1 /*
2 * PowerNV OPAL high level interfaces
3 *
4 * Copyright 2011 IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #define pr_fmt(fmt) "opal: " fmt
13
14 #include <linux/printk.h>
15 #include <linux/types.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/of_address.h>
20 #include <linux/interrupt.h>
21 #include <linux/notifier.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/kobject.h>
25 #include <linux/delay.h>
26 #include <linux/memblock.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/printk.h>
30 #include <linux/kmsg_dump.h>
31 #include <linux/console.h>
32 #include <linux/sched/debug.h>
33
34 #include <asm/machdep.h>
35 #include <asm/opal.h>
36 #include <asm/firmware.h>
37 #include <asm/mce.h>
38 #include <asm/imc-pmu.h>
39 #include <asm/bug.h>
40
41 #include "powernv.h"
42
43 /* /sys/firmware/opal */
44 struct kobject *opal_kobj;
45
46 struct opal {
47 u64 base;
48 u64 entry;
49 u64 size;
50 } opal;
51
52 struct mcheck_recoverable_range {
53 u64 start_addr;
54 u64 end_addr;
55 u64 recover_addr;
56 };
57
58 static struct mcheck_recoverable_range *mc_recoverable_range;
59 static int mc_recoverable_range_len;
60
61 struct device_node *opal_node;
62 static DEFINE_SPINLOCK(opal_write_lock);
63 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
64 static uint32_t opal_heartbeat;
65 static struct task_struct *kopald_tsk;
66
opal_configure_cores(void)67 void opal_configure_cores(void)
68 {
69 u64 reinit_flags = 0;
70
71 /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
72 *
73 * It will preserve non volatile GPRs and HSPRG0/1. It will
74 * also restore HIDs and other SPRs to their original value
75 * but it might clobber a bunch.
76 */
77 #ifdef __BIG_ENDIAN__
78 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
79 #else
80 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
81 #endif
82
83 /*
84 * POWER9 always support running hash:
85 * ie. Host hash supports hash guests
86 * Host radix supports hash/radix guests
87 */
88 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
89 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
90 if (early_radix_enabled())
91 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
92 }
93
94 opal_reinit_cpus(reinit_flags);
95
96 /* Restore some bits */
97 if (cur_cpu_spec->cpu_restore)
98 cur_cpu_spec->cpu_restore();
99 }
100
early_init_dt_scan_opal(unsigned long node,const char * uname,int depth,void * data)101 int __init early_init_dt_scan_opal(unsigned long node,
102 const char *uname, int depth, void *data)
103 {
104 const void *basep, *entryp, *sizep;
105 int basesz, entrysz, runtimesz;
106
107 if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
108 return 0;
109
110 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
111 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
112 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
113
114 if (!basep || !entryp || !sizep)
115 return 1;
116
117 opal.base = of_read_number(basep, basesz/4);
118 opal.entry = of_read_number(entryp, entrysz/4);
119 opal.size = of_read_number(sizep, runtimesz/4);
120
121 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n",
122 opal.base, basep, basesz);
123 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
124 opal.entry, entryp, entrysz);
125 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
126 opal.size, sizep, runtimesz);
127
128 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
129 powerpc_firmware_features |= FW_FEATURE_OPAL;
130 pr_debug("OPAL detected !\n");
131 } else {
132 panic("OPAL != V3 detected, no longer supported.\n");
133 }
134
135 return 1;
136 }
137
early_init_dt_scan_recoverable_ranges(unsigned long node,const char * uname,int depth,void * data)138 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
139 const char *uname, int depth, void *data)
140 {
141 int i, psize, size;
142 const __be32 *prop;
143
144 if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
145 return 0;
146
147 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
148
149 if (!prop)
150 return 1;
151
152 pr_debug("Found machine check recoverable ranges.\n");
153
154 /*
155 * Calculate number of available entries.
156 *
157 * Each recoverable address range entry is (start address, len,
158 * recovery address), 2 cells each for start and recovery address,
159 * 1 cell for len, totalling 5 cells per entry.
