &qset->pool[pool_id];
1028 cq->refill_task_sched = false;
1029
1030 /* Get memory to put this msg */
1031 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1032 if (!aq)
1033 return -ENOMEM;
1034
1035 aq->cq.ena = 1;
1036 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1037 aq->cq.caching = 1;
1038 aq->cq.base = cq->cqe->iova;
1039 aq->cq.cint_idx = cq->cint_idx;
1040 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1041 aq->cq.qint_idx = 0;
1042 aq->cq.avg_level = 255;
1043
1044 if (qidx < pfvf->hw.rx_queues) {
1045 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1046 aq->cq.drop_ena = 1;
1047
1048 if (!is_otx2_lbkvf(pfvf->pdev)) {
1049 /* Enable receive CQ backpressure */
1050 aq->cq.bp_ena = 1;
1051 #ifdef CONFIG_DCB
1052 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1053 #else
1054 aq->cq.bpid = pfvf->bpid[0];
1055 #endif
1056
1057 /* Set backpressure level is same as cq pass level */
1058 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1059 }
1060 }
1061
1062 /* Fill AQ info */
1063 aq->qidx = qidx;
1064 aq->ctype = NIX_AQ_CTYPE_CQ;
1065 aq->op = NIX_AQ_INSTOP_INIT;
1066
1067 return otx2_sync_mbox_msg(&pfvf->mbox);
1068 }
1069
otx2_pool_refill_task(struct work_struct * work)1070 static void otx2_pool_refill_task(struct work_struct *work)
1071 {
1072 struct otx2_cq_queue *cq;
1073 struct refill_work *wrk;
1074 struct otx2_nic *pfvf;
1075 int qidx;
1076
1077 wrk = container_of(work, struct refill_work, pool_refill_work.work);
1078 pfvf = wrk->pf;
1079 qidx = wrk - pfvf->refill_wrk;
1080 cq = &pfvf->qset.cq[qidx];
1081
1082 cq->refill_task_sched = false;
1083
1084 local_bh_disable();
1085 napi_schedule(wrk->napi);
1086 local_bh_enable();
1087 }
1088
otx2_config_nix_queues(struct otx2_nic * pfvf)1089 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1090 {
1091 int qidx, err;
1092
1093 /* Initialize RX queues */
1094 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1095 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1096
1097 err = otx2_rq_init(pfvf, qidx, lpb_aura);
1098 if (err)
1099 return err;
1100 }
1101
1102 /* Initialize TX queues */
1103 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1104 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1105
1106 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1107 if (err)
1108 return err;
1109 }
1110
1111 /* Initialize completion queues */
1112 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1113 err = otx2_cq_init(pfvf, qidx);
1114 if (err)
1115 return err;
1116 }
1117
1118 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1119 NIX_LF_CQ_OP_STATUS);
1120
1121 /* Initialize work queue for receive buffer refill */
1122 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1123 sizeof(struct refill_work), GFP_KERNEL);
1124 if (!pfvf->refill_wrk)
1125 return -ENOMEM;
1126
1127 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1128 pfvf->refill_wrk[qidx].pf = pfvf;
1129 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1130 otx2_pool_refill_task);
1131 }
1132 return 0;
1133 }
1134
otx2_config_nix(struct otx2_nic * pfvf)1135 int otx2_config_nix(struct otx2_nic *pfvf)
1136 {
1137 struct nix_lf_alloc_req *nixlf;
1138 struct nix_lf_alloc_rsp *rsp;
1139 int err;
1140
1141 pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1142
1143 /* Get memory to put this msg */
1144 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1145 if (!nixlf)
1146 return -ENOMEM;
1147
1148 /* Set RQ/SQ/CQ counts */
1149 nixlf->rq_cnt = pfvf->hw.rx_queues;
1150 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1151 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1152 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1153 nixlf->rss_grps = MAX_RSS_GROUPS;
1154 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1155 /* We don't know absolute NPA LF idx attached.
1156 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1157 * NPA LF attached to this RVU PF/VF.
1158 */
1159 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1160 /* Disable alignment pad, enable L2 length check,
1161 * enable L4 TCP/UDP checksum verification.
