1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
69
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78
stripe_hash(struct r5conf * conf,sector_t sect)79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 return &conf->stripe_hashtbl[hash];
83 }
84
stripe_hash_locks_hash(sector_t sect)85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89
lock_device_hash_lock(struct r5conf * conf,int hash)90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 spin_lock_irq(conf->hash_locks + hash);
93 spin_lock(&conf->device_lock);
94 }
95
unlock_device_hash_lock(struct r5conf * conf,int hash)96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 spin_unlock(&conf->device_lock);
99 spin_unlock_irq(conf->hash_locks + hash);
100 }
101
lock_all_device_hash_locks_irq(struct r5conf * conf)102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 int i;
105 spin_lock_irq(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109 }
110
unlock_all_device_hash_locks_irq(struct r5conf * conf)111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(conf->hash_locks + i);
117 spin_unlock_irq(conf->hash_locks);
118 }
119
120 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131 }
raid6_next_disk(int disk,int raid_disks)132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136 }
137
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
145 {
146 int slot = *count;
147
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
157 }
158
159 static void print_raid5_conf (struct r5conf *conf);
160
stripe_operations_active(struct stripe_head * sh)161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167
stripe_is_lowprio(struct stripe_head * sh)168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174
raid5_wakeup_stripe_thread(struct stripe_head * sh)175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219 }
220
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 {
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
226
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
229
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
234 /*
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
240 */
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
247 }
248
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
269 }
270 }
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
294 } else
295 /*
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
299 */
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 }
302 }
303 }
304 }
305
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
308 {
309 if (atomic_dec_and_test(&sh->count))
310 do_release_stripe(conf, sh, temp_inactive_list);
311 }
312
313 /*
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315 *
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
319 */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)320 static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
322 int hash)
323 {
324 int size;
325 bool do_wakeup = false;
326 unsigned long flags;
327
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
331 } else
332 size = 1;
333 while (size) {
334 struct list_head *list = &temp_inactive_list[size - 1];
335
336 /*
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
339 */
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
342 if (list_empty(conf->inactive_list + hash) &&
343 !list_empty(list))
344 atomic_dec(&conf->empty_inactive_list_nr);
345 list_splice_tail_init(list, conf->inactive_list + hash);
346 do_wakeup = true;
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 }
349 size--;
350 hash--;
351 }
352
353 if (do_wakeup) {
354 wake_up(&conf->wait_for_stripe);
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
359 }
360 }
361
362 /* should hold conf->device_lock already */
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)363 static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
365 {
366 struct stripe_head *sh, *t;
367 int count = 0;
368 struct llist_node *head;
369
370 head = llist_del_all(&conf->released_stripes);
371 head = llist_reverse_order(head);
372 llist_for_each_entry_safe(sh, t, head, release_list) {
373 int hash;
374
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 smp_mb();
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 /*
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
382 */
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
385 count++;
386 }
387
388 return count;
389 }
390
raid5_release_stripe(struct stripe_head * sh)391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 struct r5conf *conf = sh->raid_conf;
394 unsigned long flags;
395 struct list_head list;
396 int hash;
397 bool wakeup;
398
399 /* Avoid release_list until the last reference.
400 */
401 if (atomic_add_unless(&sh->count, -1, 1))
402 return;
403
404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 goto slow_path;
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 if (wakeup)
409 md_wakeup_thread(conf->mddev->thread);
410 return;
411 slow_path:
412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
414 INIT_LIST_HEAD(&list);
415 hash = sh->hash_lock_index;
416 do_release_stripe(conf, sh, &list);
417 spin_unlock_irqrestore(&conf->device_lock, flags);
418 release_inactive_stripe_list(conf, &list, hash);
419 }
420 }
421
remove_hash(struct stripe_head * sh)422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh->sector);
426
427 hlist_del_init(&sh->hash);
428 }
429
insert_hash(struct r5conf * conf,struct stripe_head * sh)430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 struct hlist_head *hp = stripe_hash(conf, sh->sector);
433
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh->sector);
436
437 hlist_add_head(&sh->hash, hp);
438 }
439
440 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 struct stripe_head *sh = NULL;
444 struct list_head *first;
445
446 if (list_empty(conf->inactive_list + hash))
447 goto out;
448 first = (conf->inactive_list + hash)->next;
449 sh = list_entry(first, struct stripe_head, lru);
450 list_del_init(first);
451 remove_hash(sh);
452 atomic_inc(&conf->active_stripes);
453 BUG_ON(hash != sh->hash_lock_index);
454 if (list_empty(conf->inactive_list + hash))
455 atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 return sh;
458 }
459
shrink_buffers(struct stripe_head * sh)460 static void shrink_buffers(struct stripe_head *sh)
461 {
462 struct page *p;
463 int i;
464 int num = sh->raid_conf->pool_size;
465
466 for (i = 0; i < num ; i++) {
467 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468 p = sh->dev[i].page;
469 if (!p)
470 continue;
471 sh->dev[i].page = NULL;
472 put_page(p);
473 }
474 }
475
grow_buffers(struct stripe_head * sh,gfp_t gfp)476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
477 {
478 int i;
479 int num = sh->raid_conf->pool_size;
480
481 for (i = 0; i < num; i++) {
482 struct page *page;
483
484 if (!(page = alloc_page(gfp))) {
485 return 1;
486 }
487 sh->dev[i].page = page;
488 sh->dev[i].orig_page = page;
489 }
490
491 return 0;
492 }
493
494 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
495 struct stripe_head *sh);
496
init_stripe(struct stripe_head * sh,sector_t sector,int previous)497 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
498 {
499 struct r5conf *conf = sh->raid_conf;
500 int i, seq;
501
502 BUG_ON(atomic_read(&sh->count) != 0);
503 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
504 BUG_ON(stripe_operations_active(sh));
505 BUG_ON(sh->batch_head);
506
507 pr_debug("init_stripe called, stripe %llu\n",
508 (unsigned long long)sector);
509 retry:
510 seq = read_seqcount_begin(&conf->gen_lock);
511 sh->generation = conf->generation - previous;
512 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
513 sh->sector = sector;
514 stripe_set_idx(sector, conf, previous, sh);
515 sh->state = 0;
516
517 for (i = sh->disks; i--; ) {
518 struct r5dev *dev = &sh->dev[i];
519
520 if (dev->toread || dev->read || dev->towrite || dev->written ||
521 test_bit(R5_LOCKED, &dev->flags)) {
522 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
523 (unsigned long long)sh->sector, i, dev->toread,
524 dev->read, dev->towrite, dev->written,
525 test_bit(R5_LOCKED, &dev->flags));
526 WARN_ON(1);
527 }
528 dev->flags = 0;
529 dev->sector = raid5_compute_blocknr(sh, i, previous);
530 }
531 if (read_seqcount_retry(&conf->gen_lock, seq))
532 goto retry;
533 sh->overwrite_disks = 0;
534 insert_hash(conf, sh);
535 sh->cpu = smp_processor_id();
536 set_bit(STRIPE_BATCH_READY, &sh->state);
537 }
538
__find_stripe(struct r5conf * conf,sector_t sector,short generation)539 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
540 short generation)
541 {
542 struct stripe_head *sh;
543
544 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
545 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
546 if (sh->sector == sector && sh->generation == generation)
547 return sh;
548 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
549 return NULL;
550 }
551
552 /*
553 * Need to check if array has failed when deciding whether to:
554 * - start an array
555 * - remove non-faulty devices
556 * - add a spare
557 * - allow a reshape
558 * This determination is simple when no reshape is happening.
559 * However if there is a reshape, we need to carefully check
560 * both the before and after sections.
561 * This is because some failed devices may only affect one
562 * of the two sections, and some non-in_sync devices may
563 * be insync in the section most affected by failed devices.
564 */
raid5_calc_degraded(struct r5conf * conf)565 int raid5_calc_degraded(struct r5conf *conf)
566 {
567 int degraded, degraded2;
568 int i;
569
570 rcu_read_lock();
571 degraded = 0;
572 for (i = 0; i < conf->previous_raid_disks; i++) {
573 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
574 if (rdev && test_bit(Faulty, &rdev->flags))
575 rdev = rcu_dereference(conf->disks[i].replacement);
576 if (!rdev || test_bit(Faulty, &rdev->flags))
577 degraded++;
578 else if (test_bit(In_sync, &rdev->flags))
579 ;
580 else
581 /* not in-sync or faulty.
582 * If the reshape increases the number of devices,
583 * this is being recovered by the reshape, so
584 * this 'previous' section is not in_sync.
585 * If the number of devices is being reduced however,
586 * the device can only be part of the array if
587 * we are reverting a reshape, so this section will
588 * be in-sync.
589 */
590 if (conf->raid_disks >= conf->previous_raid_disks)
591 degraded++;
592 }
593 rcu_read_unlock();
594 if (conf->raid_disks == conf->previous_raid_disks)
595 return degraded;
596 rcu_read_lock();
597 degraded2 = 0;
598 for (i = 0; i < conf->raid_disks; i++) {
599 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
600 if (rdev && test_bit(Faulty, &rdev->flags))
601 rdev = rcu_dereference(conf->disks[i].replacement);
602 if (!rdev || test_bit(Faulty, &rdev->flags))
603 degraded2++;
604 else if (test_bit(In_sync, &rdev->flags))
605 ;
606 else
607 /* not in-sync or faulty.
608 * If reshape increases the number of devices, this
609 * section has already been recovered, else it
610 * almost certainly hasn't.
611 */
612 if (conf->raid_disks <= conf->previous_raid_disks)
613 degraded2++;
614 }
615 rcu_read_unlock();
616 if (degraded2 > degraded)
617 return degraded2;
618 return degraded;
619 }
620
has_failed(struct r5conf * conf)621 static int has_failed(struct r5conf *conf)
622 {
623 int degraded;
624
625 if (conf->mddev->reshape_position == MaxSector)
626 return conf->mddev->degraded > conf->max_degraded;
627
628 degraded = raid5_calc_degraded(conf);
629 if (degraded > conf->max_degraded)
630 return 1;
631 return 0;
632 }
633
634 struct stripe_head *
raid5_get_active_stripe(struct r5conf * conf,sector_t sector,int previous,int noblock,int noquiesce)635 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
636 int previous, int noblock, int noquiesce)
637 {
638 struct stripe_head *sh;
639 int hash = stripe_hash_locks_hash(sector);
640 int inc_empty_inactive_list_flag;
641
642 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
643
644 spin_lock_irq(conf->hash_locks + hash);
645
646 do {
647 wait_event_lock_irq(conf->wait_for_quiescent,
648 conf->quiesce == 0 || noquiesce,
649 *(conf->hash_locks + hash));
650 sh = __find_stripe(conf, sector, conf->generation - previous);
651 if (!sh) {
652 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
653 sh = get_free_stripe(conf, hash);
654 if (!sh && !test_bit(R5_DID_ALLOC,
655 &conf->cache_state))
656 set_bit(R5_ALLOC_MORE,
657 &conf->cache_state);
658 }
659 if (noblock && sh == NULL)
660 break;
661
662 r5c_check_stripe_cache_usage(conf);
663 if (!sh) {
664 set_bit(R5_INACTIVE_BLOCKED,
665 &conf->cache_state);
666 r5l_wake_reclaim(conf->log, 0);
667 wait_event_lock_irq(
668 conf->wait_for_stripe,
669 !list_empty(conf->inactive_list + hash) &&
670 (atomic_read(&conf->active_stripes)
671 < (conf->max_nr_stripes * 3 / 4)
672 || !test_bit(R5_INACTIVE_BLOCKED,
673 &conf->cache_state)),
674 *(conf->hash_locks + hash));
675 clear_bit(R5_INACTIVE_BLOCKED,
676 &conf->cache_state);
677 } else {
678 init_stripe(sh, sector, previous);
679 atomic_inc(&sh->count);
680 }
681 } else if (!atomic_inc_not_zero(&sh->count)) {
682 spin_lock(&conf->device_lock);
683 if (!atomic_read(&sh->count)) {
684 if (!test_bit(STRIPE_HANDLE, &sh->state))
685 atomic_inc(&conf->active_stripes);
686 BUG_ON(list_empty(&sh->lru) &&
687 !test_bit(STRIPE_EXPANDING, &sh->state));
688 inc_empty_inactive_list_flag = 0;
689 if (!list_empty(conf->inactive_list + hash))
690 inc_empty_inactive_list_flag = 1;
691 list_del_init(&sh->lru);
692 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
693 atomic_inc(&conf->empty_inactive_list_nr);
694 if (sh->group) {
695 sh->group->stripes_cnt--;
696 sh->group = NULL;
697 }
698 }
699 atomic_inc(&sh->count);
700 spin_unlock(&conf->device_lock);
701 }
702 } while (sh == NULL);
703
704 spin_unlock_irq(conf->hash_locks + hash);
705 return sh;
706 }
707
is_full_stripe_write(struct stripe_head * sh)708 static bool is_full_stripe_write(struct stripe_head *sh)
709 {
710 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
711 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
712 }
713
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)714 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
715 {
716 if (sh1 > sh2) {
717 spin_lock_irq(&sh2->stripe_lock);
718 spin_lock_nested(&sh1->stripe_lock, 1);
719 } else {
720 spin_lock_irq(&sh1->stripe_lock);
721 spin_lock_nested(&sh2->stripe_lock, 1);
722 }
723 }
724
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)725 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
726 {
727 spin_unlock(&sh1->stripe_lock);
728 spin_unlock_irq(&sh2->stripe_lock);
729 }
730
731 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)732 static bool stripe_can_batch(struct stripe_head *sh)
733 {
734 struct r5conf *conf = sh->raid_conf;
735
736 if (raid5_has_log(conf) || raid5_has_ppl(conf))
737 return false;
738 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
739 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
740 is_full_stripe_write(sh);
741 }
742
743 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh)744 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
745 {
746 struct stripe_head *head;
747 sector_t head_sector, tmp_sec;
748 int hash;
749 int dd_idx;
750 int inc_empty_inactive_list_flag;
751
752 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753 tmp_sec = sh->sector;
754 if (!sector_div(tmp_sec, conf->chunk_sectors))
755 return;
756 head_sector = sh->sector - STRIPE_SECTORS;
757
758 hash = stripe_hash_locks_hash(head_sector);
759 spin_lock_irq(conf->hash_locks + hash);
760 head = __find_stripe(conf, head_sector, conf->generation);
761 if (head && !atomic_inc_not_zero(&head->count)) {
762 spin_lock(&conf->device_lock);
763 if (!atomic_read(&head->count)) {
764 if (!test_bit(STRIPE_HANDLE, &head->state))
765 atomic_inc(&conf->active_stripes);
766 BUG_ON(list_empty(&head->lru) &&
767 !test_bit(STRIPE_EXPANDING, &head->state));
768 inc_empty_inactive_list_flag = 0;
769 if (!list_empty(conf->inactive_list + hash))
770 inc_empty_inactive_list_flag = 1;
771 list_del_init(&head->lru);
772 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
773 atomic_inc(&conf->empty_inactive_list_nr);
774 if (head->group) {
775 head->group->stripes_cnt--;
776 head->group = NULL;
777 }
778 }
779 atomic_inc(&head->count);
780 spin_unlock(&conf->device_lock);
781 }
782 spin_unlock_irq(conf->hash_locks + hash);
783
784 if (!head)
785 return;
786 if (!stripe_can_batch(head))
787 goto out;
788
789 lock_two_stripes(head, sh);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 goto unlock_out;
793
794 if (sh->batch_head)
795 goto unlock_out;
796
797 dd_idx = 0;
798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 dd_idx++;
800 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
801 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
802 goto unlock_out;
803
804 if (head->batch_head) {
805 spin_lock(&head->batch_head->batch_lock);
806 /* This batch list is already running */
807 if (!stripe_can_batch(head)) {
808 spin_unlock(&head->batch_head->batch_lock);
809 goto unlock_out;
810 }
811 /*
812 * We must assign batch_head of this stripe within the
813 * batch_lock, otherwise clear_batch_ready of batch head
814 * stripe could clear BATCH_READY bit of this stripe and
815 * this stripe->batch_head doesn't get assigned, which
816 * could confuse clear_batch_ready for this stripe
817 */
818 sh->batch_head = head->batch_head;
819
820 /*
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
823 */
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
826 } else {
827 head->batch_head = head;
828 sh->batch_head = head->batch_head;
829 spin_lock(&head->batch_lock);
830 list_add_tail(&sh->batch_list, &head->batch_list);
831 spin_unlock(&head->batch_lock);
832 }
833
834 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
835 if (atomic_dec_return(&conf->preread_active_stripes)
836 < IO_THRESHOLD)
837 md_wakeup_thread(conf->mddev->thread);
838
839 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
840 int seq = sh->bm_seq;
841 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
842 sh->batch_head->bm_seq > seq)
843 seq = sh->batch_head->bm_seq;
844 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
845 sh->batch_head->bm_seq = seq;
846 }
847
848 atomic_inc(&sh->count);
849 unlock_out:
850 unlock_two_stripes(head, sh);
851 out:
852 raid5_release_stripe(head);
853 }
854
855 /* Determine if 'data_offset' or 'new_data_offset' should be used
856 * in this stripe_head.
857 */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)858 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
859 {
860 sector_t progress = conf->reshape_progress;
861 /* Need a memory barrier to make sure we see the value
862 * of conf->generation, or ->data_offset that was set before
863 * reshape_progress was updated.
864 */
865 smp_rmb();
866 if (progress == MaxSector)
867 return 0;
868 if (sh->generation == conf->generation - 1)
869 return 0;
870 /* We are in a reshape, and this is a new-generation stripe,
871 * so use new_data_offset.
872 */
873 return 1;
874 }
875
dispatch_bio_list(struct bio_list * tmp)876 static void dispatch_bio_list(struct bio_list *tmp)
877 {
878 struct bio *bio;
879
880 while ((bio = bio_list_pop(tmp)))
881 generic_make_request(bio);
882 }
883
cmp_stripe(void * priv,struct list_head * a,struct list_head * b)884 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
885 {
886 const struct r5pending_data *da = list_entry(a,
887 struct r5pending_data, sibling);
888 const struct r5pending_data *db = list_entry(b,
889 struct r5pending_data, sibling);
890 if (da->sector > db->sector)
891 return 1;
892 if (da->sector < db->sector)
893 return -1;
894 return 0;
895 }
896
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)897 static void dispatch_defer_bios(struct r5conf *conf, int target,
898 struct bio_list *list)
899 {
900 struct r5pending_data *data;
901 struct list_head *first, *next = NULL;
902 int cnt = 0;
903
904 if (conf->pending_data_cnt == 0)
905 return;
906
907 list_sort(NULL, &conf->pending_list, cmp_stripe);
908
909 first = conf->pending_list.next;
910
911 /* temporarily move the head */
912 if (conf->next_pending_data)
913 list_move_tail(&conf->pending_list,
914 &conf->next_pending_data->sibling);
915
916 while (!list_empty(&conf->pending_list)) {
917 data = list_first_entry(&conf->pending_list,
918 struct r5pending_data, sibling);
919 if (&data->sibling == first)
920 first = data->sibling.next;
921 next = data->sibling.next;
922
923 bio_list_merge(list, &data->bios);
924 list_move(&data->sibling, &conf->free_list);
925 cnt++;
926 if (cnt >= target)
927 break;
928 }
929 conf->pending_data_cnt -= cnt;
930 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
931
932 if (next != &conf->pending_list)
933 conf->next_pending_data = list_entry(next,
934 struct r5pending_data, sibling);
935 else
936 conf->next_pending_data = NULL;
937 /* list isn't empty */
938 if (first != &conf->pending_list)
939 list_move_tail(&conf->pending_list, first);
940 }
941
flush_deferred_bios(struct r5conf * conf)942 static void flush_deferred_bios(struct r5conf *conf)
943 {
944 struct bio_list tmp = BIO_EMPTY_LIST;
945
946 if (conf->pending_data_cnt == 0)
947 return;
948
949 spin_lock(&conf->pending_bios_lock);
950 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
951 BUG_ON(conf->pending_data_cnt != 0);
952 spin_unlock(&conf->pending_bios_lock);
953
954 dispatch_bio_list(&tmp);
955 }
956
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)957 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
958 struct bio_list *bios)
959 {
960 struct bio_list tmp = BIO_EMPTY_LIST;
961 struct r5pending_data *ent;
962
963 spin_lock(&conf->pending_bios_lock);
964 ent = list_first_entry(&conf->free_list, struct r5pending_data,
965 sibling);
966 list_move_tail(&ent->sibling, &conf->pending_list);
967 ent->sector = sector;
968 bio_list_init(&ent->bios);
969 bio_list_merge(&ent->bios, bios);
970 conf->pending_data_cnt++;
971 if (conf->pending_data_cnt >= PENDING_IO_MAX)
972 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
973
974 spin_unlock(&conf->pending_bios_lock);
975
976 dispatch_bio_list(&tmp);
977 }
978
979 static void
980 raid5_end_read_request(struct bio *bi);
981 static void
982 raid5_end_write_request(struct bio *bi);
983
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)984 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
985 {
986 struct r5conf *conf = sh->raid_conf;
987 int i, disks = sh->disks;
988 struct stripe_head *head_sh = sh;
989 struct bio_list pending_bios = BIO_EMPTY_LIST;
990 bool should_defer;
991
992 might_sleep();
993
994 if (log_stripe(sh, s) == 0)
995 return;
996
997 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
998
999 for (i = disks; i--; ) {
1000 int op, op_flags = 0;
1001 int replace_only = 0;
1002 struct bio *bi, *rbi;
1003 struct md_rdev *rdev, *rrdev = NULL;
1004
1005 sh = head_sh;
1006 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1007 op = REQ_OP_WRITE;
1008 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1009 op_flags = REQ_FUA;
1010 if (test_bit(R5_Discard, &sh->dev[i].flags))
1011 op = REQ_OP_DISCARD;
1012 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1013 op = REQ_OP_READ;
1014 else if (test_and_clear_bit(R5_WantReplace,
1015 &sh->dev[i].flags)) {
1016 op = REQ_OP_WRITE;
1017 replace_only = 1;
1018 } else
1019 continue;
1020 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1021 op_flags |= REQ_SYNC;
1022
1023 again:
1024 bi = &sh->dev[i].req;
1025 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1026
1027 rcu_read_lock();
1028 rrdev = rcu_dereference(conf->disks[i].replacement);
1029 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030 rdev = rcu_dereference(conf->disks[i].rdev);
1031 if (!rdev) {
1032 rdev = rrdev;
1033 rrdev = NULL;
1034 }
1035 if (op_is_write(op)) {
1036 if (replace_only)
1037 rdev = NULL;
1038 if (rdev == rrdev)
1039 /* We raced and saw duplicates */
1040 rrdev = NULL;
1041 } else {
1042 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1043 rdev = rrdev;
1044 rrdev = NULL;
1045 }
1046
1047 if (rdev && test_bit(Faulty, &rdev->flags))
1048 rdev = NULL;
1049 if (rdev)
1050 atomic_inc(&rdev->nr_pending);
1051 if (rrdev && test_bit(Faulty, &rrdev->flags))
1052 rrdev = NULL;
1053 if (rrdev)
1054 atomic_inc(&rrdev->nr_pending);
1055 rcu_read_unlock();
1056
1057 /* We have already checked bad blocks for reads. Now
1058 * need to check for writes. We never accept write errors
1059 * on the replacement, so we don't to check rrdev.
1060 */
1061 while (op_is_write(op) && rdev &&
1062 test_bit(WriteErrorSeen, &rdev->flags)) {
1063 sector_t first_bad;
1064 int bad_sectors;
1065 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1066 &first_bad, &bad_sectors);
1067 if (!bad)
1068 break;
1069
1070 if (bad < 0) {
1071 set_bit(BlockedBadBlocks, &rdev->flags);
1072 if (!conf->mddev->external &&
1073 conf->mddev->sb_flags) {
1074 /* It is very unlikely, but we might
1075 * still need to write out the
1076 * bad block log - better give it
1077 * a chance*/
1078 md_check_recovery(conf->mddev);
1079 }
1080 /*
1081 * Because md_wait_for_blocked_rdev
1082 * will dec nr_pending, we must
1083 * increment it first.
1084 */
1085 atomic_inc(&rdev->nr_pending);
1086 md_wait_for_blocked_rdev(rdev, conf->mddev);
1087 } else {
1088 /* Acknowledged bad block - skip the write */
1089 rdev_dec_pending(rdev, conf->mddev);
1090 rdev = NULL;
1091 }
1092 }
1093
1094 if (rdev) {
1095 if (s->syncing || s->expanding || s->expanded
1096 || s->replacing)
1097 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1098
1099 set_bit(STRIPE_IO_STARTED, &sh->state);
1100
1101 bio_set_dev(bi, rdev->bdev);
1102 bio_set_op_attrs(bi, op, op_flags);
1103 bi->bi_end_io = op_is_write(op)
1104 ? raid5_end_write_request
1105 : raid5_end_read_request;
1106 bi->bi_private = sh;
1107
1108 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109 __func__, (unsigned long long)sh->sector,
1110 bi->bi_opf, i);
1111 atomic_inc(&sh->count);
1112 if (sh != head_sh)
1113 atomic_inc(&head_sh->count);
1114 if (use_new_offset(conf, sh))
1115 bi->bi_iter.bi_sector = (sh->sector
1116 + rdev->new_data_offset);
1117 else
1118 bi->bi_iter.bi_sector = (sh->sector
1119 + rdev->data_offset);
1120 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1121 bi->bi_opf |= REQ_NOMERGE;
1122
1123 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1124 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1125
1126 if (!op_is_write(op) &&
1127 test_bit(R5_InJournal, &sh->dev[i].flags))
1128 /*
1129 * issuing read for a page in journal, this
1130 * must be preparing for prexor in rmw; read
1131 * the data into orig_page
1132 */
1133 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1134 else
1135 sh->dev[i].vec.bv_page = sh->dev[i].page;
1136 bi->bi_vcnt = 1;
1137 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1138 bi->bi_io_vec[0].bv_offset = 0;
1139 bi->bi_iter.bi_size = STRIPE_SIZE;
1140 bi->bi_write_hint = sh->dev[i].write_hint;
1141 if (!rrdev)
1142 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1143 /*
1144 * If this is discard request, set bi_vcnt 0. We don't
1145 * want to confuse SCSI because SCSI will replace payload
1146 */
1147 if (op == REQ_OP_DISCARD)
1148 bi->bi_vcnt = 0;
1149 if (rrdev)
1150 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1151
1152 if (conf->mddev->gendisk)
1153 trace_block_bio_remap(bi->bi_disk->queue,
1154 bi, disk_devt(conf->mddev->gendisk),
1155 sh->dev[i].sector);
1156 if (should_defer && op_is_write(op))
1157 bio_list_add(&pending_bios, bi);
1158 else
1159 generic_make_request(bi);
1160 }
1161 if (rrdev) {
1162 if (s->syncing || s->expanding || s->expanded
1163 || s->replacing)
1164 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165
1166 set_bit(STRIPE_IO_STARTED, &sh->state);
1167
1168 bio_set_dev(rbi, rrdev->bdev);
1169 bio_set_op_attrs(rbi, op, op_flags);
1170 BUG_ON(!op_is_write(op));
1171 rbi->bi_end_io = raid5_end_write_request;
1172 rbi->bi_private = sh;
1173
1174 pr_debug("%s: for %llu schedule op %d on "
1175 "replacement disc %d\n",
1176 __func__, (unsigned long long)sh->sector,
1177 rbi->bi_opf, i);
1178 atomic_inc(&sh->count);
1179 if (sh != head_sh)
1180 atomic_inc(&head_sh->count);
1181 if (use_new_offset(conf, sh))
1182 rbi->bi_iter.bi_sector = (sh->sector
1183 + rrdev->new_data_offset);
1184 else
1185 rbi->bi_iter.bi_sector = (sh->sector
1186 + rrdev->data_offset);
1187 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190 rbi->bi_vcnt = 1;
1191 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192 rbi->bi_io_vec[0].bv_offset = 0;
1193 rbi->bi_iter.bi_size = STRIPE_SIZE;
1194 rbi->bi_write_hint = sh->dev[i].write_hint;
1195 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1196 /*
1197 * If this is discard request, set bi_vcnt 0. We don't
1198 * want to confuse SCSI because SCSI will replace payload
1199 */
1200 if (op == REQ_OP_DISCARD)
1201 rbi->bi_vcnt = 0;
1202 if (conf->mddev->gendisk)
1203 trace_block_bio_remap(rbi->bi_disk->queue,
1204 rbi, disk_devt(conf->mddev->gendisk),
1205 sh->dev[i].sector);
1206 if (should_defer && op_is_write(op))
1207 bio_list_add(&pending_bios, rbi);
1208 else
1209 generic_make_request(rbi);
1210 }
1211 if (!rdev && !rrdev) {
1212 if (op_is_write(op))
1213 set_bit(STRIPE_DEGRADED, &sh->state);
1214 pr_debug("skip op %d on disc %d for sector %llu\n",
1215 bi->bi_opf, i, (unsigned long long)sh->sector);
1216 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217 set_bit(STRIPE_HANDLE, &sh->state);
1218 }
1219
1220 if (!head_sh->batch_head)
1221 continue;
1222 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223 batch_list);
1224 if (sh != head_sh)
1225 goto again;
1226 }
1227
1228 if (should_defer && !bio_list_empty(&pending_bios))
1229 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1230 }
1231
1232 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1233 async_copy_data(int frombio, struct bio *bio, struct page **page,
1234 sector_t sector, struct dma_async_tx_descriptor *tx,
1235 struct stripe_head *sh, int no_skipcopy)
1236 {
1237 struct bio_vec bvl;
1238 struct bvec_iter iter;
1239 struct page *bio_page;
1240 int page_offset;
1241 struct async_submit_ctl submit;
1242 enum async_tx_flags flags = 0;
1243
1244 if (bio->bi_iter.bi_sector >= sector)
1245 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1246 else
1247 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1248
1249 if (frombio)
1250 flags |= ASYNC_TX_FENCE;
1251 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1252
1253 bio_for_each_segment(bvl, bio, iter) {
1254 int len = bvl.bv_len;
1255 int clen;
1256 int b_offset = 0;
1257
1258 if (page_offset < 0) {
1259 b_offset = -page_offset;
1260 page_offset += b_offset;
1261 len -= b_offset;
1262 }
1263
1264 if (len > 0 && page_offset + len > STRIPE_SIZE)
1265 clen = STRIPE_SIZE - page_offset;
1266 else
1267 clen = len;
1268
1269 if (clen > 0) {
1270 b_offset += bvl.bv_offset;
1271 bio_page = bvl.bv_page;
1272 if (frombio) {
1273 if (sh->raid_conf->skip_copy &&
1274 b_offset == 0 && page_offset == 0 &&
1275 clen == STRIPE_SIZE &&
1276 !no_skipcopy)
1277 *page = bio_page;
1278 else
1279 tx = async_memcpy(*page, bio_page, page_offset,
1280 b_offset, clen, &submit);
1281 } else
1282 tx = async_memcpy(bio_page, *page, b_offset,
1283 page_offset, clen, &submit);
1284 }
1285 /* chain the operations */
1286 submit.depend_tx = tx;
1287
1288 if (clen < len) /* hit end of page */
1289 break;
1290 page_offset += len;
1291 }
1292
1293 return tx;
1294 }
1295
ops_complete_biofill(void * stripe_head_ref)1296 static void ops_complete_biofill(void *stripe_head_ref)
1297 {
1298 struct stripe_head *sh = stripe_head_ref;
1299 int i;
1300
1301 pr_debug("%s: stripe %llu\n", __func__,
1302 (unsigned long long)sh->sector);
1303
1304 /* clear completed biofills */
1305 for (i = sh->disks; i--; ) {
1306 struct r5dev *dev = &sh->dev[i];
1307
1308 /* acknowledge completion of a biofill operation */
1309 /* and check if we need to reply to a read request,
1310 * new R5_Wantfill requests are held off until
1311 * !STRIPE_BIOFILL_RUN
1312 */
1313 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1314 struct bio *rbi, *rbi2;
1315
1316 BUG_ON(!dev->read);
1317 rbi = dev->read;
1318 dev->read = NULL;
1319 while (rbi && rbi->bi_iter.bi_sector <
1320 dev->sector + STRIPE_SECTORS) {
1321 rbi2 = r5_next_bio(rbi, dev->sector);
1322 bio_endio(rbi);
1323 rbi = rbi2;
1324 }
1325 }
1326 }
1327 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1328
1329 set_bit(STRIPE_HANDLE, &sh->state);
1330 raid5_release_stripe(sh);
1331 }
1332
ops_run_biofill(struct stripe_head * sh)1333 static void ops_run_biofill(struct stripe_head *sh)
1334 {
1335 struct dma_async_tx_descriptor *tx = NULL;
1336 struct async_submit_ctl submit;
1337 int i;
1338
1339 BUG_ON(sh->batch_head);
1340 pr_debug("%s: stripe %llu\n", __func__,
1341 (unsigned long long)sh->sector);
1342
1343 for (i = sh->disks; i--; ) {
1344 struct r5dev *dev = &sh->dev[i];
1345 if (test_bit(R5_Wantfill, &dev->flags)) {
1346 struct bio *rbi;
1347 spin_lock_irq(&sh->stripe_lock);
1348 dev->read = rbi = dev->toread;
1349 dev->toread = NULL;
1350 spin_unlock_irq(&sh->stripe_lock);
1351 while (rbi && rbi->bi_iter.bi_sector <
1352 dev->sector + STRIPE_SECTORS) {
1353 tx = async_copy_data(0, rbi, &dev->page,
1354 dev->sector, tx, sh, 0);
1355 rbi = r5_next_bio(rbi, dev->sector);
1356 }
1357 }
1358 }
1359
1360 atomic_inc(&sh->count);
1361 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1362 async_trigger_callback(&submit);
1363 }
1364
mark_target_uptodate(struct stripe_head * sh,int target)1365 static void mark_target_uptodate(struct stripe_head *sh, int target)
1366 {
1367 struct r5dev *tgt;
1368
1369 if (target < 0)
1370 return;
1371
1372 tgt = &sh->dev[target];
1373 set_bit(R5_UPTODATE, &tgt->flags);
1374 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1375 clear_bit(R5_Wantcompute, &tgt->flags);
1376 }
1377
ops_complete_compute(void * stripe_head_ref)1378 static void ops_complete_compute(void *stripe_head_ref)
1379 {
1380 struct stripe_head *sh = stripe_head_ref;
1381
1382 pr_debug("%s: stripe %llu\n", __func__,
1383 (unsigned long long)sh->sector);
1384
1385 /* mark the computed target(s) as uptodate */
1386 mark_target_uptodate(sh, sh->ops.target);
1387 mark_target_uptodate(sh, sh->ops.target2);
1388
1389 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1390 if (sh->check_state == check_state_compute_run)
1391 sh->check_state = check_state_compute_result;
1392 set_bit(STRIPE_HANDLE, &sh->state);
1393 raid5_release_stripe(sh);
1394 }
1395
1396 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1397 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1398 struct raid5_percpu *percpu, int i)
1399 {
1400 void *addr;
1401
1402 addr = flex_array_get(percpu->scribble, i);
1403 return addr + sizeof(struct page *) * (sh->disks + 2);
1404 }
1405
1406 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1407 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1408 {
1409 void *addr;
1410
1411 addr = flex_array_get(percpu->scribble, i);
1412 return addr;
1413 }
1414
1415 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1416 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1417 {
1418 int disks = sh->disks;
1419 struct page **xor_srcs = to_addr_page(percpu, 0);
1420 int target = sh->ops.target;
1421 struct r5dev *tgt = &sh->dev[target];
1422 struct page *xor_dest = tgt->page;
1423 int count = 0;
1424 struct dma_async_tx_descriptor *tx;
1425 struct async_submit_ctl submit;
1426 int i;
1427
1428 BUG_ON(sh->batch_head);
1429
1430 pr_debug("%s: stripe %llu block: %d\n",
1431 __func__, (unsigned long long)sh->sector, target);
1432 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1433
1434 for (i = disks; i--; )
1435 if (i != target)
1436 xor_srcs[count++] = sh->dev[i].page;
1437
1438 atomic_inc(&sh->count);
1439
1440 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1441 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1442 if (unlikely(count == 1))
1443 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1444 else
1445 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1446
1447 return tx;
1448 }
1449
1450 /* set_syndrome_sources - populate source buffers for gen_syndrome
1451 * @srcs - (struct page *) array of size sh->disks
1452 * @sh - stripe_head to parse
1453 *
1454 * Populates srcs in proper layout order for the stripe and returns the
1455 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1456 * destination buffer is recorded in srcs[count] and the Q destination
1457 * is recorded in srcs[count+1]].