160 */
161 mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
162
163 /* Sanity check */
164 if (!mc_recoverable_range_len)
165 return 1;
166
167 /* Size required to hold all the entries. */
168 size = mc_recoverable_range_len *
169 sizeof(struct mcheck_recoverable_range);
170
171 /*
172 * Allocate a buffer to hold the MC recoverable ranges.
173 */
174 mc_recoverable_range =__va(memblock_alloc(size, __alignof__(u64)));
175 memset(mc_recoverable_range, 0, size);
176
177 for (i = 0; i < mc_recoverable_range_len; i++) {
178 mc_recoverable_range[i].start_addr =
179 of_read_number(prop + (i * 5) + 0, 2);
180 mc_recoverable_range[i].end_addr =
181 mc_recoverable_range[i].start_addr +
182 of_read_number(prop + (i * 5) + 2, 1);
183 mc_recoverable_range[i].recover_addr =
184 of_read_number(prop + (i * 5) + 3, 2);
185
186 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
187 mc_recoverable_range[i].start_addr,
188 mc_recoverable_range[i].end_addr,
189 mc_recoverable_range[i].recover_addr);
190 }
191 return 1;
192 }
193
opal_register_exception_handlers(void)194 static int __init opal_register_exception_handlers(void)
195 {
196 #ifdef __BIG_ENDIAN__
197 u64 glue;
198
199 if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
200 return -ENODEV;
201
202 /* Hookup some exception handlers except machine check. We use the
203 * fwnmi area at 0x7000 to provide the glue space to OPAL
204 */
205 glue = 0x7000;
206
207 /*
208 * Check if we are running on newer firmware that exports
209 * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch
210 * the HMI interrupt and we catch it directly in Linux.
211 *
212 * For older firmware (i.e currently released POWER8 System Firmware
213 * as of today <= SV810_087), we fallback to old behavior and let OPAL
214 * patch the HMI vector and handle it inside OPAL firmware.
215 *
216 * For newer firmware (in development/yet to be released) we will
217 * start catching/handling HMI directly in Linux.
218 */
219 if (!opal_check_token(OPAL_HANDLE_HMI)) {
220 pr_info("Old firmware detected, OPAL handles HMIs.\n");
221 opal_register_exception_handler(
222 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
223 0, glue);
224 glue += 128;
225 }
226
227 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
228 #endif
229
230 return 0;
231 }
232 machine_early_initcall(powernv, opal_register_exception_handlers);
233
234 /*
235 * Opal message notifier based on message type. Allow subscribers to get
236 * notified for specific messgae type.
237 */
opal_message_notifier_register(enum opal_msg_type msg_type,struct notifier_block * nb)238 int opal_message_notifier_register(enum opal_msg_type msg_type,
239 struct notifier_block *nb)
240 {
241 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
242 pr_warn("%s: Invalid arguments, msg_type:%d\n",
243 __func__, msg_type);
244 return -EINVAL;
245 }
246
247 return atomic_notifier_chain_register(
248 &opal_msg_notifier_head[msg_type], nb);
249 }
250 EXPORT_SYMBOL_GPL(opal_message_notifier_register);
251
opal_message_notifier_unregister(enum opal_msg_type msg_type,struct notifier_block * nb)252 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
253 struct notifier_block *nb)
254 {
255 return atomic_notifier_chain_unregister(
256 &opal_msg_notifier_head[msg_type], nb);
257 }
258 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
259
opal_message_do_notify(uint32_t msg_type,void * msg)260 static void opal_message_do_notify(uint32_t msg_type, void *msg)
261 {
262 /* notify subscribers */
263 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
264 msg_type, msg);
265 }
266
opal_handle_message(void)267 static void opal_handle_message(void)
268 {
269 s64 ret;
270 /*
271 * TODO: pre-allocate a message buffer depending on opal-msg-size
272 * value in /proc/device-tree.