1162 */
1163 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1164
1165 err = otx2_sync_mbox_msg(&pfvf->mbox);
1166 if (err)
1167 return err;
1168
1169 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1170 &nixlf->hdr);
1171 if (IS_ERR(rsp))
1172 return PTR_ERR(rsp);
1173
1174 if (rsp->qints < 1)
1175 return -ENXIO;
1176
1177 return rsp->hdr.rc;
1178 }
1179
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1180 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1181 {
1182 struct otx2_qset *qset = &pfvf->qset;
1183 struct otx2_hw *hw = &pfvf->hw;
1184 struct otx2_snd_queue *sq;
1185 int sqb, qidx;
1186 u64 iova, pa;
1187
1188 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1189 sq = &qset->sq[qidx];
1190 if (!sq->sqb_ptrs)
1191 continue;
1192 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1193 if (!sq->sqb_ptrs[sqb])
1194 continue;
1195 iova = sq->sqb_ptrs[sqb];
1196 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1197 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1198 DMA_FROM_DEVICE,
1199 DMA_ATTR_SKIP_CPU_SYNC);
1200 put_page(virt_to_page(phys_to_virt(pa)));
1201 }
1202 sq->sqb_count = 0;
1203 }
1204 }
1205
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1206 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1207 u64 iova, int size)
1208 {
1209 struct page *page;
1210 u64 pa;
1211
1212 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1213 page = virt_to_head_page(phys_to_virt(pa));
1214
1215 if (pool->page_pool) {
1216 page_pool_put_full_page(pool->page_pool, page, true);
1217 } else {
1218 dma_unmap_page_attrs(pfvf->dev, iova, size,
1219 DMA_FROM_DEVICE,
1220 DMA_ATTR_SKIP_CPU_SYNC);
1221
1222 put_page(page);
1223 }
1224 }
1225
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1226 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1227 {
1228 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1229 struct otx2_pool *pool;
1230 u64 iova;
1231
1232 if (type == AURA_NIX_SQ) {
1233 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1234 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1235 size = pfvf->hw.sqb_size;
1236 }
1237 if (type == AURA_NIX_RQ) {
1238 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1239 pool_end = pfvf->hw.rqpool_cnt;
1240 size = pfvf->rbsize;
1241 }
1242
1243 /* Free SQB and RQB pointers from the aura pool */
1244 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1245 iova = otx2_aura_allocptr(pfvf, pool_id);
1246 pool = &pfvf->qset.pool[pool_id];
1247 while (iova) {
1248 if (type == AURA_NIX_RQ)
1249 iova -= OTX2_HEAD_ROOM;
1250
1251 otx2_free_bufs(pfvf, pool, iova, size);
1252
1253 iova = otx2_aura_allocptr(pfvf, pool_id);
1254 }
1255 }
1256 }
1257
otx2_aura_pool_free(struct otx2_nic * pfvf)1258 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1259 {
1260 struct otx2_pool *pool;
1261 int pool_id;
1262
1263 if (!pfvf->qset.pool)
1264 return;
1265
1266 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1267 pool = &pfvf->qset.pool[pool_id];
1268 qmem_free(pfvf->dev, pool->stack);
1269 qmem_free(pfvf->dev, pool->fc_addr);
1270 page_pool_destroy(pool->page_pool);
1271 pool->page_pool = NULL;
1272 }
1273 devm_kfree(pfvf->dev, pfvf->qset.pool);
1274 pfvf->qset.pool = NULL;
1275 }
1276
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1277 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1278 int pool_id, int numptrs)
1279 {
1280 struct npa_aq_enq_req *aq;
1281 struct otx2_pool *pool;
1282 int err;
1283
1284 pool = &pfvf->qset.pool[pool_id];
1285
1286 /* Allocate memory for HW to update Aura count.
1287 * Alloc one cache line, so that it fits all FC_STYPE modes.
1288 */
1289 if (!pool->fc_addr) {
1290 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1291 if (err)
1292 return err;
1293 }
1294
1295 /* Initialize this aura's context via AF */
1296 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1297 if (!aq) {
1298 /* Shared mbox memory buffer is full, flush it and retry */
1299 err = otx2_sync_mbox_msg(&pfvf->mbox);
1300 if (err)
1301 return err;
1302 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1303 if (!aq)
1304 return -ENOMEM;
1305 }
1306
1307 aq->aura_id = aura_id;
1308 /* Will be filled by AF with correct pool context address */
1309 aq->aura.pool_addr = pool_id;
1310 aq->aura.pool_caching = 1;
1311 aq->aura.shift = ilog2(numptrs) - 8;
1312 aq->aura.count = numptrs;
1313 aq->aura.limit = numptrs;
1314 aq->aura.avg_level = 255;
1315 aq->aura.ena = 1;
1316 aq->aura.fc_ena = 1;
1317 aq->aura.fc_addr = pool->fc_addr->iova;
1318 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1319
1320 /* Enable backpressure for RQ aura */
1321 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1322 aq->aura.bp_ena = 0;
1323 /* If NIX1 LF is attached then specify NIX1_RX.