1458 */
set_syndrome_sources(struct page ** srcs,struct stripe_head * sh,int srctype)1459 static int set_syndrome_sources(struct page **srcs,
1460 struct stripe_head *sh,
1461 int srctype)
1462 {
1463 int disks = sh->disks;
1464 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1465 int d0_idx = raid6_d0(sh);
1466 int count;
1467 int i;
1468
1469 for (i = 0; i < disks; i++)
1470 srcs[i] = NULL;
1471
1472 count = 0;
1473 i = d0_idx;
1474 do {
1475 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1476 struct r5dev *dev = &sh->dev[i];
1477
1478 if (i == sh->qd_idx || i == sh->pd_idx ||
1479 (srctype == SYNDROME_SRC_ALL) ||
1480 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1481 (test_bit(R5_Wantdrain, &dev->flags) ||
1482 test_bit(R5_InJournal, &dev->flags))) ||
1483 (srctype == SYNDROME_SRC_WRITTEN &&
1484 (dev->written ||
1485 test_bit(R5_InJournal, &dev->flags)))) {
1486 if (test_bit(R5_InJournal, &dev->flags))
1487 srcs[slot] = sh->dev[i].orig_page;
1488 else
1489 srcs[slot] = sh->dev[i].page;
1490 }
1491 i = raid6_next_disk(i, disks);
1492 } while (i != d0_idx);
1493
1494 return syndrome_disks;
1495 }
1496
1497 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1498 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1499 {
1500 int disks = sh->disks;
1501 struct page **blocks = to_addr_page(percpu, 0);
1502 int target;
1503 int qd_idx = sh->qd_idx;
1504 struct dma_async_tx_descriptor *tx;
1505 struct async_submit_ctl submit;
1506 struct r5dev *tgt;
1507 struct page *dest;
1508 int i;
1509 int count;
1510
1511 BUG_ON(sh->batch_head);
1512 if (sh->ops.target < 0)
1513 target = sh->ops.target2;
1514 else if (sh->ops.target2 < 0)
1515 target = sh->ops.target;
1516 else
1517 /* we should only have one valid target */
1518 BUG();
1519 BUG_ON(target < 0);
1520 pr_debug("%s: stripe %llu block: %d\n",
1521 __func__, (unsigned long long)sh->sector, target);
1522
1523 tgt = &sh->dev[target];
1524 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525 dest = tgt->page;
1526
1527 atomic_inc(&sh->count);
1528
1529 if (target == qd_idx) {
1530 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1531 blocks[count] = NULL; /* regenerating p is not necessary */
1532 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1533 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1534 ops_complete_compute, sh,
1535 to_addr_conv(sh, percpu, 0));
1536 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1537 } else {
1538 /* Compute any data- or p-drive using XOR */
1539 count = 0;
1540 for (i = disks; i-- ; ) {
1541 if (i == target || i == qd_idx)
1542 continue;
1543 blocks[count++] = sh->dev[i].page;
1544 }
1545
1546 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1547 NULL, ops_complete_compute, sh,
1548 to_addr_conv(sh, percpu, 0));
1549 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1550 }
1551
1552 return tx;
1553 }
1554
1555 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1556 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1557 {
1558 int i, count, disks = sh->disks;
1559 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1560 int d0_idx = raid6_d0(sh);
1561 int faila = -1, failb = -1;
1562 int target = sh->ops.target;
1563 int target2 = sh->ops.target2;
1564 struct r5dev *tgt = &sh->dev[target];
1565 struct r5dev *tgt2 = &sh->dev[target2];
1566 struct dma_async_tx_descriptor *tx;
1567 struct page **blocks = to_addr_page(percpu, 0);
1568 struct async_submit_ctl submit;
1569
1570 BUG_ON(sh->batch_head);
1571 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572 __func__, (unsigned long long)sh->sector, target, target2);
1573 BUG_ON(target < 0 || target2 < 0);
1574 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1576
1577 /* we need to open-code set_syndrome_sources to handle the
1578 * slot number conversion for 'faila' and 'failb'
1579 */
1580 for (i = 0; i < disks ; i++)
1581 blocks[i] = NULL;
1582 count = 0;
1583 i = d0_idx;
1584 do {
1585 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1586
1587 blocks[slot] = sh->dev[i].page;
1588
1589 if (i == target)
1590 faila = slot;
1591 if (i == target2)
1592 failb = slot;
1593 i = raid6_next_disk(i, disks);
1594 } while (i != d0_idx);
1595
1596 BUG_ON(faila == failb);
1597 if (failb < faila)
1598 swap(faila, failb);
1599 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600 __func__, (unsigned long long)sh->sector, faila, failb);
1601
1602 atomic_inc(&sh->count);
1603
1604 if (failb == syndrome_disks+1) {
1605 /* Q disk is one of the missing disks */
1606 if (faila == syndrome_disks) {
1607 /* Missing P+Q, just recompute */
1608 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1609 ops_complete_compute, sh,
1610 to_addr_conv(sh, percpu, 0));
1611 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1612 STRIPE_SIZE, &submit);
1613 } else {
1614 struct page *dest;
1615 int data_target;
1616 int qd_idx = sh->qd_idx;
1617
1618 /* Missing D+Q: recompute D from P, then recompute Q */
1619 if (target == qd_idx)
1620 data_target = target2;
1621 else
1622 data_target = target;
1623
1624 count = 0;
1625 for (i = disks; i-- ; ) {
1626 if (i == data_target || i == qd_idx)
1627 continue;
1628 blocks[count++] = sh->dev[i].page;
1629 }
1630 dest = sh->dev[data_target].page;
1631 init_async_submit(&submit,
1632 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1633 NULL, NULL, NULL,
1634 to_addr_conv(sh, percpu, 0));
1635 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636 &submit);
1637
1638 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1639 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1640 ops_complete_compute, sh,
1641 to_addr_conv(sh, percpu, 0));
1642 return async_gen_syndrome(blocks, 0, count+2,
1643 STRIPE_SIZE, &submit);
1644 }
1645 } else {
1646 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1647 ops_complete_compute, sh,
1648 to_addr_conv(sh, percpu, 0));
1649 if (failb == syndrome_disks) {
1650 /* We're missing D+P. */
1651 return async_raid6_datap_recov(syndrome_disks+2,
1652 STRIPE_SIZE, faila,
1653 blocks, &submit);
1654 } else {
1655 /* We're missing D+D. */
1656 return async_raid6_2data_recov(syndrome_disks+2,
1657 STRIPE_SIZE, faila, failb,
1658 blocks, &submit);
1659 }
1660 }
1661 }
1662
ops_complete_prexor(void * stripe_head_ref)1663 static void ops_complete_prexor(void *stripe_head_ref)
1664 {
1665 struct stripe_head *sh = stripe_head_ref;
1666
1667 pr_debug("%s: stripe %llu\n", __func__,
1668 (unsigned long long)sh->sector);
1669
1670 if (r5c_is_writeback(sh->raid_conf->log))
1671 /*
1672 * raid5-cache write back uses orig_page during prexor.
1673 * After prexor, it is time to free orig_page
1674 */
1675 r5c_release_extra_page(sh);
1676 }
1677
1678 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1679 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1680 struct dma_async_tx_descriptor *tx)
1681 {
1682 int disks = sh->disks;
1683 struct page **xor_srcs = to_addr_page(percpu, 0);
1684 int count = 0, pd_idx = sh->pd_idx, i;
1685 struct async_submit_ctl submit;
1686
1687 /* existing parity data subtracted */
1688 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1689
1690 BUG_ON(sh->batch_head);
1691 pr_debug("%s: stripe %llu\n", __func__,
1692 (unsigned long long)sh->sector);
1693
1694 for (i = disks; i--; ) {
1695 struct r5dev *dev = &sh->dev[i];
1696 /* Only process blocks that are known to be uptodate */
1697 if (test_bit(R5_InJournal, &dev->flags))
1698 xor_srcs[count++] = dev->orig_page;
1699 else if (test_bit(R5_Wantdrain, &dev->flags))
1700 xor_srcs[count++] = dev->page;
1701 }
1702
1703 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1704 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1705 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1706
1707 return tx;
1708 }
1709
1710 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1711 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1712 struct dma_async_tx_descriptor *tx)
1713 {
1714 struct page **blocks = to_addr_page(percpu, 0);
1715 int count;
1716 struct async_submit_ctl submit;
1717
1718 pr_debug("%s: stripe %llu\n", __func__,
1719 (unsigned long long)sh->sector);
1720
1721 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1722
1723 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1724 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1725 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1726
1727 return tx;
1728 }
1729
1730 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1731 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1732 {
1733 struct r5conf *conf = sh->raid_conf;
1734 int disks = sh->disks;
1735 int i;
1736 struct stripe_head *head_sh = sh;
1737
1738 pr_debug("%s: stripe %llu\n", __func__,
1739 (unsigned long long)sh->sector);
1740
1741 for (i = disks; i--; ) {
1742 struct r5dev *dev;
1743 struct bio *chosen;
1744
1745 sh = head_sh;
1746 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1747 struct bio *wbi;
1748
1749 again:
1750 dev = &sh->dev[i];
1751 /*
1752 * clear R5_InJournal, so when rewriting a page in
1753 * journal, it is not skipped by r5l_log_stripe()
1754 */
1755 clear_bit(R5_InJournal, &dev->flags);
1756 spin_lock_irq(&sh->stripe_lock);
1757 chosen = dev->towrite;
1758 dev->towrite = NULL;
1759 sh->overwrite_disks = 0;
1760 BUG_ON(dev->written);
1761 wbi = dev->written = chosen;
1762 spin_unlock_irq(&sh->stripe_lock);
1763 WARN_ON(dev->page != dev->orig_page);
1764
1765 while (wbi && wbi->bi_iter.bi_sector <
1766 dev->sector + STRIPE_SECTORS) {
1767 if (wbi->bi_opf & REQ_FUA)
1768 set_bit(R5_WantFUA, &dev->flags);
1769 if (wbi->bi_opf & REQ_SYNC)
1770 set_bit(R5_SyncIO, &dev->flags);
1771 if (bio_op(wbi) == REQ_OP_DISCARD)
1772 set_bit(R5_Discard, &dev->flags);
1773 else {
1774 tx = async_copy_data(1, wbi, &dev->page,
1775 dev->sector, tx, sh,
1776 r5c_is_writeback(conf->log));
1777 if (dev->page != dev->orig_page &&
1778 !r5c_is_writeback(conf->log)) {
1779 set_bit(R5_SkipCopy, &dev->flags);
1780 clear_bit(R5_UPTODATE, &dev->flags);
1781 clear_bit(R5_OVERWRITE, &dev->flags);
1782 }
1783 }
1784 wbi = r5_next_bio(wbi, dev->sector);
1785 }
1786
1787 if (head_sh->batch_head) {
1788 sh = list_first_entry(&sh->batch_list,
1789 struct stripe_head,
1790 batch_list);
1791 if (sh == head_sh)
1792 continue;
1793 goto again;
1794 }
1795 }
1796 }
1797
1798 return tx;
1799 }
1800
ops_complete_reconstruct(void * stripe_head_ref)1801 static void ops_complete_reconstruct(void *stripe_head_ref)
1802 {
1803 struct stripe_head *sh = stripe_head_ref;
1804 int disks = sh->disks;
1805 int pd_idx = sh->pd_idx;
1806 int qd_idx = sh->qd_idx;
1807 int i;
1808 bool fua = false, sync = false, discard = false;
1809
1810 pr_debug("%s: stripe %llu\n", __func__,
1811 (unsigned long long)sh->sector);
1812
1813 for (i = disks; i--; ) {
1814 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1815 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1816 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1817 }
1818
1819 for (i = disks; i--; ) {
1820 struct r5dev *dev = &sh->dev[i];
1821
1822 if (dev->written || i == pd_idx || i == qd_idx) {
1823 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1824 set_bit(R5_UPTODATE, &dev->flags);
1825 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1826 set_bit(R5_Expanded, &dev->flags);
1827 }
1828 if (fua)
1829 set_bit(R5_WantFUA, &dev->flags);
1830 if (sync)
1831 set_bit(R5_SyncIO, &dev->flags);
1832 }
1833 }
1834
1835 if (sh->reconstruct_state == reconstruct_state_drain_run)
1836 sh->reconstruct_state = reconstruct_state_drain_result;
1837 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839 else {
1840 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841 sh->reconstruct_state = reconstruct_state_result;
1842 }
1843
1844 set_bit(STRIPE_HANDLE, &sh->state);
1845 raid5_release_stripe(sh);
1846 }
1847
1848 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1849 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850 struct dma_async_tx_descriptor *tx)
1851 {
1852 int disks = sh->disks;
1853 struct page **xor_srcs;
1854 struct async_submit_ctl submit;
1855 int count, pd_idx = sh->pd_idx, i;
1856 struct page *xor_dest;
1857 int prexor = 0;
1858 unsigned long flags;
1859 int j = 0;
1860 struct stripe_head *head_sh = sh;
1861 int last_stripe;
1862
1863 pr_debug("%s: stripe %llu\n", __func__,
1864 (unsigned long long)sh->sector);
1865
1866 for (i = 0; i < sh->disks; i++) {
1867 if (pd_idx == i)
1868 continue;
1869 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 break;
1871 }
1872 if (i >= sh->disks) {
1873 atomic_inc(&sh->count);
1874 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875 ops_complete_reconstruct(sh);
1876 return;
1877 }
1878 again:
1879 count = 0;
1880 xor_srcs = to_addr_page(percpu, j);
1881 /* check if prexor is active which means only process blocks
1882 * that are part of a read-modify-write (written)
1883 */
1884 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885 prexor = 1;
1886 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887 for (i = disks; i--; ) {
1888 struct r5dev *dev = &sh->dev[i];
1889 if (head_sh->dev[i].written ||
1890 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891 xor_srcs[count++] = dev->page;
1892 }
1893 } else {
1894 xor_dest = sh->dev[pd_idx].page;
1895 for (i = disks; i--; ) {
1896 struct r5dev *dev = &sh->dev[i];
1897 if (i != pd_idx)
1898 xor_srcs[count++] = dev->page;
1899 }
1900 }
1901
1902 /* 1/ if we prexor'd then the dest is reused as a source
1903 * 2/ if we did not prexor then we are redoing the parity
1904 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 * for the synchronous xor case
1906 */
1907 last_stripe = !head_sh->batch_head ||
1908 list_first_entry(&sh->batch_list,
1909 struct stripe_head, batch_list) == head_sh;
1910 if (last_stripe) {
1911 flags = ASYNC_TX_ACK |
1912 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913
1914 atomic_inc(&head_sh->count);
1915 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916 to_addr_conv(sh, percpu, j));
1917 } else {
1918 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919 init_async_submit(&submit, flags, tx, NULL, NULL,
1920 to_addr_conv(sh, percpu, j));
1921 }
1922
1923 if (unlikely(count == 1))
1924 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925 else
1926 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927 if (!last_stripe) {
1928 j++;
1929 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930 batch_list);
1931 goto again;
1932 }
1933 }
1934
1935 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1936 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937 struct dma_async_tx_descriptor *tx)
1938 {
1939 struct async_submit_ctl submit;
1940 struct page **blocks;
1941 int count, i, j = 0;
1942 struct stripe_head *head_sh = sh;
1943 int last_stripe;
1944 int synflags;
1945 unsigned long txflags;
1946
1947 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948
1949 for (i = 0; i < sh->disks; i++) {
1950 if (sh->pd_idx == i || sh->qd_idx == i)
1951 continue;
1952 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953 break;
1954 }
1955 if (i >= sh->disks) {
1956 atomic_inc(&sh->count);
1957 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959 ops_complete_reconstruct(sh);
1960 return;
1961 }
1962
1963 again:
1964 blocks = to_addr_page(percpu, j);
1965
1966 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967 synflags = SYNDROME_SRC_WRITTEN;
1968 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969 } else {
1970 synflags = SYNDROME_SRC_ALL;
1971 txflags = ASYNC_TX_ACK;
1972 }
1973
1974 count = set_syndrome_sources(blocks, sh, synflags);
1975 last_stripe = !head_sh->batch_head ||
1976 list_first_entry(&sh->batch_list,
1977 struct stripe_head, batch_list) == head_sh;
1978
1979 if (last_stripe) {
1980 atomic_inc(&head_sh->count);
1981 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982 head_sh, to_addr_conv(sh, percpu, j));
1983 } else
1984 init_async_submit(&submit, 0, tx, NULL, NULL,
1985 to_addr_conv(sh, percpu, j));
1986 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1987 if (!last_stripe) {
1988 j++;
1989 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990 batch_list);
1991 goto again;
1992 }
1993 }
1994
ops_complete_check(void * stripe_head_ref)1995 static void ops_complete_check(void *stripe_head_ref)
1996 {
1997 struct stripe_head *sh = stripe_head_ref;
1998
1999 pr_debug("%s: stripe %llu\n", __func__,
2000 (unsigned long long)sh->sector);
2001
2002 sh->check_state = check_state_check_result;
2003 set_bit(STRIPE_HANDLE, &sh->state);
2004 raid5_release_stripe(sh);
2005 }
2006
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2007 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2008 {
2009 int disks = sh->disks;
2010 int pd_idx = sh->pd_idx;
2011 int qd_idx = sh->qd_idx;
2012 struct page *xor_dest;
2013 struct page **xor_srcs = to_addr_page(percpu, 0);
2014 struct dma_async_tx_descriptor *tx;
2015 struct async_submit_ctl submit;
2016 int count;
2017 int i;
2018
2019 pr_debug("%s: stripe %llu\n", __func__,
2020 (unsigned long long)sh->sector);
2021
2022 BUG_ON(sh->batch_head);
2023 count = 0;
2024 xor_dest = sh->dev[pd_idx].page;
2025 xor_srcs[count++] = xor_dest;
2026 for (i = disks; i--; ) {
2027 if (i == pd_idx || i == qd_idx)
2028 continue;
2029 xor_srcs[count++] = sh->dev[i].page;
2030 }
2031
2032 init_async_submit(&submit, 0, NULL, NULL, NULL,
2033 to_addr_conv(sh, percpu, 0));
2034 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035 &sh->ops.zero_sum_result, &submit);
2036
2037 atomic_inc(&sh->count);
2038 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039 tx = async_trigger_callback(&submit);
2040 }
2041
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2042 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043 {
2044 struct page **srcs = to_addr_page(percpu, 0);
2045 struct async_submit_ctl submit;
2046 int count;
2047
2048 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049 (unsigned long long)sh->sector, checkp);
2050
2051 BUG_ON(sh->batch_head);
2052 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053 if (!checkp)
2054 srcs[count] = NULL;
2055
2056 atomic_inc(&sh->count);
2057 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058 sh, to_addr_conv(sh, percpu, 0));
2059 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2061 }
2062
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2063 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2064 {
2065 int overlap_clear = 0, i, disks = sh->disks;
2066 struct dma_async_tx_descriptor *tx = NULL;
2067 struct r5conf *conf = sh->raid_conf;
2068 int level = conf->level;
2069 struct raid5_percpu *percpu;
2070 unsigned long cpu;
2071
2072 cpu = get_cpu();
2073 percpu = per_cpu_ptr(conf->percpu, cpu);
2074 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075 ops_run_biofill(sh);
2076 overlap_clear++;
2077 }
2078
2079 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080 if (level < 6)
2081 tx = ops_run_compute5(sh, percpu);
2082 else {
2083 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084 tx = ops_run_compute6_1(sh, percpu);
2085 else
2086 tx = ops_run_compute6_2(sh, percpu);
2087 }
2088 /* terminate the chain if reconstruct is not set to be run */
2089 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090 async_tx_ack(tx);
2091 }
2092
2093 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2094 if (level < 6)
2095 tx = ops_run_prexor5(sh, percpu, tx);
2096 else
2097 tx = ops_run_prexor6(sh, percpu, tx);
2098 }
2099
2100 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2101 tx = ops_run_partial_parity(sh, percpu, tx);
2102
2103 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104 tx = ops_run_biodrain(sh, tx);
2105 overlap_clear++;
2106 }
2107
2108 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109 if (level < 6)
2110 ops_run_reconstruct5(sh, percpu, tx);
2111 else
2112 ops_run_reconstruct6(sh, percpu, tx);
2113 }
2114
2115 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116 if (sh->check_state == check_state_run)
2117 ops_run_check_p(sh, percpu);
2118 else if (sh->check_state == check_state_run_q)
2119 ops_run_check_pq(sh, percpu, 0);
2120 else if (sh->check_state == check_state_run_pq)
2121 ops_run_check_pq(sh, percpu, 1);
2122 else
2123 BUG();
2124 }
2125
2126 if (overlap_clear && !sh->batch_head)
2127 for (i = disks; i--; ) {
2128 struct r5dev *dev = &sh->dev[i];
2129 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130 wake_up(&sh->raid_conf->wait_for_overlap);
2131 }
2132 put_cpu();
2133 }
2134
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2135 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2136 {
2137 if (sh->ppl_page)
2138 __free_page(sh->ppl_page);
2139 kmem_cache_free(sc, sh);
2140 }
2141
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2142 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2143 int disks, struct r5conf *conf)
2144 {
2145 struct stripe_head *sh;
2146 int i;
2147
2148 sh = kmem_cache_zalloc(sc, gfp);
2149 if (sh) {
2150 spin_lock_init(&sh->stripe_lock);
2151 spin_lock_init(&sh->batch_lock);
2152 INIT_LIST_HEAD(&sh->batch_list);
2153 INIT_LIST_HEAD(&sh->lru);
2154 INIT_LIST_HEAD(&sh->r5c);
2155 INIT_LIST_HEAD(&sh->log_list);
2156 atomic_set(&sh->count, 1);
2157 sh->raid_conf = conf;
2158 sh->log_start = MaxSector;
2159 for (i = 0; i < disks; i++) {
2160 struct r5dev *dev = &sh->dev[i];
2161
2162 bio_init(&dev->req, &dev->vec, 1);
2163 bio_init(&dev->rreq, &dev->rvec, 1);
2164 }
2165
2166 if (raid5_has_ppl(conf)) {
2167 sh->ppl_page = alloc_page(gfp);
2168 if (!sh->ppl_page) {
2169 free_stripe(sc, sh);
2170 sh = NULL;
2171 }
2172 }
2173 }
2174 return sh;
2175 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2176 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2177 {
2178 struct stripe_head *sh;
2179
2180 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181 if (!sh)
2182 return 0;
2183
2184 if (grow_buffers(sh, gfp)) {
2185 shrink_buffers(sh);
2186 free_stripe(conf->slab_cache, sh);
2187 return 0;
2188 }
2189 sh->hash_lock_index =
2190 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2191 /* we just created an active stripe so... */
2192 atomic_inc(&conf->active_stripes);
2193
2194 raid5_release_stripe(sh);
2195 conf->max_nr_stripes++;
2196 return 1;
2197 }
2198
grow_stripes(struct r5conf * conf,int num)2199 static int grow_stripes(struct r5conf *conf, int num)
2200 {
2201 struct kmem_cache *sc;
2202 size_t namelen = sizeof(conf->cache_name[0]);
2203 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2204
2205 if (conf->mddev->gendisk)
2206 snprintf(conf->cache_name[0], namelen,
2207 "raid%d-%s", conf->level, mdname(conf->mddev));
2208 else
2209 snprintf(conf->cache_name[0], namelen,
2210 "raid%d-%p", conf->level, conf->mddev);
2211 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2212
2213 conf->active_name = 0;
2214 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2215 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2216 0, 0, NULL);
2217 if (!sc)
2218 return 1;
2219 conf->slab_cache = sc;
2220 conf->pool_size = devs;
2221 while (num--)
2222 if (!grow_one_stripe(conf, GFP_KERNEL))
2223 return 1;
2224
2225 return 0;
2226 }
2227
2228 /**
2229 * scribble_len - return the required size of the scribble region
2230 * @num - total number of disks in the array
2231 *
2232 * The size must be enough to contain:
2233 * 1/ a struct page pointer for each device in the array +2
2234 * 2/ room to convert each entry in (1) to its corresponding dma
2235 * (dma_map_page()) or page (page_address()) address.
2236 *
2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238 * calculate over all devices (not just the data blocks), using zeros in place
2239 * of the P and Q blocks.
2240 */
scribble_alloc(int num,int cnt,gfp_t flags)2241 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2242 {
2243 struct flex_array *ret;
2244 size_t len;
2245
2246 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2247 ret = flex_array_alloc(len, cnt, flags);
2248 if (!ret)
2249 return NULL;
2250 /* always prealloc all elements, so no locking is required */
2251 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2252 flex_array_free(ret);
2253 return NULL;
2254 }
2255 return ret;
2256 }
2257
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2258 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2259 {
2260 unsigned long cpu;
2261 int err = 0;
2262
2263 /*
2264 * Never shrink. And mddev_suspend() could deadlock if this is called
2265 * from raid5d. In that case, scribble_disks and scribble_sectors
2266 * should equal to new_disks and new_sectors
2267 */
2268 if (conf->scribble_disks >= new_disks &&
2269 conf->scribble_sectors >= new_sectors)
2270 return 0;
2271 mddev_suspend(conf->mddev);
2272 get_online_cpus();
2273 for_each_present_cpu(cpu) {
2274 struct raid5_percpu *percpu;
2275 struct flex_array *scribble;
2276
2277 percpu = per_cpu_ptr(conf->percpu, cpu);
2278 scribble = scribble_alloc(new_disks,
2279 new_sectors / STRIPE_SECTORS,
2280 GFP_NOIO);
2281
2282 if (scribble) {
2283 flex_array_free(percpu->scribble);
2284 percpu->scribble = scribble;
2285 } else {
2286 err = -ENOMEM;
2287 break;
2288 }
2289 }
2290 put_online_cpus();
2291 mddev_resume(conf->mddev);
2292 if (!err) {
2293 conf->scribble_disks = new_disks;
2294 conf->scribble_sectors = new_sectors;
2295 }
2296 return err;
2297 }
2298
resize_stripes(struct r5conf * conf,int newsize)2299 static int resize_stripes(struct r5conf *conf, int newsize)
2300 {
2301 /* Make all the stripes able to hold 'newsize' devices.
2302 * New slots in each stripe get 'page' set to a new page.
2303 *
2304 * This happens in stages:
2305 * 1/ create a new kmem_cache and allocate the required number of
2306 * stripe_heads.
2307 * 2/ gather all the old stripe_heads and transfer the pages across
2308 * to the new stripe_heads. This will have the side effect of
2309 * freezing the array as once all stripe_heads have been collected,
2310 * no IO will be possible. Old stripe heads are freed once their
2311 * pages have been transferred over, and the old kmem_cache is
2312 * freed when all stripes are done.
2313 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2314 * we simple return a failure status - no need to clean anything up.
2315 * 4/ allocate new pages for the new slots in the new stripe_heads.
2316 * If this fails, we don't bother trying the shrink the
2317 * stripe_heads down again, we just leave them as they are.
2318 * As each stripe_head is processed the new one is released into
2319 * active service.
2320 *
2321 * Once step2 is started, we cannot afford to wait for a write,
2322 * so we use GFP_NOIO allocations.
2323 */
2324 struct stripe_head *osh, *nsh;
2325 LIST_HEAD(newstripes);
2326 struct disk_info *ndisks;
2327 int err = 0;
2328 struct kmem_cache *sc;
2329 int i;
2330 int hash, cnt;
2331
2332 md_allow_write(conf->mddev);
2333
2334 /* Step 1 */
2335 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2336 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337 0, 0, NULL);
2338 if (!sc)
2339 return -ENOMEM;
2340
2341 /* Need to ensure auto-resizing doesn't interfere */
2342 mutex_lock(&conf->cache_size_mutex);
2343
2344 for (i = conf->max_nr_stripes; i; i--) {
2345 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2346 if (!nsh)
2347 break;
2348
2349 list_add(&nsh->lru, &newstripes);
2350 }
2351 if (i) {
2352 /* didn't get enough, give up */
2353 while (!list_empty(&newstripes)) {
2354 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2355 list_del(&nsh->lru);
2356 free_stripe(sc, nsh);
2357 }
2358 kmem_cache_destroy(sc);
2359 mutex_unlock(&conf->cache_size_mutex);
2360 return -ENOMEM;
2361 }
2362 /* Step 2 - Must use GFP_NOIO now.
2363 * OK, we have enough stripes, start collecting inactive
2364 * stripes and copying them over
2365 */
2366 hash = 0;
2367 cnt = 0;
2368 list_for_each_entry(nsh, &newstripes, lru) {
2369 lock_device_hash_lock(conf, hash);
2370 wait_event_cmd(conf->wait_for_stripe,
2371 !list_empty(conf->inactive_list + hash),
2372 unlock_device_hash_lock(conf, hash),
2373 lock_device_hash_lock(conf, hash));
2374 osh = get_free_stripe(conf, hash);
2375 unlock_device_hash_lock(conf, hash);
2376
2377 for(i=0; i<conf->pool_size; i++) {
2378 nsh->dev[i].page = osh->dev[i].page;
2379 nsh->dev[i].orig_page = osh->dev[i].page;
2380 }
2381 nsh->hash_lock_index = hash;
2382 free_stripe(conf->slab_cache, osh);
2383 cnt++;
2384 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2385 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386 hash++;
2387 cnt = 0;
2388 }
2389 }
2390 kmem_cache_destroy(conf->slab_cache);
2391
2392 /* Step 3.