273 */
274 static struct opal_msg msg;
275 u32 type;
276
277 ret = opal_get_msg(__pa(&msg), sizeof(msg));
278 /* No opal message pending. */
279 if (ret == OPAL_RESOURCE)
280 return;
281
282 /* check for errors. */
283 if (ret) {
284 pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
285 __func__, ret);
286 return;
287 }
288
289 type = be32_to_cpu(msg.msg_type);
290
291 /* Sanity check */
292 if (type >= OPAL_MSG_TYPE_MAX) {
293 pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
294 return;
295 }
296 opal_message_do_notify(type, (void *)&msg);
297 }
298
opal_message_notify(int irq,void * data)299 static irqreturn_t opal_message_notify(int irq, void *data)
300 {
301 opal_handle_message();
302 return IRQ_HANDLED;
303 }
304
opal_message_init(void)305 static int __init opal_message_init(void)
306 {
307 int ret, i, irq;
308
309 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
310 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
311
312 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
313 if (!irq) {
314 pr_err("%s: Can't register OPAL event irq (%d)\n",
315 __func__, irq);
316 return irq;
317 }
318
319 ret = request_irq(irq, opal_message_notify,
320 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
321 if (ret) {
322 pr_err("%s: Can't request OPAL event irq (%d)\n",
323 __func__, ret);
324 return ret;
325 }
326
327 return 0;
328 }
329
opal_get_chars(uint32_t vtermno,char * buf,int count)330 int opal_get_chars(uint32_t vtermno, char *buf, int count)
331 {
332 s64 rc;
333 __be64 evt, len;
334
335 if (!opal.entry)
336 return -ENODEV;
337 opal_poll_events(&evt);
338 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
339 return 0;
340 len = cpu_to_be64(count);
341 rc = opal_console_read(vtermno, &len, buf);
342 if (rc == OPAL_SUCCESS)
343 return be64_to_cpu(len);
344 return 0;
345 }
346
__opal_put_chars(uint32_t vtermno,const char * data,int total_len,bool atomic)347 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic)
348 {
349 unsigned long flags = 0 /* shut up gcc */;
350 int written;
351 __be64 olen;
352 s64 rc;
353
354 if (!opal.entry)
355 return -ENODEV;
356
357 if (atomic)
358 spin_lock_irqsave(&opal_write_lock, flags);
359 rc = opal_console_write_buffer_space(vtermno, &olen);
360 if (rc || be64_to_cpu(olen) < total_len) {
361 /* Closed -> drop characters */
362 if (rc)
363 written = total_len;
364 else
365 written = -EAGAIN;
366 goto out;
367 }
368
369 /* Should not get a partial write here because space is available. */
370 olen = cpu_to_be64(total_len);
371 rc = opal_console_write(vtermno, &olen, data);
372 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
373 if (rc == OPAL_BUSY_EVENT)
374 opal_poll_events(NULL);
375 written = -EAGAIN;
376 goto out;
377 }
378
379 /* Closed or other error drop */
380 if (rc != OPAL_SUCCESS) {
381 written = opal_error_code(rc);
382 goto out;
383 }
384
385 written = be64_to_cpu(olen);
386 if (written < total_len) {
387 if (atomic) {
388 /* Should not happen */
389 pr_warn("atomic console write returned partial "
390 "len=%d written=%d\n", total_len, written);
391 }
392 if (!written)
393 written = -EAGAIN;
394 }
395
396 out:
397 if (atomic)
398 spin_unlock_irqrestore(&opal_write_lock, flags);
399
400 return written;
401 }
402
opal_put_chars(uint32_t vtermno,const char * data,int total_len)403 int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
404 {
405 return __opal_put_chars(vtermno, data, total_len, false);
406 }
407
408 /*
409 * opal_put_chars_atomic will not perform partial-writes. Data will be
410 * atomically written to the terminal or not at all. This is not strictly
411 * true at the moment because console space can race with OPAL's console
412 * writes.
