1 /**
2  * @file cpu_buffer.c
3  *
4  * @remark Copyright 2002-2009 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf <barry.kasindorf@amd.com>
9  * @author Robert Richter <robert.richter@amd.com>
10  *
11  * Each CPU has a local buffer that stores PC value/event
12  * pairs. We also log context switches when we notice them.
13  * Eventually each CPU's buffer is processed into the global
14  * event buffer by sync_buffer().
15  *
16  * We use a local buffer for two reasons: an NMI or similar
17  * interrupt cannot synchronise, and high sampling rates
18  * would lead to catastrophic global synchronisation if
19  * a global buffer was used.
20  */
21 
22 #include <linux/sched.h>
23 #include <linux/oprofile.h>
24 #include <linux/errno.h>
25 
26 #include <asm/ptrace.h>
27 
28 #include "event_buffer.h"
29 #include "cpu_buffer.h"
30 #include "buffer_sync.h"
31 #include "oprof.h"
32 
33 #define OP_BUFFER_FLAGS	0
34 
35 static struct trace_buffer *op_ring_buffer;
36 DEFINE_PER_CPU(struct oprofile_cpu_buffer, op_cpu_buffer);
37 
38 static void wq_sync_buffer(struct work_struct *work);
39 
40 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
41 static int work_enabled;
42 
oprofile_get_cpu_buffer_size(void)43 unsigned long oprofile_get_cpu_buffer_size(void)
44 {
45 	return oprofile_cpu_buffer_size;
46 }
47 
oprofile_cpu_buffer_inc_smpl_lost(void)48 void oprofile_cpu_buffer_inc_smpl_lost(void)
49 {
50 	struct oprofile_cpu_buffer *cpu_buf = this_cpu_ptr(&op_cpu_buffer);
51 
52 	cpu_buf->sample_lost_overflow++;
53 }
54 
free_cpu_buffers(void)55 void free_cpu_buffers(void)
56 {
57 	if (op_ring_buffer)
58 		ring_buffer_free(op_ring_buffer);
59 	op_ring_buffer = NULL;
60 }
61 
62 #define RB_EVENT_HDR_SIZE 4
63 
alloc_cpu_buffers(void)64 int alloc_cpu_buffers(void)
65 {
66 	int i;
67 
68 	unsigned long buffer_size = oprofile_cpu_buffer_size;
69 	unsigned long byte_size = buffer_size * (sizeof(struct op_sample) +
70 						 RB_EVENT_HDR_SIZE);
71 
72 	op_ring_buffer = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
73 	if (!op_ring_buffer)
74 		goto fail;
75 
76 	for_each_possible_cpu(i) {
77 		struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
78 
79 		b->last_task = NULL;
80 		b->last_is_kernel = -1;
81 		b->tracing = 0;
82 		b->buffer_size = buffer_size;
83 		b->sample_received = 0;
84 		b->sample_lost_overflow = 0;
85 		b->backtrace_aborted = 0;
86 		b->sample_invalid_eip = 0;
87 		b->cpu = i;
88 		INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
89 	}
90 	return 0;
91 
92 fail:
93 	free_cpu_buffers();
94 	return -ENOMEM;
95 }
96 
start_cpu_work(void)97 void start_cpu_work(void)
98 {
99 	int i;
100 
101 	work_enabled = 1;
102 
103 	for_each_online_cpu(i) {
104 		struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
105 
106 		/*
107 		 * Spread the work by 1 jiffy per cpu so they dont all
108 		 * fire at once.
109 		 */
110 		schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
111 	}
112 }
113 
end_cpu_work(void)114 void end_cpu_work(void)
115 {
116 	work_enabled = 0;
117 }
118 
flush_cpu_work(void)119 void flush_cpu_work(void)
120 {
121 	int i;
122 
123 	for_each_online_cpu(i) {
124 		struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
125 
126 		/* these works are per-cpu, no need for flush_sync */
127 		flush_delayed_work(&b->work);
128 	}
129 }
130 
131 /*
132  * This function prepares the cpu buffer to write a sample.