2393 * At this point, we are holding all the stripes so the array
2394 * is completely stalled, so now is a good time to resize
2395 * conf->disks and the scribble region
2396 */
2397 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2398 if (ndisks) {
2399 for (i = 0; i < conf->pool_size; i++)
2400 ndisks[i] = conf->disks[i];
2401
2402 for (i = conf->pool_size; i < newsize; i++) {
2403 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2404 if (!ndisks[i].extra_page)
2405 err = -ENOMEM;
2406 }
2407
2408 if (err) {
2409 for (i = conf->pool_size; i < newsize; i++)
2410 if (ndisks[i].extra_page)
2411 put_page(ndisks[i].extra_page);
2412 kfree(ndisks);
2413 } else {
2414 kfree(conf->disks);
2415 conf->disks = ndisks;
2416 }
2417 } else
2418 err = -ENOMEM;
2419
2420 mutex_unlock(&conf->cache_size_mutex);
2421
2422 conf->slab_cache = sc;
2423 conf->active_name = 1-conf->active_name;
2424
2425 /* Step 4, return new stripes to service */
2426 while(!list_empty(&newstripes)) {
2427 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2428 list_del_init(&nsh->lru);
2429
2430 for (i=conf->raid_disks; i < newsize; i++)
2431 if (nsh->dev[i].page == NULL) {
2432 struct page *p = alloc_page(GFP_NOIO);
2433 nsh->dev[i].page = p;
2434 nsh->dev[i].orig_page = p;
2435 if (!p)
2436 err = -ENOMEM;
2437 }
2438 raid5_release_stripe(nsh);
2439 }
2440 /* critical section pass, GFP_NOIO no longer needed */
2441
2442 if (!err)
2443 conf->pool_size = newsize;
2444 return err;
2445 }
2446
drop_one_stripe(struct r5conf * conf)2447 static int drop_one_stripe(struct r5conf *conf)
2448 {
2449 struct stripe_head *sh;
2450 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2451
2452 spin_lock_irq(conf->hash_locks + hash);
2453 sh = get_free_stripe(conf, hash);
2454 spin_unlock_irq(conf->hash_locks + hash);
2455 if (!sh)
2456 return 0;
2457 BUG_ON(atomic_read(&sh->count));
2458 shrink_buffers(sh);
2459 free_stripe(conf->slab_cache, sh);
2460 atomic_dec(&conf->active_stripes);
2461 conf->max_nr_stripes--;
2462 return 1;
2463 }
2464
shrink_stripes(struct r5conf * conf)2465 static void shrink_stripes(struct r5conf *conf)
2466 {
2467 while (conf->max_nr_stripes &&
2468 drop_one_stripe(conf))
2469 ;
2470
2471 kmem_cache_destroy(conf->slab_cache);
2472 conf->slab_cache = NULL;
2473 }
2474
raid5_end_read_request(struct bio * bi)2475 static void raid5_end_read_request(struct bio * bi)
2476 {
2477 struct stripe_head *sh = bi->bi_private;
2478 struct r5conf *conf = sh->raid_conf;
2479 int disks = sh->disks, i;
2480 char b[BDEVNAME_SIZE];
2481 struct md_rdev *rdev = NULL;
2482 sector_t s;
2483
2484 for (i=0 ; i<disks; i++)
2485 if (bi == &sh->dev[i].req)
2486 break;
2487
2488 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490 bi->bi_status);
2491 if (i == disks) {
2492 bio_reset(bi);
2493 BUG();
2494 return;
2495 }
2496 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2497 /* If replacement finished while this request was outstanding,
2498 * 'replacement' might be NULL already.
2499 * In that case it moved down to 'rdev'.
2500 * rdev is not removed until all requests are finished.
2501 */
2502 rdev = conf->disks[i].replacement;
2503 if (!rdev)
2504 rdev = conf->disks[i].rdev;
2505
2506 if (use_new_offset(conf, sh))
2507 s = sh->sector + rdev->new_data_offset;
2508 else
2509 s = sh->sector + rdev->data_offset;
2510 if (!bi->bi_status) {
2511 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2512 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2513 /* Note that this cannot happen on a
2514 * replacement device. We just fail those on
2515 * any error
2516 */
2517 pr_info_ratelimited(
2518 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519 mdname(conf->mddev), STRIPE_SECTORS,
2520 (unsigned long long)s,
2521 bdevname(rdev->bdev, b));
2522 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2523 clear_bit(R5_ReadError, &sh->dev[i].flags);
2524 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2525 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2526 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2527
2528 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2529 /*
2530 * end read for a page in journal, this
2531 * must be preparing for prexor in rmw
2532 */
2533 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2534
2535 if (atomic_read(&rdev->read_errors))
2536 atomic_set(&rdev->read_errors, 0);
2537 } else {
2538 const char *bdn = bdevname(rdev->bdev, b);
2539 int retry = 0;
2540 int set_bad = 0;
2541
2542 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2543 atomic_inc(&rdev->read_errors);
2544 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2545 pr_warn_ratelimited(
2546 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2547 mdname(conf->mddev),
2548 (unsigned long long)s,
2549 bdn);
2550 else if (conf->mddev->degraded >= conf->max_degraded) {
2551 set_bad = 1;
2552 pr_warn_ratelimited(
2553 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2554 mdname(conf->mddev),
2555 (unsigned long long)s,
2556 bdn);
2557 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2558 /* Oh, no!!! */
2559 set_bad = 1;
2560 pr_warn_ratelimited(
2561 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2562 mdname(conf->mddev),
2563 (unsigned long long)s,
2564 bdn);
2565 } else if (atomic_read(&rdev->read_errors)
2566 > conf->max_nr_stripes)
2567 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2568 mdname(conf->mddev), bdn);
2569 else
2570 retry = 1;
2571 if (set_bad && test_bit(In_sync, &rdev->flags)
2572 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573 retry = 1;
2574 if (retry)
2575 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2576 set_bit(R5_ReadError, &sh->dev[i].flags);
2577 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2578 } else
2579 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580 else {
2581 clear_bit(R5_ReadError, &sh->dev[i].flags);
2582 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2583 if (!(set_bad
2584 && test_bit(In_sync, &rdev->flags)
2585 && rdev_set_badblocks(
2586 rdev, sh->sector, STRIPE_SECTORS, 0)))
2587 md_error(conf->mddev, rdev);
2588 }
2589 }
2590 rdev_dec_pending(rdev, conf->mddev);
2591 bio_reset(bi);
2592 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2593 set_bit(STRIPE_HANDLE, &sh->state);
2594 raid5_release_stripe(sh);
2595 }
2596
raid5_end_write_request(struct bio * bi)2597 static void raid5_end_write_request(struct bio *bi)
2598 {
2599 struct stripe_head *sh = bi->bi_private;
2600 struct r5conf *conf = sh->raid_conf;
2601 int disks = sh->disks, i;
2602 struct md_rdev *uninitialized_var(rdev);
2603 sector_t first_bad;
2604 int bad_sectors;
2605 int replacement = 0;
2606
2607 for (i = 0 ; i < disks; i++) {
2608 if (bi == &sh->dev[i].req) {
2609 rdev = conf->disks[i].rdev;
2610 break;
2611 }
2612 if (bi == &sh->dev[i].rreq) {
2613 rdev = conf->disks[i].replacement;
2614 if (rdev)
2615 replacement = 1;
2616 else
2617 /* rdev was removed and 'replacement'
2618 * replaced it. rdev is not removed
2619 * until all requests are finished.
2620 */
2621 rdev = conf->disks[i].rdev;
2622 break;
2623 }
2624 }
2625 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2626 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2627 bi->bi_status);
2628 if (i == disks) {
2629 bio_reset(bi);
2630 BUG();
2631 return;
2632 }
2633
2634 if (replacement) {
2635 if (bi->bi_status)
2636 md_error(conf->mddev, rdev);
2637 else if (is_badblock(rdev, sh->sector,
2638 STRIPE_SECTORS,
2639 &first_bad, &bad_sectors))
2640 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2641 } else {
2642 if (bi->bi_status) {
2643 set_bit(STRIPE_DEGRADED, &sh->state);
2644 set_bit(WriteErrorSeen, &rdev->flags);
2645 set_bit(R5_WriteError, &sh->dev[i].flags);
2646 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2647 set_bit(MD_RECOVERY_NEEDED,
2648 &rdev->mddev->recovery);
2649 } else if (is_badblock(rdev, sh->sector,
2650 STRIPE_SECTORS,
2651 &first_bad, &bad_sectors)) {
2652 set_bit(R5_MadeGood, &sh->dev[i].flags);
2653 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2654 /* That was a successful write so make
2655 * sure it looks like we already did
2656 * a re-write.
2657 */
2658 set_bit(R5_ReWrite, &sh->dev[i].flags);
2659 }
2660 }
2661 rdev_dec_pending(rdev, conf->mddev);
2662
2663 if (sh->batch_head && bi->bi_status && !replacement)
2664 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2665
2666 bio_reset(bi);
2667 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2668 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2669 set_bit(STRIPE_HANDLE, &sh->state);
2670 raid5_release_stripe(sh);
2671
2672 if (sh->batch_head && sh != sh->batch_head)
2673 raid5_release_stripe(sh->batch_head);
2674 }
2675
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2676 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2677 {
2678 char b[BDEVNAME_SIZE];
2679 struct r5conf *conf = mddev->private;
2680 unsigned long flags;
2681 pr_debug("raid456: error called\n");
2682
2683 spin_lock_irqsave(&conf->device_lock, flags);
2684 set_bit(Faulty, &rdev->flags);
2685 clear_bit(In_sync, &rdev->flags);
2686 mddev->degraded = raid5_calc_degraded(conf);
2687 spin_unlock_irqrestore(&conf->device_lock, flags);
2688 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2689
2690 set_bit(Blocked, &rdev->flags);
2691 set_mask_bits(&mddev->sb_flags, 0,
2692 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2693 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2694 "md/raid:%s: Operation continuing on %d devices.\n",
2695 mdname(mddev),
2696 bdevname(rdev->bdev, b),
2697 mdname(mddev),
2698 conf->raid_disks - mddev->degraded);
2699 r5c_update_on_rdev_error(mddev, rdev);
2700 }
2701
2702 /*
2703 * Input: a 'big' sector number,
2704 * Output: index of the data and parity disk, and the sector # in them.
2705 */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2706 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2707 int previous, int *dd_idx,
2708 struct stripe_head *sh)
2709 {
2710 sector_t stripe, stripe2;
2711 sector_t chunk_number;
2712 unsigned int chunk_offset;
2713 int pd_idx, qd_idx;
2714 int ddf_layout = 0;
2715 sector_t new_sector;
2716 int algorithm = previous ? conf->prev_algo
2717 : conf->algorithm;
2718 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2719 : conf->chunk_sectors;
2720 int raid_disks = previous ? conf->previous_raid_disks
2721 : conf->raid_disks;
2722 int data_disks = raid_disks - conf->max_degraded;
2723
2724 /* First compute the information on this sector */
2725
2726 /*
2727 * Compute the chunk number and the sector offset inside the chunk
2728 */
2729 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2730 chunk_number = r_sector;
2731
2732 /*
2733 * Compute the stripe number
2734 */
2735 stripe = chunk_number;
2736 *dd_idx = sector_div(stripe, data_disks);
2737 stripe2 = stripe;
2738 /*
2739 * Select the parity disk based on the user selected algorithm.
2740 */
2741 pd_idx = qd_idx = -1;
2742 switch(conf->level) {
2743 case 4:
2744 pd_idx = data_disks;
2745 break;
2746 case 5:
2747 switch (algorithm) {
2748 case ALGORITHM_LEFT_ASYMMETRIC:
2749 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2750 if (*dd_idx >= pd_idx)
2751 (*dd_idx)++;
2752 break;
2753 case ALGORITHM_RIGHT_ASYMMETRIC:
2754 pd_idx = sector_div(stripe2, raid_disks);
2755 if (*dd_idx >= pd_idx)
2756 (*dd_idx)++;
2757 break;
2758 case ALGORITHM_LEFT_SYMMETRIC:
2759 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2760 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2761 break;
2762 case ALGORITHM_RIGHT_SYMMETRIC:
2763 pd_idx = sector_div(stripe2, raid_disks);
2764 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2765 break;
2766 case ALGORITHM_PARITY_0:
2767 pd_idx = 0;
2768 (*dd_idx)++;
2769 break;
2770 case ALGORITHM_PARITY_N:
2771 pd_idx = data_disks;
2772 break;
2773 default:
2774 BUG();
2775 }
2776 break;
2777 case 6:
2778
2779 switch (algorithm) {
2780 case ALGORITHM_LEFT_ASYMMETRIC:
2781 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2782 qd_idx = pd_idx + 1;
2783 if (pd_idx == raid_disks-1) {
2784 (*dd_idx)++; /* Q D D D P */
2785 qd_idx = 0;
2786 } else if (*dd_idx >= pd_idx)
2787 (*dd_idx) += 2; /* D D P Q D */
2788 break;
2789 case ALGORITHM_RIGHT_ASYMMETRIC:
2790 pd_idx = sector_div(stripe2, raid_disks);
2791 qd_idx = pd_idx + 1;
2792 if (pd_idx == raid_disks-1) {
2793 (*dd_idx)++; /* Q D D D P */
2794 qd_idx = 0;
2795 } else if (*dd_idx >= pd_idx)
2796 (*dd_idx) += 2; /* D D P Q D */
2797 break;
2798 case ALGORITHM_LEFT_SYMMETRIC:
2799 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2800 qd_idx = (pd_idx + 1) % raid_disks;
2801 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2802 break;
2803 case ALGORITHM_RIGHT_SYMMETRIC:
2804 pd_idx = sector_div(stripe2, raid_disks);
2805 qd_idx = (pd_idx + 1) % raid_disks;
2806 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2807 break;
2808
2809 case ALGORITHM_PARITY_0:
2810 pd_idx = 0;
2811 qd_idx = 1;
2812 (*dd_idx) += 2;
2813 break;
2814 case ALGORITHM_PARITY_N:
2815 pd_idx = data_disks;
2816 qd_idx = data_disks + 1;
2817 break;
2818
2819 case ALGORITHM_ROTATING_ZERO_RESTART:
2820 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2821 * of blocks for computing Q is different.
2822 */
2823 pd_idx = sector_div(stripe2, raid_disks);
2824 qd_idx = pd_idx + 1;
2825 if (pd_idx == raid_disks-1) {
2826 (*dd_idx)++; /* Q D D D P */
2827 qd_idx = 0;
2828 } else if (*dd_idx >= pd_idx)
2829 (*dd_idx) += 2; /* D D P Q D */
2830 ddf_layout = 1;
2831 break;
2832
2833 case ALGORITHM_ROTATING_N_RESTART:
2834 /* Same a left_asymmetric, by first stripe is
2835 * D D D P Q rather than
2836 * Q D D D P
2837 */
2838 stripe2 += 1;
2839 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2840 qd_idx = pd_idx + 1;
2841 if (pd_idx == raid_disks-1) {
2842 (*dd_idx)++; /* Q D D D P */
2843 qd_idx = 0;
2844 } else if (*dd_idx >= pd_idx)
2845 (*dd_idx) += 2; /* D D P Q D */
2846 ddf_layout = 1;
2847 break;
2848
2849 case ALGORITHM_ROTATING_N_CONTINUE:
2850 /* Same as left_symmetric but Q is before P */
2851 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2852 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2853 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2854 ddf_layout = 1;
2855 break;
2856
2857 case ALGORITHM_LEFT_ASYMMETRIC_6:
2858 /* RAID5 left_asymmetric, with Q on last device */
2859 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2860 if (*dd_idx >= pd_idx)
2861 (*dd_idx)++;
2862 qd_idx = raid_disks - 1;
2863 break;
2864
2865 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2866 pd_idx = sector_div(stripe2, raid_disks-1);
2867 if (*dd_idx >= pd_idx)
2868 (*dd_idx)++;
2869 qd_idx = raid_disks - 1;
2870 break;
2871
2872 case ALGORITHM_LEFT_SYMMETRIC_6:
2873 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2874 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2875 qd_idx = raid_disks - 1;
2876 break;
2877
2878 case ALGORITHM_RIGHT_SYMMETRIC_6:
2879 pd_idx = sector_div(stripe2, raid_disks-1);
2880 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2881 qd_idx = raid_disks - 1;
2882 break;
2883
2884 case ALGORITHM_PARITY_0_6:
2885 pd_idx = 0;
2886 (*dd_idx)++;
2887 qd_idx = raid_disks - 1;
2888 break;
2889
2890 default:
2891 BUG();
2892 }
2893 break;
2894 }
2895
2896 if (sh) {
2897 sh->pd_idx = pd_idx;
2898 sh->qd_idx = qd_idx;
2899 sh->ddf_layout = ddf_layout;
2900 }
2901 /*
2902 * Finally, compute the new sector number
2903 */
2904 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2905 return new_sector;
2906 }
2907
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)2908 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2909 {
2910 struct r5conf *conf = sh->raid_conf;
2911 int raid_disks = sh->disks;
2912 int data_disks = raid_disks - conf->max_degraded;
2913 sector_t new_sector = sh->sector, check;
2914 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2915 : conf->chunk_sectors;
2916 int algorithm = previous ? conf->prev_algo
2917 : conf->algorithm;
2918 sector_t stripe;
2919 int chunk_offset;
2920 sector_t chunk_number;
2921 int dummy1, dd_idx = i;
2922 sector_t r_sector;
2923 struct stripe_head sh2;
2924
2925 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2926 stripe = new_sector;
2927
2928 if (i == sh->pd_idx)
2929 return 0;
2930 switch(conf->level) {
2931 case 4: break;
2932 case 5:
2933 switch (algorithm) {
2934 case ALGORITHM_LEFT_ASYMMETRIC:
2935 case ALGORITHM_RIGHT_ASYMMETRIC:
2936 if (i > sh->pd_idx)
2937 i--;
2938 break;
2939 case ALGORITHM_LEFT_SYMMETRIC:
2940 case ALGORITHM_RIGHT_SYMMETRIC:
2941 if (i < sh->pd_idx)
2942 i += raid_disks;
2943 i -= (sh->pd_idx + 1);
2944 break;
2945 case ALGORITHM_PARITY_0:
2946 i -= 1;
2947 break;
2948 case ALGORITHM_PARITY_N:
2949 break;
2950 default:
2951 BUG();
2952 }
2953 break;
2954 case 6:
2955 if (i == sh->qd_idx)
2956 return 0; /* It is the Q disk */
2957 switch (algorithm) {
2958 case ALGORITHM_LEFT_ASYMMETRIC:
2959 case ALGORITHM_RIGHT_ASYMMETRIC:
2960 case ALGORITHM_ROTATING_ZERO_RESTART:
2961 case ALGORITHM_ROTATING_N_RESTART:
2962 if (sh->pd_idx == raid_disks-1)
2963 i--; /* Q D D D P */
2964 else if (i > sh->pd_idx)
2965 i -= 2; /* D D P Q D */
2966 break;
2967 case ALGORITHM_LEFT_SYMMETRIC:
2968 case ALGORITHM_RIGHT_SYMMETRIC:
2969 if (sh->pd_idx == raid_disks-1)
2970 i--; /* Q D D D P */
2971 else {
2972 /* D D P Q D */
2973 if (i < sh->pd_idx)
2974 i += raid_disks;
2975 i -= (sh->pd_idx + 2);
2976 }
2977 break;
2978 case ALGORITHM_PARITY_0:
2979 i -= 2;
2980 break;
2981 case ALGORITHM_PARITY_N:
2982 break;
2983 case ALGORITHM_ROTATING_N_CONTINUE:
2984 /* Like left_symmetric, but P is before Q */
2985 if (sh->pd_idx == 0)
2986 i--; /* P D D D Q */
2987 else {
2988 /* D D Q P D */
2989 if (i < sh->pd_idx)
2990 i += raid_disks;
2991 i -= (sh->pd_idx + 1);
2992 }
2993 break;
2994 case ALGORITHM_LEFT_ASYMMETRIC_6:
2995 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2996 if (i > sh->pd_idx)
2997 i--;
2998 break;
2999 case ALGORITHM_LEFT_SYMMETRIC_6:
3000 case ALGORITHM_RIGHT_SYMMETRIC_6:
3001 if (i < sh->pd_idx)
3002 i += data_disks + 1;
3003 i -= (sh->pd_idx + 1);
3004 break;
3005 case ALGORITHM_PARITY_0_6:
3006 i -= 1;
3007 break;
3008 default:
3009 BUG();
3010 }
3011 break;
3012 }
3013
3014 chunk_number = stripe * data_disks + i;
3015 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3016
3017 check = raid5_compute_sector(conf, r_sector,
3018 previous, &dummy1, &sh2);
3019 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3020 || sh2.qd_idx != sh->qd_idx) {
3021 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3022 mdname(conf->mddev));
3023 return 0;
3024 }
3025 return r_sector;
3026 }
3027
3028 /*
3029 * There are cases where we want handle_stripe_dirtying() and
3030 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3031 *
3032 * This function checks whether we want to delay the towrite. Specifically,
3033 * we delay the towrite when:
3034 *
3035 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3036 * stripe has data in journal (for other devices).
3037 *
3038 * In this case, when reading data for the non-overwrite dev, it is
3039 * necessary to handle complex rmw of write back cache (prexor with
3040 * orig_page, and xor with page). To keep read path simple, we would
3041 * like to flush data in journal to RAID disks first, so complex rmw
3042 * is handled in the write patch (handle_stripe_dirtying).
3043 *
3044 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3045 *
3046 * It is important to be able to flush all stripes in raid5-cache.
3047 * Therefore, we need reserve some space on the journal device for
3048 * these flushes. If flush operation includes pending writes to the
3049 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3050 * for the flush out. If we exclude these pending writes from flush
3051 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3052 * Therefore, excluding pending writes in these cases enables more
3053 * efficient use of the journal device.
3054 *
3055 * Note: To make sure the stripe makes progress, we only delay
3056 * towrite for stripes with data already in journal (injournal > 0).
3057 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3058 * no_space_stripes list.
3059 *
3060 * 3. during journal failure
3061 * In journal failure, we try to flush all cached data to raid disks
3062 * based on data in stripe cache. The array is read-only to upper
3063 * layers, so we would skip all pending writes.
3064 *
3065 */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3066 static inline bool delay_towrite(struct r5conf *conf,
3067 struct r5dev *dev,
3068 struct stripe_head_state *s)
3069 {
3070 /* case 1 above */
3071 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3072 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3073 return true;
3074 /* case 2 above */
3075 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3076 s->injournal > 0)
3077 return true;
3078 /* case 3 above */
3079 if (s->log_failed && s->injournal)
3080 return true;
3081 return false;
3082 }
3083
3084 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3085 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3086 int rcw, int expand)
3087 {
3088 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3089 struct r5conf *conf = sh->raid_conf;
3090 int level = conf->level;
3091
3092 if (rcw) {
3093 /*
3094 * In some cases, handle_stripe_dirtying initially decided to
3095 * run rmw and allocates extra page for prexor. However, rcw is
3096 * cheaper later on. We need to free the extra page now,
3097 * because we won't be able to do that in ops_complete_prexor().
3098 */
3099 r5c_release_extra_page(sh);
3100
3101 for (i = disks; i--; ) {
3102 struct r5dev *dev = &sh->dev[i];
3103
3104 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3105 set_bit(R5_LOCKED, &dev->flags);
3106 set_bit(R5_Wantdrain, &dev->flags);
3107 if (!expand)
3108 clear_bit(R5_UPTODATE, &dev->flags);
3109 s->locked++;
3110 } else if (test_bit(R5_InJournal, &dev->flags)) {
3111 set_bit(R5_LOCKED, &dev->flags);
3112 s->locked++;
3113 }
3114 }
3115 /* if we are not expanding this is a proper write request, and
3116 * there will be bios with new data to be drained into the
3117 * stripe cache
3118 */
3119 if (!expand) {
3120 if (!s->locked)
3121 /* False alarm, nothing to do */
3122 return;
3123 sh->reconstruct_state = reconstruct_state_drain_run;
3124 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3125 } else
3126 sh->reconstruct_state = reconstruct_state_run;
3127
3128 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3129
3130 if (s->locked + conf->max_degraded == disks)
3131 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3132 atomic_inc(&conf->pending_full_writes);
3133 } else {
3134 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3135 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3136 BUG_ON(level == 6 &&
3137 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3138 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3139
3140 for (i = disks; i--; ) {
3141 struct r5dev *dev = &sh->dev[i];
3142 if (i == pd_idx || i == qd_idx)
3143 continue;
3144
3145 if (dev->towrite &&
3146 (test_bit(R5_UPTODATE, &dev->flags) ||
3147 test_bit(R5_Wantcompute, &dev->flags))) {
3148 set_bit(R5_Wantdrain, &dev->flags);
3149 set_bit(R5_LOCKED, &dev->flags);
3150 clear_bit(R5_UPTODATE, &dev->flags);
3151 s->locked++;
3152 } else if (test_bit(R5_InJournal, &dev->flags)) {
3153 set_bit(R5_LOCKED, &dev->flags);
3154 s->locked++;
3155 }
3156 }
3157 if (!s->locked)
3158 /* False alarm - nothing to do */
3159 return;
3160 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3161 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3162 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3163 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3164 }
3165
3166 /* keep the parity disk(s) locked while asynchronous operations
3167 * are in flight
3168 */
3169 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3170 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3171 s->locked++;
3172
3173 if (level == 6) {
3174 int qd_idx = sh->qd_idx;
3175 struct r5dev *dev = &sh->dev[qd_idx];
3176
3177 set_bit(R5_LOCKED, &dev->flags);
3178 clear_bit(R5_UPTODATE, &dev->flags);
3179 s->locked++;
3180 }
3181
3182 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3183 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3184 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3185 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3186 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3187
3188 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3189 __func__, (unsigned long long)sh->sector,
3190 s->locked, s->ops_request);
3191 }
3192
3193 /*
3194 * Each stripe/dev can have one or more bion attached.
3195 * toread/towrite point to the first in a chain.
3196 * The bi_next chain must be in order.
3197 */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3198 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3199 int forwrite, int previous)
3200 {
3201 struct bio **bip;
3202 struct r5conf *conf = sh->raid_conf;
3203 int firstwrite=0;
3204
3205 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3206 (unsigned long long)bi->bi_iter.bi_sector,
3207 (unsigned long long)sh->sector);
3208
3209 spin_lock_irq(&sh->stripe_lock);
3210 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3211 /* Don't allow new IO added to stripes in batch list */
3212 if (sh->batch_head)
3213 goto overlap;
3214 if (forwrite) {
3215 bip = &sh->dev[dd_idx].towrite;
3216 if (*bip == NULL)
3217 firstwrite = 1;
3218 } else
3219 bip = &sh->dev[dd_idx].toread;
3220 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3221 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3222 goto overlap;
3223 bip = & (*bip)->bi_next;
3224 }
3225 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3226 goto overlap;
3227
3228 if (forwrite && raid5_has_ppl(conf)) {
3229 /*
3230 * With PPL only writes to consecutive data chunks within a
3231 * stripe are allowed because for a single stripe_head we can
3232 * only have one PPL entry at a time, which describes one data
3233 * range. Not really an overlap, but wait_for_overlap can be
3234 * used to handle this.
3235 */
3236 sector_t sector;
3237 sector_t first = 0;
3238 sector_t last = 0;
3239 int count = 0;
3240 int i;
3241
3242 for (i = 0; i < sh->disks; i++) {
3243 if (i != sh->pd_idx &&
3244 (i == dd_idx || sh->dev[i].towrite)) {
3245 sector = sh->dev[i].sector;
3246 if (count == 0 || sector < first)
3247 first = sector;
3248 if (sector > last)
3249 last = sector;
3250 count++;
3251 }
3252 }
3253
3254 if (first + conf->chunk_sectors * (count - 1) != last)
3255 goto overlap;
3256 }
3257
3258 if (!forwrite || previous)
3259 clear_bit(STRIPE_BATCH_READY, &sh->state);
3260
3261 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3262 if (*bip)
3263 bi->bi_next = *bip;
3264 *bip = bi;
3265 bio_inc_remaining(bi);
3266 md_write_inc(conf->mddev, bi);
3267
3268 if (forwrite) {
3269 /* check if page is covered */
3270 sector_t sector = sh->dev[dd_idx].sector;
3271 for (bi=sh->dev[dd_idx].towrite;
3272 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3273 bi && bi->bi_iter.bi_sector <= sector;
3274 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3275 if (bio_end_sector(bi) >= sector)
3276 sector = bio_end_sector(bi);
3277 }
3278 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3279 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3280 sh->overwrite_disks++;
3281 }
3282
3283 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3284 (unsigned long long)(*bip)->bi_iter.bi_sector,
3285 (unsigned long long)sh->sector, dd_idx);
3286
3287 if (conf->mddev->bitmap && firstwrite) {
3288 /* Cannot hold spinlock over bitmap_startwrite,
3289 * but must ensure this isn't added to a batch until
3290 * we have added to the bitmap and set bm_seq.
3291 * So set STRIPE_BITMAP_PENDING to prevent
3292 * batching.
3293 * If multiple add_stripe_bio() calls race here they
3294 * much all set STRIPE_BITMAP_PENDING. So only the first one
3295 * to complete "bitmap_startwrite" gets to set
3296 * STRIPE_BIT_DELAY. This is important as once a stripe
3297 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3298 * any more.
3299 */
3300 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3301 spin_unlock_irq(&sh->stripe_lock);
3302 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3303 STRIPE_SECTORS, 0);
3304 spin_lock_irq(&sh->stripe_lock);
3305 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3306 if (!sh->batch_head) {
3307 sh->bm_seq = conf->seq_flush+1;
3308 set_bit(STRIPE_BIT_DELAY, &sh->state);
3309 }
3310 }
3311 spin_unlock_irq(&sh->stripe_lock);
3312
3313 if (stripe_can_batch(sh))
3314 stripe_add_to_batch_list(conf, sh);
3315 return 1;
3316
3317 overlap:
3318 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3319 spin_unlock_irq(&sh->stripe_lock);
3320 return 0;
3321 }
3322
3323 static void end_reshape(struct r5conf *conf);
3324
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3325 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3326 struct stripe_head *sh)
3327 {
3328 int sectors_per_chunk =
3329 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3330 int dd_idx;
3331 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3332 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3333
3334 raid5_compute_sector(conf,
3335 stripe * (disks - conf->max_degraded)
3336 *sectors_per_chunk + chunk_offset,
3337 previous,
3338 &dd_idx, sh);
3339 }
3340
3341 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3342 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3343 struct stripe_head_state *s, int disks)
3344 {
3345 int i;
3346 BUG_ON(sh->batch_head);
3347 for (i = disks; i--; ) {
3348 struct bio *bi;
3349 int bitmap_end = 0;
3350
3351 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3352 struct md_rdev *rdev;
3353 rcu_read_lock();
3354 rdev = rcu_dereference(conf->disks[i].rdev);
3355 if (rdev && test_bit(In_sync, &rdev->flags) &&
3356 !test_bit(Faulty, &rdev->flags))
3357 atomic_inc(&rdev->nr_pending);
3358 else
3359 rdev = NULL;
3360 rcu_read_unlock();
3361 if (rdev) {
3362 if (!rdev_set_badblocks(
3363 rdev,
3364 sh->sector,
3365 STRIPE_SECTORS, 0))
3366 md_error(conf->mddev, rdev);
3367 rdev_dec_pending(rdev, conf->mddev);
3368 }
3369 }
3370 spin_lock_irq(&sh->stripe_lock);
3371 /* fail all writes first */
3372 bi = sh->dev[i].towrite;
3373 sh->dev[i].towrite = NULL;
3374 sh->overwrite_disks = 0;
3375 spin_unlock_irq(&sh->stripe_lock);
3376 if (bi)
3377 bitmap_end = 1;
3378
3379 log_stripe_write_finished(sh);
3380
3381 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3382 wake_up(&conf->wait_for_overlap);
3383
3384 while (bi && bi->bi_iter.bi_sector <
3385 sh->dev[i].sector + STRIPE_SECTORS) {
3386 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3387
3388 md_write_end(conf->mddev);
3389 bio_io_error(bi);
3390 bi = nextbi;
3391 }
3392 if (bitmap_end)
3393 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3394 STRIPE_SECTORS, 0, 0);
3395 bitmap_end = 0;
3396 /* and fail all 'written' */
3397 bi = sh->dev[i].written;
3398 sh->dev[i].written = NULL;
3399 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3400 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3401 sh->dev[i].page = sh->dev[i].orig_page;
3402 }
3403
3404 if (bi) bitmap_end = 1;
3405 while (bi && bi->bi_iter.bi_sector <
3406 sh->dev[i].sector + STRIPE_SECTORS) {
3407 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3408
3409 md_write_end(conf->mddev);
3410 bio_io_error(bi);
3411 bi = bi2;
3412 }
3413
3414 /* fail any reads if this device is non-operational and
3415 * the data has not reached the cache yet.
3416 */
3417 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3418 s->failed > conf->max_degraded &&
3419 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3420 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3421 spin_lock_irq(&sh->stripe_lock);
3422 bi = sh->dev[i].toread;
3423 sh->dev[i].toread = NULL;
3424 spin_unlock_irq(&sh->stripe_lock);
3425 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3426 wake_up(&conf->wait_for_overlap);
3427 if (bi)
3428 s->to_read--;
3429 while (bi && bi->bi_iter.bi_sector <
3430 sh->dev[i].sector + STRIPE_SECTORS) {
3431 struct bio *nextbi =
3432 r5_next_bio(bi, sh->dev[i].sector);
3433
3434 bio_io_error(bi);
3435 bi = nextbi;
3436 }
3437 }
3438 if (bitmap_end)
3439 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3440 STRIPE_SECTORS, 0, 0);
3441 /* If we were in the middle of a write the parity block might
3442 * still be locked - so just clear all R5_LOCKED flags
3443 */
3444 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3445 }
3446 s->to_write = 0;
3447 s->written = 0;
3448
3449 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3450 if (atomic_dec_and_test(&conf->pending_full_writes))
3451 md_wakeup_thread(conf->mddev->thread);
3452 }
3453
3454 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3455 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3456 struct stripe_head_state *s)
3457 {
3458 int abort = 0;
3459 int i;
3460
3461 BUG_ON(sh->batch_head);
3462 clear_bit(STRIPE_SYNCING, &sh->state);
3463 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3464 wake_up(&conf->wait_for_overlap);
3465 s->syncing = 0;
3466 s->replacing = 0;
3467 /* There is nothing more to do for sync/check/repair.