1324 *
1325 * Below NPA_AURA_S[BP_ENA] is set according to the
1326 * NPA_BPINTF_E enumeration given as:
1327 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1328 * NIX0_RX is 0x0 + 0*0x1 = 0
1329 * NIX1_RX is 0x0 + 1*0x1 = 1
1330 * But in HRM it is given that
1331 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1332 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1333 * enumerated by NPA_BPINTF_E."
1334 */
1335 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1336 aq->aura.bp_ena = 1;
1337 #ifdef CONFIG_DCB
1338 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1339 #else
1340 aq->aura.nix0_bpid = pfvf->bpid[0];
1341 #endif
1342
1343 /* Set backpressure level for RQ's Aura */
1344 aq->aura.bp = RQ_BP_LVL_AURA;
1345 }
1346
1347 /* Fill AQ info */
1348 aq->ctype = NPA_AQ_CTYPE_AURA;
1349 aq->op = NPA_AQ_INSTOP_INIT;
1350
1351 return 0;
1352 }
1353
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1354 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1355 int stack_pages, int numptrs, int buf_size, int type)
1356 {
1357 struct page_pool_params pp_params = { 0 };
1358 struct npa_aq_enq_req *aq;
1359 struct otx2_pool *pool;
1360 int err;
1361
1362 pool = &pfvf->qset.pool[pool_id];
1363 /* Alloc memory for stack which is used to store buffer pointers */
1364 err = qmem_alloc(pfvf->dev, &pool->stack,
1365 stack_pages, pfvf->hw.stack_pg_bytes);
1366 if (err)
1367 return err;
1368
1369 pool->rbsize = buf_size;
1370
1371 /* Initialize this pool's context via AF */
1372 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1373 if (!aq) {
1374 /* Shared mbox memory buffer is full, flush it and retry */
1375 err = otx2_sync_mbox_msg(&pfvf->mbox);
1376 if (err) {
1377 qmem_free(pfvf->dev, pool->stack);
1378 return err;
1379 }
1380 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1381 if (!aq) {
1382 qmem_free(pfvf->dev, pool->stack);
1383 return -ENOMEM;
1384 }
1385 }
1386
1387 aq->aura_id = pool_id;
1388 aq->pool.stack_base = pool->stack->iova;
1389 aq->pool.stack_caching = 1;
1390 aq->pool.ena = 1;
1391 aq->pool.buf_size = buf_size / 128;
1392 aq->pool.stack_max_pages = stack_pages;
1393 aq->pool.shift = ilog2(numptrs) - 8;
1394 aq->pool.ptr_start = 0;
1395 aq->pool.ptr_end = ~0ULL;
1396
1397 /* Fill AQ info */
1398 aq->ctype = NPA_AQ_CTYPE_POOL;
1399 aq->op = NPA_AQ_INSTOP_INIT;
1400
1401 if (type != AURA_NIX_RQ) {
1402 pool->page_pool = NULL;
1403 return 0;
1404 }
1405
1406 pp_params.order = get_order(buf_size);
1407 pp_params.flags = PP_FLAG_PAGE_FRAG | PP_FLAG_DMA_MAP;
1408 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1409 pp_params.nid = NUMA_NO_NODE;
1410 pp_params.dev = pfvf->dev;
1411 pp_params.dma_dir = DMA_FROM_DEVICE;
1412 pool->page_pool = page_pool_create(&pp_params);
1413 if (IS_ERR(pool->page_pool)) {
1414 netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1415 return PTR_ERR(pool->page_pool);
1416 }
1417
1418 return 0;
1419 }
1420
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1421 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1422 {
1423 int qidx, pool_id, stack_pages, num_sqbs;
1424 struct otx2_qset *qset = &pfvf->qset;
1425 struct otx2_hw *hw = &pfvf->hw;
1426 struct otx2_snd_queue *sq;
1427 struct otx2_pool *pool;
1428 dma_addr_t bufptr;
1429 int err, ptr;
1430
1431 /* Calculate number of SQBs needed.
1432 *
1433 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1434 * Last SQE is used for pointing to next SQB.