133  *
134  * Struct op_entry is used during operations on the ring buffer while
135  * struct op_sample contains the data that is stored in the ring
136  * buffer. Struct entry can be uninitialized. The function reserves a
137  * data array that is specified by size. Use
138  * op_cpu_buffer_write_commit() after preparing the sample. In case of
139  * errors a null pointer is returned, otherwise the pointer to the
140  * sample.
141  *
142  */
143 struct op_sample
op_cpu_buffer_write_reserve(struct op_entry * entry,unsigned long size)144 *op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
145 {
146 	entry->event = ring_buffer_lock_reserve
147 		(op_ring_buffer, sizeof(struct op_sample) +
148 		 size * sizeof(entry->sample->data[0]));
149 	if (!entry->event)
150 		return NULL;
151 	entry->sample = ring_buffer_event_data(entry->event);
152 	entry->size = size;
153 	entry->data = entry->sample->data;
154 
155 	return entry->sample;
156 }
157 
op_cpu_buffer_write_commit(struct op_entry * entry)158 int op_cpu_buffer_write_commit(struct op_entry *entry)
159 {
160 	return ring_buffer_unlock_commit(op_ring_buffer, entry->event);
161 }
162 
op_cpu_buffer_read_entry(struct op_entry * entry,int cpu)163 struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
164 {
165 	struct ring_buffer_event *e;
166 	e = ring_buffer_consume(op_ring_buffer, cpu, NULL, NULL);
167 	if (!e)
168 		return NULL;
169 
170 	entry->event = e;
171 	entry->sample = ring_buffer_event_data(e);
172 	entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
173 		/ sizeof(entry->sample->data[0]);
174 	entry->data = entry->sample->data;
175 	return entry->sample;
176 }
177 
op_cpu_buffer_entries(int cpu)178 unsigned long op_cpu_buffer_entries(int cpu)
179 {
180 	return ring_buffer_entries_cpu(op_ring_buffer, cpu);
181 }
182 
183 static int
op_add_code(struct oprofile_cpu_buffer * cpu_buf,unsigned long backtrace,int is_kernel,struct task_struct * task)184 op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
185 	    int is_kernel, struct task_struct *task)
186 {
187 	struct op_entry entry;
188 	struct op_sample *sample;
189 	unsigned long flags;
190 	int size;
191 
192 	flags = 0;
193 
194 	if (backtrace)
195 		flags |= TRACE_BEGIN;
196 
197 	/* notice a switch from user->kernel or vice versa */
198 	is_kernel = !!is_kernel;
199 	if (cpu_buf->last_is_kernel != is_kernel) {
200 		cpu_buf->last_is_kernel = is_kernel;
201 		flags |= KERNEL_CTX_SWITCH;
202 		if (is_kernel)
203 			flags |= IS_KERNEL;
204 	}
205 
206 	/* notice a task switch */
207 	if (cpu_buf->last_task != task) {
208 		cpu_buf->last_task = task;
209 		flags |= USER_CTX_SWITCH;
210 	}
211 
212 	if (!flags)
213 		/* nothing to do */
214 		return 0;
215 
216 	if (flags & USER_CTX_SWITCH)
217 		size = 1;
218 	else
219 		size = 0;
220 
221 	sample = op_cpu_buffer_write_reserve(&entry, size);
222 	if (!sample)
223 		return -ENOMEM;
224 
225 	sample->eip = ESCAPE_CODE;
226 	sample->event = flags;
227 
228 	if (size)
229 		op_cpu_buffer_add_data(&entry, (unsigned long)task);
230 
231 	op_cpu_buffer_write_commit(&entry);
232 
233 	return 0;
234 }
235 
236 static inline int
op_add_sample(struct oprofile_cpu_buffer * cpu_buf,unsigned long pc,unsigned long event)237 op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
238 	      unsigned long pc, unsigned long event)
239 {
240 	struct op_entry entry;
241 	struct op_sample *sample;
242 
243 	sample = op_cpu_buffer_write_reserve(&entry, 0);
244 	if (!sample)
245 		return -ENOMEM;
246 
247 	sample->eip = pc;
248 	sample->event = event;
249 
250 	return op_cpu_buffer_write_commit(&entry);
251 }
252 
253 /*
254  * This must be safe from any context.