413 */
opal_put_chars_atomic(uint32_t vtermno,const char * data,int total_len)414 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len)
415 {
416 return __opal_put_chars(vtermno, data, total_len, true);
417 }
418
__opal_flush_console(uint32_t vtermno)419 static s64 __opal_flush_console(uint32_t vtermno)
420 {
421 s64 rc;
422
423 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
424 __be64 evt;
425
426 /*
427 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
428 * the console can still be flushed by calling the polling
429 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
430 */
431 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
432
433 opal_poll_events(&evt);
434 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
435 return OPAL_SUCCESS;
436 return OPAL_BUSY;
437
438 } else {
439 rc = opal_console_flush(vtermno);
440 if (rc == OPAL_BUSY_EVENT) {
441 opal_poll_events(NULL);
442 rc = OPAL_BUSY;
443 }
444 return rc;
445 }
446
447 }
448
449 /*
450 * opal_flush_console spins until the console is flushed
451 */
opal_flush_console(uint32_t vtermno)452 int opal_flush_console(uint32_t vtermno)
453 {
454 for (;;) {
455 s64 rc = __opal_flush_console(vtermno);
456
457 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
458 mdelay(1);
459 continue;
460 }
461
462 return opal_error_code(rc);
463 }
464 }
465
466 /*
467 * opal_flush_chars is an hvc interface that sleeps until the console is
468 * flushed if wait, otherwise it will return -EBUSY if the console has data,
469 * -EAGAIN if it has data and some of it was flushed.
470 */
opal_flush_chars(uint32_t vtermno,bool wait)471 int opal_flush_chars(uint32_t vtermno, bool wait)
472 {
473 for (;;) {
474 s64 rc = __opal_flush_console(vtermno);
475
476 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
477 if (wait) {
478 msleep(OPAL_BUSY_DELAY_MS);
479 continue;
480 }
481 if (rc == OPAL_PARTIAL)
482 return -EAGAIN;
483 }
484
485 return opal_error_code(rc);
486 }
487 }
488
opal_recover_mce(struct pt_regs * regs,struct machine_check_event * evt)489 static int opal_recover_mce(struct pt_regs *regs,
490 struct machine_check_event *evt)
491 {
492 int recovered = 0;
493
494 if (!(regs->msr & MSR_RI)) {
495 /* If MSR_RI isn't set, we cannot recover */
496 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
497 recovered = 0;
498 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
499 /* Platform corrected itself */
500 recovered = 1;
501 } else if (evt->severity == MCE_SEV_FATAL) {
502 /* Fatal machine check */
503 pr_err("Machine check interrupt is fatal\n");
504 recovered = 0;
505 }
506
507 if (!recovered && evt->severity == MCE_SEV_ERROR_SYNC) {
508 /*
509 * Try to kill processes if we get a synchronous machine check
510 * (e.g., one caused by execution of this instruction). This
511 * will devolve into a panic if we try to kill init or are in
512 * an interrupt etc.
513 *
514 * TODO: Queue up this address for hwpoisioning later.
515 * TODO: This is not quite right for d-side machine
516 * checks ->nip is not necessarily the important
517 * address.
518 */
519 if ((user_mode(regs))) {
520 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
521 recovered = 1;
522 } else if (die_will_crash()) {
523 /*
524 * die() would kill the kernel, so better to go via
525 * the platform reboot code that will log the
526 * machine check.
527 */
528 recovered = 0;
529 } else {
530 die("Machine check", regs, SIGBUS);
531 recovered = 1;
532 }
533 }
534
535 return recovered;
536 }
537
pnv_platform_error_reboot(struct pt_regs * regs,const char * msg)538 void pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
539 {
540 panic_flush_kmsg_start();
541
542 pr_emerg("Hardware platform error: %s\n", msg);
543 if (regs)
544 show_regs(regs);
545 smp_send_stop();
546
547 panic_flush_kmsg_end();
548
549 /*
550 * Don't bother to shut things down because this will
551 * xstop the system.
