1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21 
22 #define MOD_DESC "CAN device driver interface"
23 
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27 
28 /* CAN DLC to real data length conversion helpers */
29 
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31 			     8, 12, 16, 20, 24, 32, 48, 64};
32 
33 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)34 u8 can_dlc2len(u8 can_dlc)
35 {
36 	return dlc2len[can_dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_dlc2len);
39 
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
41 			     9, 9, 9, 9,			/* 9 - 12 */
42 			     10, 10, 10, 10,			/* 13 - 16 */
43 			     11, 11, 11, 11,			/* 17 - 20 */
44 			     12, 12, 12, 12,			/* 21 - 24 */
45 			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
46 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
47 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
48 			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
49 			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
50 
51 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)52 u8 can_len2dlc(u8 len)
53 {
54 	if (unlikely(len > 64))
55 		return 0xF;
56 
57 	return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_len2dlc);
60 
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63 
64 /* Bit-timing calculation derived from:
65  *
66  * Code based on LinCAN sources and H8S2638 project
67  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68  * Copyright 2005      Stanislav Marek
69  * email: pisa@cmp.felk.cvut.cz
70  *
71  * Calculates proper bit-timing parameters for a specified bit-rate
72  * and sample-point, which can then be used to set the bit-timing
73  * registers of the CAN controller. You can find more information
74  * in the header file linux/can/netlink.h.
75  */
76 static int
can_update_sample_point(const struct can_bittiming_const * btc,unsigned int sample_point_nominal,unsigned int tseg,unsigned int * tseg1_ptr,unsigned int * tseg2_ptr,unsigned int * sample_point_error_ptr)77 can_update_sample_point(const struct can_bittiming_const *btc,
78 			unsigned int sample_point_nominal, unsigned int tseg,
79 			unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80 			unsigned int *sample_point_error_ptr)
81 {
82 	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83 	unsigned int sample_point, best_sample_point = 0;
84 	unsigned int tseg1, tseg2;
85 	int i;
86 
87 	for (i = 0; i <= 1; i++) {
88 		tseg2 = tseg + CAN_SYNC_SEG -
89 			(sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90 			1000 - i;
91 		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92 		tseg1 = tseg - tseg2;
93 		if (tseg1 > btc->tseg1_max) {
94 			tseg1 = btc->tseg1_max;
95 			tseg2 = tseg - tseg1;
96 		}
97 
98 		sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99 			(tseg + CAN_SYNC_SEG);
100 		sample_point_error = abs(sample_point_nominal - sample_point);
101 
102 		if (sample_point <= sample_point_nominal &&
103 		    sample_point_error < best_sample_point_error) {
104 			best_sample_point = sample_point;
105 			best_sample_point_error = sample_point_error;
106 			*tseg1_ptr = tseg1;
107 			*tseg2_ptr = tseg2;
108 		}
109 	}
110 
111 	if (sample_point_error_ptr)
112 		*sample_point_error_ptr = best_sample_point_error;
113 
114 	return best_sample_point;
115 }
116 
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)117 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118 			      const struct can_bittiming_const *btc)
119 {
120 	struct can_priv *priv = netdev_priv(dev);
121 	unsigned int bitrate;			/* current bitrate */
122 	unsigned int bitrate_error;		/* difference between current and nominal value */
123 	unsigned int best_bitrate_error = UINT_MAX;
124 	unsigned int sample_point_error;	/* difference between current and nominal value */
125 	unsigned int best_sample_point_error = UINT_MAX;
126 	unsigned int sample_point_nominal;	/* nominal sample point */
127 	unsigned int best_tseg = 0;		/* current best value for tseg */
128 	unsigned int best_brp = 0;		/* current best value for brp */
129 	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130 	u64 v64;
131 
132 	/* Use CiA recommended sample points */
133 	if (bt->sample_point) {
134 		sample_point_nominal = bt->sample_point;
135 	} else {
136 		if (bt->bitrate > 800000)
137 			sample_point_nominal = 750;
138 		else if (bt->bitrate > 500000)
139 			sample_point_nominal = 800;
140 		else
141 			sample_point_nominal = 875;
142 	}
143 
144 	/* tseg even = round down, odd = round up */
145 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147 		tsegall = CAN_SYNC_SEG + tseg / 2;
148 
149 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151 
152 		/* choose brp step which is possible in system */
153 		brp = (brp / btc->brp_inc) * btc->brp_inc;
154 		if (brp < btc->brp_min || brp > btc->brp_max)
155 			continue;
156 
157 		bitrate = priv->clock.freq / (brp * tsegall);