255  *
256  * is_kernel is needed because on some architectures you cannot
257  * tell if you are in kernel or user space simply by looking at
258  * pc. We tag this in the buffer by generating kernel enter/exit
259  * events whenever is_kernel changes
260  */
261 static int
log_sample(struct oprofile_cpu_buffer * cpu_buf,unsigned long pc,unsigned long backtrace,int is_kernel,unsigned long event,struct task_struct * task)262 log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
263 	   unsigned long backtrace, int is_kernel, unsigned long event,
264 	   struct task_struct *task)
265 {
266 	struct task_struct *tsk = task ? task : current;
267 	cpu_buf->sample_received++;
268 
269 	if (pc == ESCAPE_CODE) {
270 		cpu_buf->sample_invalid_eip++;
271 		return 0;
272 	}
273 
274 	if (op_add_code(cpu_buf, backtrace, is_kernel, tsk))
275 		goto fail;
276 
277 	if (op_add_sample(cpu_buf, pc, event))
278 		goto fail;
279 
280 	return 1;
281 
282 fail:
283 	cpu_buf->sample_lost_overflow++;
284 	return 0;
285 }
286 
oprofile_begin_trace(struct oprofile_cpu_buffer * cpu_buf)287 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
288 {
289 	cpu_buf->tracing = 1;
290 }
291 
oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)292 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
293 {
294 	cpu_buf->tracing = 0;
295 }
296 
297 static inline void
__oprofile_add_ext_sample(unsigned long pc,struct pt_regs * const regs,unsigned long event,int is_kernel,struct task_struct * task)298 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
299 			  unsigned long event, int is_kernel,
300 			  struct task_struct *task)
301 {
302 	struct oprofile_cpu_buffer *cpu_buf = this_cpu_ptr(&op_cpu_buffer);
303 	unsigned long backtrace = oprofile_backtrace_depth;
304 
305 	/*
306 	 * if log_sample() fail we can't backtrace since we lost the
307 	 * source of this event
308 	 */
309 	if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event, task))
310 		/* failed */
311 		return;
312 
313 	if (!backtrace)
314 		return;
315 
316 	oprofile_begin_trace(cpu_buf);
317 	oprofile_ops.backtrace(regs, backtrace);
318 	oprofile_end_trace(cpu_buf);
319 }
320 
oprofile_add_ext_hw_sample(unsigned long pc,struct pt_regs * const regs,unsigned long event,int is_kernel,struct task_struct * task)321 void oprofile_add_ext_hw_sample(unsigned long pc, struct pt_regs * const regs,
322 				unsigned long event, int is_kernel,
323 				struct task_struct *task)
324 {
325 	__oprofile_add_ext_sample(pc, regs, event, is_kernel, task);
326 }
327 
oprofile_add_ext_sample(unsigned long pc,struct pt_regs * const regs,unsigned long event,int is_kernel)328 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
329 			     unsigned long event, int is_kernel)
330 {
331 	__oprofile_add_ext_sample(pc, regs, event, is_kernel, NULL);
332 }
333 
oprofile_add_sample(struct pt_regs * const regs,unsigned long event)334 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
335 {
336 	int is_kernel;
337 	unsigned long pc;
338 
339 	if (likely(regs)) {
340 		is_kernel = !user_mode(regs);
341 		pc = profile_pc(regs);
342 	} else {
343 		is_kernel = 0;    /* This value will not be used */
344 		pc = ESCAPE_CODE; /* as this causes an early return. */
345 	}
346 
347 	__oprofile_add_ext_sample(pc, regs, event, is_kernel, NULL);
348 }
349 
350 /*
351  * Add samples with data to the ring buffer.
352  *
353  * Use oprofile_add_data(&entry, val) to add data and
354  * oprofile_write_commit(&entry) to commit the sample.