552 */
553 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
554 == OPAL_UNSUPPORTED) {
555 pr_emerg("Reboot type %d not supported for %s\n",
556 OPAL_REBOOT_PLATFORM_ERROR, msg);
557 }
558
559 /*
560 * We reached here. There can be three possibilities:
561 * 1. We are running on a firmware level that do not support
562 * opal_cec_reboot2()
563 * 2. We are running on a firmware level that do not support
564 * OPAL_REBOOT_PLATFORM_ERROR reboot type.
565 * 3. We are running on FSP based system that does not need
566 * opal to trigger checkstop explicitly for error analysis.
567 * The FSP PRD component would have already got notified
568 * about this error through other channels.
569 * 4. We are running on a newer skiboot that by default does
570 * not cause a checkstop, drops us back to the kernel to
571 * extract context and state at the time of the error.
572 */
573
574 panic(msg);
575 }
576
opal_machine_check(struct pt_regs * regs)577 int opal_machine_check(struct pt_regs *regs)
578 {
579 struct machine_check_event evt;
580
581 if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
582 return 0;
583
584 /* Print things out */
585 if (evt.version != MCE_V1) {
586 pr_err("Machine Check Exception, Unknown event version %d !\n",
587 evt.version);
588 return 0;
589 }
590 machine_check_print_event_info(&evt, user_mode(regs));
591
592 if (opal_recover_mce(regs, &evt))
593 return 1;
594
595 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
596 }
597
598 /* Early hmi handler called in real mode. */
opal_hmi_exception_early(struct pt_regs * regs)599 int opal_hmi_exception_early(struct pt_regs *regs)
600 {
601 s64 rc;
602
603 /*
604 * call opal hmi handler. Pass paca address as token.
605 * The return value OPAL_SUCCESS is an indication that there is
606 * an HMI event generated waiting to pull by Linux.
607 */
608 rc = opal_handle_hmi();
609 if (rc == OPAL_SUCCESS) {
610 local_paca->hmi_event_available = 1;
611 return 1;
612 }
613 return 0;
614 }
615
616 /* HMI exception handler called in virtual mode during check_irq_replay. */
opal_handle_hmi_exception(struct pt_regs * regs)617 int opal_handle_hmi_exception(struct pt_regs *regs)
618 {
619 /*
620 * Check if HMI event is available.
621 * if Yes, then wake kopald to process them.
622 */
623 if (!local_paca->hmi_event_available)
624 return 0;
625
626 local_paca->hmi_event_available = 0;
627 opal_wake_poller();
628
629 return 1;
630 }
631
find_recovery_address(uint64_t nip)632 static uint64_t find_recovery_address(uint64_t nip)
633 {
634 int i;
635
636 for (i = 0; i < mc_recoverable_range_len; i++)
637 if ((nip >= mc_recoverable_range[i].start_addr) &&
638 (nip < mc_recoverable_range[i].end_addr))
639 return mc_recoverable_range[i].recover_addr;
640 return 0;
641 }
642
opal_mce_check_early_recovery(struct pt_regs * regs)643 bool opal_mce_check_early_recovery(struct pt_regs *regs)
644 {
645 uint64_t recover_addr = 0;
646
647 if (!opal.base || !opal.size)
648 goto out;
649
650 if ((regs->nip >= opal.base) &&
651 (regs->nip < (opal.base + opal.size)))
652 recover_addr = find_recovery_address(regs->nip);
653
654 /*
655 * Setup regs->nip to rfi into fixup address.