158 		bitrate_error = abs(bt->bitrate - bitrate);
159 
160 		/* tseg brp biterror */
161 		if (bitrate_error > best_bitrate_error)
162 			continue;
163 
164 		/* reset sample point error if we have a better bitrate */
165 		if (bitrate_error < best_bitrate_error)
166 			best_sample_point_error = UINT_MAX;
167 
168 		can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169 					&tseg1, &tseg2, &sample_point_error);
170 		if (sample_point_error > best_sample_point_error)
171 			continue;
172 
173 		best_sample_point_error = sample_point_error;
174 		best_bitrate_error = bitrate_error;
175 		best_tseg = tseg / 2;
176 		best_brp = brp;
177 
178 		if (bitrate_error == 0 && sample_point_error == 0)
179 			break;
180 	}
181 
182 	if (best_bitrate_error) {
183 		/* Error in one-tenth of a percent */
184 		v64 = (u64)best_bitrate_error * 1000;
185 		do_div(v64, bt->bitrate);
186 		bitrate_error = (u32)v64;
187 		if (bitrate_error > CAN_CALC_MAX_ERROR) {
188 			netdev_err(dev,
189 				   "bitrate error %d.%d%% too high\n",
190 				   bitrate_error / 10, bitrate_error % 10);
191 			return -EDOM;
192 		}
193 		netdev_warn(dev, "bitrate error %d.%d%%\n",
194 			    bitrate_error / 10, bitrate_error % 10);
195 	}
196 
197 	/* real sample point */
198 	bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199 						   best_tseg, &tseg1, &tseg2,
200 						   NULL);
201 
202 	v64 = (u64)best_brp * 1000 * 1000 * 1000;
203 	do_div(v64, priv->clock.freq);
204 	bt->tq = (u32)v64;
205 	bt->prop_seg = tseg1 / 2;
206 	bt->phase_seg1 = tseg1 - bt->prop_seg;
207 	bt->phase_seg2 = tseg2;
208 
209 	/* check for sjw user settings */
210 	if (!bt->sjw || !btc->sjw_max) {
211 		bt->sjw = 1;
212 	} else {
213 		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214 		if (bt->sjw > btc->sjw_max)
215 			bt->sjw = btc->sjw_max;
216 		/* bt->sjw must not be higher than tseg2 */
217 		if (tseg2 < bt->sjw)
218 			bt->sjw = tseg2;
219 	}
220 
221 	bt->brp = best_brp;
222 
223 	/* real bitrate */
224 	bt->bitrate = priv->clock.freq /
225 		(bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226 
227 	return 0;
228 }
229 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)230 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231 			      const struct can_bittiming_const *btc)
232 {
233 	netdev_err(dev, "bit-timing calculation not available\n");
234 	return -EINVAL;
235 }
236 #endif /* CONFIG_CAN_CALC_BITTIMING */
237 
238 /* Checks the validity of the specified bit-timing parameters prop_seg,
239  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240  * prescaler value brp. You can find more information in the header
241  * file linux/can/netlink.h.
242  */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)243 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244 			       const struct can_bittiming_const *btc)
245 {
246 	struct can_priv *priv = netdev_priv(dev);
247 	int tseg1, alltseg;
248 	u64 brp64;
249 
250 	tseg1 = bt->prop_seg + bt->phase_seg1;
251 	if (!bt->sjw)
252 		bt->sjw = 1;
253 	if (bt->sjw > btc->sjw_max ||
254 	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255 	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256 		return -ERANGE;
257 
258 	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259 	if (btc->brp_inc > 1)
260 		do_div(brp64, btc->brp_inc);
261 	brp64 += 500000000UL - 1;
262 	do_div(brp64, 1000000000UL); /* the practicable BRP */
263 	if (btc->brp_inc > 1)
264 		brp64 *= btc->brp_inc;
265 	bt->brp = (u32)brp64;
266 
267 	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268 		return -EINVAL;
269 
270 	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271 	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272 	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273 
274 	return 0;
275 }
276 
277 /* Checks the validity of predefined bitrate settings */
278 static int
can_validate_bitrate(struct net_device * dev,struct can_bittiming * bt,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)279 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280 		     const u32 *bitrate_const,
281 		     const unsigned int bitrate_const_cnt)
282 {
283 	struct can_priv *priv = netdev_priv(dev);
284 	unsigned int i;
285 
286 	for (i = 0; i < bitrate_const_cnt; i++) {
287 		if (bt->bitrate == bitrate_const[i])
288 			break;
289 	}
290 
291 	if (i >= priv->bitrate_const_cnt)
292 		return -EINVAL;
293 
294 	return 0;
295 }
296 
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)297 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298 			     const struct can_bittiming_const *btc,
299 			     const u32 *bitrate_const,
300 			     const unsigned int bitrate_const_cnt)
301 {
302 	int err;
303 
304 	/* Depending on the given can_bittiming parameter structure the CAN
305 	 * timing parameters are calculated based on the provided bitrate OR
306 	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307 	 * provided directly which are then checked and fixed up.