355  */
356 void
oprofile_write_reserve(struct op_entry * entry,struct pt_regs * const regs,unsigned long pc,int code,int size)357 oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
358 		       unsigned long pc, int code, int size)
359 {
360 	struct op_sample *sample;
361 	int is_kernel = !user_mode(regs);
362 	struct oprofile_cpu_buffer *cpu_buf = this_cpu_ptr(&op_cpu_buffer);
363 
364 	cpu_buf->sample_received++;
365 
366 	/* no backtraces for samples with data */
367 	if (op_add_code(cpu_buf, 0, is_kernel, current))
368 		goto fail;
369 
370 	sample = op_cpu_buffer_write_reserve(entry, size + 2);
371 	if (!sample)
372 		goto fail;
373 	sample->eip = ESCAPE_CODE;
374 	sample->event = 0;		/* no flags */
375 
376 	op_cpu_buffer_add_data(entry, code);
377 	op_cpu_buffer_add_data(entry, pc);
378 
379 	return;
380 
381 fail:
382 	entry->event = NULL;
383 	cpu_buf->sample_lost_overflow++;
384 }
385 
oprofile_add_data(struct op_entry * entry,unsigned long val)386 int oprofile_add_data(struct op_entry *entry, unsigned long val)
387 {
388 	if (!entry->event)
389 		return 0;
390 	return op_cpu_buffer_add_data(entry, val);
391 }
392 
oprofile_add_data64(struct op_entry * entry,u64 val)393 int oprofile_add_data64(struct op_entry *entry, u64 val)
394 {
395 	if (!entry->event)
396 		return 0;
397 	if (op_cpu_buffer_get_size(entry) < 2)
398 		/*
399 		 * the function returns 0 to indicate a too small
400 		 * buffer, even if there is some space left
401 		 */
402 		return 0;
403 	if (!op_cpu_buffer_add_data(entry, (u32)val))
404 		return 0;
405 	return op_cpu_buffer_add_data(entry, (u32)(val >> 32));
406 }
407 
oprofile_write_commit(struct op_entry * entry)408 int oprofile_write_commit(struct op_entry *entry)
409 {
410 	if (!entry->event)
411 		return -EINVAL;
412 	return op_cpu_buffer_write_commit(entry);
413 }
414 
oprofile_add_pc(unsigned long pc,int is_kernel,unsigned long event)415 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
416 {
417 	struct oprofile_cpu_buffer *cpu_buf = this_cpu_ptr(&op_cpu_buffer);
418 	log_sample(cpu_buf, pc, 0, is_kernel, event, NULL);
419 }
420 
oprofile_add_trace(unsigned long pc)421 void oprofile_add_trace(unsigned long pc)
422 {
423 	struct oprofile_cpu_buffer *cpu_buf = this_cpu_ptr(&op_cpu_buffer);
424 
425 	if (!cpu_buf->tracing)
426 		return;
427 
428 	/*
429 	 * broken frame can give an eip with the same value as an
430 	 * escape code, abort the trace if we get it
431 	 */
432 	if (pc == ESCAPE_CODE)
433 		goto fail;
434 
435 	if (op_add_sample(cpu_buf, pc, 0))
436 		goto fail;
437 
438 	return;
439 fail:
440 	cpu_buf->tracing = 0;
441 	cpu_buf->backtrace_aborted++;
442 	return;
443 }
444 
445 /*
446  * This serves to avoid cpu buffer overflow, and makes sure
447  * the task mortuary progresses
448  *
449  * By using schedule_delayed_work_on and then schedule_delayed_work
450  * we guarantee this will stay on the correct cpu
451  */
wq_sync_buffer(struct work_struct * work)452 static void wq_sync_buffer(struct work_struct *work)
453 {
454 	struct oprofile_cpu_buffer *b =
455 		container_of(work, struct oprofile_cpu_buffer, work.work);
456 	if (b->cpu != smp_processor_id() && !cpu_online(b->cpu)) {
457 		cancel_delayed_work(&b->work);
458 		return;
459 	}
460 	sync_buffer(b->cpu);
461 
462 	/* don't re-add the work if we're shutting down */
463 	if (work_enabled)
464 		schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
465 }
466