656 */
657 if (recover_addr)
658 regs->nip = recover_addr;
659
660 out:
661 return !!recover_addr;
662 }
663
opal_sysfs_init(void)664 static int opal_sysfs_init(void)
665 {
666 opal_kobj = kobject_create_and_add("opal", firmware_kobj);
667 if (!opal_kobj) {
668 pr_warn("kobject_create_and_add opal failed\n");
669 return -ENOMEM;
670 }
671
672 return 0;
673 }
674
symbol_map_read(struct file * fp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)675 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj,
676 struct bin_attribute *bin_attr,
677 char *buf, loff_t off, size_t count)
678 {
679 return memory_read_from_buffer(buf, count, &off, bin_attr->private,
680 bin_attr->size);
681 }
682
683 static BIN_ATTR_RO(symbol_map, 0);
684
opal_export_symmap(void)685 static void opal_export_symmap(void)
686 {
687 const __be64 *syms;
688 unsigned int size;
689 struct device_node *fw;
690 int rc;
691
692 fw = of_find_node_by_path("/ibm,opal/firmware");
693 if (!fw)
694 return;
695 syms = of_get_property(fw, "symbol-map", &size);
696 if (!syms || size != 2 * sizeof(__be64))
697 return;
698
699 /* Setup attributes */
700 bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0]));
701 bin_attr_symbol_map.size = be64_to_cpu(syms[1]);
702
703 rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map);
704 if (rc)
705 pr_warn("Error %d creating OPAL symbols file\n", rc);
706 }
707
export_attr_read(struct file * fp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)708 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj,
709 struct bin_attribute *bin_attr, char *buf,
710 loff_t off, size_t count)
711 {
712 return memory_read_from_buffer(buf, count, &off, bin_attr->private,
713 bin_attr->size);
714 }
715
716 /*
717 * opal_export_attrs: creates a sysfs node for each property listed in
718 * the device-tree under /ibm,opal/firmware/exports/
719 * All new sysfs nodes are created under /opal/exports/.
720 * This allows for reserved memory regions (e.g. HDAT) to be read.
721 * The new sysfs nodes are only readable by root.
722 */
opal_export_attrs(void)723 static void opal_export_attrs(void)
724 {
725 struct bin_attribute *attr;
726 struct device_node *np;
727 struct property *prop;
728 struct kobject *kobj;
729 u64 vals[2];
730 int rc;
731
732 np = of_find_node_by_path("/ibm,opal/firmware/exports");
733 if (!np)
734 return;
735
736 /* Create new 'exports' directory - /sys/firmware/opal/exports */
737 kobj = kobject_create_and_add("exports", opal_kobj);
738 if (!kobj) {
739 pr_warn("kobject_create_and_add() of exports failed\n");
740 return;
741 }
742
743 for_each_property_of_node(np, prop) {
744 if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle"))
745 continue;
746
747 if (of_property_read_u64_array(np, prop->name, &vals[0], 2))
748 continue;
749
750 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
751
752 if (attr == NULL) {
753 pr_warn("Failed kmalloc for bin_attribute!");
754 continue;
755 }
756
757 sysfs_bin_attr_init(attr);
758 attr->attr.name = kstrdup(prop->name, GFP_KERNEL);
759 attr->attr.mode = 0400;
760 attr->read = export_attr_read;
761 attr->private = __va(vals[0]);
762 attr->size = vals[1];
763
764 if (attr->attr.name == NULL) {
765 pr_warn("Failed kstrdup for bin_attribute attr.name");
766 kfree(attr);
767 continue;
768 }
769
770 rc = sysfs_create_bin_file(kobj, attr);
771 if (rc) {
772 pr_warn("Error %d creating OPAL sysfs exports/%s file\n",
773 rc, prop->name);
774 kfree(attr->attr.name);
775 kfree(attr);
776 }
777 }
778
779 of_node_put(np);
780 }
781
opal_dump_region_init(void)782 static void __init opal_dump_region_init(void)
783 {
784 void *addr;
785 uint64_t size;
786 int rc;
787