1435 */
1436 num_sqbs = (hw->sqb_size / 128) - 1;
1437 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1438
1439 /* Get no of stack pages needed */
1440 stack_pages =
1441 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1442
1443 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1444 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1445 /* Initialize aura context */
1446 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1447 if (err)
1448 goto fail;
1449
1450 /* Initialize pool context */
1451 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1452 num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1453 if (err)
1454 goto fail;
1455 }
1456
1457 /* Flush accumulated messages */
1458 err = otx2_sync_mbox_msg(&pfvf->mbox);
1459 if (err)
1460 goto fail;
1461
1462 /* Allocate pointers and free them to aura/pool */
1463 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1464 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1465 pool = &pfvf->qset.pool[pool_id];
1466
1467 sq = &qset->sq[qidx];
1468 sq->sqb_count = 0;
1469 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1470 if (!sq->sqb_ptrs) {
1471 err = -ENOMEM;
1472 goto err_mem;
1473 }
1474
1475 for (ptr = 0; ptr < num_sqbs; ptr++) {
1476 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1477 if (err)
1478 goto err_mem;
1479 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1480 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1481 }
1482 }
1483
1484 err_mem:
1485 return err ? -ENOMEM : 0;
1486
1487 fail:
1488 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1489 otx2_aura_pool_free(pfvf);
1490 return err;
1491 }
1492
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1493 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1494 {
1495 struct otx2_hw *hw = &pfvf->hw;
1496 int stack_pages, pool_id, rq;
1497 struct otx2_pool *pool;
1498 int err, ptr, num_ptrs;
1499 dma_addr_t bufptr;
1500
1501 num_ptrs = pfvf->qset.rqe_cnt;
1502
1503 stack_pages =
1504 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1505
1506 for (rq = 0; rq < hw->rx_queues; rq++) {
1507 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1508 /* Initialize aura context */
1509 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1510 if (err)
1511 goto fail;
1512 }
1513 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1514 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1515 num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1516 if (err)
1517 goto fail;
1518 }
1519
1520 /* Flush accumulated messages */
1521 err = otx2_sync_mbox_msg(&pfvf->mbox);
1522 if (err)
1523 goto fail;
1524
1525 /* Allocate pointers and free them to aura/pool */
1526 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1527 pool = &pfvf->qset.pool[pool_id];
1528 for (ptr = 0; ptr < num_ptrs; ptr++) {
1529 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1530 if (err)
1531 return -ENOMEM;
1532 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1533 bufptr + OTX2_HEAD_ROOM);
1534 }
1535 }
1536 return 0;
1537 fail:
1538 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1539 otx2_aura_pool_free(pfvf);
1540 return err;
1541 }
1542
otx2_config_npa(struct otx2_nic * pfvf)1543 int otx2_config_npa(struct otx2_nic *pfvf)
1544 {
1545 struct otx2_qset *qset = &pfvf->qset;
1546 struct npa_lf_alloc_req *npalf;
1547 struct otx2_hw *hw = &pfvf->hw;
1548 int aura_cnt;
1549
1550 /* Pool - Stack of free buffer pointers
1551 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1552 */
1553
1554 if (!hw->pool_cnt)
1555 return -EINVAL;
1556
1557 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1558 sizeof(struct otx2_pool), GFP_KERNEL);
1559 if (!qset->pool)
1560 return -ENOMEM;
1561
1562 /* Get memory to put this msg */
1563 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1564 if (!npalf)
1565 return -ENOMEM;
1566
1567 /* Set aura and pool counts */
1568 npalf->nr_pools = hw->pool_cnt;
1569 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1570 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1571
1572 return otx2_sync_mbox_msg(&pfvf->mbox);
1573 }
1574
otx2_detach_resources(struct mbox * mbox)1575 int otx2_detach_resources(struct mbox *mbox)
1576 {
1577 struct rsrc_detach *detach;
1578
1579 mutex_lock(&mbox->lock);
1580 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1581 if (!detach) {
1582 mutex_unlock(&mbox->lock);
1583 return -ENOMEM;
1584 }
1585
1586 /* detach all */
1587 detach->partial = false;
1588
1589 /* Send detach request to AF */
1590 otx2_mbox_msg_send(&mbox->mbox, 0);
1591 mutex_unlock(&mbox->lock);
1592 return 0;
1593 }
1594 EXPORT_SYMBOL(otx2_detach_resources);
1595
otx2_attach_npa_nix(struct otx2_nic * pfvf)1596 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1597 {
1598 struct rsrc_attach *attach;
1599 struct msg_req *msix;
1600 int err;
1601
1602 mutex_lock(&pfvf->mbox.lock);
1603 /* Get memory to put this msg */
1604 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1605 if (!attach) {
1606 mutex_unlock(&pfvf->mbox.lock);
1607 return -ENOMEM;
1608 }
1609
1610 attach->npalf = true;
1611 attach->nixlf = true;
1612
1613 /* Send attach request to AF */
1614 err = otx2_sync_mbox_msg(&pfvf->mbox);
1615 if (err) {
1616 mutex_unlock(&pfvf->mbox.lock);
1617 return err;
1618 }
1619
1620 pfvf->nix_blkaddr = BLKADDR_NIX0;
1621
1622 /* If the platform has two NIX blocks then LF may be
1623 * allocated from NIX1.