3468 * Don't even need to abort as that is handled elsewhere
3469 * if needed, and not always wanted e.g. if there is a known
3470 * bad block here.
3471 * For recover/replace we need to record a bad block on all
3472 * non-sync devices, or abort the recovery
3473 */
3474 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3475 /* During recovery devices cannot be removed, so
3476 * locking and refcounting of rdevs is not needed
3477 */
3478 rcu_read_lock();
3479 for (i = 0; i < conf->raid_disks; i++) {
3480 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3481 if (rdev
3482 && !test_bit(Faulty, &rdev->flags)
3483 && !test_bit(In_sync, &rdev->flags)
3484 && !rdev_set_badblocks(rdev, sh->sector,
3485 STRIPE_SECTORS, 0))
3486 abort = 1;
3487 rdev = rcu_dereference(conf->disks[i].replacement);
3488 if (rdev
3489 && !test_bit(Faulty, &rdev->flags)
3490 && !test_bit(In_sync, &rdev->flags)
3491 && !rdev_set_badblocks(rdev, sh->sector,
3492 STRIPE_SECTORS, 0))
3493 abort = 1;
3494 }
3495 rcu_read_unlock();
3496 if (abort)
3497 conf->recovery_disabled =
3498 conf->mddev->recovery_disabled;
3499 }
3500 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3501 }
3502
want_replace(struct stripe_head * sh,int disk_idx)3503 static int want_replace(struct stripe_head *sh, int disk_idx)
3504 {
3505 struct md_rdev *rdev;
3506 int rv = 0;
3507
3508 rcu_read_lock();
3509 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3510 if (rdev
3511 && !test_bit(Faulty, &rdev->flags)
3512 && !test_bit(In_sync, &rdev->flags)
3513 && (rdev->recovery_offset <= sh->sector
3514 || rdev->mddev->recovery_cp <= sh->sector))
3515 rv = 1;
3516 rcu_read_unlock();
3517 return rv;
3518 }
3519
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3520 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3521 int disk_idx, int disks)
3522 {
3523 struct r5dev *dev = &sh->dev[disk_idx];
3524 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3525 &sh->dev[s->failed_num[1]] };
3526 int i;
3527
3528
3529 if (test_bit(R5_LOCKED, &dev->flags) ||
3530 test_bit(R5_UPTODATE, &dev->flags))
3531 /* No point reading this as we already have it or have
3532 * decided to get it.
3533 */
3534 return 0;
3535
3536 if (dev->toread ||
3537 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3538 /* We need this block to directly satisfy a request */
3539 return 1;
3540
3541 if (s->syncing || s->expanding ||
3542 (s->replacing && want_replace(sh, disk_idx)))
3543 /* When syncing, or expanding we read everything.
3544 * When replacing, we need the replaced block.
3545 */
3546 return 1;
3547
3548 if ((s->failed >= 1 && fdev[0]->toread) ||
3549 (s->failed >= 2 && fdev[1]->toread))
3550 /* If we want to read from a failed device, then
3551 * we need to actually read every other device.
3552 */
3553 return 1;
3554
3555 /* Sometimes neither read-modify-write nor reconstruct-write
3556 * cycles can work. In those cases we read every block we
3557 * can. Then the parity-update is certain to have enough to
3558 * work with.
3559 * This can only be a problem when we need to write something,
3560 * and some device has failed. If either of those tests
3561 * fail we need look no further.
3562 */
3563 if (!s->failed || !s->to_write)
3564 return 0;
3565
3566 if (test_bit(R5_Insync, &dev->flags) &&
3567 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3568 /* Pre-reads at not permitted until after short delay
3569 * to gather multiple requests. However if this
3570 * device is no Insync, the block could only be computed
3571 * and there is no need to delay that.
3572 */
3573 return 0;
3574
3575 for (i = 0; i < s->failed && i < 2; i++) {
3576 if (fdev[i]->towrite &&
3577 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3578 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3579 /* If we have a partial write to a failed
3580 * device, then we will need to reconstruct
3581 * the content of that device, so all other
3582 * devices must be read.
3583 */
3584 return 1;
3585 }
3586
3587 /* If we are forced to do a reconstruct-write, either because
3588 * the current RAID6 implementation only supports that, or
3589 * because parity cannot be trusted and we are currently
3590 * recovering it, there is extra need to be careful.
3591 * If one of the devices that we would need to read, because
3592 * it is not being overwritten (and maybe not written at all)
3593 * is missing/faulty, then we need to read everything we can.
3594 */
3595 if (sh->raid_conf->level != 6 &&
3596 sh->sector < sh->raid_conf->mddev->recovery_cp)
3597 /* reconstruct-write isn't being forced */
3598 return 0;
3599 for (i = 0; i < s->failed && i < 2; i++) {
3600 if (s->failed_num[i] != sh->pd_idx &&
3601 s->failed_num[i] != sh->qd_idx &&
3602 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3603 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3604 return 1;
3605 }
3606
3607 return 0;
3608 }
3609
3610 /* fetch_block - checks the given member device to see if its data needs
3611 * to be read or computed to satisfy a request.
3612 *
3613 * Returns 1 when no more member devices need to be checked, otherwise returns
3614 * 0 to tell the loop in handle_stripe_fill to continue
3615 */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3616 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3617 int disk_idx, int disks)
3618 {
3619 struct r5dev *dev = &sh->dev[disk_idx];
3620
3621 /* is the data in this block needed, and can we get it? */
3622 if (need_this_block(sh, s, disk_idx, disks)) {
3623 /* we would like to get this block, possibly by computing it,
3624 * otherwise read it if the backing disk is insync
3625 */
3626 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3627 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3628 BUG_ON(sh->batch_head);
3629
3630 /*
3631 * In the raid6 case if the only non-uptodate disk is P
3632 * then we already trusted P to compute the other failed
3633 * drives. It is safe to compute rather than re-read P.
3634 * In other cases we only compute blocks from failed
3635 * devices, otherwise check/repair might fail to detect
3636 * a real inconsistency.
3637 */
3638
3639 if ((s->uptodate == disks - 1) &&
3640 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3641 (s->failed && (disk_idx == s->failed_num[0] ||
3642 disk_idx == s->failed_num[1])))) {
3643 /* have disk failed, and we're requested to fetch it;
3644 * do compute it
3645 */
3646 pr_debug("Computing stripe %llu block %d\n",
3647 (unsigned long long)sh->sector, disk_idx);
3648 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3649 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3650 set_bit(R5_Wantcompute, &dev->flags);
3651 sh->ops.target = disk_idx;
3652 sh->ops.target2 = -1; /* no 2nd target */
3653 s->req_compute = 1;
3654 /* Careful: from this point on 'uptodate' is in the eye
3655 * of raid_run_ops which services 'compute' operations
3656 * before writes. R5_Wantcompute flags a block that will
3657 * be R5_UPTODATE by the time it is needed for a
3658 * subsequent operation.
3659 */
3660 s->uptodate++;
3661 return 1;
3662 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3663 /* Computing 2-failure is *very* expensive; only
3664 * do it if failed >= 2
3665 */
3666 int other;
3667 for (other = disks; other--; ) {
3668 if (other == disk_idx)
3669 continue;
3670 if (!test_bit(R5_UPTODATE,
3671 &sh->dev[other].flags))
3672 break;
3673 }
3674 BUG_ON(other < 0);
3675 pr_debug("Computing stripe %llu blocks %d,%d\n",
3676 (unsigned long long)sh->sector,
3677 disk_idx, other);
3678 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3679 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3680 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3681 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3682 sh->ops.target = disk_idx;
3683 sh->ops.target2 = other;
3684 s->uptodate += 2;
3685 s->req_compute = 1;
3686 return 1;
3687 } else if (test_bit(R5_Insync, &dev->flags)) {
3688 set_bit(R5_LOCKED, &dev->flags);
3689 set_bit(R5_Wantread, &dev->flags);
3690 s->locked++;
3691 pr_debug("Reading block %d (sync=%d)\n",
3692 disk_idx, s->syncing);
3693 }
3694 }
3695
3696 return 0;
3697 }
3698
3699 /**
3700 * handle_stripe_fill - read or compute data to satisfy pending requests.
3701 */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3702 static void handle_stripe_fill(struct stripe_head *sh,
3703 struct stripe_head_state *s,
3704 int disks)
3705 {
3706 int i;
3707
3708 /* look for blocks to read/compute, skip this if a compute
3709 * is already in flight, or if the stripe contents are in the
3710 * midst of changing due to a write
3711 */
3712 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3713 !sh->reconstruct_state) {
3714
3715 /*
3716 * For degraded stripe with data in journal, do not handle
3717 * read requests yet, instead, flush the stripe to raid
3718 * disks first, this avoids handling complex rmw of write
3719 * back cache (prexor with orig_page, and then xor with
3720 * page) in the read path
3721 */
3722 if (s->injournal && s->failed) {
3723 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3724 r5c_make_stripe_write_out(sh);
3725 goto out;
3726 }
3727
3728 for (i = disks; i--; )
3729 if (fetch_block(sh, s, i, disks))
3730 break;
3731 }
3732 out:
3733 set_bit(STRIPE_HANDLE, &sh->state);
3734 }
3735
3736 static void break_stripe_batch_list(struct stripe_head *head_sh,
3737 unsigned long handle_flags);
3738 /* handle_stripe_clean_event
3739 * any written block on an uptodate or failed drive can be returned.
3740 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3741 * never LOCKED, so we don't need to test 'failed' directly.
3742 */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)3743 static void handle_stripe_clean_event(struct r5conf *conf,
3744 struct stripe_head *sh, int disks)
3745 {
3746 int i;
3747 struct r5dev *dev;
3748 int discard_pending = 0;
3749 struct stripe_head *head_sh = sh;
3750 bool do_endio = false;
3751
3752 for (i = disks; i--; )
3753 if (sh->dev[i].written) {
3754 dev = &sh->dev[i];
3755 if (!test_bit(R5_LOCKED, &dev->flags) &&
3756 (test_bit(R5_UPTODATE, &dev->flags) ||
3757 test_bit(R5_Discard, &dev->flags) ||
3758 test_bit(R5_SkipCopy, &dev->flags))) {
3759 /* We can return any write requests */
3760 struct bio *wbi, *wbi2;
3761 pr_debug("Return write for disc %d\n", i);
3762 if (test_and_clear_bit(R5_Discard, &dev->flags))
3763 clear_bit(R5_UPTODATE, &dev->flags);
3764 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3765 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3766 }
3767 do_endio = true;
3768
3769 returnbi:
3770 dev->page = dev->orig_page;
3771 wbi = dev->written;
3772 dev->written = NULL;
3773 while (wbi && wbi->bi_iter.bi_sector <
3774 dev->sector + STRIPE_SECTORS) {
3775 wbi2 = r5_next_bio(wbi, dev->sector);
3776 md_write_end(conf->mddev);
3777 bio_endio(wbi);
3778 wbi = wbi2;
3779 }
3780 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3781 STRIPE_SECTORS,
3782 !test_bit(STRIPE_DEGRADED, &sh->state),
3783 0);
3784 if (head_sh->batch_head) {
3785 sh = list_first_entry(&sh->batch_list,
3786 struct stripe_head,
3787 batch_list);
3788 if (sh != head_sh) {
3789 dev = &sh->dev[i];
3790 goto returnbi;
3791 }
3792 }
3793 sh = head_sh;
3794 dev = &sh->dev[i];
3795 } else if (test_bit(R5_Discard, &dev->flags))
3796 discard_pending = 1;
3797 }
3798
3799 log_stripe_write_finished(sh);
3800
3801 if (!discard_pending &&
3802 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3803 int hash;
3804 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3805 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3806 if (sh->qd_idx >= 0) {
3807 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3808 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3809 }
3810 /* now that discard is done we can proceed with any sync */
3811 clear_bit(STRIPE_DISCARD, &sh->state);
3812 /*
3813 * SCSI discard will change some bio fields and the stripe has
3814 * no updated data, so remove it from hash list and the stripe
3815 * will be reinitialized
3816 */
3817 unhash:
3818 hash = sh->hash_lock_index;
3819 spin_lock_irq(conf->hash_locks + hash);
3820 remove_hash(sh);
3821 spin_unlock_irq(conf->hash_locks + hash);
3822 if (head_sh->batch_head) {
3823 sh = list_first_entry(&sh->batch_list,
3824 struct stripe_head, batch_list);
3825 if (sh != head_sh)
3826 goto unhash;
3827 }
3828 sh = head_sh;
3829
3830 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3831 set_bit(STRIPE_HANDLE, &sh->state);
3832
3833 }
3834
3835 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3836 if (atomic_dec_and_test(&conf->pending_full_writes))
3837 md_wakeup_thread(conf->mddev->thread);
3838
3839 if (head_sh->batch_head && do_endio)
3840 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3841 }
3842
3843 /*
3844 * For RMW in write back cache, we need extra page in prexor to store the
3845 * old data. This page is stored in dev->orig_page.
3846 *
3847 * This function checks whether we have data for prexor. The exact logic
3848 * is:
3849 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3850 */
uptodate_for_rmw(struct r5dev * dev)3851 static inline bool uptodate_for_rmw(struct r5dev *dev)
3852 {
3853 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3854 (!test_bit(R5_InJournal, &dev->flags) ||
3855 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3856 }
3857
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3858 static int handle_stripe_dirtying(struct r5conf *conf,
3859 struct stripe_head *sh,
3860 struct stripe_head_state *s,
3861 int disks)
3862 {
3863 int rmw = 0, rcw = 0, i;
3864 sector_t recovery_cp = conf->mddev->recovery_cp;
3865
3866 /* Check whether resync is now happening or should start.
3867 * If yes, then the array is dirty (after unclean shutdown or
3868 * initial creation), so parity in some stripes might be inconsistent.
3869 * In this case, we need to always do reconstruct-write, to ensure
3870 * that in case of drive failure or read-error correction, we
3871 * generate correct data from the parity.
3872 */
3873 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3874 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3875 s->failed == 0)) {
3876 /* Calculate the real rcw later - for now make it
3877 * look like rcw is cheaper
3878 */
3879 rcw = 1; rmw = 2;
3880 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3881 conf->rmw_level, (unsigned long long)recovery_cp,
3882 (unsigned long long)sh->sector);
3883 } else for (i = disks; i--; ) {
3884 /* would I have to read this buffer for read_modify_write */
3885 struct r5dev *dev = &sh->dev[i];
3886 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3887 i == sh->pd_idx || i == sh->qd_idx ||
3888 test_bit(R5_InJournal, &dev->flags)) &&
3889 !test_bit(R5_LOCKED, &dev->flags) &&
3890 !(uptodate_for_rmw(dev) ||
3891 test_bit(R5_Wantcompute, &dev->flags))) {
3892 if (test_bit(R5_Insync, &dev->flags))
3893 rmw++;
3894 else
3895 rmw += 2*disks; /* cannot read it */
3896 }
3897 /* Would I have to read this buffer for reconstruct_write */
3898 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3899 i != sh->pd_idx && i != sh->qd_idx &&
3900 !test_bit(R5_LOCKED, &dev->flags) &&
3901 !(test_bit(R5_UPTODATE, &dev->flags) ||
3902 test_bit(R5_Wantcompute, &dev->flags))) {
3903 if (test_bit(R5_Insync, &dev->flags))
3904 rcw++;
3905 else
3906 rcw += 2*disks;
3907 }
3908 }
3909
3910 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3911 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3912 set_bit(STRIPE_HANDLE, &sh->state);
3913 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3914 /* prefer read-modify-write, but need to get some data */
3915 if (conf->mddev->queue)
3916 blk_add_trace_msg(conf->mddev->queue,
3917 "raid5 rmw %llu %d",
3918 (unsigned long long)sh->sector, rmw);
3919 for (i = disks; i--; ) {
3920 struct r5dev *dev = &sh->dev[i];
3921 if (test_bit(R5_InJournal, &dev->flags) &&
3922 dev->page == dev->orig_page &&
3923 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3924 /* alloc page for prexor */
3925 struct page *p = alloc_page(GFP_NOIO);
3926
3927 if (p) {
3928 dev->orig_page = p;
3929 continue;
3930 }
3931
3932 /*
3933 * alloc_page() failed, try use
3934 * disk_info->extra_page
3935 */
3936 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3937 &conf->cache_state)) {
3938 r5c_use_extra_page(sh);
3939 break;
3940 }
3941
3942 /* extra_page in use, add to delayed_list */
3943 set_bit(STRIPE_DELAYED, &sh->state);
3944 s->waiting_extra_page = 1;
3945 return -EAGAIN;
3946 }
3947 }
3948
3949 for (i = disks; i--; ) {
3950 struct r5dev *dev = &sh->dev[i];
3951 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3952 i == sh->pd_idx || i == sh->qd_idx ||
3953 test_bit(R5_InJournal, &dev->flags)) &&
3954 !test_bit(R5_LOCKED, &dev->flags) &&
3955 !(uptodate_for_rmw(dev) ||
3956 test_bit(R5_Wantcompute, &dev->flags)) &&
3957 test_bit(R5_Insync, &dev->flags)) {
3958 if (test_bit(STRIPE_PREREAD_ACTIVE,
3959 &sh->state)) {
3960 pr_debug("Read_old block %d for r-m-w\n",
3961 i);
3962 set_bit(R5_LOCKED, &dev->flags);
3963 set_bit(R5_Wantread, &dev->flags);
3964 s->locked++;
3965 } else {
3966 set_bit(STRIPE_DELAYED, &sh->state);
3967 set_bit(STRIPE_HANDLE, &sh->state);
3968 }
3969 }
3970 }
3971 }
3972 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3973 /* want reconstruct write, but need to get some data */
3974 int qread =0;
3975 rcw = 0;
3976 for (i = disks; i--; ) {
3977 struct r5dev *dev = &sh->dev[i];
3978 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3979 i != sh->pd_idx && i != sh->qd_idx &&
3980 !test_bit(R5_LOCKED, &dev->flags) &&
3981 !(test_bit(R5_UPTODATE, &dev->flags) ||
3982 test_bit(R5_Wantcompute, &dev->flags))) {
3983 rcw++;
3984 if (test_bit(R5_Insync, &dev->flags) &&
3985 test_bit(STRIPE_PREREAD_ACTIVE,
3986 &sh->state)) {
3987 pr_debug("Read_old block "
3988 "%d for Reconstruct\n", i);
3989 set_bit(R5_LOCKED, &dev->flags);
3990 set_bit(R5_Wantread, &dev->flags);
3991 s->locked++;
3992 qread++;
3993 } else {
3994 set_bit(STRIPE_DELAYED, &sh->state);
3995 set_bit(STRIPE_HANDLE, &sh->state);
3996 }
3997 }
3998 }
3999 if (rcw && conf->mddev->queue)
4000 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4001 (unsigned long long)sh->sector,
4002 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4003 }
4004
4005 if (rcw > disks && rmw > disks &&
4006 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4007 set_bit(STRIPE_DELAYED, &sh->state);
4008
4009 /* now if nothing is locked, and if we have enough data,
4010 * we can start a write request
4011 */
4012 /* since handle_stripe can be called at any time we need to handle the
4013 * case where a compute block operation has been submitted and then a
4014 * subsequent call wants to start a write request. raid_run_ops only
4015 * handles the case where compute block and reconstruct are requested
4016 * simultaneously. If this is not the case then new writes need to be
4017 * held off until the compute completes.
4018 */
4019 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4020 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4021 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4022 schedule_reconstruction(sh, s, rcw == 0, 0);
4023 return 0;
4024 }
4025
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4026 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4027 struct stripe_head_state *s, int disks)
4028 {
4029 struct r5dev *dev = NULL;
4030
4031 BUG_ON(sh->batch_head);
4032 set_bit(STRIPE_HANDLE, &sh->state);
4033
4034 switch (sh->check_state) {
4035 case check_state_idle:
4036 /* start a new check operation if there are no failures */
4037 if (s->failed == 0) {
4038 BUG_ON(s->uptodate != disks);
4039 sh->check_state = check_state_run;
4040 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4041 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4042 s->uptodate--;
4043 break;
4044 }
4045 dev = &sh->dev[s->failed_num[0]];
4046 /* fall through */
4047 case check_state_compute_result:
4048 sh->check_state = check_state_idle;
4049 if (!dev)
4050 dev = &sh->dev[sh->pd_idx];
4051
4052 /* check that a write has not made the stripe insync */
4053 if (test_bit(STRIPE_INSYNC, &sh->state))
4054 break;
4055
4056 /* either failed parity check, or recovery is happening */
4057 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4058 BUG_ON(s->uptodate != disks);
4059
4060 set_bit(R5_LOCKED, &dev->flags);
4061 s->locked++;
4062 set_bit(R5_Wantwrite, &dev->flags);
4063
4064 clear_bit(STRIPE_DEGRADED, &sh->state);
4065 set_bit(STRIPE_INSYNC, &sh->state);
4066 break;
4067 case check_state_run:
4068 break; /* we will be called again upon completion */
4069 case check_state_check_result:
4070 sh->check_state = check_state_idle;
4071
4072 /* if a failure occurred during the check operation, leave
4073 * STRIPE_INSYNC not set and let the stripe be handled again
4074 */
4075 if (s->failed)
4076 break;
4077
4078 /* handle a successful check operation, if parity is correct
4079 * we are done. Otherwise update the mismatch count and repair
4080 * parity if !MD_RECOVERY_CHECK
4081 */
4082 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4083 /* parity is correct (on disc,
4084 * not in buffer any more)
4085 */
4086 set_bit(STRIPE_INSYNC, &sh->state);
4087 else {
4088 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4089 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4090 /* don't try to repair!! */
4091 set_bit(STRIPE_INSYNC, &sh->state);
4092 pr_warn_ratelimited("%s: mismatch sector in range "
4093 "%llu-%llu\n", mdname(conf->mddev),
4094 (unsigned long long) sh->sector,
4095 (unsigned long long) sh->sector +
4096 STRIPE_SECTORS);
4097 } else {
4098 sh->check_state = check_state_compute_run;
4099 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4100 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4101 set_bit(R5_Wantcompute,
4102 &sh->dev[sh->pd_idx].flags);
4103 sh->ops.target = sh->pd_idx;
4104 sh->ops.target2 = -1;
4105 s->uptodate++;
4106 }
4107 }
4108 break;
4109 case check_state_compute_run:
4110 break;
4111 default:
4112 pr_err("%s: unknown check_state: %d sector: %llu\n",
4113 __func__, sh->check_state,
4114 (unsigned long long) sh->sector);
4115 BUG();
4116 }
4117 }
4118
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4119 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4120 struct stripe_head_state *s,
4121 int disks)
4122 {
4123 int pd_idx = sh->pd_idx;
4124 int qd_idx = sh->qd_idx;
4125 struct r5dev *dev;
4126
4127 BUG_ON(sh->batch_head);
4128 set_bit(STRIPE_HANDLE, &sh->state);
4129
4130 BUG_ON(s->failed > 2);
4131
4132 /* Want to check and possibly repair P and Q.
4133 * However there could be one 'failed' device, in which
4134 * case we can only check one of them, possibly using the
4135 * other to generate missing data
4136 */
4137
4138 switch (sh->check_state) {
4139 case check_state_idle:
4140 /* start a new check operation if there are < 2 failures */
4141 if (s->failed == s->q_failed) {
4142 /* The only possible failed device holds Q, so it
4143 * makes sense to check P (If anything else were failed,
4144 * we would have used P to recreate it).
4145 */
4146 sh->check_state = check_state_run;
4147 }
4148 if (!s->q_failed && s->failed < 2) {
4149 /* Q is not failed, and we didn't use it to generate
4150 * anything, so it makes sense to check it
4151 */
4152 if (sh->check_state == check_state_run)
4153 sh->check_state = check_state_run_pq;
4154 else
4155 sh->check_state = check_state_run_q;
4156 }
4157
4158 /* discard potentially stale zero_sum_result */
4159 sh->ops.zero_sum_result = 0;
4160
4161 if (sh->check_state == check_state_run) {
4162 /* async_xor_zero_sum destroys the contents of P */
4163 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4164 s->uptodate--;
4165 }
4166 if (sh->check_state >= check_state_run &&
4167 sh->check_state <= check_state_run_pq) {
4168 /* async_syndrome_zero_sum preserves P and Q, so
4169 * no need to mark them !uptodate here
4170 */
4171 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4172 break;
4173 }
4174
4175 /* we have 2-disk failure */
4176 BUG_ON(s->failed != 2);
4177 /* fall through */
4178 case check_state_compute_result:
4179 sh->check_state = check_state_idle;
4180
4181 /* check that a write has not made the stripe insync */
4182 if (test_bit(STRIPE_INSYNC, &sh->state))
4183 break;
4184
4185 /* now write out any block on a failed drive,
4186 * or P or Q if they were recomputed
4187 */
4188 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4189 if (s->failed == 2) {
4190 dev = &sh->dev[s->failed_num[1]];
4191 s->locked++;
4192 set_bit(R5_LOCKED, &dev->flags);
4193 set_bit(R5_Wantwrite, &dev->flags);
4194 }
4195 if (s->failed >= 1) {
4196 dev = &sh->dev[s->failed_num[0]];
4197 s->locked++;
4198 set_bit(R5_LOCKED, &dev->flags);
4199 set_bit(R5_Wantwrite, &dev->flags);
4200 }
4201 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4202 dev = &sh->dev[pd_idx];
4203 s->locked++;
4204 set_bit(R5_LOCKED, &dev->flags);
4205 set_bit(R5_Wantwrite, &dev->flags);
4206 }
4207 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4208 dev = &sh->dev[qd_idx];
4209 s->locked++;
4210 set_bit(R5_LOCKED, &dev->flags);
4211 set_bit(R5_Wantwrite, &dev->flags);
4212 }
4213 clear_bit(STRIPE_DEGRADED, &sh->state);
4214
4215 set_bit(STRIPE_INSYNC, &sh->state);
4216 break;
4217 case check_state_run:
4218 case check_state_run_q:
4219 case check_state_run_pq:
4220 break; /* we will be called again upon completion */
4221 case check_state_check_result:
4222 sh->check_state = check_state_idle;
4223
4224 /* handle a successful check operation, if parity is correct
4225 * we are done. Otherwise update the mismatch count and repair
4226 * parity if !MD_RECOVERY_CHECK
4227 */
4228 if (sh->ops.zero_sum_result == 0) {
4229 /* both parities are correct */
4230 if (!s->failed)
4231 set_bit(STRIPE_INSYNC, &sh->state);
4232 else {
4233 /* in contrast to the raid5 case we can validate
4234 * parity, but still have a failure to write
4235 * back
4236 */
4237 sh->check_state = check_state_compute_result;
4238 /* Returning at this point means that we may go
4239 * off and bring p and/or q uptodate again so
4240 * we make sure to check zero_sum_result again
4241 * to verify if p or q need writeback
4242 */
4243 }
4244 } else {
4245 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4246 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4247 /* don't try to repair!! */
4248 set_bit(STRIPE_INSYNC, &sh->state);
4249 pr_warn_ratelimited("%s: mismatch sector in range "
4250 "%llu-%llu\n", mdname(conf->mddev),
4251 (unsigned long long) sh->sector,
4252 (unsigned long long) sh->sector +
4253 STRIPE_SECTORS);
4254 } else {
4255 int *target = &sh->ops.target;
4256
4257 sh->ops.target = -1;
4258 sh->ops.target2 = -1;
4259 sh->check_state = check_state_compute_run;
4260 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4261 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4262 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4263 set_bit(R5_Wantcompute,
4264 &sh->dev[pd_idx].flags);
4265 *target = pd_idx;
4266 target = &sh->ops.target2;
4267 s->uptodate++;
4268 }
4269 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4270 set_bit(R5_Wantcompute,
4271 &sh->dev[qd_idx].flags);
4272 *target = qd_idx;
4273 s->uptodate++;
4274 }
4275 }
4276 }
4277 break;
4278 case check_state_compute_run:
4279 break;
4280 default:
4281 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4282 __func__, sh->check_state,
4283 (unsigned long long) sh->sector);
4284 BUG();
4285 }
4286 }
4287
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4288 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4289 {
4290 int i;
4291
4292 /* We have read all the blocks in this stripe and now we need to
4293 * copy some of them into a target stripe for expand.
4294 */
4295 struct dma_async_tx_descriptor *tx = NULL;
4296 BUG_ON(sh->batch_head);
4297 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4298 for (i = 0; i < sh->disks; i++)
4299 if (i != sh->pd_idx && i != sh->qd_idx) {
4300 int dd_idx, j;
4301 struct stripe_head *sh2;
4302 struct async_submit_ctl submit;
4303
4304 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4305 sector_t s = raid5_compute_sector(conf, bn, 0,
4306 &dd_idx, NULL);
4307 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4308 if (sh2 == NULL)
4309 /* so far only the early blocks of this stripe
4310 * have been requested. When later blocks
4311 * get requested, we will try again
4312 */
4313 continue;
4314 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4315 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4316 /* must have already done this block */
4317 raid5_release_stripe(sh2);
4318 continue;
4319 }
4320
4321 /* place all the copies on one channel */
4322 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4323 tx = async_memcpy(sh2->dev[dd_idx].page,
4324 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4325 &submit);
4326
4327 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4328 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4329 for (j = 0; j < conf->raid_disks; j++)
4330 if (j != sh2->pd_idx &&
4331 j != sh2->qd_idx &&
4332 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4333 break;
4334 if (j == conf->raid_disks) {
4335 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4336 set_bit(STRIPE_HANDLE, &sh2->state);
4337 }
4338 raid5_release_stripe(sh2);
4339
4340 }
4341 /* done submitting copies, wait for them to complete */
4342 async_tx_quiesce(&tx);
4343 }
4344
4345 /*
4346 * handle_stripe - do things to a stripe.
4347 *
4348 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4349 * state of various bits to see what needs to be done.
4350 * Possible results:
4351 * return some read requests which now have data
4352 * return some write requests which are safely on storage
4353 * schedule a read on some buffers
4354 * schedule a write of some buffers
4355 * return confirmation of parity correctness
4356 *
4357 */
4358
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4359 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4360 {
4361 struct r5conf *conf = sh->raid_conf;
4362 int disks = sh->disks;
4363 struct r5dev *dev;
4364 int i;
4365 int do_recovery = 0;
4366
4367 memset(s, 0, sizeof(*s));
4368
4369 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4370 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4371 s->failed_num[0] = -1;
4372 s->failed_num[1] = -1;
4373 s->log_failed = r5l_log_disk_error(conf);
4374
4375 /* Now to look around and see what can be done */
4376 rcu_read_lock();
4377 for (i=disks; i--; ) {
4378 struct md_rdev *rdev;
4379 sector_t first_bad;
4380 int bad_sectors;
4381 int is_bad = 0;
4382
4383 dev = &sh->dev[i];
4384
4385 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4386 i, dev->flags,
4387 dev->toread, dev->towrite, dev->written);
4388 /* maybe we can reply to a read
4389 *
4390 * new wantfill requests are only permitted while
4391 * ops_complete_biofill is guaranteed to be inactive
4392 */
4393 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4394 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4395 set_bit(R5_Wantfill, &dev->flags);
4396
4397 /* now count some things */
4398 if (test_bit(R5_LOCKED, &dev->flags))
4399 s->locked++;
4400 if (test_bit(R5_UPTODATE, &dev->flags))
4401 s->uptodate++;
4402 if (test_bit(R5_Wantcompute, &dev->flags)) {
4403 s->compute++;
4404 BUG_ON(s->compute > 2);
4405 }
4406
4407 if (test_bit(R5_Wantfill, &dev->flags))
4408 s->to_fill++;
4409 else if (dev->toread)
4410 s->to_read++;
4411 if (dev->towrite) {
4412 s->to_write++;
4413 if (!test_bit(R5_OVERWRITE, &dev->flags))
4414 s->non_overwrite++;
4415 }
4416 if (dev->written)
4417 s->written++;
4418 /* Prefer to use the replacement for reads, but only
4419 * if it is recovered enough and has no bad blocks.
4420 */
4421 rdev = rcu_dereference(conf->disks[i].replacement);
4422 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4423 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4424 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4425 &first_bad, &bad_sectors))
4426 set_bit(R5_ReadRepl, &dev->flags);
4427 else {
4428 if (rdev && !test_bit(Faulty, &rdev->flags))
4429 set_bit(R5_NeedReplace, &dev->flags);
4430 else
4431 clear_bit(R5_NeedReplace, &dev->flags);
4432 rdev = rcu_dereference(conf->disks[i].rdev);
4433 clear_bit(R5_ReadRepl, &dev->flags);
4434 }
4435 if (rdev && test_bit(Faulty, &rdev->flags))
4436 rdev = NULL;
4437 if (rdev) {
4438 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4439 &first_bad, &bad_sectors);
4440 if (s->blocked_rdev == NULL
4441 && (test_bit(Blocked, &rdev->flags)
4442 || is_bad < 0)) {
4443 if (is_bad < 0)
4444 set_bit(BlockedBadBlocks,
4445 &rdev->flags);
4446 s->blocked_rdev = rdev;
4447 atomic_inc(&rdev->nr_pending);
4448 }
4449 }
4450 clear_bit(R5_Insync, &dev->flags);
4451 if (!rdev)
4452 /* Not in-sync */;
4453 else if (is_bad) {
4454 /* also not in-sync */
4455 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4456 test_bit(R5_UPTODATE, &dev->flags)) {
4457 /* treat as in-sync, but with a read error
4458 * which we can now try to correct
4459 */
4460 set_bit(R5_Insync, &dev->flags);
4461 set_bit(R5_ReadError, &dev->flags);
4462 }
4463 } else if (test_bit(In_sync, &rdev->flags))
4464 set_bit(R5_Insync, &dev->flags);
4465 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4466 /* in sync if before recovery_offset */
4467 set_bit(R5_Insync, &dev->flags);
4468 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4469 test_bit(R5_Expanded, &dev->flags))
4470 /* If we've reshaped into here, we assume it is Insync.