788 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
789 return;
790
791 /* Register kernel log buffer */
792 addr = log_buf_addr_get();
793 if (addr == NULL)
794 return;
795
796 size = log_buf_len_get();
797 if (size == 0)
798 return;
799
800 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
801 __pa(addr), size);
802 /* Don't warn if this is just an older OPAL that doesn't
803 * know about that call
804 */
805 if (rc && rc != OPAL_UNSUPPORTED)
806 pr_warn("DUMP: Failed to register kernel log buffer. "
807 "rc = %d\n", rc);
808 }
809
opal_pdev_init(const char * compatible)810 static void opal_pdev_init(const char *compatible)
811 {
812 struct device_node *np;
813
814 for_each_compatible_node(np, NULL, compatible)
815 of_platform_device_create(np, NULL, NULL);
816 }
817
opal_imc_init_dev(void)818 static void __init opal_imc_init_dev(void)
819 {
820 struct device_node *np;
821
822 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
823 if (np)
824 of_platform_device_create(np, NULL, NULL);
825 }
826
kopald(void * unused)827 static int kopald(void *unused)
828 {
829 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
830
831 set_freezable();
832 do {
833 try_to_freeze();
834
835 opal_handle_events();
836
837 set_current_state(TASK_INTERRUPTIBLE);
838 if (opal_have_pending_events())
839 __set_current_state(TASK_RUNNING);
840 else
841 schedule_timeout(timeout);
842
843 } while (!kthread_should_stop());
844
845 return 0;
846 }
847
opal_wake_poller(void)848 void opal_wake_poller(void)
849 {
850 if (kopald_tsk)
851 wake_up_process(kopald_tsk);
852 }
853
opal_init_heartbeat(void)854 static void opal_init_heartbeat(void)
855 {
856 /* Old firwmware, we assume the HVC heartbeat is sufficient */
857 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
858 &opal_heartbeat) != 0)
859 opal_heartbeat = 0;
860
861 if (opal_heartbeat)
862 kopald_tsk = kthread_run(kopald, NULL, "kopald");
863 }
864
opal_init(void)865 static int __init opal_init(void)
866 {
867 struct device_node *np, *consoles, *leds;
868 int rc;
869
870 opal_node = of_find_node_by_path("/ibm,opal");
871 if (!opal_node) {
872 pr_warn("Device node not found\n");
873 return -ENODEV;
874 }
875
876 /* Register OPAL consoles if any ports */
877 consoles = of_find_node_by_path("/ibm,opal/consoles");
878 if (consoles) {
879 for_each_child_of_node(consoles, np) {
880 if (strcmp(np->name, "serial"))
881 continue;
882 of_platform_device_create(np, NULL, NULL);
883 }
884 of_node_put(consoles);
885 }
886
887 /* Initialise OPAL messaging system */
888 opal_message_init();
889
890 /* Initialise OPAL asynchronous completion interface */
891 opal_async_comp_init();
892
893 /* Initialise OPAL sensor interface */
894 opal_sensor_init();
895
896 /* Initialise OPAL hypervisor maintainence interrupt handling */
897 opal_hmi_handler_init();
898
899 /* Create i2c platform devices */
900 opal_pdev_init("ibm,opal-i2c");
901
902 /* Handle non-volatile memory devices */
903 opal_pdev_init("pmem-region");
904
905 /* Setup a heatbeat thread if requested by OPAL */
906 opal_init_heartbeat();
907
908 /* Detect In-Memory Collection counters and create devices*/
909 opal_imc_init_dev();
910
911 /* Create leds platform devices */
912 leds = of_find_node_by_path("/ibm,opal/leds");
913 if (leds) {
914 of_platform_device_create(leds, "opal_leds", NULL);
915 of_node_put(leds);
916 }
917
918 /* Initialise OPAL message log interface */
919 opal_msglog_init();
920
921 /* Create "opal" kobject under /sys/firmware */
922 rc = opal_sysfs_init();
923 if (rc == 0) {
924 /* Export symbol map to userspace */
925 opal_export_symmap();
926 /* Setup dump region interface */
927 opal_dump_region_init();