1624 */
1625 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1626 pfvf->nix_blkaddr = BLKADDR_NIX1;
1627
1628 /* Get NPA and NIX MSIX vector offsets */
1629 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1630 if (!msix) {
1631 mutex_unlock(&pfvf->mbox.lock);
1632 return -ENOMEM;
1633 }
1634
1635 err = otx2_sync_mbox_msg(&pfvf->mbox);
1636 if (err) {
1637 mutex_unlock(&pfvf->mbox.lock);
1638 return err;
1639 }
1640 mutex_unlock(&pfvf->mbox.lock);
1641
1642 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1643 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1644 dev_err(pfvf->dev,
1645 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1646 return -EINVAL;
1647 }
1648
1649 return 0;
1650 }
1651 EXPORT_SYMBOL(otx2_attach_npa_nix);
1652
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1653 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1654 {
1655 struct hwctx_disable_req *req;
1656
1657 mutex_lock(&mbox->lock);
1658 /* Request AQ to disable this context */
1659 if (npa)
1660 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1661 else
1662 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1663
1664 if (!req) {
1665 mutex_unlock(&mbox->lock);
1666 return;
1667 }
1668
1669 req->ctype = type;
1670
1671 if (otx2_sync_mbox_msg(mbox))
1672 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1673 __func__);
1674
1675 mutex_unlock(&mbox->lock);
1676 }
1677
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1678 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1679 {
1680 struct nix_bp_cfg_req *req;
1681
1682 if (enable)
1683 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1684 else
1685 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1686
1687 if (!req)
1688 return -ENOMEM;
1689
1690 req->chan_base = 0;
1691 #ifdef CONFIG_DCB
1692 req->chan_cnt = pfvf->pfc_en ? IEEE_8021QAZ_MAX_TCS : 1;
1693 req->bpid_per_chan = pfvf->pfc_en ? 1 : 0;
1694 #else
1695 req->chan_cnt = 1;
1696 req->bpid_per_chan = 0;
1697 #endif
1698
1699 return otx2_sync_mbox_msg(&pfvf->mbox);
1700 }
1701 EXPORT_SYMBOL(otx2_nix_config_bp);
1702
1703 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1704 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1705 struct cgx_stats_rsp *rsp)
1706 {
1707 int id;
1708
1709 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1710 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1711 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1712 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1713 }
1714
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1715 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1716 struct cgx_fec_stats_rsp *rsp)
1717 {
1718 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1719 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1720 }
1721
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1722 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1723 struct npa_lf_alloc_rsp *rsp)
1724 {
1725 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1726 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1727 }
1728 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1729
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1730 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1731 struct nix_lf_alloc_rsp *rsp)
1732 {
1733 pfvf->hw.sqb_size = rsp->sqb_size;
1734 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1735 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1736 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1737 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1738 pfvf->hw.cgx_links = rsp->cgx_links;
1739 pfvf->hw.lbk_links = rsp->lbk_links;
1740 pfvf->hw.tx_link = rsp->tx_link;
1741 }
1742 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1743
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1744 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1745 struct msix_offset_rsp *rsp)
1746 {
1747 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1748 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1749 }
1750 EXPORT_SYMBOL(mbox_handler_msix_offset);
1751
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1752 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1753 struct nix_bp_cfg_rsp *rsp)
1754 {
1755 int chan, chan_id;
1756
1757 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1758 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1759 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1760 }
1761 }