4471 * We will shortly update recovery_offset to make
4472 * it official.
4473 */
4474 set_bit(R5_Insync, &dev->flags);
4475
4476 if (test_bit(R5_WriteError, &dev->flags)) {
4477 /* This flag does not apply to '.replacement'
4478 * only to .rdev, so make sure to check that*/
4479 struct md_rdev *rdev2 = rcu_dereference(
4480 conf->disks[i].rdev);
4481 if (rdev2 == rdev)
4482 clear_bit(R5_Insync, &dev->flags);
4483 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4484 s->handle_bad_blocks = 1;
4485 atomic_inc(&rdev2->nr_pending);
4486 } else
4487 clear_bit(R5_WriteError, &dev->flags);
4488 }
4489 if (test_bit(R5_MadeGood, &dev->flags)) {
4490 /* This flag does not apply to '.replacement'
4491 * only to .rdev, so make sure to check that*/
4492 struct md_rdev *rdev2 = rcu_dereference(
4493 conf->disks[i].rdev);
4494 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4495 s->handle_bad_blocks = 1;
4496 atomic_inc(&rdev2->nr_pending);
4497 } else
4498 clear_bit(R5_MadeGood, &dev->flags);
4499 }
4500 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4501 struct md_rdev *rdev2 = rcu_dereference(
4502 conf->disks[i].replacement);
4503 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4504 s->handle_bad_blocks = 1;
4505 atomic_inc(&rdev2->nr_pending);
4506 } else
4507 clear_bit(R5_MadeGoodRepl, &dev->flags);
4508 }
4509 if (!test_bit(R5_Insync, &dev->flags)) {
4510 /* The ReadError flag will just be confusing now */
4511 clear_bit(R5_ReadError, &dev->flags);
4512 clear_bit(R5_ReWrite, &dev->flags);
4513 }
4514 if (test_bit(R5_ReadError, &dev->flags))
4515 clear_bit(R5_Insync, &dev->flags);
4516 if (!test_bit(R5_Insync, &dev->flags)) {
4517 if (s->failed < 2)
4518 s->failed_num[s->failed] = i;
4519 s->failed++;
4520 if (rdev && !test_bit(Faulty, &rdev->flags))
4521 do_recovery = 1;
4522 else if (!rdev) {
4523 rdev = rcu_dereference(
4524 conf->disks[i].replacement);
4525 if (rdev && !test_bit(Faulty, &rdev->flags))
4526 do_recovery = 1;
4527 }
4528 }
4529
4530 if (test_bit(R5_InJournal, &dev->flags))
4531 s->injournal++;
4532 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4533 s->just_cached++;
4534 }
4535 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4536 /* If there is a failed device being replaced,
4537 * we must be recovering.
4538 * else if we are after recovery_cp, we must be syncing
4539 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4540 * else we can only be replacing
4541 * sync and recovery both need to read all devices, and so
4542 * use the same flag.
4543 */
4544 if (do_recovery ||
4545 sh->sector >= conf->mddev->recovery_cp ||
4546 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4547 s->syncing = 1;
4548 else
4549 s->replacing = 1;
4550 }
4551 rcu_read_unlock();
4552 }
4553
clear_batch_ready(struct stripe_head * sh)4554 static int clear_batch_ready(struct stripe_head *sh)
4555 {
4556 /* Return '1' if this is a member of batch, or
4557 * '0' if it is a lone stripe or a head which can now be
4558 * handled.
4559 */
4560 struct stripe_head *tmp;
4561 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4562 return (sh->batch_head && sh->batch_head != sh);
4563 spin_lock(&sh->stripe_lock);
4564 if (!sh->batch_head) {
4565 spin_unlock(&sh->stripe_lock);
4566 return 0;
4567 }
4568
4569 /*
4570 * this stripe could be added to a batch list before we check
4571 * BATCH_READY, skips it
4572 */
4573 if (sh->batch_head != sh) {
4574 spin_unlock(&sh->stripe_lock);
4575 return 1;
4576 }
4577 spin_lock(&sh->batch_lock);
4578 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4579 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4580 spin_unlock(&sh->batch_lock);
4581 spin_unlock(&sh->stripe_lock);
4582
4583 /*
4584 * BATCH_READY is cleared, no new stripes can be added.
4585 * batch_list can be accessed without lock
4586 */
4587 return 0;
4588 }
4589
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4590 static void break_stripe_batch_list(struct stripe_head *head_sh,
4591 unsigned long handle_flags)
4592 {
4593 struct stripe_head *sh, *next;
4594 int i;
4595 int do_wakeup = 0;
4596
4597 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4598
4599 list_del_init(&sh->batch_list);
4600
4601 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4602 (1 << STRIPE_SYNCING) |
4603 (1 << STRIPE_REPLACED) |
4604 (1 << STRIPE_DELAYED) |
4605 (1 << STRIPE_BIT_DELAY) |
4606 (1 << STRIPE_FULL_WRITE) |
4607 (1 << STRIPE_BIOFILL_RUN) |
4608 (1 << STRIPE_COMPUTE_RUN) |
4609 (1 << STRIPE_OPS_REQ_PENDING) |
4610 (1 << STRIPE_DISCARD) |
4611 (1 << STRIPE_BATCH_READY) |
4612 (1 << STRIPE_BATCH_ERR) |
4613 (1 << STRIPE_BITMAP_PENDING)),
4614 "stripe state: %lx\n", sh->state);
4615 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4616 (1 << STRIPE_REPLACED)),
4617 "head stripe state: %lx\n", head_sh->state);
4618
4619 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4620 (1 << STRIPE_PREREAD_ACTIVE) |
4621 (1 << STRIPE_DEGRADED) |
4622 (1 << STRIPE_ON_UNPLUG_LIST)),
4623 head_sh->state & (1 << STRIPE_INSYNC));
4624
4625 sh->check_state = head_sh->check_state;
4626 sh->reconstruct_state = head_sh->reconstruct_state;
4627 spin_lock_irq(&sh->stripe_lock);
4628 sh->batch_head = NULL;
4629 spin_unlock_irq(&sh->stripe_lock);
4630 for (i = 0; i < sh->disks; i++) {
4631 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4632 do_wakeup = 1;
4633 sh->dev[i].flags = head_sh->dev[i].flags &
4634 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4635 }
4636 if (handle_flags == 0 ||
4637 sh->state & handle_flags)
4638 set_bit(STRIPE_HANDLE, &sh->state);
4639 raid5_release_stripe(sh);
4640 }
4641 spin_lock_irq(&head_sh->stripe_lock);
4642 head_sh->batch_head = NULL;
4643 spin_unlock_irq(&head_sh->stripe_lock);
4644 for (i = 0; i < head_sh->disks; i++)
4645 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4646 do_wakeup = 1;
4647 if (head_sh->state & handle_flags)
4648 set_bit(STRIPE_HANDLE, &head_sh->state);
4649
4650 if (do_wakeup)
4651 wake_up(&head_sh->raid_conf->wait_for_overlap);
4652 }
4653
handle_stripe(struct stripe_head * sh)4654 static void handle_stripe(struct stripe_head *sh)
4655 {
4656 struct stripe_head_state s;
4657 struct r5conf *conf = sh->raid_conf;
4658 int i;
4659 int prexor;
4660 int disks = sh->disks;
4661 struct r5dev *pdev, *qdev;
4662
4663 clear_bit(STRIPE_HANDLE, &sh->state);
4664 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4665 /* already being handled, ensure it gets handled
4666 * again when current action finishes */
4667 set_bit(STRIPE_HANDLE, &sh->state);
4668 return;
4669 }
4670
4671 if (clear_batch_ready(sh) ) {
4672 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4673 return;
4674 }
4675
4676 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4677 break_stripe_batch_list(sh, 0);
4678
4679 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4680 spin_lock(&sh->stripe_lock);
4681 /*
4682 * Cannot process 'sync' concurrently with 'discard'.
4683 * Flush data in r5cache before 'sync'.
4684 */
4685 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4686 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4687 !test_bit(STRIPE_DISCARD, &sh->state) &&
4688 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4689 set_bit(STRIPE_SYNCING, &sh->state);
4690 clear_bit(STRIPE_INSYNC, &sh->state);
4691 clear_bit(STRIPE_REPLACED, &sh->state);
4692 }
4693 spin_unlock(&sh->stripe_lock);
4694 }
4695 clear_bit(STRIPE_DELAYED, &sh->state);
4696
4697 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4698 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4699 (unsigned long long)sh->sector, sh->state,
4700 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4701 sh->check_state, sh->reconstruct_state);
4702
4703 analyse_stripe(sh, &s);
4704
4705 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4706 goto finish;
4707
4708 if (s.handle_bad_blocks ||
4709 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4710 set_bit(STRIPE_HANDLE, &sh->state);
4711 goto finish;
4712 }
4713
4714 if (unlikely(s.blocked_rdev)) {
4715 if (s.syncing || s.expanding || s.expanded ||
4716 s.replacing || s.to_write || s.written) {
4717 set_bit(STRIPE_HANDLE, &sh->state);
4718 goto finish;
4719 }
4720 /* There is nothing for the blocked_rdev to block */
4721 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4722 s.blocked_rdev = NULL;
4723 }
4724
4725 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4726 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4727 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4728 }
4729
4730 pr_debug("locked=%d uptodate=%d to_read=%d"
4731 " to_write=%d failed=%d failed_num=%d,%d\n",
4732 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4733 s.failed_num[0], s.failed_num[1]);
4734 /*
4735 * check if the array has lost more than max_degraded devices and,
4736 * if so, some requests might need to be failed.
4737 *
4738 * When journal device failed (log_failed), we will only process
4739 * the stripe if there is data need write to raid disks
4740 */
4741 if (s.failed > conf->max_degraded ||
4742 (s.log_failed && s.injournal == 0)) {
4743 sh->check_state = 0;
4744 sh->reconstruct_state = 0;
4745 break_stripe_batch_list(sh, 0);
4746 if (s.to_read+s.to_write+s.written)
4747 handle_failed_stripe(conf, sh, &s, disks);
4748 if (s.syncing + s.replacing)
4749 handle_failed_sync(conf, sh, &s);
4750 }
4751
4752 /* Now we check to see if any write operations have recently
4753 * completed
4754 */
4755 prexor = 0;
4756 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4757 prexor = 1;
4758 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4759 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4760 sh->reconstruct_state = reconstruct_state_idle;
4761
4762 /* All the 'written' buffers and the parity block are ready to
4763 * be written back to disk
4764 */
4765 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4766 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4767 BUG_ON(sh->qd_idx >= 0 &&
4768 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4769 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4770 for (i = disks; i--; ) {
4771 struct r5dev *dev = &sh->dev[i];
4772 if (test_bit(R5_LOCKED, &dev->flags) &&
4773 (i == sh->pd_idx || i == sh->qd_idx ||
4774 dev->written || test_bit(R5_InJournal,
4775 &dev->flags))) {
4776 pr_debug("Writing block %d\n", i);
4777 set_bit(R5_Wantwrite, &dev->flags);
4778 if (prexor)
4779 continue;
4780 if (s.failed > 1)
4781 continue;
4782 if (!test_bit(R5_Insync, &dev->flags) ||
4783 ((i == sh->pd_idx || i == sh->qd_idx) &&
4784 s.failed == 0))
4785 set_bit(STRIPE_INSYNC, &sh->state);
4786 }
4787 }
4788 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4789 s.dec_preread_active = 1;
4790 }
4791
4792 /*
4793 * might be able to return some write requests if the parity blocks
4794 * are safe, or on a failed drive
4795 */
4796 pdev = &sh->dev[sh->pd_idx];
4797 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4798 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4799 qdev = &sh->dev[sh->qd_idx];
4800 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4801 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4802 || conf->level < 6;
4803
4804 if (s.written &&
4805 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4806 && !test_bit(R5_LOCKED, &pdev->flags)
4807 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4808 test_bit(R5_Discard, &pdev->flags))))) &&
4809 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4810 && !test_bit(R5_LOCKED, &qdev->flags)
4811 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4812 test_bit(R5_Discard, &qdev->flags))))))
4813 handle_stripe_clean_event(conf, sh, disks);
4814
4815 if (s.just_cached)
4816 r5c_handle_cached_data_endio(conf, sh, disks);
4817 log_stripe_write_finished(sh);
4818
4819 /* Now we might consider reading some blocks, either to check/generate
4820 * parity, or to satisfy requests
4821 * or to load a block that is being partially written.
4822 */
4823 if (s.to_read || s.non_overwrite
4824 || (conf->level == 6 && s.to_write && s.failed)
4825 || (s.syncing && (s.uptodate + s.compute < disks))
4826 || s.replacing
4827 || s.expanding)
4828 handle_stripe_fill(sh, &s, disks);
4829
4830 /*
4831 * When the stripe finishes full journal write cycle (write to journal
4832 * and raid disk), this is the clean up procedure so it is ready for
4833 * next operation.
4834 */
4835 r5c_finish_stripe_write_out(conf, sh, &s);
4836
4837 /*
4838 * Now to consider new write requests, cache write back and what else,
4839 * if anything should be read. We do not handle new writes when:
4840 * 1/ A 'write' operation (copy+xor) is already in flight.
4841 * 2/ A 'check' operation is in flight, as it may clobber the parity
4842 * block.
4843 * 3/ A r5c cache log write is in flight.
4844 */
4845
4846 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4847 if (!r5c_is_writeback(conf->log)) {
4848 if (s.to_write)
4849 handle_stripe_dirtying(conf, sh, &s, disks);
4850 } else { /* write back cache */
4851 int ret = 0;
4852
4853 /* First, try handle writes in caching phase */
4854 if (s.to_write)
4855 ret = r5c_try_caching_write(conf, sh, &s,
4856 disks);
4857 /*
4858 * If caching phase failed: ret == -EAGAIN
4859 * OR
4860 * stripe under reclaim: !caching && injournal
4861 *
4862 * fall back to handle_stripe_dirtying()
4863 */
4864 if (ret == -EAGAIN ||
4865 /* stripe under reclaim: !caching && injournal */
4866 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4867 s.injournal > 0)) {
4868 ret = handle_stripe_dirtying(conf, sh, &s,
4869 disks);
4870 if (ret == -EAGAIN)
4871 goto finish;
4872 }
4873 }
4874 }
4875
4876 /* maybe we need to check and possibly fix the parity for this stripe
4877 * Any reads will already have been scheduled, so we just see if enough
4878 * data is available. The parity check is held off while parity
4879 * dependent operations are in flight.
4880 */
4881 if (sh->check_state ||
4882 (s.syncing && s.locked == 0 &&
4883 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4884 !test_bit(STRIPE_INSYNC, &sh->state))) {
4885 if (conf->level == 6)
4886 handle_parity_checks6(conf, sh, &s, disks);
4887 else
4888 handle_parity_checks5(conf, sh, &s, disks);
4889 }
4890
4891 if ((s.replacing || s.syncing) && s.locked == 0
4892 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4893 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4894 /* Write out to replacement devices where possible */
4895 for (i = 0; i < conf->raid_disks; i++)
4896 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4897 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4898 set_bit(R5_WantReplace, &sh->dev[i].flags);
4899 set_bit(R5_LOCKED, &sh->dev[i].flags);
4900 s.locked++;
4901 }
4902 if (s.replacing)
4903 set_bit(STRIPE_INSYNC, &sh->state);
4904 set_bit(STRIPE_REPLACED, &sh->state);
4905 }
4906 if ((s.syncing || s.replacing) && s.locked == 0 &&
4907 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4908 test_bit(STRIPE_INSYNC, &sh->state)) {
4909 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4910 clear_bit(STRIPE_SYNCING, &sh->state);
4911 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4912 wake_up(&conf->wait_for_overlap);
4913 }
4914
4915 /* If the failed drives are just a ReadError, then we might need
4916 * to progress the repair/check process
4917 */
4918 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4919 for (i = 0; i < s.failed; i++) {
4920 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4921 if (test_bit(R5_ReadError, &dev->flags)
4922 && !test_bit(R5_LOCKED, &dev->flags)
4923 && test_bit(R5_UPTODATE, &dev->flags)
4924 ) {
4925 if (!test_bit(R5_ReWrite, &dev->flags)) {
4926 set_bit(R5_Wantwrite, &dev->flags);
4927 set_bit(R5_ReWrite, &dev->flags);
4928 set_bit(R5_LOCKED, &dev->flags);
4929 s.locked++;
4930 } else {
4931 /* let's read it back */
4932 set_bit(R5_Wantread, &dev->flags);
4933 set_bit(R5_LOCKED, &dev->flags);
4934 s.locked++;
4935 }
4936 }
4937 }
4938
4939 /* Finish reconstruct operations initiated by the expansion process */
4940 if (sh->reconstruct_state == reconstruct_state_result) {
4941 struct stripe_head *sh_src
4942 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4943 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4944 /* sh cannot be written until sh_src has been read.
4945 * so arrange for sh to be delayed a little
4946 */
4947 set_bit(STRIPE_DELAYED, &sh->state);
4948 set_bit(STRIPE_HANDLE, &sh->state);
4949 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4950 &sh_src->state))
4951 atomic_inc(&conf->preread_active_stripes);
4952 raid5_release_stripe(sh_src);
4953 goto finish;
4954 }
4955 if (sh_src)
4956 raid5_release_stripe(sh_src);
4957
4958 sh->reconstruct_state = reconstruct_state_idle;
4959 clear_bit(STRIPE_EXPANDING, &sh->state);
4960 for (i = conf->raid_disks; i--; ) {
4961 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4962 set_bit(R5_LOCKED, &sh->dev[i].flags);
4963 s.locked++;
4964 }
4965 }
4966
4967 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4968 !sh->reconstruct_state) {
4969 /* Need to write out all blocks after computing parity */
4970 sh->disks = conf->raid_disks;
4971 stripe_set_idx(sh->sector, conf, 0, sh);
4972 schedule_reconstruction(sh, &s, 1, 1);
4973 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4974 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4975 atomic_dec(&conf->reshape_stripes);
4976 wake_up(&conf->wait_for_overlap);
4977 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4978 }
4979
4980 if (s.expanding && s.locked == 0 &&
4981 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4982 handle_stripe_expansion(conf, sh);
4983
4984 finish:
4985 /* wait for this device to become unblocked */
4986 if (unlikely(s.blocked_rdev)) {
4987 if (conf->mddev->external)
4988 md_wait_for_blocked_rdev(s.blocked_rdev,
4989 conf->mddev);
4990 else
4991 /* Internal metadata will immediately
4992 * be written by raid5d, so we don't
4993 * need to wait here.
4994 */
4995 rdev_dec_pending(s.blocked_rdev,
4996 conf->mddev);
4997 }
4998
4999 if (s.handle_bad_blocks)
5000 for (i = disks; i--; ) {
5001 struct md_rdev *rdev;
5002 struct r5dev *dev = &sh->dev[i];
5003 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5004 /* We own a safe reference to the rdev */
5005 rdev = conf->disks[i].rdev;
5006 if (!rdev_set_badblocks(rdev, sh->sector,
5007 STRIPE_SECTORS, 0))
5008 md_error(conf->mddev, rdev);
5009 rdev_dec_pending(rdev, conf->mddev);
5010 }
5011 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5012 rdev = conf->disks[i].rdev;
5013 rdev_clear_badblocks(rdev, sh->sector,
5014 STRIPE_SECTORS, 0);
5015 rdev_dec_pending(rdev, conf->mddev);
5016 }
5017 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5018 rdev = conf->disks[i].replacement;
5019 if (!rdev)
5020 /* rdev have been moved down */
5021 rdev = conf->disks[i].rdev;
5022 rdev_clear_badblocks(rdev, sh->sector,
5023 STRIPE_SECTORS, 0);
5024 rdev_dec_pending(rdev, conf->mddev);
5025 }
5026 }
5027
5028 if (s.ops_request)
5029 raid_run_ops(sh, s.ops_request);
5030
5031 ops_run_io(sh, &s);
5032
5033 if (s.dec_preread_active) {
5034 /* We delay this until after ops_run_io so that if make_request
5035 * is waiting on a flush, it won't continue until the writes
5036 * have actually been submitted.
5037 */
5038 atomic_dec(&conf->preread_active_stripes);
5039 if (atomic_read(&conf->preread_active_stripes) <
5040 IO_THRESHOLD)
5041 md_wakeup_thread(conf->mddev->thread);
5042 }
5043
5044 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5045 }
5046
raid5_activate_delayed(struct r5conf * conf)5047 static void raid5_activate_delayed(struct r5conf *conf)
5048 {
5049 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5050 while (!list_empty(&conf->delayed_list)) {
5051 struct list_head *l = conf->delayed_list.next;
5052 struct stripe_head *sh;
5053 sh = list_entry(l, struct stripe_head, lru);
5054 list_del_init(l);
5055 clear_bit(STRIPE_DELAYED, &sh->state);
5056 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5057 atomic_inc(&conf->preread_active_stripes);
5058 list_add_tail(&sh->lru, &conf->hold_list);
5059 raid5_wakeup_stripe_thread(sh);
5060 }
5061 }
5062 }
5063
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5064 static void activate_bit_delay(struct r5conf *conf,
5065 struct list_head *temp_inactive_list)
5066 {
5067 /* device_lock is held */
5068 struct list_head head;
5069 list_add(&head, &conf->bitmap_list);
5070 list_del_init(&conf->bitmap_list);
5071 while (!list_empty(&head)) {
5072 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5073 int hash;
5074 list_del_init(&sh->lru);
5075 atomic_inc(&sh->count);
5076 hash = sh->hash_lock_index;
5077 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5078 }
5079 }
5080
raid5_congested(struct mddev * mddev,int bits)5081 static int raid5_congested(struct mddev *mddev, int bits)
5082 {
5083 struct r5conf *conf = mddev->private;
5084
5085 /* No difference between reads and writes. Just check
5086 * how busy the stripe_cache is
5087 */
5088
5089 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5090 return 1;
5091
5092 /* Also checks whether there is pressure on r5cache log space */
5093 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5094 return 1;
5095 if (conf->quiesce)
5096 return 1;
5097 if (atomic_read(&conf->empty_inactive_list_nr))
5098 return 1;
5099
5100 return 0;
5101 }
5102
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5103 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5104 {
5105 struct r5conf *conf = mddev->private;
5106 sector_t sector = bio->bi_iter.bi_sector;
5107 unsigned int chunk_sectors;
5108 unsigned int bio_sectors = bio_sectors(bio);
5109
5110 WARN_ON_ONCE(bio->bi_partno);
5111
5112 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5113 return chunk_sectors >=
5114 ((sector & (chunk_sectors - 1)) + bio_sectors);
5115 }
5116
5117 /*
5118 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5119 * later sampled by raid5d.
5120 */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5121 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5122 {
5123 unsigned long flags;
5124
5125 spin_lock_irqsave(&conf->device_lock, flags);
5126
5127 bi->bi_next = conf->retry_read_aligned_list;
5128 conf->retry_read_aligned_list = bi;
5129
5130 spin_unlock_irqrestore(&conf->device_lock, flags);
5131 md_wakeup_thread(conf->mddev->thread);
5132 }
5133
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5134 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5135 unsigned int *offset)
5136 {
5137 struct bio *bi;
5138
5139 bi = conf->retry_read_aligned;
5140 if (bi) {
5141 *offset = conf->retry_read_offset;
5142 conf->retry_read_aligned = NULL;
5143 return bi;
5144 }
5145 bi = conf->retry_read_aligned_list;
5146 if(bi) {
5147 conf->retry_read_aligned_list = bi->bi_next;
5148 bi->bi_next = NULL;
5149 *offset = 0;
5150 }
5151
5152 return bi;
5153 }
5154
5155 /*
5156 * The "raid5_align_endio" should check if the read succeeded and if it
5157 * did, call bio_endio on the original bio (having bio_put the new bio
5158 * first).
5159 * If the read failed..
5160 */
raid5_align_endio(struct bio * bi)5161 static void raid5_align_endio(struct bio *bi)
5162 {
5163 struct bio* raid_bi = bi->bi_private;
5164 struct mddev *mddev;
5165 struct r5conf *conf;
5166 struct md_rdev *rdev;
5167 blk_status_t error = bi->bi_status;
5168
5169 bio_put(bi);
5170
5171 rdev = (void*)raid_bi->bi_next;
5172 raid_bi->bi_next = NULL;
5173 mddev = rdev->mddev;
5174 conf = mddev->private;
5175
5176 rdev_dec_pending(rdev, conf->mddev);
5177
5178 if (!error) {
5179 bio_endio(raid_bi);
5180 if (atomic_dec_and_test(&conf->active_aligned_reads))
5181 wake_up(&conf->wait_for_quiescent);
5182 return;
5183 }
5184
5185 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5186
5187 add_bio_to_retry(raid_bi, conf);
5188 }
5189
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5190 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5191 {
5192 struct r5conf *conf = mddev->private;
5193 int dd_idx;
5194 struct bio* align_bi;
5195 struct md_rdev *rdev;
5196 sector_t end_sector;
5197
5198 if (!in_chunk_boundary(mddev, raid_bio)) {
5199 pr_debug("%s: non aligned\n", __func__);
5200 return 0;
5201 }
5202 /*
5203 * use bio_clone_fast to make a copy of the bio
5204 */
5205 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5206 if (!align_bi)
5207 return 0;
5208 /*
5209 * set bi_end_io to a new function, and set bi_private to the
5210 * original bio.
5211 */
5212 align_bi->bi_end_io = raid5_align_endio;
5213 align_bi->bi_private = raid_bio;
5214 /*
5215 * compute position
5216 */
5217 align_bi->bi_iter.bi_sector =
5218 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5219 0, &dd_idx, NULL);
5220
5221 end_sector = bio_end_sector(align_bi);
5222 rcu_read_lock();
5223 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5224 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5225 rdev->recovery_offset < end_sector) {
5226 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5227 if (rdev &&
5228 (test_bit(Faulty, &rdev->flags) ||
5229 !(test_bit(In_sync, &rdev->flags) ||
5230 rdev->recovery_offset >= end_sector)))
5231 rdev = NULL;
5232 }
5233
5234 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5235 rcu_read_unlock();
5236 bio_put(align_bi);
5237 return 0;
5238 }
5239
5240 if (rdev) {
5241 sector_t first_bad;
5242 int bad_sectors;
5243
5244 atomic_inc(&rdev->nr_pending);
5245 rcu_read_unlock();
5246 raid_bio->bi_next = (void*)rdev;
5247 bio_set_dev(align_bi, rdev->bdev);
5248 bio_clear_flag(align_bi, BIO_SEG_VALID);
5249
5250 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5251 bio_sectors(align_bi),
5252 &first_bad, &bad_sectors)) {
5253 bio_put(align_bi);
5254 rdev_dec_pending(rdev, mddev);
5255 return 0;
5256 }
5257
5258 /* No reshape active, so we can trust rdev->data_offset */
5259 align_bi->bi_iter.bi_sector += rdev->data_offset;
5260
5261 spin_lock_irq(&conf->device_lock);
5262 wait_event_lock_irq(conf->wait_for_quiescent,
5263 conf->quiesce == 0,
5264 conf->device_lock);
5265 atomic_inc(&conf->active_aligned_reads);
5266 spin_unlock_irq(&conf->device_lock);
5267
5268 if (mddev->gendisk)
5269 trace_block_bio_remap(align_bi->bi_disk->queue,
5270 align_bi, disk_devt(mddev->gendisk),
5271 raid_bio->bi_iter.bi_sector);
5272 generic_make_request(align_bi);
5273 return 1;
5274 } else {
5275 rcu_read_unlock();
5276 bio_put(align_bi);
5277 return 0;
5278 }
5279 }
5280
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5281 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5282 {
5283 struct bio *split;
5284 sector_t sector = raid_bio->bi_iter.bi_sector;
5285 unsigned chunk_sects = mddev->chunk_sectors;
5286 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5287
5288 if (sectors < bio_sectors(raid_bio)) {
5289 struct r5conf *conf = mddev->private;
5290 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5291 bio_chain(split, raid_bio);
5292 generic_make_request(raid_bio);
5293 raid_bio = split;
5294 }
5295
5296 if (!raid5_read_one_chunk(mddev, raid_bio))
5297 return raid_bio;
5298
5299 return NULL;
5300 }
5301
5302 /* __get_priority_stripe - get the next stripe to process
5303 *
5304 * Full stripe writes are allowed to pass preread active stripes up until
5305 * the bypass_threshold is exceeded. In general the bypass_count
5306 * increments when the handle_list is handled before the hold_list; however, it
5307 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5308 * stripe with in flight i/o. The bypass_count will be reset when the
5309 * head of the hold_list has changed, i.e. the head was promoted to the
5310 * handle_list.
5311 */
__get_priority_stripe(struct r5conf * conf,int group)5312 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5313 {
5314 struct stripe_head *sh, *tmp;
5315 struct list_head *handle_list = NULL;
5316 struct r5worker_group *wg;
5317 bool second_try = !r5c_is_writeback(conf->log) &&
5318 !r5l_log_disk_error(conf);
5319 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5320 r5l_log_disk_error(conf);
5321
5322 again:
5323 wg = NULL;
5324 sh = NULL;
5325 if (conf->worker_cnt_per_group == 0) {
5326 handle_list = try_loprio ? &conf->loprio_list :
5327 &conf->handle_list;
5328 } else if (group != ANY_GROUP) {
5329 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5330 &conf->worker_groups[group].handle_list;
5331 wg = &conf->worker_groups[group];
5332 } else {
5333 int i;
5334 for (i = 0; i < conf->group_cnt; i++) {
5335 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5336 &conf->worker_groups[i].handle_list;
5337 wg = &conf->worker_groups[i];
5338 if (!list_empty(handle_list))
5339 break;
5340 }
5341 }
5342
5343 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5344 __func__,
5345 list_empty(handle_list) ? "empty" : "busy",
5346 list_empty(&conf->hold_list) ? "empty" : "busy",
5347 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5348
5349 if (!list_empty(handle_list)) {
5350 sh = list_entry(handle_list->next, typeof(*sh), lru);
5351
5352 if (list_empty(&conf->hold_list))
5353 conf->bypass_count = 0;
5354 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5355 if (conf->hold_list.next == conf->last_hold)
5356 conf->bypass_count++;
5357 else {
5358 conf->last_hold = conf->hold_list.next;
5359 conf->bypass_count -= conf->bypass_threshold;
5360 if (conf->bypass_count < 0)
5361 conf->bypass_count = 0;
5362 }
5363 }
5364 } else if (!list_empty(&conf->hold_list) &&
5365 ((conf->bypass_threshold &&
5366 conf->bypass_count > conf->bypass_threshold) ||
5367 atomic_read(&conf->pending_full_writes) == 0)) {
5368
5369 list_for_each_entry(tmp, &conf->hold_list, lru) {
5370 if (conf->worker_cnt_per_group == 0 ||
5371 group == ANY_GROUP ||
5372 !cpu_online(tmp->cpu) ||
5373 cpu_to_group(tmp->cpu) == group) {
5374 sh = tmp;
5375 break;
5376 }
5377 }
5378
5379 if (sh) {
5380 conf->bypass_count -= conf->bypass_threshold;
5381 if (conf->bypass_count < 0)
5382 conf->bypass_count = 0;
5383 }
5384 wg = NULL;
5385 }
5386
5387 if (!sh) {
5388 if (second_try)
5389 return NULL;
5390 second_try = true;
5391 try_loprio = !try_loprio;
5392 goto again;
5393 }
5394
5395 if (wg) {
5396 wg->stripes_cnt--;
5397 sh->group = NULL;
5398 }
5399 list_del_init(&sh->lru);
5400 BUG_ON(atomic_inc_return(&sh->count) != 1);
5401 return sh;
5402 }
5403
5404 struct raid5_plug_cb {
5405 struct blk_plug_cb cb;
5406 struct list_head list;
5407 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5408 };
5409
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5410 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5411 {
5412 struct raid5_plug_cb *cb = container_of(
5413 blk_cb, struct raid5_plug_cb, cb);
5414 struct stripe_head *sh;
5415 struct mddev *mddev = cb->cb.data;
5416 struct r5conf *conf = mddev->private;
5417 int cnt = 0;
5418 int hash;
5419
5420 if (cb->list.next && !list_empty(&cb->list)) {
5421 spin_lock_irq(&conf->device_lock);
5422 while (!list_empty(&cb->list)) {
5423 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5424 list_del_init(&sh->lru);
5425 /*
5426 * avoid race release_stripe_plug() sees
5427 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5428 * is still in our list
5429 */
5430 smp_mb__before_atomic();
5431 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5432 /*
5433 * STRIPE_ON_RELEASE_LIST could be set here. In that
5434 * case, the count is always > 1 here
5435 */
5436 hash = sh->hash_lock_index;
5437 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5438 cnt++;
5439 }
5440 spin_unlock_irq(&conf->device_lock);
5441 }
5442 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5443 NR_STRIPE_HASH_LOCKS);
5444 if (mddev->queue)
5445 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5446 kfree(cb);
5447 }
5448
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5449 static void release_stripe_plug(struct mddev *mddev,
5450 struct stripe_head *sh)
5451 {
5452 struct blk_plug_cb *blk_cb = blk_check_plugged(
5453 raid5_unplug, mddev,
5454 sizeof(struct raid5_plug_cb));
5455 struct raid5_plug_cb *cb;
5456
5457 if (!blk_cb) {
5458 raid5_release_stripe(sh);
5459 return;
5460 }
5461
5462 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5463
5464 if (cb->list.next == NULL) {
5465 int i;
5466 INIT_LIST_HEAD(&cb->list);
5467 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5468 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5469 }
5470
5471 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5472 list_add_tail(&sh->lru, &cb->list);
5473 else
5474 raid5_release_stripe(sh);
5475 }
5476
make_discard_request(struct mddev * mddev,struct bio * bi)5477 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5478 {
5479 struct r5conf *conf = mddev->private;
5480 sector_t logical_sector, last_sector;
5481 struct stripe_head *sh;
5482 int stripe_sectors;
5483
5484 if (mddev->reshape_position != MaxSector)
5485 /* Skip discard while reshape is happening */
5486 return;
5487
5488 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5489 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5490
5491 bi->bi_next = NULL;
5492
5493 stripe_sectors = conf->chunk_sectors *
5494 (conf->raid_disks - conf->max_degraded);
5495 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5496 stripe_sectors);
5497 sector_div(last_sector, stripe_sectors);
5498
5499 logical_sector *= conf->chunk_sectors;
5500 last_sector *= conf->chunk_sectors;
5501
5502 for (; logical_sector < last_sector;
5503 logical_sector += STRIPE_SECTORS) {
5504 DEFINE_WAIT(w);
5505 int d;
5506 again:
5507 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5508 prepare_to_wait(&conf->wait_for_overlap, &w,
5509 TASK_UNINTERRUPTIBLE);
5510 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5511 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5512 raid5_release_stripe(sh);
5513 schedule();
5514 goto again;
5515 }
5516 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5517 spin_lock_irq(&sh->stripe_lock);
5518 for (d = 0; d < conf->raid_disks; d++) {
5519 if (d == sh->pd_idx || d == sh->qd_idx)
5520 continue;
5521 if (sh->dev[d].towrite || sh->dev[d].toread) {
5522 set_bit(R5_Overlap, &sh->dev[d].flags);
5523 spin_unlock_irq(&sh->stripe_lock);
5524 raid5_release_stripe(sh);
5525 schedule();
5526 goto again;
5527 }
5528 }
5529 set_bit(STRIPE_DISCARD, &sh->state);
5530 finish_wait(&conf->wait_for_overlap, &w);
5531 sh->overwrite_disks = 0;
5532 for (d = 0; d < conf->raid_disks; d++) {
5533 if (d == sh->pd_idx || d == sh->qd_idx)
5534 continue;
5535 sh->dev[d].towrite = bi;
5536 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5537 bio_inc_remaining(bi);
5538 md_write_inc(mddev, bi);
5539 sh->overwrite_disks++;
5540 }
5541 spin_unlock_irq(&sh->stripe_lock);
5542 if (conf->mddev->bitmap) {
5543 for (d = 0;
5544 d < conf->raid_disks - conf->max_degraded;
5545 d++)
5546 md_bitmap_startwrite(mddev->bitmap,
5547 sh->sector,
5548 STRIPE_SECTORS,
5549 0);
5550 sh->bm_seq = conf->seq_flush + 1;
5551 set_bit(STRIPE_BIT_DELAY, &sh->state);
5552 }
5553
5554 set_bit(STRIPE_HANDLE, &sh->state);
5555 clear_bit(STRIPE_DELAYED, &sh->state);
5556 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5557 atomic_inc(&conf->preread_active_stripes);
5558 release_stripe_plug(mddev, sh);
5559 }
5560
5561 bio_endio(bi);
5562 }
5563
raid5_make_request(struct mddev * mddev,struct bio * bi)5564 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5565 {
5566 struct r5conf *conf = mddev->private;
5567 int dd_idx;
5568 sector_t new_sector;
5569 sector_t logical_sector, last_sector;
5570 struct stripe_head *sh;
5571 const int rw = bio_data_dir(bi);
5572 DEFINE_WAIT(w);
5573 bool do_prepare;
5574 bool do_flush = false;
5575
5576 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5577 int ret = log_handle_flush_request(conf, bi);
5578
5579 if (ret == 0)
5580 return true;
5581 if (ret == -ENODEV) {
5582 md_flush_request(mddev, bi);
5583 return true;
5584 }
5585 /* ret == -EAGAIN, fallback */
5586 /*
5587 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5588 * we need to flush journal device
5589 */
5590 do_flush = bi->bi_opf & REQ_PREFLUSH;
5591 }
5592
5593 if (!md_write_start(mddev, bi))
5594 return false;
5595 /*
5596 * If array is degraded, better not do chunk aligned read because
5597 * later we might have to read it again in order to reconstruct
5598 * data on failed drives.