308 	 */
309 	if (!bt->tq && bt->bitrate && btc)
310 		err = can_calc_bittiming(dev, bt, btc);
311 	else if (bt->tq && !bt->bitrate && btc)
312 		err = can_fixup_bittiming(dev, bt, btc);
313 	else if (!bt->tq && bt->bitrate && bitrate_const)
314 		err = can_validate_bitrate(dev, bt, bitrate_const,
315 					   bitrate_const_cnt);
316 	else
317 		err = -EINVAL;
318 
319 	return err;
320 }
321 
can_update_state_error_stats(struct net_device * dev,enum can_state new_state)322 static void can_update_state_error_stats(struct net_device *dev,
323 					 enum can_state new_state)
324 {
325 	struct can_priv *priv = netdev_priv(dev);
326 
327 	if (new_state <= priv->state)
328 		return;
329 
330 	switch (new_state) {
331 	case CAN_STATE_ERROR_WARNING:
332 		priv->can_stats.error_warning++;
333 		break;
334 	case CAN_STATE_ERROR_PASSIVE:
335 		priv->can_stats.error_passive++;
336 		break;
337 	case CAN_STATE_BUS_OFF:
338 		priv->can_stats.bus_off++;
339 		break;
340 	default:
341 		break;
342 	}
343 }
344 
can_tx_state_to_frame(struct net_device * dev,enum can_state state)345 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346 {
347 	switch (state) {
348 	case CAN_STATE_ERROR_ACTIVE:
349 		return CAN_ERR_CRTL_ACTIVE;
350 	case CAN_STATE_ERROR_WARNING:
351 		return CAN_ERR_CRTL_TX_WARNING;
352 	case CAN_STATE_ERROR_PASSIVE:
353 		return CAN_ERR_CRTL_TX_PASSIVE;
354 	default:
355 		return 0;
356 	}
357 }
358 
can_rx_state_to_frame(struct net_device * dev,enum can_state state)359 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360 {
361 	switch (state) {
362 	case CAN_STATE_ERROR_ACTIVE:
363 		return CAN_ERR_CRTL_ACTIVE;
364 	case CAN_STATE_ERROR_WARNING:
365 		return CAN_ERR_CRTL_RX_WARNING;
366 	case CAN_STATE_ERROR_PASSIVE:
367 		return CAN_ERR_CRTL_RX_PASSIVE;
368 	default:
369 		return 0;
370 	}
371 }
372 
can_get_state_str(const enum can_state state)373 static const char *can_get_state_str(const enum can_state state)
374 {
375 	switch (state) {
376 	case CAN_STATE_ERROR_ACTIVE:
377 		return "Error Active";
378 	case CAN_STATE_ERROR_WARNING:
379 		return "Error Warning";
380 	case CAN_STATE_ERROR_PASSIVE:
381 		return "Error Passive";
382 	case CAN_STATE_BUS_OFF:
383 		return "Bus Off";
384 	case CAN_STATE_STOPPED:
385 		return "Stopped";
386 	case CAN_STATE_SLEEPING:
387 		return "Sleeping";
388 	default:
389 		return "<unknown>";
390 	}
391 
392 	return "<unknown>";
393 }
394 
can_change_state(struct net_device * dev,struct can_frame * cf,enum can_state tx_state,enum can_state rx_state)395 void can_change_state(struct net_device *dev, struct can_frame *cf,
396 		      enum can_state tx_state, enum can_state rx_state)
397 {
398 	struct can_priv *priv = netdev_priv(dev);
399 	enum can_state new_state = max(tx_state, rx_state);
400 
401 	if (unlikely(new_state == priv->state)) {
402 		netdev_warn(dev, "%s: oops, state did not change", __func__);
403 		return;
404 	}
405 
406 	netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407 		   can_get_state_str(priv->state), priv->state,
408 		   can_get_state_str(new_state), new_state);
409 
410 	can_update_state_error_stats(dev, new_state);
411 	priv->state = new_state;
412 
413 	if (!cf)
414 		return;
415 
416 	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417 		cf->can_id |= CAN_ERR_BUSOFF;
418 		return;
419 	}
420 
421 	cf->can_id |= CAN_ERR_CRTL;
422 	cf->data[1] |= tx_state >= rx_state ?
423 		       can_tx_state_to_frame(dev, tx_state) : 0;
424 	cf->data[1] |= tx_state <= rx_state ?
425 		       can_rx_state_to_frame(dev, rx_state) : 0;
426 }
427 EXPORT_SYMBOL_GPL(can_change_state);
428 
429 /* Local echo of CAN messages
430  *
431  * CAN network devices *should* support a local echo functionality
432  * (see Documentation/networking/can.rst). To test the handling of CAN
433  * interfaces that do not support the local echo both driver types are
434  * implemented. In the case that the driver does not support the echo
435  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436  * to perform the echo as a fallback solution.
437  */
can_flush_echo_skb(struct net_device * dev)438 static void can_flush_echo_skb(struct net_device *dev)
439 {
440 	struct can_priv *priv = netdev_priv(dev);
441 	struct net_device_stats *stats = &dev->stats;
442 	int i;
443 
444 	for (i = 0; i < priv->echo_skb_max; i++) {
445 		if (priv->echo_skb[i]) {
446 			kfree_skb(priv->echo_skb[i]);
447 			priv->echo_skb[i] = NULL;
448 			stats->tx_dropped++;
449 			stats->tx_aborted_errors++;
450 		}
451 	}
452 }
453 
454 /* Put the skb on the stack to be looped backed locally lateron
455  *
456  * The function is typically called in the start_xmit function
457  * of the device driver. The driver must protect access to
458  * priv->echo_skb, if necessary.
459  */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)460 int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461 		     unsigned int idx)
462 {
463 	struct can_priv *priv = netdev_priv(dev);
464 
465 	BUG_ON(idx >= priv->echo_skb_max);
466 
467 	/* check flag whether this packet has to be looped back */
468 	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469 	    (skb->protocol != htons(ETH_P_CAN) &&
470 	     skb->protocol != htons(ETH_P_CANFD))) {
471 		kfree_skb(skb);
472 		return 0;
473 	}
474 
475 	if (!priv->echo_skb[idx]) {
476 		skb = can_create_echo_skb(skb);
477 		if (!skb)
478 			return -ENOMEM;
479 
480 		/* make settings for echo to reduce code in irq context */
481 		skb->pkt_type = PACKET_BROADCAST;
482 		skb->ip_summed = CHECKSUM_UNNECESSARY;
483 		skb->dev = dev;
484 
485 		/* save this skb for tx interrupt echo handling */
486 		priv->echo_skb[idx] = skb;
487 	} else {
488 		/* locking problem with netif_stop_queue() ?? */
489 		netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490 		kfree_skb(skb);
491 		return -EBUSY;
492 	}
493 
494 	return 0;
495 }
496 EXPORT_SYMBOL_GPL(can_put_echo_skb);
497 
498 struct sk_buff *
__can_get_echo_skb(struct net_device * dev,unsigned int idx,u8 * len_ptr)499 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500 {
501 	struct can_priv *priv = netdev_priv(dev);
502 
503 	if (idx >= priv->echo_skb_max) {
504 		netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505 			   __func__, idx, priv->echo_skb_max);
506 		return NULL;
507 	}
508 
509 	if (priv->echo_skb[idx]) {
510 		/* Using "struct canfd_frame::len" for the frame
511 		 * length is supported on both CAN and CANFD frames.