1762 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1763
otx2_free_cints(struct otx2_nic * pfvf,int n)1764 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1765 {
1766 struct otx2_qset *qset = &pfvf->qset;
1767 struct otx2_hw *hw = &pfvf->hw;
1768 int irq, qidx;
1769
1770 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1771 qidx < n;
1772 qidx++, irq++) {
1773 int vector = pci_irq_vector(pfvf->pdev, irq);
1774
1775 irq_set_affinity_hint(vector, NULL);
1776 free_cpumask_var(hw->affinity_mask[irq]);
1777 free_irq(vector, &qset->napi[qidx]);
1778 }
1779 }
1780
otx2_set_cints_affinity(struct otx2_nic * pfvf)1781 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1782 {
1783 struct otx2_hw *hw = &pfvf->hw;
1784 int vec, cpu, irq, cint;
1785
1786 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1787 cpu = cpumask_first(cpu_online_mask);
1788
1789 /* CQ interrupts */
1790 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1791 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1792 return;
1793
1794 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1795
1796 irq = pci_irq_vector(pfvf->pdev, vec);
1797 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1798
1799 cpu = cpumask_next(cpu, cpu_online_mask);
1800 if (unlikely(cpu >= nr_cpu_ids))
1801 cpu = 0;
1802 }
1803 }
1804
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1805 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1806 {
1807 if (is_otx2_lbkvf(pfvf->pdev)) {
1808 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1809 return hw->lbk_dwrr_mtu;
1810 }
1811
1812 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1813 return hw->rpm_dwrr_mtu;
1814 }
1815
otx2_get_max_mtu(struct otx2_nic * pfvf)1816 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1817 {
1818 struct nix_hw_info *rsp;
1819 struct msg_req *req;
1820 u16 max_mtu;
1821 int rc;
1822
1823 mutex_lock(&pfvf->mbox.lock);
1824
1825 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1826 if (!req) {
1827 rc = -ENOMEM;
1828 goto out;
1829 }
1830
1831 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1832 if (!rc) {
1833 rsp = (struct nix_hw_info *)
1834 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1835
1836 /* HW counts VLAN insertion bytes (8 for double tag)
1837 * irrespective of whether SQE is requesting to insert VLAN
1838 * in the packet or not. Hence these 8 bytes have to be
1839 * discounted from max packet size otherwise HW will throw
1840 * SMQ errors
1841 */
1842 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1843
1844 /* Also save DWRR MTU, needed for DWRR weight calculation */
1845 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
1846 if (!pfvf->hw.dwrr_mtu)
1847 pfvf->hw.dwrr_mtu = 1;
1848 }
1849
1850 out:
1851 mutex_unlock(&pfvf->mbox.lock);
1852 if (rc) {
1853 dev_warn(pfvf->dev,
1854 "Failed to get MTU from hardware setting default value(1500)\n");
1855 max_mtu = 1500;
1856 }
1857 return max_mtu;
1858 }
1859 EXPORT_SYMBOL(otx2_get_max_mtu);
1860
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)1861 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
1862 {
1863 netdev_features_t changed = features ^ netdev->features;
1864 struct otx2_nic *pfvf = netdev_priv(netdev);
1865 bool ntuple = !!(features & NETIF_F_NTUPLE);
1866 bool tc = !!(features & NETIF_F_HW_TC);
1867
1868 if ((changed & NETIF_F_NTUPLE) && !ntuple)
1869 otx2_destroy_ntuple_flows(pfvf);
1870
1871 if ((changed & NETIF_F_NTUPLE) && ntuple) {
1872 if (!pfvf->flow_cfg->max_flows) {
1873 netdev_err(netdev,
1874 "Can't enable NTUPLE, MCAM entries not allocated\n");
1875 return -EINVAL;
1876 }
1877 }
1878
1879 if ((changed & NETIF_F_HW_TC) && !tc &&
1880 otx2_tc_flower_rule_cnt(pfvf)) {
1881 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
1882 return -EBUSY;
1883 }
1884
1885 if ((changed & NETIF_F_NTUPLE) && ntuple &&
1886 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
1887 netdev_err(netdev,
1888 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
1889 return -EINVAL;
1890 }
1891
1892 return 0;
1893 }
1894 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
1895
1896 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
1897 int __weak \
1898 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
1899 struct _req_type *req, \
1900 struct _rsp_type *rsp) \
1901 { \
1902 /* Nothing to do here */ \
1903 return 0; \
1904 } \
1905 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1906 MBOX_UP_CGX_MESSAGES
1907 MBOX_UP_MCS_MESSAGES
1908 #undef M
1909