5599 */
5600 if (rw == READ && mddev->degraded == 0 &&
5601 mddev->reshape_position == MaxSector) {
5602 bi = chunk_aligned_read(mddev, bi);
5603 if (!bi)
5604 return true;
5605 }
5606
5607 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5608 make_discard_request(mddev, bi);
5609 md_write_end(mddev);
5610 return true;
5611 }
5612
5613 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5614 last_sector = bio_end_sector(bi);
5615 bi->bi_next = NULL;
5616
5617 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5618 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5619 int previous;
5620 int seq;
5621
5622 do_prepare = false;
5623 retry:
5624 seq = read_seqcount_begin(&conf->gen_lock);
5625 previous = 0;
5626 if (do_prepare)
5627 prepare_to_wait(&conf->wait_for_overlap, &w,
5628 TASK_UNINTERRUPTIBLE);
5629 if (unlikely(conf->reshape_progress != MaxSector)) {
5630 /* spinlock is needed as reshape_progress may be
5631 * 64bit on a 32bit platform, and so it might be
5632 * possible to see a half-updated value
5633 * Of course reshape_progress could change after
5634 * the lock is dropped, so once we get a reference
5635 * to the stripe that we think it is, we will have
5636 * to check again.
5637 */
5638 spin_lock_irq(&conf->device_lock);
5639 if (mddev->reshape_backwards
5640 ? logical_sector < conf->reshape_progress
5641 : logical_sector >= conf->reshape_progress) {
5642 previous = 1;
5643 } else {
5644 if (mddev->reshape_backwards
5645 ? logical_sector < conf->reshape_safe
5646 : logical_sector >= conf->reshape_safe) {
5647 spin_unlock_irq(&conf->device_lock);
5648 schedule();
5649 do_prepare = true;
5650 goto retry;
5651 }
5652 }
5653 spin_unlock_irq(&conf->device_lock);
5654 }
5655
5656 new_sector = raid5_compute_sector(conf, logical_sector,
5657 previous,
5658 &dd_idx, NULL);
5659 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5660 (unsigned long long)new_sector,
5661 (unsigned long long)logical_sector);
5662
5663 sh = raid5_get_active_stripe(conf, new_sector, previous,
5664 (bi->bi_opf & REQ_RAHEAD), 0);
5665 if (sh) {
5666 if (unlikely(previous)) {
5667 /* expansion might have moved on while waiting for a
5668 * stripe, so we must do the range check again.
5669 * Expansion could still move past after this
5670 * test, but as we are holding a reference to
5671 * 'sh', we know that if that happens,
5672 * STRIPE_EXPANDING will get set and the expansion
5673 * won't proceed until we finish with the stripe.
5674 */
5675 int must_retry = 0;
5676 spin_lock_irq(&conf->device_lock);
5677 if (mddev->reshape_backwards
5678 ? logical_sector >= conf->reshape_progress
5679 : logical_sector < conf->reshape_progress)
5680 /* mismatch, need to try again */
5681 must_retry = 1;
5682 spin_unlock_irq(&conf->device_lock);
5683 if (must_retry) {
5684 raid5_release_stripe(sh);
5685 schedule();
5686 do_prepare = true;
5687 goto retry;
5688 }
5689 }
5690 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5691 /* Might have got the wrong stripe_head
5692 * by accident
5693 */
5694 raid5_release_stripe(sh);
5695 goto retry;
5696 }
5697
5698 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5699 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5700 /* Stripe is busy expanding or
5701 * add failed due to overlap. Flush everything
5702 * and wait a while
5703 */
5704 md_wakeup_thread(mddev->thread);
5705 raid5_release_stripe(sh);
5706 schedule();
5707 do_prepare = true;
5708 goto retry;
5709 }
5710 if (do_flush) {
5711 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5712 /* we only need flush for one stripe */
5713 do_flush = false;
5714 }
5715
5716 set_bit(STRIPE_HANDLE, &sh->state);
5717 clear_bit(STRIPE_DELAYED, &sh->state);
5718 if ((!sh->batch_head || sh == sh->batch_head) &&
5719 (bi->bi_opf & REQ_SYNC) &&
5720 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5721 atomic_inc(&conf->preread_active_stripes);
5722 release_stripe_plug(mddev, sh);
5723 } else {
5724 /* cannot get stripe for read-ahead, just give-up */
5725 bi->bi_status = BLK_STS_IOERR;
5726 break;
5727 }
5728 }
5729 finish_wait(&conf->wait_for_overlap, &w);
5730
5731 if (rw == WRITE)
5732 md_write_end(mddev);
5733 bio_endio(bi);
5734 return true;
5735 }
5736
5737 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5738
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5739 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5740 {
5741 /* reshaping is quite different to recovery/resync so it is
5742 * handled quite separately ... here.
5743 *
5744 * On each call to sync_request, we gather one chunk worth of
5745 * destination stripes and flag them as expanding.
5746 * Then we find all the source stripes and request reads.
5747 * As the reads complete, handle_stripe will copy the data
5748 * into the destination stripe and release that stripe.
5749 */
5750 struct r5conf *conf = mddev->private;
5751 struct stripe_head *sh;
5752 struct md_rdev *rdev;
5753 sector_t first_sector, last_sector;
5754 int raid_disks = conf->previous_raid_disks;
5755 int data_disks = raid_disks - conf->max_degraded;
5756 int new_data_disks = conf->raid_disks - conf->max_degraded;
5757 int i;
5758 int dd_idx;
5759 sector_t writepos, readpos, safepos;
5760 sector_t stripe_addr;
5761 int reshape_sectors;
5762 struct list_head stripes;
5763 sector_t retn;
5764
5765 if (sector_nr == 0) {
5766 /* If restarting in the middle, skip the initial sectors */
5767 if (mddev->reshape_backwards &&
5768 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5769 sector_nr = raid5_size(mddev, 0, 0)
5770 - conf->reshape_progress;
5771 } else if (mddev->reshape_backwards &&
5772 conf->reshape_progress == MaxSector) {
5773 /* shouldn't happen, but just in case, finish up.*/
5774 sector_nr = MaxSector;
5775 } else if (!mddev->reshape_backwards &&
5776 conf->reshape_progress > 0)
5777 sector_nr = conf->reshape_progress;
5778 sector_div(sector_nr, new_data_disks);
5779 if (sector_nr) {
5780 mddev->curr_resync_completed = sector_nr;
5781 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5782 *skipped = 1;
5783 retn = sector_nr;
5784 goto finish;
5785 }
5786 }
5787
5788 /* We need to process a full chunk at a time.
5789 * If old and new chunk sizes differ, we need to process the
5790 * largest of these
5791 */
5792
5793 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5794
5795 /* We update the metadata at least every 10 seconds, or when
5796 * the data about to be copied would over-write the source of
5797 * the data at the front of the range. i.e. one new_stripe
5798 * along from reshape_progress new_maps to after where
5799 * reshape_safe old_maps to
5800 */
5801 writepos = conf->reshape_progress;
5802 sector_div(writepos, new_data_disks);
5803 readpos = conf->reshape_progress;
5804 sector_div(readpos, data_disks);
5805 safepos = conf->reshape_safe;
5806 sector_div(safepos, data_disks);
5807 if (mddev->reshape_backwards) {
5808 BUG_ON(writepos < reshape_sectors);
5809 writepos -= reshape_sectors;
5810 readpos += reshape_sectors;
5811 safepos += reshape_sectors;
5812 } else {
5813 writepos += reshape_sectors;
5814 /* readpos and safepos are worst-case calculations.
5815 * A negative number is overly pessimistic, and causes
5816 * obvious problems for unsigned storage. So clip to 0.
5817 */
5818 readpos -= min_t(sector_t, reshape_sectors, readpos);
5819 safepos -= min_t(sector_t, reshape_sectors, safepos);
5820 }
5821
5822 /* Having calculated the 'writepos' possibly use it
5823 * to set 'stripe_addr' which is where we will write to.
5824 */
5825 if (mddev->reshape_backwards) {
5826 BUG_ON(conf->reshape_progress == 0);
5827 stripe_addr = writepos;
5828 BUG_ON((mddev->dev_sectors &
5829 ~((sector_t)reshape_sectors - 1))
5830 - reshape_sectors - stripe_addr
5831 != sector_nr);
5832 } else {
5833 BUG_ON(writepos != sector_nr + reshape_sectors);
5834 stripe_addr = sector_nr;
5835 }
5836
5837 /* 'writepos' is the most advanced device address we might write.
5838 * 'readpos' is the least advanced device address we might read.
5839 * 'safepos' is the least address recorded in the metadata as having
5840 * been reshaped.
5841 * If there is a min_offset_diff, these are adjusted either by
5842 * increasing the safepos/readpos if diff is negative, or
5843 * increasing writepos if diff is positive.
5844 * If 'readpos' is then behind 'writepos', there is no way that we can
5845 * ensure safety in the face of a crash - that must be done by userspace
5846 * making a backup of the data. So in that case there is no particular
5847 * rush to update metadata.
5848 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5849 * update the metadata to advance 'safepos' to match 'readpos' so that
5850 * we can be safe in the event of a crash.
5851 * So we insist on updating metadata if safepos is behind writepos and
5852 * readpos is beyond writepos.
5853 * In any case, update the metadata every 10 seconds.
5854 * Maybe that number should be configurable, but I'm not sure it is
5855 * worth it.... maybe it could be a multiple of safemode_delay???
5856 */
5857 if (conf->min_offset_diff < 0) {
5858 safepos += -conf->min_offset_diff;
5859 readpos += -conf->min_offset_diff;
5860 } else
5861 writepos += conf->min_offset_diff;
5862
5863 if ((mddev->reshape_backwards
5864 ? (safepos > writepos && readpos < writepos)
5865 : (safepos < writepos && readpos > writepos)) ||
5866 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5867 /* Cannot proceed until we've updated the superblock... */
5868 wait_event(conf->wait_for_overlap,
5869 atomic_read(&conf->reshape_stripes)==0
5870 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5871 if (atomic_read(&conf->reshape_stripes) != 0)
5872 return 0;
5873 mddev->reshape_position = conf->reshape_progress;
5874 mddev->curr_resync_completed = sector_nr;
5875 if (!mddev->reshape_backwards)
5876 /* Can update recovery_offset */
5877 rdev_for_each(rdev, mddev)
5878 if (rdev->raid_disk >= 0 &&
5879 !test_bit(Journal, &rdev->flags) &&
5880 !test_bit(In_sync, &rdev->flags) &&
5881 rdev->recovery_offset < sector_nr)
5882 rdev->recovery_offset = sector_nr;
5883
5884 conf->reshape_checkpoint = jiffies;
5885 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5886 md_wakeup_thread(mddev->thread);
5887 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5888 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5889 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5890 return 0;
5891 spin_lock_irq(&conf->device_lock);
5892 conf->reshape_safe = mddev->reshape_position;
5893 spin_unlock_irq(&conf->device_lock);
5894 wake_up(&conf->wait_for_overlap);
5895 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5896 }
5897
5898 INIT_LIST_HEAD(&stripes);
5899 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5900 int j;
5901 int skipped_disk = 0;
5902 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5903 set_bit(STRIPE_EXPANDING, &sh->state);
5904 atomic_inc(&conf->reshape_stripes);
5905 /* If any of this stripe is beyond the end of the old
5906 * array, then we need to zero those blocks
5907 */
5908 for (j=sh->disks; j--;) {
5909 sector_t s;
5910 if (j == sh->pd_idx)
5911 continue;
5912 if (conf->level == 6 &&
5913 j == sh->qd_idx)
5914 continue;
5915 s = raid5_compute_blocknr(sh, j, 0);
5916 if (s < raid5_size(mddev, 0, 0)) {
5917 skipped_disk = 1;
5918 continue;
5919 }
5920 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5921 set_bit(R5_Expanded, &sh->dev[j].flags);
5922 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5923 }
5924 if (!skipped_disk) {
5925 set_bit(STRIPE_EXPAND_READY, &sh->state);
5926 set_bit(STRIPE_HANDLE, &sh->state);
5927 }
5928 list_add(&sh->lru, &stripes);
5929 }
5930 spin_lock_irq(&conf->device_lock);
5931 if (mddev->reshape_backwards)
5932 conf->reshape_progress -= reshape_sectors * new_data_disks;
5933 else
5934 conf->reshape_progress += reshape_sectors * new_data_disks;
5935 spin_unlock_irq(&conf->device_lock);
5936 /* Ok, those stripe are ready. We can start scheduling
5937 * reads on the source stripes.
5938 * The source stripes are determined by mapping the first and last
5939 * block on the destination stripes.
5940 */
5941 first_sector =
5942 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5943 1, &dd_idx, NULL);
5944 last_sector =
5945 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5946 * new_data_disks - 1),
5947 1, &dd_idx, NULL);
5948 if (last_sector >= mddev->dev_sectors)
5949 last_sector = mddev->dev_sectors - 1;
5950 while (first_sector <= last_sector) {
5951 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5952 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5953 set_bit(STRIPE_HANDLE, &sh->state);
5954 raid5_release_stripe(sh);
5955 first_sector += STRIPE_SECTORS;
5956 }
5957 /* Now that the sources are clearly marked, we can release
5958 * the destination stripes
5959 */
5960 while (!list_empty(&stripes)) {
5961 sh = list_entry(stripes.next, struct stripe_head, lru);
5962 list_del_init(&sh->lru);
5963 raid5_release_stripe(sh);
5964 }
5965 /* If this takes us to the resync_max point where we have to pause,
5966 * then we need to write out the superblock.
5967 */
5968 sector_nr += reshape_sectors;
5969 retn = reshape_sectors;
5970 finish:
5971 if (mddev->curr_resync_completed > mddev->resync_max ||
5972 (sector_nr - mddev->curr_resync_completed) * 2
5973 >= mddev->resync_max - mddev->curr_resync_completed) {
5974 /* Cannot proceed until we've updated the superblock... */
5975 wait_event(conf->wait_for_overlap,
5976 atomic_read(&conf->reshape_stripes) == 0
5977 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5978 if (atomic_read(&conf->reshape_stripes) != 0)
5979 goto ret;
5980 mddev->reshape_position = conf->reshape_progress;
5981 mddev->curr_resync_completed = sector_nr;
5982 if (!mddev->reshape_backwards)
5983 /* Can update recovery_offset */
5984 rdev_for_each(rdev, mddev)
5985 if (rdev->raid_disk >= 0 &&
5986 !test_bit(Journal, &rdev->flags) &&
5987 !test_bit(In_sync, &rdev->flags) &&
5988 rdev->recovery_offset < sector_nr)
5989 rdev->recovery_offset = sector_nr;
5990 conf->reshape_checkpoint = jiffies;
5991 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5992 md_wakeup_thread(mddev->thread);
5993 wait_event(mddev->sb_wait,
5994 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5995 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5996 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5997 goto ret;
5998 spin_lock_irq(&conf->device_lock);
5999 conf->reshape_safe = mddev->reshape_position;
6000 spin_unlock_irq(&conf->device_lock);
6001 wake_up(&conf->wait_for_overlap);
6002 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6003 }
6004 ret:
6005 return retn;
6006 }
6007
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6008 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6009 int *skipped)
6010 {
6011 struct r5conf *conf = mddev->private;
6012 struct stripe_head *sh;
6013 sector_t max_sector = mddev->dev_sectors;
6014 sector_t sync_blocks;
6015 int still_degraded = 0;
6016 int i;
6017
6018 if (sector_nr >= max_sector) {
6019 /* just being told to finish up .. nothing much to do */
6020
6021 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6022 end_reshape(conf);
6023 return 0;
6024 }
6025
6026 if (mddev->curr_resync < max_sector) /* aborted */
6027 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6028 &sync_blocks, 1);
6029 else /* completed sync */
6030 conf->fullsync = 0;
6031 md_bitmap_close_sync(mddev->bitmap);
6032
6033 return 0;
6034 }
6035
6036 /* Allow raid5_quiesce to complete */
6037 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6038
6039 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6040 return reshape_request(mddev, sector_nr, skipped);
6041
6042 /* No need to check resync_max as we never do more than one
6043 * stripe, and as resync_max will always be on a chunk boundary,
6044 * if the check in md_do_sync didn't fire, there is no chance
6045 * of overstepping resync_max here
6046 */
6047
6048 /* if there is too many failed drives and we are trying
6049 * to resync, then assert that we are finished, because there is
6050 * nothing we can do.
6051 */
6052 if (mddev->degraded >= conf->max_degraded &&
6053 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6054 sector_t rv = mddev->dev_sectors - sector_nr;
6055 *skipped = 1;
6056 return rv;
6057 }
6058 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6059 !conf->fullsync &&
6060 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6061 sync_blocks >= STRIPE_SECTORS) {
6062 /* we can skip this block, and probably more */
6063 sync_blocks /= STRIPE_SECTORS;
6064 *skipped = 1;
6065 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6066 }
6067
6068 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6069
6070 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6071 if (sh == NULL) {
6072 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6073 /* make sure we don't swamp the stripe cache if someone else
6074 * is trying to get access
6075 */
6076 schedule_timeout_uninterruptible(1);
6077 }
6078 /* Need to check if array will still be degraded after recovery/resync
6079 * Note in case of > 1 drive failures it's possible we're rebuilding
6080 * one drive while leaving another faulty drive in array.
6081 */
6082 rcu_read_lock();
6083 for (i = 0; i < conf->raid_disks; i++) {
6084 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6085
6086 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6087 still_degraded = 1;
6088 }
6089 rcu_read_unlock();
6090
6091 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6092
6093 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6094 set_bit(STRIPE_HANDLE, &sh->state);
6095
6096 raid5_release_stripe(sh);
6097
6098 return STRIPE_SECTORS;
6099 }
6100
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6101 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6102 unsigned int offset)
6103 {
6104 /* We may not be able to submit a whole bio at once as there
6105 * may not be enough stripe_heads available.
6106 * We cannot pre-allocate enough stripe_heads as we may need
6107 * more than exist in the cache (if we allow ever large chunks).
6108 * So we do one stripe head at a time and record in
6109 * ->bi_hw_segments how many have been done.
6110 *
6111 * We *know* that this entire raid_bio is in one chunk, so
6112 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6113 */
6114 struct stripe_head *sh;
6115 int dd_idx;
6116 sector_t sector, logical_sector, last_sector;
6117 int scnt = 0;
6118 int handled = 0;
6119
6120 logical_sector = raid_bio->bi_iter.bi_sector &
6121 ~((sector_t)STRIPE_SECTORS-1);
6122 sector = raid5_compute_sector(conf, logical_sector,
6123 0, &dd_idx, NULL);
6124 last_sector = bio_end_sector(raid_bio);
6125
6126 for (; logical_sector < last_sector;
6127 logical_sector += STRIPE_SECTORS,
6128 sector += STRIPE_SECTORS,
6129 scnt++) {
6130
6131 if (scnt < offset)
6132 /* already done this stripe */
6133 continue;
6134
6135 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6136
6137 if (!sh) {
6138 /* failed to get a stripe - must wait */
6139 conf->retry_read_aligned = raid_bio;
6140 conf->retry_read_offset = scnt;
6141 return handled;
6142 }
6143
6144 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6145 raid5_release_stripe(sh);
6146 conf->retry_read_aligned = raid_bio;
6147 conf->retry_read_offset = scnt;
6148 return handled;
6149 }
6150
6151 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6152 handle_stripe(sh);
6153 raid5_release_stripe(sh);
6154 handled++;
6155 }
6156
6157 bio_endio(raid_bio);
6158
6159 if (atomic_dec_and_test(&conf->active_aligned_reads))
6160 wake_up(&conf->wait_for_quiescent);
6161 return handled;
6162 }
6163
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6164 static int handle_active_stripes(struct r5conf *conf, int group,
6165 struct r5worker *worker,
6166 struct list_head *temp_inactive_list)
6167 {
6168 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6169 int i, batch_size = 0, hash;
6170 bool release_inactive = false;
6171
6172 while (batch_size < MAX_STRIPE_BATCH &&
6173 (sh = __get_priority_stripe(conf, group)) != NULL)
6174 batch[batch_size++] = sh;
6175
6176 if (batch_size == 0) {
6177 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6178 if (!list_empty(temp_inactive_list + i))
6179 break;
6180 if (i == NR_STRIPE_HASH_LOCKS) {
6181 spin_unlock_irq(&conf->device_lock);
6182 log_flush_stripe_to_raid(conf);
6183 spin_lock_irq(&conf->device_lock);
6184 return batch_size;
6185 }
6186 release_inactive = true;
6187 }
6188 spin_unlock_irq(&conf->device_lock);
6189
6190 release_inactive_stripe_list(conf, temp_inactive_list,
6191 NR_STRIPE_HASH_LOCKS);
6192
6193 r5l_flush_stripe_to_raid(conf->log);
6194 if (release_inactive) {
6195 spin_lock_irq(&conf->device_lock);
6196 return 0;
6197 }
6198
6199 for (i = 0; i < batch_size; i++)
6200 handle_stripe(batch[i]);
6201 log_write_stripe_run(conf);
6202
6203 cond_resched();
6204
6205 spin_lock_irq(&conf->device_lock);
6206 for (i = 0; i < batch_size; i++) {
6207 hash = batch[i]->hash_lock_index;
6208 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6209 }
6210 return batch_size;
6211 }
6212
raid5_do_work(struct work_struct * work)6213 static void raid5_do_work(struct work_struct *work)
6214 {
6215 struct r5worker *worker = container_of(work, struct r5worker, work);
6216 struct r5worker_group *group = worker->group;
6217 struct r5conf *conf = group->conf;
6218 struct mddev *mddev = conf->mddev;
6219 int group_id = group - conf->worker_groups;
6220 int handled;
6221 struct blk_plug plug;
6222
6223 pr_debug("+++ raid5worker active\n");
6224
6225 blk_start_plug(&plug);
6226 handled = 0;
6227 spin_lock_irq(&conf->device_lock);
6228 while (1) {
6229 int batch_size, released;
6230
6231 released = release_stripe_list(conf, worker->temp_inactive_list);
6232
6233 batch_size = handle_active_stripes(conf, group_id, worker,
6234 worker->temp_inactive_list);
6235 worker->working = false;
6236 if (!batch_size && !released)
6237 break;
6238 handled += batch_size;
6239 wait_event_lock_irq(mddev->sb_wait,
6240 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6241 conf->device_lock);
6242 }
6243 pr_debug("%d stripes handled\n", handled);
6244
6245 spin_unlock_irq(&conf->device_lock);
6246
6247 flush_deferred_bios(conf);
6248
6249 r5l_flush_stripe_to_raid(conf->log);
6250
6251 async_tx_issue_pending_all();
6252 blk_finish_plug(&plug);
6253
6254 pr_debug("--- raid5worker inactive\n");
6255 }
6256
6257 /*
6258 * This is our raid5 kernel thread.
6259 *
6260 * We scan the hash table for stripes which can be handled now.
6261 * During the scan, completed stripes are saved for us by the interrupt
6262 * handler, so that they will not have to wait for our next wakeup.