512 		 */
513 		struct sk_buff *skb = priv->echo_skb[idx];
514 		struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515 
516 		/* get the real payload length for netdev statistics */
517 		if (cf->can_id & CAN_RTR_FLAG)
518 			*len_ptr = 0;
519 		else
520 			*len_ptr = cf->len;
521 
522 		priv->echo_skb[idx] = NULL;
523 
524 		return skb;
525 	}
526 
527 	return NULL;
528 }
529 
530 /* Get the skb from the stack and loop it back locally
531  *
532  * The function is typically called when the TX done interrupt
533  * is handled in the device driver. The driver must protect
534  * access to priv->echo_skb, if necessary.
535  */
can_get_echo_skb(struct net_device * dev,unsigned int idx)536 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
537 {
538 	struct sk_buff *skb;
539 	u8 len;
540 
541 	skb = __can_get_echo_skb(dev, idx, &len);
542 	if (!skb)
543 		return 0;
544 
545 	skb_get(skb);
546 	if (netif_rx(skb) == NET_RX_SUCCESS)
547 		dev_consume_skb_any(skb);
548 	else
549 		dev_kfree_skb_any(skb);
550 
551 	return len;
552 }
553 EXPORT_SYMBOL_GPL(can_get_echo_skb);
554 
555 /* Remove the skb from the stack and free it.
556  *
557  * The function is typically called when TX failed.
558  */
can_free_echo_skb(struct net_device * dev,unsigned int idx)559 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
560 {
561 	struct can_priv *priv = netdev_priv(dev);
562 
563 	BUG_ON(idx >= priv->echo_skb_max);
564 
565 	if (priv->echo_skb[idx]) {
566 		dev_kfree_skb_any(priv->echo_skb[idx]);
567 		priv->echo_skb[idx] = NULL;
568 	}
569 }
570 EXPORT_SYMBOL_GPL(can_free_echo_skb);
571 
572 /* CAN device restart for bus-off recovery */
can_restart(struct net_device * dev)573 static void can_restart(struct net_device *dev)
574 {
575 	struct can_priv *priv = netdev_priv(dev);
576 	struct net_device_stats *stats = &dev->stats;
577 	struct sk_buff *skb;
578 	struct can_frame *cf;
579 	int err;
580 
581 	BUG_ON(netif_carrier_ok(dev));
582 
583 	/* No synchronization needed because the device is bus-off and
584 	 * no messages can come in or go out.
585 	 */
586 	can_flush_echo_skb(dev);
587 
588 	/* send restart message upstream */
589 	skb = alloc_can_err_skb(dev, &cf);
590 	if (!skb)
591 		goto restart;
592 
593 	cf->can_id |= CAN_ERR_RESTARTED;
594 
595 	netif_rx_ni(skb);
596 
597 	stats->rx_packets++;
598 	stats->rx_bytes += cf->can_dlc;
599 
600 restart:
601 	netdev_dbg(dev, "restarted\n");
602 	priv->can_stats.restarts++;
603 
604 	/* Now restart the device */
605 	err = priv->do_set_mode(dev, CAN_MODE_START);
606 
607 	netif_carrier_on(dev);
608 	if (err)
609 		netdev_err(dev, "Error %d during restart", err);
610 }
611 
can_restart_work(struct work_struct * work)612 static void can_restart_work(struct work_struct *work)
613 {
614 	struct delayed_work *dwork = to_delayed_work(work);
615 	struct can_priv *priv = container_of(dwork, struct can_priv,
616 					     restart_work);
617 
618 	can_restart(priv->dev);
619 }
620 
can_restart_now(struct net_device * dev)621 int can_restart_now(struct net_device *dev)
622 {
623 	struct can_priv *priv = netdev_priv(dev);
624 
625 	/* A manual restart is only permitted if automatic restart is
626 	 * disabled and the device is in the bus-off state
627 	 */
628 	if (priv->restart_ms)
629 		return -EINVAL;
630 	if (priv->state != CAN_STATE_BUS_OFF)
631 		return -EBUSY;
632 
633 	cancel_delayed_work_sync(&priv->restart_work);
634 	can_restart(dev);
635 
636 	return 0;
637 }
638 
639 /* CAN bus-off
640  *
641  * This functions should be called when the device goes bus-off to
642  * tell the netif layer that no more packets can be sent or received.
643  * If enabled, a timer is started to trigger bus-off recovery.