6263 */
raid5d(struct md_thread * thread)6264 static void raid5d(struct md_thread *thread)
6265 {
6266 struct mddev *mddev = thread->mddev;
6267 struct r5conf *conf = mddev->private;
6268 int handled;
6269 struct blk_plug plug;
6270
6271 pr_debug("+++ raid5d active\n");
6272
6273 md_check_recovery(mddev);
6274
6275 blk_start_plug(&plug);
6276 handled = 0;
6277 spin_lock_irq(&conf->device_lock);
6278 while (1) {
6279 struct bio *bio;
6280 int batch_size, released;
6281 unsigned int offset;
6282
6283 released = release_stripe_list(conf, conf->temp_inactive_list);
6284 if (released)
6285 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6286
6287 if (
6288 !list_empty(&conf->bitmap_list)) {
6289 /* Now is a good time to flush some bitmap updates */
6290 conf->seq_flush++;
6291 spin_unlock_irq(&conf->device_lock);
6292 md_bitmap_unplug(mddev->bitmap);
6293 spin_lock_irq(&conf->device_lock);
6294 conf->seq_write = conf->seq_flush;
6295 activate_bit_delay(conf, conf->temp_inactive_list);
6296 }
6297 raid5_activate_delayed(conf);
6298
6299 while ((bio = remove_bio_from_retry(conf, &offset))) {
6300 int ok;
6301 spin_unlock_irq(&conf->device_lock);
6302 ok = retry_aligned_read(conf, bio, offset);
6303 spin_lock_irq(&conf->device_lock);
6304 if (!ok)
6305 break;
6306 handled++;
6307 }
6308
6309 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6310 conf->temp_inactive_list);
6311 if (!batch_size && !released)
6312 break;
6313 handled += batch_size;
6314
6315 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6316 spin_unlock_irq(&conf->device_lock);
6317 md_check_recovery(mddev);
6318 spin_lock_irq(&conf->device_lock);
6319 }
6320 }
6321 pr_debug("%d stripes handled\n", handled);
6322
6323 spin_unlock_irq(&conf->device_lock);
6324 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6325 mutex_trylock(&conf->cache_size_mutex)) {
6326 grow_one_stripe(conf, __GFP_NOWARN);
6327 /* Set flag even if allocation failed. This helps
6328 * slow down allocation requests when mem is short
6329 */
6330 set_bit(R5_DID_ALLOC, &conf->cache_state);
6331 mutex_unlock(&conf->cache_size_mutex);
6332 }
6333
6334 flush_deferred_bios(conf);
6335
6336 r5l_flush_stripe_to_raid(conf->log);
6337
6338 async_tx_issue_pending_all();
6339 blk_finish_plug(&plug);
6340
6341 pr_debug("--- raid5d inactive\n");
6342 }
6343
6344 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6345 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6346 {
6347 struct r5conf *conf;
6348 int ret = 0;
6349 spin_lock(&mddev->lock);
6350 conf = mddev->private;
6351 if (conf)
6352 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6353 spin_unlock(&mddev->lock);
6354 return ret;
6355 }
6356
6357 int
raid5_set_cache_size(struct mddev * mddev,int size)6358 raid5_set_cache_size(struct mddev *mddev, int size)
6359 {
6360 struct r5conf *conf = mddev->private;
6361
6362 if (size <= 16 || size > 32768)
6363 return -EINVAL;
6364
6365 conf->min_nr_stripes = size;
6366 mutex_lock(&conf->cache_size_mutex);
6367 while (size < conf->max_nr_stripes &&
6368 drop_one_stripe(conf))
6369 ;
6370 mutex_unlock(&conf->cache_size_mutex);
6371
6372 md_allow_write(mddev);
6373
6374 mutex_lock(&conf->cache_size_mutex);
6375 while (size > conf->max_nr_stripes)
6376 if (!grow_one_stripe(conf, GFP_KERNEL))
6377 break;
6378 mutex_unlock(&conf->cache_size_mutex);
6379
6380 return 0;
6381 }
6382 EXPORT_SYMBOL(raid5_set_cache_size);
6383
6384 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6385 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6386 {
6387 struct r5conf *conf;
6388 unsigned long new;
6389 int err;
6390
6391 if (len >= PAGE_SIZE)
6392 return -EINVAL;
6393 if (kstrtoul(page, 10, &new))
6394 return -EINVAL;
6395 err = mddev_lock(mddev);
6396 if (err)
6397 return err;
6398 conf = mddev->private;
6399 if (!conf)
6400 err = -ENODEV;
6401 else
6402 err = raid5_set_cache_size(mddev, new);
6403 mddev_unlock(mddev);
6404
6405 return err ?: len;
6406 }
6407
6408 static struct md_sysfs_entry
6409 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6410 raid5_show_stripe_cache_size,
6411 raid5_store_stripe_cache_size);
6412
6413 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6414 raid5_show_rmw_level(struct mddev *mddev, char *page)
6415 {
6416 struct r5conf *conf = mddev->private;
6417 if (conf)
6418 return sprintf(page, "%d\n", conf->rmw_level);
6419 else
6420 return 0;
6421 }
6422
6423 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6424 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6425 {
6426 struct r5conf *conf = mddev->private;
6427 unsigned long new;
6428
6429 if (!conf)
6430 return -ENODEV;
6431
6432 if (len >= PAGE_SIZE)
6433 return -EINVAL;
6434
6435 if (kstrtoul(page, 10, &new))
6436 return -EINVAL;
6437
6438 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6439 return -EINVAL;
6440
6441 if (new != PARITY_DISABLE_RMW &&
6442 new != PARITY_ENABLE_RMW &&
6443 new != PARITY_PREFER_RMW)
6444 return -EINVAL;
6445
6446 conf->rmw_level = new;
6447 return len;
6448 }
6449
6450 static struct md_sysfs_entry
6451 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6452 raid5_show_rmw_level,
6453 raid5_store_rmw_level);
6454
6455
6456 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)6457 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6458 {
6459 struct r5conf *conf;
6460 int ret = 0;
6461 spin_lock(&mddev->lock);
6462 conf = mddev->private;
6463 if (conf)
6464 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6465 spin_unlock(&mddev->lock);
6466 return ret;
6467 }
6468
6469 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)6470 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6471 {
6472 struct r5conf *conf;
6473 unsigned long new;
6474 int err;
6475
6476 if (len >= PAGE_SIZE)
6477 return -EINVAL;
6478 if (kstrtoul(page, 10, &new))
6479 return -EINVAL;
6480
6481 err = mddev_lock(mddev);
6482 if (err)
6483 return err;
6484 conf = mddev->private;
6485 if (!conf)
6486 err = -ENODEV;
6487 else if (new > conf->min_nr_stripes)
6488 err = -EINVAL;
6489 else
6490 conf->bypass_threshold = new;
6491 mddev_unlock(mddev);
6492 return err ?: len;
6493 }
6494
6495 static struct md_sysfs_entry
6496 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6497 S_IRUGO | S_IWUSR,
6498 raid5_show_preread_threshold,
6499 raid5_store_preread_threshold);
6500
6501 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)6502 raid5_show_skip_copy(struct mddev *mddev, char *page)
6503 {
6504 struct r5conf *conf;
6505 int ret = 0;
6506 spin_lock(&mddev->lock);
6507 conf = mddev->private;
6508 if (conf)
6509 ret = sprintf(page, "%d\n", conf->skip_copy);
6510 spin_unlock(&mddev->lock);
6511 return ret;
6512 }
6513
6514 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)6515 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6516 {
6517 struct r5conf *conf;
6518 unsigned long new;
6519 int err;
6520
6521 if (len >= PAGE_SIZE)
6522 return -EINVAL;
6523 if (kstrtoul(page, 10, &new))
6524 return -EINVAL;
6525 new = !!new;
6526
6527 err = mddev_lock(mddev);
6528 if (err)
6529 return err;
6530 conf = mddev->private;
6531 if (!conf)
6532 err = -ENODEV;
6533 else if (new != conf->skip_copy) {
6534 mddev_suspend(mddev);
6535 conf->skip_copy = new;
6536 if (new)
6537 mddev->queue->backing_dev_info->capabilities |=
6538 BDI_CAP_STABLE_WRITES;
6539 else
6540 mddev->queue->backing_dev_info->capabilities &=
6541 ~BDI_CAP_STABLE_WRITES;
6542 mddev_resume(mddev);
6543 }
6544 mddev_unlock(mddev);
6545 return err ?: len;
6546 }
6547
6548 static struct md_sysfs_entry
6549 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6550 raid5_show_skip_copy,
6551 raid5_store_skip_copy);
6552
6553 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)6554 stripe_cache_active_show(struct mddev *mddev, char *page)
6555 {
6556 struct r5conf *conf = mddev->private;
6557 if (conf)
6558 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6559 else
6560 return 0;
6561 }
6562
6563 static struct md_sysfs_entry
6564 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6565
6566 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)6567 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6568 {
6569 struct r5conf *conf;
6570 int ret = 0;
6571 spin_lock(&mddev->lock);
6572 conf = mddev->private;
6573 if (conf)
6574 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6575 spin_unlock(&mddev->lock);
6576 return ret;
6577 }
6578
6579 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6580 int *group_cnt,
6581 int *worker_cnt_per_group,
6582 struct r5worker_group **worker_groups);
6583 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)6584 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6585 {
6586 struct r5conf *conf;
6587 unsigned int new;
6588 int err;
6589 struct r5worker_group *new_groups, *old_groups;
6590 int group_cnt, worker_cnt_per_group;
6591
6592 if (len >= PAGE_SIZE)
6593 return -EINVAL;
6594 if (kstrtouint(page, 10, &new))
6595 return -EINVAL;
6596 /* 8192 should be big enough */
6597 if (new > 8192)
6598 return -EINVAL;
6599
6600 err = mddev_lock(mddev);
6601 if (err)
6602 return err;
6603 conf = mddev->private;
6604 if (!conf)
6605 err = -ENODEV;
6606 else if (new != conf->worker_cnt_per_group) {
6607 mddev_suspend(mddev);
6608
6609 old_groups = conf->worker_groups;
6610 if (old_groups)
6611 flush_workqueue(raid5_wq);
6612
6613 err = alloc_thread_groups(conf, new,
6614 &group_cnt, &worker_cnt_per_group,
6615 &new_groups);
6616 if (!err) {
6617 spin_lock_irq(&conf->device_lock);
6618 conf->group_cnt = group_cnt;
6619 conf->worker_cnt_per_group = worker_cnt_per_group;
6620 conf->worker_groups = new_groups;
6621 spin_unlock_irq(&conf->device_lock);
6622
6623 if (old_groups)
6624 kfree(old_groups[0].workers);
6625 kfree(old_groups);
6626 }
6627 mddev_resume(mddev);
6628 }
6629 mddev_unlock(mddev);
6630
6631 return err ?: len;
6632 }
6633
6634 static struct md_sysfs_entry
6635 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6636 raid5_show_group_thread_cnt,
6637 raid5_store_group_thread_cnt);
6638
6639 static struct attribute *raid5_attrs[] = {
6640 &raid5_stripecache_size.attr,
6641 &raid5_stripecache_active.attr,
6642 &raid5_preread_bypass_threshold.attr,
6643 &raid5_group_thread_cnt.attr,
6644 &raid5_skip_copy.attr,
6645 &raid5_rmw_level.attr,
6646 &r5c_journal_mode.attr,
6647 NULL,
6648 };
6649 static struct attribute_group raid5_attrs_group = {
6650 .name = NULL,
6651 .attrs = raid5_attrs,
6652 };
6653
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,int * worker_cnt_per_group,struct r5worker_group ** worker_groups)6654 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6655 int *group_cnt,
6656 int *worker_cnt_per_group,
6657 struct r5worker_group **worker_groups)
6658 {
6659 int i, j, k;
6660 ssize_t size;
6661 struct r5worker *workers;
6662
6663 *worker_cnt_per_group = cnt;
6664 if (cnt == 0) {
6665 *group_cnt = 0;
6666 *worker_groups = NULL;
6667 return 0;
6668 }
6669 *group_cnt = num_possible_nodes();
6670 size = sizeof(struct r5worker) * cnt;
6671 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6672 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6673 GFP_NOIO);
6674 if (!*worker_groups || !workers) {
6675 kfree(workers);
6676 kfree(*worker_groups);
6677 return -ENOMEM;
6678 }
6679
6680 for (i = 0; i < *group_cnt; i++) {
6681 struct r5worker_group *group;
6682
6683 group = &(*worker_groups)[i];
6684 INIT_LIST_HEAD(&group->handle_list);
6685 INIT_LIST_HEAD(&group->loprio_list);
6686 group->conf = conf;
6687 group->workers = workers + i * cnt;
6688
6689 for (j = 0; j < cnt; j++) {
6690 struct r5worker *worker = group->workers + j;
6691 worker->group = group;
6692 INIT_WORK(&worker->work, raid5_do_work);
6693
6694 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6695 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6696 }
6697 }
6698
6699 return 0;
6700 }
6701
free_thread_groups(struct r5conf * conf)6702 static void free_thread_groups(struct r5conf *conf)
6703 {
6704 if (conf->worker_groups)
6705 kfree(conf->worker_groups[0].workers);
6706 kfree(conf->worker_groups);
6707 conf->worker_groups = NULL;
6708 }
6709
6710 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)6711 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6712 {
6713 struct r5conf *conf = mddev->private;
6714
6715 if (!sectors)
6716 sectors = mddev->dev_sectors;
6717 if (!raid_disks)
6718 /* size is defined by the smallest of previous and new size */
6719 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6720
6721 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6722 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6723 return sectors * (raid_disks - conf->max_degraded);
6724 }
6725
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6726 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6727 {
6728 safe_put_page(percpu->spare_page);
6729 if (percpu->scribble)
6730 flex_array_free(percpu->scribble);
6731 percpu->spare_page = NULL;
6732 percpu->scribble = NULL;
6733 }
6734
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6735 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6736 {
6737 if (conf->level == 6 && !percpu->spare_page)
6738 percpu->spare_page = alloc_page(GFP_KERNEL);
6739 if (!percpu->scribble)
6740 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6741 conf->previous_raid_disks),
6742 max(conf->chunk_sectors,
6743 conf->prev_chunk_sectors)
6744 / STRIPE_SECTORS,
6745 GFP_KERNEL);
6746
6747 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6748 free_scratch_buffer(conf, percpu);
6749 return -ENOMEM;
6750 }
6751
6752 return 0;
6753 }
6754
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)6755 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6756 {
6757 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6758
6759 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6760 return 0;
6761 }
6762
raid5_free_percpu(struct r5conf * conf)6763 static void raid5_free_percpu(struct r5conf *conf)
6764 {
6765 if (!conf->percpu)
6766 return;
6767
6768 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6769 free_percpu(conf->percpu);
6770 }
6771
free_conf(struct r5conf * conf)6772 static void free_conf(struct r5conf *conf)
6773 {
6774 int i;
6775
6776 log_exit(conf);
6777
6778 unregister_shrinker(&conf->shrinker);
6779 free_thread_groups(conf);
6780 shrink_stripes(conf);
6781 raid5_free_percpu(conf);
6782 for (i = 0; i < conf->pool_size; i++)
6783 if (conf->disks[i].extra_page)
6784 put_page(conf->disks[i].extra_page);
6785 kfree(conf->disks);
6786 bioset_exit(&conf->bio_split);
6787 kfree(conf->stripe_hashtbl);
6788 kfree(conf->pending_data);
6789 kfree(conf);
6790 }
6791
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)6792 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6793 {
6794 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6795 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6796
6797 if (alloc_scratch_buffer(conf, percpu)) {
6798 pr_warn("%s: failed memory allocation for cpu%u\n",
6799 __func__, cpu);
6800 return -ENOMEM;
6801 }
6802 return 0;
6803 }
6804
raid5_alloc_percpu(struct r5conf * conf)6805 static int raid5_alloc_percpu(struct r5conf *conf)
6806 {
6807 int err = 0;
6808
6809 conf->percpu = alloc_percpu(struct raid5_percpu);
6810 if (!conf->percpu)
6811 return -ENOMEM;
6812
6813 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6814 if (!err) {
6815 conf->scribble_disks = max(conf->raid_disks,
6816 conf->previous_raid_disks);
6817 conf->scribble_sectors = max(conf->chunk_sectors,
6818 conf->prev_chunk_sectors);
6819 }
6820 return err;
6821 }
6822
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)6823 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6824 struct shrink_control *sc)
6825 {
6826 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6827 unsigned long ret = SHRINK_STOP;
6828
6829 if (mutex_trylock(&conf->cache_size_mutex)) {
6830 ret= 0;
6831 while (ret < sc->nr_to_scan &&
6832 conf->max_nr_stripes > conf->min_nr_stripes) {
6833 if (drop_one_stripe(conf) == 0) {
6834 ret = SHRINK_STOP;
6835 break;
6836 }
6837 ret++;
6838 }
6839 mutex_unlock(&conf->cache_size_mutex);
6840 }
6841 return ret;
6842 }
6843
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)6844 static unsigned long raid5_cache_count(struct shrinker *shrink,
6845 struct shrink_control *sc)
6846 {
6847 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6848
6849 if (conf->max_nr_stripes < conf->min_nr_stripes)
6850 /* unlikely, but not impossible */
6851 return 0;
6852 return conf->max_nr_stripes - conf->min_nr_stripes;
6853 }
6854
setup_conf(struct mddev * mddev)6855 static struct r5conf *setup_conf(struct mddev *mddev)
6856 {
6857 struct r5conf *conf;
6858 int raid_disk, memory, max_disks;
6859 struct md_rdev *rdev;
6860 struct disk_info *disk;
6861 char pers_name[6];
6862 int i;
6863 int group_cnt, worker_cnt_per_group;
6864 struct r5worker_group *new_group;
6865 int ret;
6866
6867 if (mddev->new_level != 5
6868 && mddev->new_level != 4
6869 && mddev->new_level != 6) {
6870 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6871 mdname(mddev), mddev->new_level);
6872 return ERR_PTR(-EIO);
6873 }
6874 if ((mddev->new_level == 5
6875 && !algorithm_valid_raid5(mddev->new_layout)) ||
6876 (mddev->new_level == 6
6877 && !algorithm_valid_raid6(mddev->new_layout))) {
6878 pr_warn("md/raid:%s: layout %d not supported\n",
6879 mdname(mddev), mddev->new_layout);
6880 return ERR_PTR(-EIO);
6881 }
6882 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6883 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6884 mdname(mddev), mddev->raid_disks);
6885 return ERR_PTR(-EINVAL);
6886 }
6887
6888 if (!mddev->new_chunk_sectors ||
6889 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6890 !is_power_of_2(mddev->new_chunk_sectors)) {
6891 pr_warn("md/raid:%s: invalid chunk size %d\n",
6892 mdname(mddev), mddev->new_chunk_sectors << 9);
6893 return ERR_PTR(-EINVAL);
6894 }
6895
6896 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6897 if (conf == NULL)
6898 goto abort;
6899 INIT_LIST_HEAD(&conf->free_list);
6900 INIT_LIST_HEAD(&conf->pending_list);
6901 conf->pending_data = kcalloc(PENDING_IO_MAX,
6902 sizeof(struct r5pending_data),
6903 GFP_KERNEL);
6904 if (!conf->pending_data)
6905 goto abort;
6906 for (i = 0; i < PENDING_IO_MAX; i++)
6907 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6908 /* Don't enable multi-threading by default*/
6909 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6910 &new_group)) {
6911 conf->group_cnt = group_cnt;
6912 conf->worker_cnt_per_group = worker_cnt_per_group;
6913 conf->worker_groups = new_group;
6914 } else
6915 goto abort;
6916 spin_lock_init(&conf->device_lock);
6917 seqcount_init(&conf->gen_lock);
6918 mutex_init(&conf->cache_size_mutex);
6919 init_waitqueue_head(&conf->wait_for_quiescent);
6920 init_waitqueue_head(&conf->wait_for_stripe);
6921 init_waitqueue_head(&conf->wait_for_overlap);
6922 INIT_LIST_HEAD(&conf->handle_list);
6923 INIT_LIST_HEAD(&conf->loprio_list);
6924 INIT_LIST_HEAD(&conf->hold_list);
6925 INIT_LIST_HEAD(&conf->delayed_list);
6926 INIT_LIST_HEAD(&conf->bitmap_list);
6927 init_llist_head(&conf->released_stripes);
6928 atomic_set(&conf->active_stripes, 0);
6929 atomic_set(&conf->preread_active_stripes, 0);
6930 atomic_set(&conf->active_aligned_reads, 0);
6931 spin_lock_init(&conf->pending_bios_lock);
6932 conf->batch_bio_dispatch = true;
6933 rdev_for_each(rdev, mddev) {
6934 if (test_bit(Journal, &rdev->flags))
6935 continue;
6936 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6937 conf->batch_bio_dispatch = false;
6938 break;
6939 }
6940 }
6941
6942 conf->bypass_threshold = BYPASS_THRESHOLD;
6943 conf->recovery_disabled = mddev->recovery_disabled - 1;
6944
6945 conf->raid_disks = mddev->raid_disks;
6946 if (mddev->reshape_position == MaxSector)
6947 conf->previous_raid_disks = mddev->raid_disks;
6948 else
6949 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6950 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6951
6952 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6953 GFP_KERNEL);
6954
6955 if (!conf->disks)
6956 goto abort;
6957
6958 for (i = 0; i < max_disks; i++) {
6959 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6960 if (!conf->disks[i].extra_page)
6961 goto abort;
6962 }
6963
6964 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6965 if (ret)
6966 goto abort;
6967 conf->mddev = mddev;
6968
6969 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6970 goto abort;
6971
6972 /* We init hash_locks[0] separately to that it can be used
6973 * as the reference lock in the spin_lock_nest_lock() call
6974 * in lock_all_device_hash_locks_irq in order to convince
6975 * lockdep that we know what we are doing.
6976 */
6977 spin_lock_init(conf->hash_locks);
6978 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6979 spin_lock_init(conf->hash_locks + i);
6980
6981 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6982 INIT_LIST_HEAD(conf->inactive_list + i);
6983
6984 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6985 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6986
6987 atomic_set(&conf->r5c_cached_full_stripes, 0);
6988 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6989 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6990 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6991 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6992 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6993
6994 conf->level = mddev->new_level;
6995 conf->chunk_sectors = mddev->new_chunk_sectors;
6996 if (raid5_alloc_percpu(conf) != 0)
6997 goto abort;
6998
6999 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7000
7001 rdev_for_each(rdev, mddev) {
7002 raid_disk = rdev->raid_disk;
7003 if (raid_disk >= max_disks
7004 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7005 continue;
7006 disk = conf->disks + raid_disk;
7007
7008 if (test_bit(Replacement, &rdev->flags)) {
7009 if (disk->replacement)
7010 goto abort;
7011 disk->replacement = rdev;
7012 } else {
7013 if (disk->rdev)
7014 goto abort;
7015 disk->rdev = rdev;
7016 }
7017
7018 if (test_bit(In_sync, &rdev->flags)) {
7019 char b[BDEVNAME_SIZE];
7020 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7021 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7022 } else if (rdev->saved_raid_disk != raid_disk)
7023 /* Cannot rely on bitmap to complete recovery */
7024 conf->fullsync = 1;
7025 }
7026
7027 conf->level = mddev->new_level;
7028 if (conf->level == 6) {
7029 conf->max_degraded = 2;
7030 if (raid6_call.xor_syndrome)
7031 conf->rmw_level = PARITY_ENABLE_RMW;
7032 else
7033 conf->rmw_level = PARITY_DISABLE_RMW;
7034 } else {
7035 conf->max_degraded = 1;
7036 conf->rmw_level = PARITY_ENABLE_RMW;
7037 }
7038 conf->algorithm = mddev->new_layout;
7039 conf->reshape_progress = mddev->reshape_position;
7040 if (conf->reshape_progress != MaxSector) {
7041 conf->prev_chunk_sectors = mddev->chunk_sectors;
7042 conf->prev_algo = mddev->layout;
7043 } else {
7044 conf->prev_chunk_sectors = conf->chunk_sectors;
7045 conf->prev_algo = conf->algorithm;
7046 }
7047
7048 conf->min_nr_stripes = NR_STRIPES;
7049 if (mddev->reshape_position != MaxSector) {
7050 int stripes = max_t(int,
7051 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7052 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7053 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7054 if (conf->min_nr_stripes != NR_STRIPES)
7055 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7056 mdname(mddev), conf->min_nr_stripes);
7057 }
7058 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7059 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7060 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7061 if (grow_stripes(conf, conf->min_nr_stripes)) {
7062 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7063 mdname(mddev), memory);
7064 goto abort;
7065 } else
7066 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7067 /*
7068 * Losing a stripe head costs more than the time to refill it,
7069 * it reduces the queue depth and so can hurt throughput.
7070 * So set it rather large, scaled by number of devices.
7071 */
7072 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7073 conf->shrinker.scan_objects = raid5_cache_scan;
7074 conf->shrinker.count_objects = raid5_cache_count;
7075 conf->shrinker.batch = 128;
7076 conf->shrinker.flags = 0;
7077 if (register_shrinker(&conf->shrinker)) {
7078 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7079 mdname(mddev));
7080 goto abort;
7081 }
7082
7083 sprintf(pers_name, "raid%d", mddev->new_level);
7084 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7085 if (!conf->thread) {
7086 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7087 mdname(mddev));
7088 goto abort;
7089 }
7090
7091 return conf;
7092
7093 abort:
7094 if (conf) {
7095 free_conf(conf);
7096 return ERR_PTR(-EIO);
7097 } else
7098 return ERR_PTR(-ENOMEM);
7099 }
7100
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7101 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7102 {
7103 switch (algo) {
7104 case ALGORITHM_PARITY_0:
7105 if (raid_disk < max_degraded)
7106 return 1;
7107 break;
7108 case ALGORITHM_PARITY_N:
7109 if (raid_disk >= raid_disks - max_degraded)
7110 return 1;
7111 break;
7112 case ALGORITHM_PARITY_0_6:
7113 if (raid_disk == 0 ||
7114 raid_disk == raid_disks - 1)
7115 return 1;
7116 break;
7117 case ALGORITHM_LEFT_ASYMMETRIC_6:
7118 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7119 case ALGORITHM_LEFT_SYMMETRIC_6:
7120 case ALGORITHM_RIGHT_SYMMETRIC_6:
7121 if (raid_disk == raid_disks - 1)
7122 return 1;
7123 }
7124 return 0;
7125 }
7126
raid5_run(struct mddev * mddev)7127 static int raid5_run(struct mddev *mddev)
7128 {
7129 struct r5conf *conf;
7130 int working_disks = 0;
7131 int dirty_parity_disks = 0;
7132 struct md_rdev *rdev;
7133 struct md_rdev *journal_dev = NULL;
7134 sector_t reshape_offset = 0;
7135 int i;
7136 long long min_offset_diff = 0;
7137 int first = 1;
7138
7139 if (mddev_init_writes_pending(mddev) < 0)
7140 return -ENOMEM;
7141
7142 if (mddev->recovery_cp != MaxSector)
7143 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7144 mdname(mddev));
7145
7146 rdev_for_each(rdev, mddev) {
7147 long long diff;
7148
7149 if (test_bit(Journal, &rdev->flags)) {
7150 journal_dev = rdev;
7151 continue;
7152 }
7153 if (rdev->raid_disk < 0)
7154 continue;
7155 diff = (rdev->new_data_offset - rdev->data_offset);
7156 if (first) {
7157 min_offset_diff = diff;
7158 first = 0;
7159 } else if (mddev->reshape_backwards &&
7160 diff < min_offset_diff)
7161 min_offset_diff = diff;
7162 else if (!mddev->reshape_backwards &&
7163 diff > min_offset_diff)
7164 min_offset_diff = diff;
7165 }
7166
7167 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7168 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7169 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7170 mdname(mddev));
7171 return -EINVAL;
7172 }
7173
7174 if (mddev->reshape_position != MaxSector) {
7175 /* Check that we can continue the reshape.
7176 * Difficulties arise if the stripe we would write to
7177 * next is at or after the stripe we would read from next.
7178 * For a reshape that changes the number of devices, this
7179 * is only possible for a very short time, and mdadm makes
7180 * sure that time appears to have past before assembling
7181 * the array. So we fail if that time hasn't passed.
7182 * For a reshape that keeps the number of devices the same
7183 * mdadm must be monitoring the reshape can keeping the
7184 * critical areas read-only and backed up. It will start
7185 * the array in read-only mode, so we check for that.
7186 */
7187 sector_t here_new, here_old;
7188 int old_disks;
7189 int max_degraded = (mddev->level == 6 ? 2 : 1);
7190 int chunk_sectors;
7191 int new_data_disks;
7192
7193 if (journal_dev) {
7194 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7195 mdname(mddev));
7196 return -EINVAL;
7197 }
7198
7199 if (mddev->new_level != mddev->level) {
7200 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7201 mdname(mddev));
7202 return -EINVAL;
7203 }
7204 old_disks = mddev->raid_disks - mddev->delta_disks;
7205 /* reshape_position must be on a new-stripe boundary, and one
7206 * further up in new geometry must map after here in old
7207 * geometry.
7208 * If the chunk sizes are different, then as we perform reshape
7209 * in units of the largest of the two, reshape_position needs
7210 * be a multiple of the largest chunk size times new data disks.
7211 */
7212 here_new = mddev->reshape_position;
7213 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7214 new_data_disks = mddev->raid_disks - max_degraded;
7215 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7216 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7217 mdname(mddev));
7218 return -EINVAL;
7219 }
7220 reshape_offset = here_new * chunk_sectors;
7221 /* here_new is the stripe we will write to */
7222 here_old = mddev->reshape_position;
7223 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7224 /* here_old is the first stripe that we might need to read
7225 * from */
7226 if (mddev->delta_disks == 0) {
7227 /* We cannot be sure it is safe to start an in-place
7228 * reshape. It is only safe if user-space is monitoring
7229 * and taking constant backups.
7230 * mdadm always starts a situation like this in
7231 * readonly mode so it can take control before
7232 * allowing any writes. So just check for that.
7233 */
7234 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7235 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7236 /* not really in-place - so OK */;
7237 else if (mddev->ro == 0) {
7238 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7239 mdname(mddev));
7240 return -EINVAL;
7241 }
7242 } else if (mddev->reshape_backwards
7243 ? (here_new * chunk_sectors + min_offset_diff <=
7244 here_old * chunk_sectors)
7245 : (here_new * chunk_sectors >=
7246 here_old * chunk_sectors + (-min_offset_diff))) {
7247 /* Reading from the same stripe as writing to - bad */
7248 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7249 mdname(mddev));
7250 return -EINVAL;
7251 }
7252 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7253 /* OK, we should be able to continue; */
7254 } else {
7255 BUG_ON(mddev->level != mddev->new_level);
7256 BUG_ON(mddev->layout != mddev->new_layout);
7257 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7258 BUG_ON(mddev->delta_disks != 0);
7259 }
7260
7261 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7262 test_bit(MD_HAS_PPL, &mddev->flags)) {
7263 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7264 mdname(mddev));
7265 clear_bit(MD_HAS_PPL, &mddev->flags);
7266 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7267 }
7268
7269 if (mddev->private == NULL)
7270 conf = setup_conf(mddev);
7271 else
7272 conf = mddev->private;
7273
7274 if (IS_ERR(conf))
7275 return PTR_ERR(conf);
7276
7277 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7278 if (!journal_dev) {
7279 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7280 mdname(mddev));
7281 mddev->ro = 1;
7282 set_disk_ro(mddev->gendisk, 1);
7283 } else if (mddev->recovery_cp == MaxSector)
7284 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7285 }
7286
7287 conf->min_offset_diff = min_offset_diff;
7288 mddev->thread = conf->thread;
7289 conf->thread = NULL;
7290 mddev->private = conf;
7291
7292 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7293 i++) {
7294 rdev = conf->disks[i].rdev;
7295 if (!rdev && conf->disks[i].replacement) {
7296 /* The replacement is all we have yet */
7297 rdev = conf->disks[i].replacement;
7298 conf->disks[i].replacement = NULL;
7299 clear_bit(Replacement, &rdev->flags);
7300 conf->disks[i].rdev = rdev;
7301 }
7302 if (!rdev)
7303 continue;
7304 if (conf->disks[i].replacement &&
7305 conf->reshape_progress != MaxSector) {
7306 /* replacements and reshape simply do not mix. */
7307 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7308 goto abort;
7309 }
7310 if (test_bit(In_sync, &rdev->flags)) {
7311 working_disks++;
7312 continue;
7313 }
7314 /* This disc is not fully in-sync. However if it
7315 * just stored parity (beyond the recovery_offset),
7316 * when we don't need to be concerned about the
7317 * array being dirty.
7318 * When reshape goes 'backwards', we never have
7319 * partially completed devices, so we only need
7320 * to worry about reshape going forwards.
7321 */
7322 /* Hack because v0.91 doesn't store recovery_offset properly. */
7323 if (mddev->major_version == 0 &&
7324 mddev->minor_version > 90)
7325 rdev->recovery_offset = reshape_offset;
7326
7327 if (rdev->recovery_offset < reshape_offset) {
7328 /* We need to check old and new layout */
7329 if (!only_parity(rdev->raid_disk,
7330 conf->algorithm,
7331 conf->raid_disks,
7332 conf->max_degraded))
7333 continue;
7334 }
7335 if (!only_parity(rdev->raid_disk,
7336 conf->prev_algo,
7337 conf->previous_raid_disks,
7338 conf->max_degraded))
7339 continue;
7340 dirty_parity_disks++;
7341 }
7342
7343 /*
7344 * 0 for a fully functional array, 1 or 2 for a degraded array.
7345 */
7346 mddev->degraded = raid5_calc_degraded(conf);
7347
7348 if (has_failed(conf)) {
7349 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7350 mdname(mddev), mddev->degraded, conf->raid_disks);
7351 goto abort;
7352 }
7353
7354 /* device size must be a multiple of chunk size */
7355 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7356 mddev->resync_max_sectors = mddev->dev_sectors;
7357
7358 if (mddev->degraded > dirty_parity_disks &&
7359 mddev->recovery_cp != MaxSector) {
7360 if (test_bit(MD_HAS_PPL, &mddev->flags))
7361 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7362 mdname(mddev));
7363 else if (mddev->ok_start_degraded)
7364 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7365 mdname(mddev));
7366 else {
7367 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7368 mdname(mddev));
7369 goto abort;
7370 }
7371 }
7372
7373 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7374 mdname(mddev), conf->level,
7375 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7376 mddev->new_layout);
7377
7378 print_raid5_conf(conf);
7379
7380 if (conf->reshape_progress != MaxSector) {
7381 conf->reshape_safe = conf->reshape_progress;
7382 atomic_set(&conf->reshape_stripes, 0);
7383 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7384 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7385 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7386 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7387 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7388 "reshape");
7389 }
7390
7391 /* Ok, everything is just fine now */
7392 if (mddev->to_remove == &raid5_attrs_group)
7393 mddev->to_remove = NULL;
7394 else if (mddev->kobj.sd &&
7395 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7396 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7397 mdname(mddev));
7398 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7399
7400 if (mddev->queue) {
7401 int chunk_size;
7402 /* read-ahead size must cover two whole stripes, which
7403 * is 2 * (datadisks) * chunksize where 'n' is the
7404 * number of raid devices
7405 */
7406 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7407 int stripe = data_disks *
7408 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7409 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7410 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7411
7412 chunk_size = mddev->chunk_sectors << 9;
7413 blk_queue_io_min(mddev->queue, chunk_size);
7414 blk_queue_io_opt(mddev->queue, chunk_size *
7415 (conf->raid_disks - conf->max_degraded));
7416 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7417 /*
7418 * We can only discard a whole stripe. It doesn't make sense to
7419 * discard data disk but write parity disk
7420 */
7421 stripe = stripe * PAGE_SIZE;
7422 /* Round up to power of 2, as discard handling
7423 * currently assumes that */
7424 while ((stripe-1) & stripe)
7425 stripe = (stripe | (stripe-1)) + 1;
7426 mddev->queue->limits.discard_alignment = stripe;
7427 mddev->queue->limits.discard_granularity = stripe;
7428
7429 blk_queue_max_write_same_sectors(mddev->queue, 0);
7430 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7431
7432 rdev_for_each(rdev, mddev) {
7433 disk_stack_limits(mddev->gendisk, rdev->bdev,
7434 rdev->data_offset << 9);
7435 disk_stack_limits(mddev->gendisk, rdev->bdev,
7436 rdev->new_data_offset << 9);
7437 }
7438
7439 /*
7440 * zeroing is required, otherwise data
7441 * could be lost. Consider a scenario: discard a stripe
7442 * (the stripe could be inconsistent if
7443 * discard_zeroes_data is 0); write one disk of the
7444 * stripe (the stripe could be inconsistent again
7445 * depending on which disks are used to calculate
7446 * parity); the disk is broken; The stripe data of this
7447 * disk is lost.
7448 *
7449 * We only allow DISCARD if the sysadmin has confirmed that
7450 * only safe devices are in use by setting a module parameter.
7451 * A better idea might be to turn DISCARD into WRITE_ZEROES
7452 * requests, as that is required to be safe.
7453 */
7454 if (devices_handle_discard_safely &&
7455 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7456 mddev->queue->limits.discard_granularity >= stripe)
7457 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7458 mddev->queue);
7459 else
7460 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7461 mddev->queue);
7462
7463 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7464 }
7465
7466 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7467 goto abort;
7468
7469 return 0;
7470 abort:
7471 md_unregister_thread(&mddev->thread);
7472 print_raid5_conf(conf);
7473 free_conf(conf);
7474 mddev->private = NULL;
7475 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7476 return -EIO;
7477 }
7478
raid5_free(struct mddev * mddev,void * priv)7479 static void raid5_free(struct mddev *mddev, void *priv)
7480 {
7481 struct r5conf *conf = priv;
7482
7483 free_conf(conf);
7484 mddev->to_remove = &raid5_attrs_group;
7485 }
7486
raid5_status(struct seq_file * seq,struct mddev * mddev)7487 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7488 {
7489 struct r5conf *conf = mddev->private;
7490 int i;
7491
7492 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7493 conf->chunk_sectors / 2, mddev->layout);
7494 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7495 rcu_read_lock();
7496 for (i = 0; i < conf->raid_disks; i++) {
7497 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7498 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7499 }
7500 rcu_read_unlock();
7501 seq_printf (seq, "]");
7502 }
7503
print_raid5_conf(struct r5conf * conf)7504 static void print_raid5_conf (struct r5conf *conf)
7505 {
7506 int i;
7507 struct disk_info *tmp;
7508
7509 pr_debug("RAID conf printout:\n");
7510 if (!conf) {
7511 pr_debug("(conf==NULL)\n");
7512 return;
7513 }
7514 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7515 conf->raid_disks,
7516 conf->raid_disks - conf->mddev->degraded);
7517
7518 for (i = 0; i < conf->raid_disks; i++) {
7519 char b[BDEVNAME_SIZE];
7520 tmp = conf->disks + i;
7521 if (tmp->rdev)
7522 pr_debug(" disk %d, o:%d, dev:%s\n",
7523 i, !test_bit(Faulty, &tmp->rdev->flags),
7524 bdevname(tmp->rdev->bdev, b));
7525 }
7526 }
7527
raid5_spare_active(struct mddev * mddev)7528 static int raid5_spare_active(struct mddev *mddev)
7529 {
7530 int i;
7531 struct r5conf *conf = mddev->private;
7532 struct disk_info *tmp;
7533 int count = 0;
7534 unsigned long flags;
7535
7536 for (i = 0; i < conf->raid_disks; i++) {
7537 tmp = conf->disks + i;
7538 if (tmp->replacement
7539 && tmp->replacement->recovery_offset == MaxSector
7540 && !test_bit(Faulty, &tmp->replacement->flags)
7541 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7542 /* Replacement has just become active. */
7543 if (!tmp->rdev
7544 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7545 count++;
7546 if (tmp->rdev) {
7547 /* Replaced device not technically faulty,
7548 * but we need to be sure it gets removed
7549 * and never re-added.