644  */
can_bus_off(struct net_device * dev)645 void can_bus_off(struct net_device *dev)
646 {
647 	struct can_priv *priv = netdev_priv(dev);
648 
649 	if (priv->restart_ms)
650 		netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
651 			    priv->restart_ms);
652 	else
653 		netdev_info(dev, "bus-off\n");
654 
655 	netif_carrier_off(dev);
656 
657 	if (priv->restart_ms)
658 		schedule_delayed_work(&priv->restart_work,
659 				      msecs_to_jiffies(priv->restart_ms));
660 }
661 EXPORT_SYMBOL_GPL(can_bus_off);
662 
can_setup(struct net_device * dev)663 static void can_setup(struct net_device *dev)
664 {
665 	dev->type = ARPHRD_CAN;
666 	dev->mtu = CAN_MTU;
667 	dev->hard_header_len = 0;
668 	dev->addr_len = 0;
669 	dev->tx_queue_len = 10;
670 
671 	/* New-style flags. */
672 	dev->flags = IFF_NOARP;
673 	dev->features = NETIF_F_HW_CSUM;
674 }
675 
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)676 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
677 {
678 	struct sk_buff *skb;
679 
680 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
681 			       sizeof(struct can_frame));
682 	if (unlikely(!skb))
683 		return NULL;
684 
685 	skb->protocol = htons(ETH_P_CAN);
686 	skb->pkt_type = PACKET_BROADCAST;
687 	skb->ip_summed = CHECKSUM_UNNECESSARY;
688 
689 	skb_reset_mac_header(skb);
690 	skb_reset_network_header(skb);
691 	skb_reset_transport_header(skb);
692 
693 	can_skb_reserve(skb);
694 	can_skb_prv(skb)->ifindex = dev->ifindex;
695 	can_skb_prv(skb)->skbcnt = 0;
696 
697 	*cf = skb_put_zero(skb, sizeof(struct can_frame));
698 
699 	return skb;
700 }
701 EXPORT_SYMBOL_GPL(alloc_can_skb);
702 
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)703 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
704 				struct canfd_frame **cfd)
705 {
706 	struct sk_buff *skb;
707 
708 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
709 			       sizeof(struct canfd_frame));
710 	if (unlikely(!skb))
711 		return NULL;
712 
713 	skb->protocol = htons(ETH_P_CANFD);
714 	skb->pkt_type = PACKET_BROADCAST;
715 	skb->ip_summed = CHECKSUM_UNNECESSARY;
716 
717 	skb_reset_mac_header(skb);
718 	skb_reset_network_header(skb);
719 	skb_reset_transport_header(skb);
720 
721 	can_skb_reserve(skb);
722 	can_skb_prv(skb)->ifindex = dev->ifindex;
723 	can_skb_prv(skb)->skbcnt = 0;
724 
725 	*cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
726 
727 	return skb;
728 }
729 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
730 
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)731 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
732 {
733 	struct sk_buff *skb;
734 
735 	skb = alloc_can_skb(dev, cf);
736 	if (unlikely(!skb))
737 		return NULL;
738 
739 	(*cf)->can_id = CAN_ERR_FLAG;
740 	(*cf)->can_dlc = CAN_ERR_DLC;
741 
742 	return skb;
743 }
744 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
745 
746 /* Allocate and setup space for the CAN network device */
alloc_candev_mqs(int sizeof_priv,unsigned int echo_skb_max,unsigned int txqs,unsigned int rxqs)747 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
748 				    unsigned int txqs, unsigned int rxqs)
749 {
750 	struct net_device *dev;
751 	struct can_priv *priv;
752 	int size;
753 
754 	/* We put the driver's priv, the CAN mid layer priv and the
755 	 * echo skb into the netdevice's priv. The memory layout for
756 	 * the netdev_priv is like this:
757 	 *
758 	 * +-------------------------+
759 	 * | driver's priv           |
760 	 * +-------------------------+
761 	 * | struct can_ml_priv      |
762 	 * +-------------------------+
763 	 * | array of struct sk_buff |
764 	 * +-------------------------+
765 	 */
766 
767 	size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
768 
769 	if (echo_skb_max)
770 		size = ALIGN(size, sizeof(struct sk_buff *)) +
771 			echo_skb_max * sizeof(struct sk_buff *);
772 
773 	dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
774 			       txqs, rxqs);
775 	if (!dev)
776 		return NULL;
777 
778 	priv = netdev_priv(dev);
779 	priv->dev = dev;
780 
781 	dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
782 
783 	if (echo_skb_max) {
784 		priv->echo_skb_max = echo_skb_max;
785 		priv->echo_skb = (void *)priv +
786 			(size - echo_skb_max * sizeof(struct sk_buff *));
787 	}
788 
789 	priv->state = CAN_STATE_STOPPED;
790 
791 	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
792 
793 	return dev;
794 }
795 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
796 
797 /* Free space of the CAN network device */
free_candev(struct net_device * dev)798 void free_candev(struct net_device *dev)
799 {
800 	free_netdev(dev);
801 }
802 EXPORT_SYMBOL_GPL(free_candev);
803 
804 /* changing MTU and control mode for CAN/CANFD devices */
can_change_mtu(struct net_device * dev,int new_mtu)805 int can_change_mtu(struct net_device *dev, int new_mtu)
806 {
807 	struct can_priv *priv = netdev_priv(dev);
808 
809 	/* Do not allow changing the MTU while running */
810 	if (dev->flags & IFF_UP)
811 		return -EBUSY;
812 
813 	/* allow change of MTU according to the CANFD ability of the device */
814 	switch (new_mtu) {
815 	case CAN_MTU:
816 		/* 'CANFD-only' controllers can not switch to CAN_MTU */
817 		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
818 			return -EINVAL;
819 
820 		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
821 		break;
822 
823 	case CANFD_MTU:
824 		/* check for potential CANFD ability */
825 		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
826 		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
827 			return -EINVAL;
828 
829 		priv->ctrlmode |= CAN_CTRLMODE_FD;
830 		break;
831 
832 	default:
833 		return -EINVAL;
834 	}
835 
836 	dev->mtu = new_mtu;
837 	return 0;
838 }
839 EXPORT_SYMBOL_GPL(can_change_mtu);
840 
841 /* Common open function when the device gets opened.
842  *
843  * This function should be called in the open function of the device
844  * driver.
845  */
open_candev(struct net_device * dev)846 int open_candev(struct net_device *dev)
847 {
848 	struct can_priv *priv = netdev_priv(dev);
849 
850 	if (!priv->bittiming.bitrate) {
851 		netdev_err(dev, "bit-timing not yet defined\n");
852 		return -EINVAL;
853 	}
854 
855 	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
856 	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
857 	    (!priv->data_bittiming.bitrate ||
858 	     priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
859 		netdev_err(dev, "incorrect/missing data bit-timing\n");
860 		return -EINVAL;
861 	}
862 
863 	/* Switch carrier on if device was stopped while in bus-off state */
864 	if (!netif_carrier_ok(dev))
865 		netif_carrier_on(dev);
866 
867 	return 0;
868 }
869 EXPORT_SYMBOL_GPL(open_candev);
870 
871 #ifdef CONFIG_OF
872 /* Common function that can be used to understand the limitation of
873  * a transceiver when it provides no means to determine these limitations
874  * at runtime.
875  */
of_can_transceiver(struct net_device * dev)876 void of_can_transceiver(struct net_device *dev)
877 {
878 	struct device_node *dn;
879 	struct can_priv *priv = netdev_priv(dev);
880 	struct device_node *np = dev->dev.parent->of_node;
881 	int ret;
882 
883 	dn = of_get_child_by_name(np, "can-transceiver");
884 	if (!dn)
885 		return;
886 
887 	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
888 	of_node_put(dn);
889 	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
890 		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
891 }
892 EXPORT_SYMBOL_GPL(of_can_transceiver);
893 #endif
894 
895 /* Common close function for cleanup before the device gets closed.
896  *
897  * This function should be called in the close function of the device
898  * driver.
899  */
close_candev(struct net_device * dev)900 void close_candev(struct net_device *dev)
901 {
902 	struct can_priv *priv = netdev_priv(dev);
903 
904 	cancel_delayed_work_sync(&priv->restart_work);
905 	can_flush_echo_skb(dev);
906 }
907 EXPORT_SYMBOL_GPL(close_candev);
908 
909 /* CAN netlink interface */
910 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
911 	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
912 	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
913 	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
914 	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
915 	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
916 	[IFLA_CAN_BITTIMING_CONST]
917 				= { .len = sizeof(struct can_bittiming_const) },
918 	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
919 	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
920 	[IFLA_CAN_DATA_BITTIMING]
921 				= { .len = sizeof(struct can_bittiming) },
922 	[IFLA_CAN_DATA_BITTIMING_CONST]
923 				= { .len = sizeof(struct can_bittiming_const) },
924 	[IFLA_CAN_TERMINATION]	= { .type = NLA_U16 },
925 };
926 
can_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)927 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
928 			struct netlink_ext_ack *extack)
929 {
930 	bool is_can_fd = false;
931 
932 	/* Make sure that valid CAN FD configurations always consist of
933 	 * - nominal/arbitration bittiming
934 	 * - data bittiming
935 	 * - control mode with CAN_CTRLMODE_FD set
936 	 */
937 
938 	if (!data)
939 		return 0;
940 
941 	if (data[IFLA_CAN_CTRLMODE]) {
942 		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
943 
944 		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
945 	}
946 
947 	if (is_can_fd) {
948 		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
949 			return -EOPNOTSUPP;
950 	}
951 
952 	if (data[IFLA_CAN_DATA_BITTIMING]) {
953 		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
954 			return -EOPNOTSUPP;
955 	}
956 
957 	return 0;
958 }
959 
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)960 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
961 			  struct nlattr *data[],
962 			  struct netlink_ext_ack *extack)
963 {
964 	struct can_priv *priv = netdev_priv(dev);
965 	int err;
966 
967 	/* We need synchronization with dev->stop() */
968 	ASSERT_RTNL();
969 
970 	if (data[IFLA_CAN_BITTIMING]) {
971 		struct can_bittiming bt;
972 
973 		/* Do not allow changing bittiming while running */
974 		if (dev->flags & IFF_UP)
975 			return -EBUSY;
976 
977 		/* Calculate bittiming parameters based on
978 		 * bittiming_const if set, otherwise pass bitrate
979 		 * directly via do_set_bitrate(). Bail out if neither
980 		 * is given.