7550 */
7551 set_bit(Faulty, &tmp->rdev->flags);
7552 sysfs_notify_dirent_safe(
7553 tmp->rdev->sysfs_state);
7554 }
7555 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7556 } else if (tmp->rdev
7557 && tmp->rdev->recovery_offset == MaxSector
7558 && !test_bit(Faulty, &tmp->rdev->flags)
7559 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7560 count++;
7561 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7562 }
7563 }
7564 spin_lock_irqsave(&conf->device_lock, flags);
7565 mddev->degraded = raid5_calc_degraded(conf);
7566 spin_unlock_irqrestore(&conf->device_lock, flags);
7567 print_raid5_conf(conf);
7568 return count;
7569 }
7570
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)7571 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7572 {
7573 struct r5conf *conf = mddev->private;
7574 int err = 0;
7575 int number = rdev->raid_disk;
7576 struct md_rdev **rdevp;
7577 struct disk_info *p = conf->disks + number;
7578
7579 print_raid5_conf(conf);
7580 if (test_bit(Journal, &rdev->flags) && conf->log) {
7581 /*
7582 * we can't wait pending write here, as this is called in
7583 * raid5d, wait will deadlock.
7584 * neilb: there is no locking about new writes here,
7585 * so this cannot be safe.
7586 */
7587 if (atomic_read(&conf->active_stripes) ||
7588 atomic_read(&conf->r5c_cached_full_stripes) ||
7589 atomic_read(&conf->r5c_cached_partial_stripes)) {
7590 return -EBUSY;
7591 }
7592 log_exit(conf);
7593 return 0;
7594 }
7595 if (rdev == p->rdev)
7596 rdevp = &p->rdev;
7597 else if (rdev == p->replacement)
7598 rdevp = &p->replacement;
7599 else
7600 return 0;
7601
7602 if (number >= conf->raid_disks &&
7603 conf->reshape_progress == MaxSector)
7604 clear_bit(In_sync, &rdev->flags);
7605
7606 if (test_bit(In_sync, &rdev->flags) ||
7607 atomic_read(&rdev->nr_pending)) {
7608 err = -EBUSY;
7609 goto abort;
7610 }
7611 /* Only remove non-faulty devices if recovery
7612 * isn't possible.
7613 */
7614 if (!test_bit(Faulty, &rdev->flags) &&
7615 mddev->recovery_disabled != conf->recovery_disabled &&
7616 !has_failed(conf) &&
7617 (!p->replacement || p->replacement == rdev) &&
7618 number < conf->raid_disks) {
7619 err = -EBUSY;
7620 goto abort;
7621 }
7622 *rdevp = NULL;
7623 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7624 synchronize_rcu();
7625 if (atomic_read(&rdev->nr_pending)) {
7626 /* lost the race, try later */
7627 err = -EBUSY;
7628 *rdevp = rdev;
7629 }
7630 }
7631 if (!err) {
7632 err = log_modify(conf, rdev, false);
7633 if (err)
7634 goto abort;
7635 }
7636 if (p->replacement) {
7637 /* We must have just cleared 'rdev' */
7638 p->rdev = p->replacement;
7639 clear_bit(Replacement, &p->replacement->flags);
7640 smp_mb(); /* Make sure other CPUs may see both as identical
7641 * but will never see neither - if they are careful
7642 */
7643 p->replacement = NULL;
7644
7645 if (!err)
7646 err = log_modify(conf, p->rdev, true);
7647 }
7648
7649 clear_bit(WantReplacement, &rdev->flags);
7650 abort:
7651
7652 print_raid5_conf(conf);
7653 return err;
7654 }
7655
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)7656 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7657 {
7658 struct r5conf *conf = mddev->private;
7659 int err = -EEXIST;
7660 int disk;
7661 struct disk_info *p;
7662 int first = 0;
7663 int last = conf->raid_disks - 1;
7664
7665 if (test_bit(Journal, &rdev->flags)) {
7666 if (conf->log)
7667 return -EBUSY;
7668
7669 rdev->raid_disk = 0;
7670 /*
7671 * The array is in readonly mode if journal is missing, so no
7672 * write requests running. We should be safe
7673 */
7674 log_init(conf, rdev, false);
7675 return 0;
7676 }
7677 if (mddev->recovery_disabled == conf->recovery_disabled)
7678 return -EBUSY;
7679
7680 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7681 /* no point adding a device */
7682 return -EINVAL;
7683
7684 if (rdev->raid_disk >= 0)
7685 first = last = rdev->raid_disk;
7686
7687 /*
7688 * find the disk ... but prefer rdev->saved_raid_disk
7689 * if possible.
7690 */
7691 if (rdev->saved_raid_disk >= 0 &&
7692 rdev->saved_raid_disk >= first &&
7693 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7694 first = rdev->saved_raid_disk;
7695
7696 for (disk = first; disk <= last; disk++) {
7697 p = conf->disks + disk;
7698 if (p->rdev == NULL) {
7699 clear_bit(In_sync, &rdev->flags);
7700 rdev->raid_disk = disk;
7701 if (rdev->saved_raid_disk != disk)
7702 conf->fullsync = 1;
7703 rcu_assign_pointer(p->rdev, rdev);
7704
7705 err = log_modify(conf, rdev, true);
7706
7707 goto out;
7708 }
7709 }
7710 for (disk = first; disk <= last; disk++) {
7711 p = conf->disks + disk;
7712 if (test_bit(WantReplacement, &p->rdev->flags) &&
7713 p->replacement == NULL) {
7714 clear_bit(In_sync, &rdev->flags);
7715 set_bit(Replacement, &rdev->flags);
7716 rdev->raid_disk = disk;
7717 err = 0;
7718 conf->fullsync = 1;
7719 rcu_assign_pointer(p->replacement, rdev);
7720 break;
7721 }
7722 }
7723 out:
7724 print_raid5_conf(conf);
7725 return err;
7726 }
7727
raid5_resize(struct mddev * mddev,sector_t sectors)7728 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7729 {
7730 /* no resync is happening, and there is enough space
7731 * on all devices, so we can resize.
7732 * We need to make sure resync covers any new space.
7733 * If the array is shrinking we should possibly wait until
7734 * any io in the removed space completes, but it hardly seems
7735 * worth it.
7736 */
7737 sector_t newsize;
7738 struct r5conf *conf = mddev->private;
7739
7740 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7741 return -EINVAL;
7742 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7743 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7744 if (mddev->external_size &&
7745 mddev->array_sectors > newsize)
7746 return -EINVAL;
7747 if (mddev->bitmap) {
7748 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7749 if (ret)
7750 return ret;
7751 }
7752 md_set_array_sectors(mddev, newsize);
7753 if (sectors > mddev->dev_sectors &&
7754 mddev->recovery_cp > mddev->dev_sectors) {
7755 mddev->recovery_cp = mddev->dev_sectors;
7756 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7757 }
7758 mddev->dev_sectors = sectors;
7759 mddev->resync_max_sectors = sectors;
7760 return 0;
7761 }
7762
check_stripe_cache(struct mddev * mddev)7763 static int check_stripe_cache(struct mddev *mddev)
7764 {
7765 /* Can only proceed if there are plenty of stripe_heads.
7766 * We need a minimum of one full stripe,, and for sensible progress
7767 * it is best to have about 4 times that.
7768 * If we require 4 times, then the default 256 4K stripe_heads will
7769 * allow for chunk sizes up to 256K, which is probably OK.
7770 * If the chunk size is greater, user-space should request more
7771 * stripe_heads first.
7772 */
7773 struct r5conf *conf = mddev->private;
7774 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7775 > conf->min_nr_stripes ||
7776 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7777 > conf->min_nr_stripes) {
7778 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7779 mdname(mddev),
7780 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7781 / STRIPE_SIZE)*4);
7782 return 0;
7783 }
7784 return 1;
7785 }
7786
check_reshape(struct mddev * mddev)7787 static int check_reshape(struct mddev *mddev)
7788 {
7789 struct r5conf *conf = mddev->private;
7790
7791 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7792 return -EINVAL;
7793 if (mddev->delta_disks == 0 &&
7794 mddev->new_layout == mddev->layout &&
7795 mddev->new_chunk_sectors == mddev->chunk_sectors)
7796 return 0; /* nothing to do */
7797 if (has_failed(conf))
7798 return -EINVAL;
7799 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7800 /* We might be able to shrink, but the devices must
7801 * be made bigger first.
7802 * For raid6, 4 is the minimum size.
7803 * Otherwise 2 is the minimum
7804 */
7805 int min = 2;
7806 if (mddev->level == 6)
7807 min = 4;
7808 if (mddev->raid_disks + mddev->delta_disks < min)
7809 return -EINVAL;
7810 }
7811
7812 if (!check_stripe_cache(mddev))
7813 return -ENOSPC;
7814
7815 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7816 mddev->delta_disks > 0)
7817 if (resize_chunks(conf,
7818 conf->previous_raid_disks
7819 + max(0, mddev->delta_disks),
7820 max(mddev->new_chunk_sectors,
7821 mddev->chunk_sectors)
7822 ) < 0)
7823 return -ENOMEM;
7824
7825 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7826 return 0; /* never bother to shrink */
7827 return resize_stripes(conf, (conf->previous_raid_disks
7828 + mddev->delta_disks));
7829 }
7830
raid5_start_reshape(struct mddev * mddev)7831 static int raid5_start_reshape(struct mddev *mddev)
7832 {
7833 struct r5conf *conf = mddev->private;
7834 struct md_rdev *rdev;
7835 int spares = 0;
7836 unsigned long flags;
7837
7838 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7839 return -EBUSY;
7840
7841 if (!check_stripe_cache(mddev))
7842 return -ENOSPC;
7843
7844 if (has_failed(conf))
7845 return -EINVAL;
7846
7847 rdev_for_each(rdev, mddev) {
7848 if (!test_bit(In_sync, &rdev->flags)
7849 && !test_bit(Faulty, &rdev->flags))
7850 spares++;
7851 }
7852
7853 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7854 /* Not enough devices even to make a degraded array
7855 * of that size
7856 */
7857 return -EINVAL;
7858
7859 /* Refuse to reduce size of the array. Any reductions in
7860 * array size must be through explicit setting of array_size
7861 * attribute.
7862 */
7863 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7864 < mddev->array_sectors) {
7865 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7866 mdname(mddev));
7867 return -EINVAL;
7868 }
7869
7870 atomic_set(&conf->reshape_stripes, 0);
7871 spin_lock_irq(&conf->device_lock);
7872 write_seqcount_begin(&conf->gen_lock);
7873 conf->previous_raid_disks = conf->raid_disks;
7874 conf->raid_disks += mddev->delta_disks;
7875 conf->prev_chunk_sectors = conf->chunk_sectors;
7876 conf->chunk_sectors = mddev->new_chunk_sectors;
7877 conf->prev_algo = conf->algorithm;
7878 conf->algorithm = mddev->new_layout;
7879 conf->generation++;
7880 /* Code that selects data_offset needs to see the generation update
7881 * if reshape_progress has been set - so a memory barrier needed.
7882 */
7883 smp_mb();
7884 if (mddev->reshape_backwards)
7885 conf->reshape_progress = raid5_size(mddev, 0, 0);
7886 else
7887 conf->reshape_progress = 0;
7888 conf->reshape_safe = conf->reshape_progress;
7889 write_seqcount_end(&conf->gen_lock);
7890 spin_unlock_irq(&conf->device_lock);
7891
7892 /* Now make sure any requests that proceeded on the assumption
7893 * the reshape wasn't running - like Discard or Read - have
7894 * completed.
7895 */
7896 mddev_suspend(mddev);
7897 mddev_resume(mddev);
7898
7899 /* Add some new drives, as many as will fit.
7900 * We know there are enough to make the newly sized array work.
7901 * Don't add devices if we are reducing the number of
7902 * devices in the array. This is because it is not possible
7903 * to correctly record the "partially reconstructed" state of
7904 * such devices during the reshape and confusion could result.
7905 */
7906 if (mddev->delta_disks >= 0) {
7907 rdev_for_each(rdev, mddev)
7908 if (rdev->raid_disk < 0 &&
7909 !test_bit(Faulty, &rdev->flags)) {
7910 if (raid5_add_disk(mddev, rdev) == 0) {
7911 if (rdev->raid_disk
7912 >= conf->previous_raid_disks)
7913 set_bit(In_sync, &rdev->flags);
7914 else
7915 rdev->recovery_offset = 0;
7916
7917 if (sysfs_link_rdev(mddev, rdev))
7918 /* Failure here is OK */;
7919 }
7920 } else if (rdev->raid_disk >= conf->previous_raid_disks
7921 && !test_bit(Faulty, &rdev->flags)) {
7922 /* This is a spare that was manually added */
7923 set_bit(In_sync, &rdev->flags);
7924 }
7925
7926 /* When a reshape changes the number of devices,
7927 * ->degraded is measured against the larger of the
7928 * pre and post number of devices.
7929 */
7930 spin_lock_irqsave(&conf->device_lock, flags);
7931 mddev->degraded = raid5_calc_degraded(conf);
7932 spin_unlock_irqrestore(&conf->device_lock, flags);
7933 }
7934 mddev->raid_disks = conf->raid_disks;
7935 mddev->reshape_position = conf->reshape_progress;
7936 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7937
7938 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7939 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7940 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7941 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7942 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7943 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7944 "reshape");
7945 if (!mddev->sync_thread) {
7946 mddev->recovery = 0;
7947 spin_lock_irq(&conf->device_lock);
7948 write_seqcount_begin(&conf->gen_lock);
7949 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7950 mddev->new_chunk_sectors =
7951 conf->chunk_sectors = conf->prev_chunk_sectors;
7952 mddev->new_layout = conf->algorithm = conf->prev_algo;
7953 rdev_for_each(rdev, mddev)
7954 rdev->new_data_offset = rdev->data_offset;
7955 smp_wmb();
7956 conf->generation --;
7957 conf->reshape_progress = MaxSector;
7958 mddev->reshape_position = MaxSector;
7959 write_seqcount_end(&conf->gen_lock);
7960 spin_unlock_irq(&conf->device_lock);
7961 return -EAGAIN;
7962 }
7963 conf->reshape_checkpoint = jiffies;
7964 md_wakeup_thread(mddev->sync_thread);
7965 md_new_event(mddev);
7966 return 0;
7967 }
7968
7969 /* This is called from the reshape thread and should make any
7970 * changes needed in 'conf'
7971 */
end_reshape(struct r5conf * conf)7972 static void end_reshape(struct r5conf *conf)
7973 {
7974
7975 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7976 struct md_rdev *rdev;
7977
7978 spin_lock_irq(&conf->device_lock);
7979 conf->previous_raid_disks = conf->raid_disks;
7980 md_finish_reshape(conf->mddev);
7981 smp_wmb();
7982 conf->reshape_progress = MaxSector;
7983 conf->mddev->reshape_position = MaxSector;
7984 rdev_for_each(rdev, conf->mddev)
7985 if (rdev->raid_disk >= 0 &&
7986 !test_bit(Journal, &rdev->flags) &&
7987 !test_bit(In_sync, &rdev->flags))
7988 rdev->recovery_offset = MaxSector;
7989 spin_unlock_irq(&conf->device_lock);
7990 wake_up(&conf->wait_for_overlap);
7991
7992 /* read-ahead size must cover two whole stripes, which is
7993 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7994 */
7995 if (conf->mddev->queue) {
7996 int data_disks = conf->raid_disks - conf->max_degraded;
7997 int stripe = data_disks * ((conf->chunk_sectors << 9)
7998 / PAGE_SIZE);
7999 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8000 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8001 }
8002 }
8003 }
8004
8005 /* This is called from the raid5d thread with mddev_lock held.
8006 * It makes config changes to the device.
8007 */
raid5_finish_reshape(struct mddev * mddev)8008 static void raid5_finish_reshape(struct mddev *mddev)
8009 {
8010 struct r5conf *conf = mddev->private;
8011
8012 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8013
8014 if (mddev->delta_disks <= 0) {
8015 int d;
8016 spin_lock_irq(&conf->device_lock);
8017 mddev->degraded = raid5_calc_degraded(conf);
8018 spin_unlock_irq(&conf->device_lock);
8019 for (d = conf->raid_disks ;
8020 d < conf->raid_disks - mddev->delta_disks;
8021 d++) {
8022 struct md_rdev *rdev = conf->disks[d].rdev;
8023 if (rdev)
8024 clear_bit(In_sync, &rdev->flags);
8025 rdev = conf->disks[d].replacement;
8026 if (rdev)
8027 clear_bit(In_sync, &rdev->flags);
8028 }
8029 }
8030 mddev->layout = conf->algorithm;
8031 mddev->chunk_sectors = conf->chunk_sectors;
8032 mddev->reshape_position = MaxSector;
8033 mddev->delta_disks = 0;
8034 mddev->reshape_backwards = 0;
8035 }
8036 }
8037
raid5_quiesce(struct mddev * mddev,int quiesce)8038 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8039 {
8040 struct r5conf *conf = mddev->private;
8041
8042 if (quiesce) {
8043 /* stop all writes */
8044 lock_all_device_hash_locks_irq(conf);
8045 /* '2' tells resync/reshape to pause so that all
8046 * active stripes can drain
8047 */
8048 r5c_flush_cache(conf, INT_MAX);
8049 conf->quiesce = 2;
8050 wait_event_cmd(conf->wait_for_quiescent,
8051 atomic_read(&conf->active_stripes) == 0 &&
8052 atomic_read(&conf->active_aligned_reads) == 0,
8053 unlock_all_device_hash_locks_irq(conf),
8054 lock_all_device_hash_locks_irq(conf));
8055 conf->quiesce = 1;
8056 unlock_all_device_hash_locks_irq(conf);
8057 /* allow reshape to continue */
8058 wake_up(&conf->wait_for_overlap);
8059 } else {
8060 /* re-enable writes */
8061 lock_all_device_hash_locks_irq(conf);
8062 conf->quiesce = 0;
8063 wake_up(&conf->wait_for_quiescent);
8064 wake_up(&conf->wait_for_overlap);
8065 unlock_all_device_hash_locks_irq(conf);
8066 }
8067 log_quiesce(conf, quiesce);
8068 }
8069
raid45_takeover_raid0(struct mddev * mddev,int level)8070 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8071 {
8072 struct r0conf *raid0_conf = mddev->private;
8073 sector_t sectors;
8074
8075 /* for raid0 takeover only one zone is supported */
8076 if (raid0_conf->nr_strip_zones > 1) {
8077 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8078 mdname(mddev));
8079 return ERR_PTR(-EINVAL);
8080 }
8081
8082 sectors = raid0_conf->strip_zone[0].zone_end;
8083 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8084 mddev->dev_sectors = sectors;
8085 mddev->new_level = level;
8086 mddev->new_layout = ALGORITHM_PARITY_N;
8087 mddev->new_chunk_sectors = mddev->chunk_sectors;
8088 mddev->raid_disks += 1;
8089 mddev->delta_disks = 1;
8090 /* make sure it will be not marked as dirty */
8091 mddev->recovery_cp = MaxSector;
8092
8093 return setup_conf(mddev);
8094 }
8095
raid5_takeover_raid1(struct mddev * mddev)8096 static void *raid5_takeover_raid1(struct mddev *mddev)
8097 {
8098 int chunksect;
8099 void *ret;
8100
8101 if (mddev->raid_disks != 2 ||
8102 mddev->degraded > 1)
8103 return ERR_PTR(-EINVAL);
8104
8105 /* Should check if there are write-behind devices? */
8106
8107 chunksect = 64*2; /* 64K by default */
8108
8109 /* The array must be an exact multiple of chunksize */
8110 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8111 chunksect >>= 1;
8112
8113 if ((chunksect<<9) < STRIPE_SIZE)
8114 /* array size does not allow a suitable chunk size */
8115 return ERR_PTR(-EINVAL);
8116
8117 mddev->new_level = 5;
8118 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8119 mddev->new_chunk_sectors = chunksect;
8120
8121 ret = setup_conf(mddev);
8122 if (!IS_ERR(ret))
8123 mddev_clear_unsupported_flags(mddev,
8124 UNSUPPORTED_MDDEV_FLAGS);
8125 return ret;
8126 }
8127
raid5_takeover_raid6(struct mddev * mddev)8128 static void *raid5_takeover_raid6(struct mddev *mddev)
8129 {
8130 int new_layout;
8131
8132 switch (mddev->layout) {
8133 case ALGORITHM_LEFT_ASYMMETRIC_6:
8134 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8135 break;
8136 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8137 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8138 break;
8139 case ALGORITHM_LEFT_SYMMETRIC_6:
8140 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8141 break;
8142 case ALGORITHM_RIGHT_SYMMETRIC_6:
8143 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8144 break;
8145 case ALGORITHM_PARITY_0_6:
8146 new_layout = ALGORITHM_PARITY_0;
8147 break;
8148 case ALGORITHM_PARITY_N:
8149 new_layout = ALGORITHM_PARITY_N;
8150 break;
8151 default:
8152 return ERR_PTR(-EINVAL);
8153 }
8154 mddev->new_level = 5;
8155 mddev->new_layout = new_layout;
8156 mddev->delta_disks = -1;
8157 mddev->raid_disks -= 1;
8158 return setup_conf(mddev);
8159 }
8160
raid5_check_reshape(struct mddev * mddev)8161 static int raid5_check_reshape(struct mddev *mddev)
8162 {
8163 /* For a 2-drive array, the layout and chunk size can be changed
8164 * immediately as not restriping is needed.
8165 * For larger arrays we record the new value - after validation
8166 * to be used by a reshape pass.
8167 */
8168 struct r5conf *conf = mddev->private;
8169 int new_chunk = mddev->new_chunk_sectors;
8170
8171 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8172 return -EINVAL;
8173 if (new_chunk > 0) {
8174 if (!is_power_of_2(new_chunk))
8175 return -EINVAL;
8176 if (new_chunk < (PAGE_SIZE>>9))
8177 return -EINVAL;
8178 if (mddev->array_sectors & (new_chunk-1))
8179 /* not factor of array size */
8180 return -EINVAL;
8181 }
8182
8183 /* They look valid */
8184
8185 if (mddev->raid_disks == 2) {
8186 /* can make the change immediately */
8187 if (mddev->new_layout >= 0) {
8188 conf->algorithm = mddev->new_layout;
8189 mddev->layout = mddev->new_layout;
8190 }
8191 if (new_chunk > 0) {
8192 conf->chunk_sectors = new_chunk ;
8193 mddev->chunk_sectors = new_chunk;
8194 }
8195 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8196 md_wakeup_thread(mddev->thread);
8197 }
8198 return check_reshape(mddev);
8199 }
8200
raid6_check_reshape(struct mddev * mddev)8201 static int raid6_check_reshape(struct mddev *mddev)
8202 {
8203 int new_chunk = mddev->new_chunk_sectors;
8204
8205 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8206 return -EINVAL;
8207 if (new_chunk > 0) {
8208 if (!is_power_of_2(new_chunk))
8209 return -EINVAL;
8210 if (new_chunk < (PAGE_SIZE >> 9))
8211 return -EINVAL;
8212 if (mddev->array_sectors & (new_chunk-1))
8213 /* not factor of array size */
8214 return -EINVAL;
8215 }
8216
8217 /* They look valid */
8218 return check_reshape(mddev);
8219 }
8220
raid5_takeover(struct mddev * mddev)8221 static void *raid5_takeover(struct mddev *mddev)
8222 {
8223 /* raid5 can take over:
8224 * raid0 - if there is only one strip zone - make it a raid4 layout
8225 * raid1 - if there are two drives. We need to know the chunk size
8226 * raid4 - trivial - just use a raid4 layout.
8227 * raid6 - Providing it is a *_6 layout
8228 */
8229 if (mddev->level == 0)
8230 return raid45_takeover_raid0(mddev, 5);
8231 if (mddev->level == 1)
8232 return raid5_takeover_raid1(mddev);
8233 if (mddev->level == 4) {
8234 mddev->new_layout = ALGORITHM_PARITY_N;
8235 mddev->new_level = 5;
8236 return setup_conf(mddev);
8237 }
8238 if (mddev->level == 6)
8239 return raid5_takeover_raid6(mddev);
8240
8241 return ERR_PTR(-EINVAL);
8242 }
8243
raid4_takeover(struct mddev * mddev)8244 static void *raid4_takeover(struct mddev *mddev)
8245 {
8246 /* raid4 can take over:
8247 * raid0 - if there is only one strip zone
8248 * raid5 - if layout is right
8249 */
8250 if (mddev->level == 0)
8251 return raid45_takeover_raid0(mddev, 4);
8252 if (mddev->level == 5 &&
8253 mddev->layout == ALGORITHM_PARITY_N) {
8254 mddev->new_layout = 0;
8255 mddev->new_level = 4;
8256 return setup_conf(mddev);
8257 }
8258 return ERR_PTR(-EINVAL);
8259 }
8260
8261 static struct md_personality raid5_personality;
8262
raid6_takeover(struct mddev * mddev)8263 static void *raid6_takeover(struct mddev *mddev)
8264 {
8265 /* Currently can only take over a raid5. We map the
8266 * personality to an equivalent raid6 personality
8267 * with the Q block at the end.
8268 */
8269 int new_layout;
8270
8271 if (mddev->pers != &raid5_personality)
8272 return ERR_PTR(-EINVAL);
8273 if (mddev->degraded > 1)
8274 return ERR_PTR(-EINVAL);
8275 if (mddev->raid_disks > 253)
8276 return ERR_PTR(-EINVAL);
8277 if (mddev->raid_disks < 3)
8278 return ERR_PTR(-EINVAL);
8279
8280 switch (mddev->layout) {
8281 case ALGORITHM_LEFT_ASYMMETRIC:
8282 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8283 break;
8284 case ALGORITHM_RIGHT_ASYMMETRIC:
8285 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8286 break;
8287 case ALGORITHM_LEFT_SYMMETRIC:
8288 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8289 break;
8290 case ALGORITHM_RIGHT_SYMMETRIC:
8291 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8292 break;
8293 case ALGORITHM_PARITY_0:
8294 new_layout = ALGORITHM_PARITY_0_6;
8295 break;
8296 case ALGORITHM_PARITY_N:
8297 new_layout = ALGORITHM_PARITY_N;
8298 break;
8299 default:
8300 return ERR_PTR(-EINVAL);
8301 }
8302 mddev->new_level = 6;
8303 mddev->new_layout = new_layout;
8304 mddev->delta_disks = 1;
8305 mddev->raid_disks += 1;
8306 return setup_conf(mddev);
8307 }
8308
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8309 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8310 {
8311 struct r5conf *conf;
8312 int err;
8313
8314 err = mddev_lock(mddev);
8315 if (err)
8316 return err;
8317 conf = mddev->private;
8318 if (!conf) {
8319 mddev_unlock(mddev);
8320 return -ENODEV;
8321 }
8322
8323 if (strncmp(buf, "ppl", 3) == 0) {
8324 /* ppl only works with RAID 5 */
8325 if (!raid5_has_ppl(conf) && conf->level == 5) {
8326 err = log_init(conf, NULL, true);
8327 if (!err) {
8328 err = resize_stripes(conf, conf->pool_size);
8329 if (err)
8330 log_exit(conf);
8331 }
8332 } else
8333 err = -EINVAL;
8334 } else if (strncmp(buf, "resync", 6) == 0) {
8335 if (raid5_has_ppl(conf)) {
8336 mddev_suspend(mddev);
8337 log_exit(conf);
8338 mddev_resume(mddev);
8339 err = resize_stripes(conf, conf->pool_size);
8340 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8341 r5l_log_disk_error(conf)) {
8342 bool journal_dev_exists = false;
8343 struct md_rdev *rdev;
8344
8345 rdev_for_each(rdev, mddev)
8346 if (test_bit(Journal, &rdev->flags)) {
8347 journal_dev_exists = true;
8348 break;
8349 }
8350
8351 if (!journal_dev_exists) {
8352 mddev_suspend(mddev);
8353 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8354 mddev_resume(mddev);
8355 } else /* need remove journal device first */
8356 err = -EBUSY;
8357 } else
8358 err = -EINVAL;
8359 } else {
8360 err = -EINVAL;
8361 }
8362
8363 if (!err)
8364 md_update_sb(mddev, 1);
8365
8366 mddev_unlock(mddev);
8367
8368 return err;
8369 }
8370
raid5_start(struct mddev * mddev)8371 static int raid5_start(struct mddev *mddev)
8372 {
8373 struct r5conf *conf = mddev->private;
8374
8375 return r5l_start(conf->log);
8376 }
8377
8378 static struct md_personality raid6_personality =
8379 {
8380 .name = "raid6",
8381 .level = 6,
8382 .owner = THIS_MODULE,
8383 .make_request = raid5_make_request,
8384 .run = raid5_run,
8385 .start = raid5_start,
8386 .free = raid5_free,
8387 .status = raid5_status,
8388 .error_handler = raid5_error,
8389 .hot_add_disk = raid5_add_disk,
8390 .hot_remove_disk= raid5_remove_disk,
8391 .spare_active = raid5_spare_active,
8392 .sync_request = raid5_sync_request,
8393 .resize = raid5_resize,
8394 .size = raid5_size,
8395 .check_reshape = raid6_check_reshape,
8396 .start_reshape = raid5_start_reshape,
8397 .finish_reshape = raid5_finish_reshape,
8398 .quiesce = raid5_quiesce,
8399 .takeover = raid6_takeover,
8400 .congested = raid5_congested,
8401 .change_consistency_policy = raid5_change_consistency_policy,
8402 };
8403 static struct md_personality raid5_personality =
8404 {
8405 .name = "raid5",
8406 .level = 5,
8407 .owner = THIS_MODULE,
8408 .make_request = raid5_make_request,
8409 .run = raid5_run,
8410 .start = raid5_start,
8411 .free = raid5_free,
8412 .status = raid5_status,
8413 .error_handler = raid5_error,
8414 .hot_add_disk = raid5_add_disk,
8415 .hot_remove_disk= raid5_remove_disk,
8416 .spare_active = raid5_spare_active,
8417 .sync_request = raid5_sync_request,
8418 .resize = raid5_resize,
8419 .size = raid5_size,
8420 .check_reshape = raid5_check_reshape,
8421 .start_reshape = raid5_start_reshape,
8422 .finish_reshape = raid5_finish_reshape,
8423 .quiesce = raid5_quiesce,
8424 .takeover = raid5_takeover,
8425 .congested = raid5_congested,
8426 .change_consistency_policy = raid5_change_consistency_policy,
8427 };
8428
8429 static struct md_personality raid4_personality =
8430 {
8431 .name = "raid4",
8432 .level = 4,
8433 .owner = THIS_MODULE,
8434 .make_request = raid5_make_request,
8435 .run = raid5_run,
8436 .start = raid5_start,
8437 .free = raid5_free,
8438 .status = raid5_status,
8439 .error_handler = raid5_error,
8440 .hot_add_disk = raid5_add_disk,
8441 .hot_remove_disk= raid5_remove_disk,
8442 .spare_active = raid5_spare_active,
8443 .sync_request = raid5_sync_request,
8444 .resize = raid5_resize,
8445 .size = raid5_size,
8446 .check_reshape = raid5_check_reshape,
8447 .start_reshape = raid5_start_reshape,
8448 .finish_reshape = raid5_finish_reshape,
8449 .quiesce = raid5_quiesce,
8450 .takeover = raid4_takeover,
8451 .congested = raid5_congested,
8452 .change_consistency_policy = raid5_change_consistency_policy,
8453 };
8454
raid5_init(void)8455 static int __init raid5_init(void)
8456 {
8457 int ret;
8458
8459 raid5_wq = alloc_workqueue("raid5wq",
8460 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8461 if (!raid5_wq)
8462 return -ENOMEM;
8463
8464 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8465 "md/raid5:prepare",
8466 raid456_cpu_up_prepare,
8467 raid456_cpu_dead);
8468 if (ret) {
8469 destroy_workqueue(raid5_wq);
8470 return ret;
8471 }
8472 register_md_personality(&raid6_personality);
8473 register_md_personality(&raid5_personality);
8474 register_md_personality(&raid4_personality);
8475 return 0;
8476 }
8477
raid5_exit(void)8478 static void raid5_exit(void)
8479 {
8480 unregister_md_personality(&raid6_personality);
8481 unregister_md_personality(&raid5_personality);
8482 unregister_md_personality(&raid4_personality);
8483 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8484 destroy_workqueue(raid5_wq);
8485 }
8486
8487 module_init(raid5_init);
8488 module_exit(raid5_exit);
8489 MODULE_LICENSE("GPL");
8490 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8491 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8492 MODULE_ALIAS("md-raid5");
8493 MODULE_ALIAS("md-raid4");
8494 MODULE_ALIAS("md-level-5");
8495 MODULE_ALIAS("md-level-4");
8496 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8497 MODULE_ALIAS("md-raid6");
8498 MODULE_ALIAS("md-level-6");
8499
8500 /* This used to be two separate modules, they were: */
8501 MODULE_ALIAS("raid5");
8502 MODULE_ALIAS("raid6");
8503