981 		 */
982 		if (!priv->bittiming_const && !priv->do_set_bittiming)
983 			return -EOPNOTSUPP;
984 
985 		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
986 		err = can_get_bittiming(dev, &bt,
987 					priv->bittiming_const,
988 					priv->bitrate_const,
989 					priv->bitrate_const_cnt);
990 		if (err)
991 			return err;
992 
993 		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
994 			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
995 				   priv->bitrate_max);
996 			return -EINVAL;
997 		}
998 
999 		memcpy(&priv->bittiming, &bt, sizeof(bt));
1000 
1001 		if (priv->do_set_bittiming) {
1002 			/* Finally, set the bit-timing registers */
1003 			err = priv->do_set_bittiming(dev);
1004 			if (err)
1005 				return err;
1006 		}
1007 	}
1008 
1009 	if (data[IFLA_CAN_CTRLMODE]) {
1010 		struct can_ctrlmode *cm;
1011 		u32 ctrlstatic;
1012 		u32 maskedflags;
1013 
1014 		/* Do not allow changing controller mode while running */
1015 		if (dev->flags & IFF_UP)
1016 			return -EBUSY;
1017 		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1018 		ctrlstatic = priv->ctrlmode_static;
1019 		maskedflags = cm->flags & cm->mask;
1020 
1021 		/* check whether provided bits are allowed to be passed */
1022 		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1023 			return -EOPNOTSUPP;
1024 
1025 		/* do not check for static fd-non-iso if 'fd' is disabled */
1026 		if (!(maskedflags & CAN_CTRLMODE_FD))
1027 			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1028 
1029 		/* make sure static options are provided by configuration */
1030 		if ((maskedflags & ctrlstatic) != ctrlstatic)
1031 			return -EOPNOTSUPP;
1032 
1033 		/* clear bits to be modified and copy the flag values */
1034 		priv->ctrlmode &= ~cm->mask;
1035 		priv->ctrlmode |= maskedflags;
1036 
1037 		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
1038 		if (priv->ctrlmode & CAN_CTRLMODE_FD)
1039 			dev->mtu = CANFD_MTU;
1040 		else
1041 			dev->mtu = CAN_MTU;
1042 	}
1043 
1044 	if (data[IFLA_CAN_RESTART_MS]) {
1045 		/* Do not allow changing restart delay while running */
1046 		if (dev->flags & IFF_UP)
1047 			return -EBUSY;
1048 		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1049 	}
1050 
1051 	if (data[IFLA_CAN_RESTART]) {
1052 		/* Do not allow a restart while not running */
1053 		if (!(dev->flags & IFF_UP))
1054 			return -EINVAL;
1055 		err = can_restart_now(dev);
1056 		if (err)
1057 			return err;
1058 	}
1059 
1060 	if (data[IFLA_CAN_DATA_BITTIMING]) {
1061 		struct can_bittiming dbt;
1062 
1063 		/* Do not allow changing bittiming while running */
1064 		if (dev->flags & IFF_UP)
1065 			return -EBUSY;
1066 
1067 		/* Calculate bittiming parameters based on
1068 		 * data_bittiming_const if set, otherwise pass bitrate
1069 		 * directly via do_set_bitrate(). Bail out if neither
1070 		 * is given.
1071 		 */
1072 		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1073 			return -EOPNOTSUPP;
1074 
1075 		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1076 		       sizeof(dbt));
1077 		err = can_get_bittiming(dev, &dbt,
1078 					priv->data_bittiming_const,
1079 					priv->data_bitrate_const,
1080 					priv->data_bitrate_const_cnt);
1081 		if (err)
1082 			return err;
1083 
1084 		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1085 			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1086 				   priv->bitrate_max);
1087 			return -EINVAL;
1088 		}
1089 
1090 		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1091 
1092 		if (priv->do_set_data_bittiming) {
1093 			/* Finally, set the bit-timing registers */
1094 			err = priv->do_set_data_bittiming(dev);
1095 			if (err)
1096 				return err;
1097 		}
1098 	}
1099 
1100 	if (data[IFLA_CAN_TERMINATION]) {
1101 		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1102 		const unsigned int num_term = priv->termination_const_cnt;
1103 		unsigned int i;
1104 
1105 		if (!priv->do_set_termination)
1106 			return -EOPNOTSUPP;
1107 
1108 		/* check whether given value is supported by the interface */
1109 		for (i = 0; i < num_term; i++) {
1110 			if (termval == priv->termination_const[i])
1111 				break;
1112 		}
1113 		if (i >= num_term)
1114 			return -EINVAL;
1115 
1116 		/* Finally, set the termination value */
1117 		err = priv->do_set_termination(dev, termval);
1118 		if (err)
1119 			return err;
1120 
1121 		priv->termination = termval;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
can_get_size(const struct net_device * dev)1127 static size_t can_get_size(const struct net_device *dev)
1128 {
1129 	struct can_priv *priv = netdev_priv(dev);
1130 	size_t size = 0;
1131 
1132 	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1133 		size += nla_total_size(sizeof(struct can_bittiming));
1134 	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1135 		size += nla_total_size(sizeof(struct can_bittiming_const));
1136 	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1137 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1138 	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1139 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1140 	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1141 		size += nla_total_size(sizeof(struct can_berr_counter));
1142 	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1143 		size += nla_total_size(sizeof(struct can_bittiming));
1144 	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1145 		size += nla_total_size(sizeof(struct can_bittiming_const));
1146 	if (priv->termination_const) {
1147 		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1148 		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1149 				       priv->termination_const_cnt);
1150 	}
1151 	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1152 		size += nla_total_size(sizeof(*priv->bitrate_const) *
1153 				       priv->bitrate_const_cnt);
1154 	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1155 		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1156 				       priv->data_bitrate_const_cnt);
1157 	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1158 
1159 	return size;
1160 }
1161 
can_fill_info(struct sk_buff * skb,const struct net_device * dev)1162 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1163 {
1164 	struct can_priv *priv = netdev_priv(dev);
1165 	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1166 	struct can_berr_counter bec;
1167 	enum can_state state = priv->state;
1168 
1169 	if (priv->do_get_state)
1170 		priv->do_get_state(dev, &state);
1171 
1172 	if ((priv->bittiming.bitrate &&
1173 	     nla_put(skb, IFLA_CAN_BITTIMING,
1174 		     sizeof(priv->bittiming), &priv->bittiming)) ||
1175 
1176 	    (priv->bittiming_const &&
1177 	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1178 		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1179 
1180 	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1181 	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1182 	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1183 	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1184 
1185 	    (priv->do_get_berr_counter &&
1186 	     !priv->do_get_berr_counter(dev, &bec) &&
1187 	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1188 
1189 	    (priv->data_bittiming.bitrate &&
1190 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1191 		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1192 
1193 	    (priv->data_bittiming_const &&
1194 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1195 		     sizeof(*priv->data_bittiming_const),
1196 		     priv->data_bittiming_const)) ||
1197 
1198 	    (priv->termination_const &&
1199 	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1200 	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1201 		      sizeof(*priv->termination_const) *
1202 		      priv->termination_const_cnt,
1203 		      priv->termination_const))) ||
1204 
1205 	    (priv->bitrate_const &&
1206 	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1207 		     sizeof(*priv->bitrate_const) *
1208 		     priv->bitrate_const_cnt,
1209 		     priv->bitrate_const)) ||
1210 
1211 	    (priv->data_bitrate_const &&
1212 	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1213 		     sizeof(*priv->data_bitrate_const) *
1214 		     priv->data_bitrate_const_cnt,
1215 		     priv->data_bitrate_const)) ||
1216 
1217 	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1218 		     sizeof(priv->bitrate_max),
1219 		     &priv->bitrate_max))
1220 	    )
1221 
1222 		return -EMSGSIZE;
1223 
1224 	return 0;
1225 }
1226 
can_get_xstats_size(const struct net_device * dev)1227 static size_t can_get_xstats_size(const struct net_device *dev)
1228 {
1229 	return sizeof(struct can_device_stats);
1230 }
1231 
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)1232 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1233 {
1234 	struct can_priv *priv = netdev_priv(dev);
1235 
1236 	if (nla_put(skb, IFLA_INFO_XSTATS,
1237 		    sizeof(priv->can_stats), &priv->can_stats))
1238 		goto nla_put_failure;
1239 	return 0;
1240 
1241 nla_put_failure:
1242 	return -EMSGSIZE;
1243 }
1244 
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1245 static int can_newlink(struct net *src_net, struct net_device *dev,
1246 		       struct nlattr *tb[], struct nlattr *data[],
1247 		       struct netlink_ext_ack *extack)
1248 {
1249 	return -EOPNOTSUPP;
1250 }
1251 
can_dellink(struct net_device * dev,struct list_head * head)1252 static void can_dellink(struct net_device *dev, struct list_head *head)
1253 {
1254 }
1255 
1256 static struct rtnl_link_ops can_link_ops __read_mostly = {
1257 	.kind		= "can",
1258 	.maxtype	= IFLA_CAN_MAX,
1259 	.policy		= can_policy,
1260 	.setup		= can_setup,
1261 	.validate	= can_validate,
1262 	.newlink	= can_newlink,
1263 	.changelink	= can_changelink,
1264 	.dellink	= can_dellink,
1265 	.get_size	= can_get_size,
1266 	.fill_info	= can_fill_info,
1267 	.get_xstats_size = can_get_xstats_size,
1268 	.fill_xstats	= can_fill_xstats,
1269 };
1270 
1271 /* Register the CAN network device */
register_candev(struct net_device * dev)1272 int register_candev(struct net_device *dev)
1273 {
1274 	struct can_priv *priv = netdev_priv(dev);
1275 
1276 	/* Ensure termination_const, termination_const_cnt and
1277 	 * do_set_termination consistency. All must be either set or
1278 	 * unset.
1279 	 */
1280 	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1281 	    (!priv->termination_const != !priv->do_set_termination))
1282 		return -EINVAL;
1283 
1284 	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1285 		return -EINVAL;
1286 
1287 	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1288 		return -EINVAL;
1289 
1290 	dev->rtnl_link_ops = &can_link_ops;
1291 	netif_carrier_off(dev);
1292 
1293 	return register_netdev(dev);
1294 }
1295 EXPORT_SYMBOL_GPL(register_candev);
1296 
1297 /* Unregister the CAN network device */
unregister_candev(struct net_device * dev)1298 void unregister_candev(struct net_device *dev)
1299 {
1300 	unregister_netdev(dev);
1301 }
1302 EXPORT_SYMBOL_GPL(unregister_candev);
1303 
1304 /* Test if a network device is a candev based device
1305  * and return the can_priv* if so.
1306  */
safe_candev_priv(struct net_device * dev)1307 struct can_priv *safe_candev_priv(struct net_device *dev)
1308 {
1309 	if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1310 		return NULL;
1311 
1312 	return netdev_priv(dev);
1313 }
1314 EXPORT_SYMBOL_GPL(safe_candev_priv);
1315 
can_dev_init(void)1316 static __init int can_dev_init(void)
1317 {
1318 	int err;
1319 
1320 	can_led_notifier_init();
1321 
1322 	err = rtnl_link_register(&can_link_ops);
1323 	if (!err)
1324 		pr_info(MOD_DESC "\n");
1325 
1326 	return err;
1327 }
1328 module_init(can_dev_init);
1329 
can_dev_exit(void)1330 static __exit void can_dev_exit(void)
1331 {
1332 	rtnl_link_unregister(&can_link_ops);
1333 
1334 	can_led_notifier_exit();
1335 }
1336 module_exit(can_dev_exit);
1337 
1338 MODULE_ALIAS_RTNL_LINK("can");
1339