928 /* Setup error log interface */
929 rc = opal_elog_init();
930 /* Setup code update interface */
931 opal_flash_update_init();
932 /* Setup platform dump extract interface */
933 opal_platform_dump_init();
934 /* Setup system parameters interface */
935 opal_sys_param_init();
936 /* Setup message log sysfs interface. */
937 opal_msglog_sysfs_init();
938 }
939
940 /* Export all properties */
941 opal_export_attrs();
942
943 /* Initialize platform devices: IPMI backend, PRD & flash interface */
944 opal_pdev_init("ibm,opal-ipmi");
945 opal_pdev_init("ibm,opal-flash");
946 opal_pdev_init("ibm,opal-prd");
947
948 /* Initialise platform device: oppanel interface */
949 opal_pdev_init("ibm,opal-oppanel");
950
951 /* Initialise OPAL kmsg dumper for flushing console on panic */
952 opal_kmsg_init();
953
954 /* Initialise OPAL powercap interface */
955 opal_powercap_init();
956
957 /* Initialise OPAL Power-Shifting-Ratio interface */
958 opal_psr_init();
959
960 /* Initialise OPAL sensor groups */
961 opal_sensor_groups_init();
962
963 return 0;
964 }
965 machine_subsys_initcall(powernv, opal_init);
966
opal_shutdown(void)967 void opal_shutdown(void)
968 {
969 long rc = OPAL_BUSY;
970
971 opal_event_shutdown();
972
973 /*
974 * Then sync with OPAL which ensure anything that can
975 * potentially write to our memory has completed such
976 * as an ongoing dump retrieval
977 */
978 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
979 rc = opal_sync_host_reboot();
980 if (rc == OPAL_BUSY)
981 opal_poll_events(NULL);
982 else
983 mdelay(10);
984 }
985
986 /* Unregister memory dump region */
987 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
988 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
989 }
990
991 /* Export this so that test modules can use it */
992 EXPORT_SYMBOL_GPL(opal_invalid_call);
993 EXPORT_SYMBOL_GPL(opal_xscom_read);
994 EXPORT_SYMBOL_GPL(opal_xscom_write);
995 EXPORT_SYMBOL_GPL(opal_ipmi_send);
996 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
997 EXPORT_SYMBOL_GPL(opal_flash_read);
998 EXPORT_SYMBOL_GPL(opal_flash_write);
999 EXPORT_SYMBOL_GPL(opal_flash_erase);
1000 EXPORT_SYMBOL_GPL(opal_prd_msg);
1001 EXPORT_SYMBOL_GPL(opal_check_token);
1002
1003 /* Convert a region of vmalloc memory to an opal sg list */
opal_vmalloc_to_sg_list(void * vmalloc_addr,unsigned long vmalloc_size)1004 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
1005 unsigned long vmalloc_size)
1006 {
1007 struct opal_sg_list *sg, *first = NULL;
1008 unsigned long i = 0;
1009
1010 sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
1011 if (!sg)
1012 goto nomem;
1013
1014 first = sg;
1015
1016 while (vmalloc_size > 0) {
1017 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
1018 uint64_t length = min(vmalloc_size, PAGE_SIZE);
1019
1020 sg->entry[i].data = cpu_to_be64(data);
1021 sg->entry[i].length = cpu_to_be64(length);
1022 i++;
1023
1024 if (i >= SG_ENTRIES_PER_NODE) {
1025 struct opal_sg_list *next;
1026
1027 next = kzalloc(PAGE_SIZE, GFP_KERNEL);
1028 if (!next)
1029 goto nomem;
1030
1031 sg->length = cpu_to_be64(
1032 i * sizeof(struct opal_sg_entry) + 16);
1033 i = 0;
1034 sg->next = cpu_to_be64(__pa(next));
1035 sg = next;
1036 }
1037
1038 vmalloc_addr += length;
1039 vmalloc_size -= length;
1040 }
1041
1042 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
1043
1044 return first;
1045
1046 nomem:
1047 pr_err("%s : Failed to allocate memory\n", __func__);
1048 opal_free_sg_list(first);
1049 return NULL;
1050 }
1051
opal_free_sg_list(struct opal_sg_list * sg)1052 void opal_free_sg_list(struct opal_sg_list *sg)
1053 {
1054 while (sg) {
1055 uint64_t next = be64_to_cpu(sg->next);
1056
1057 kfree(sg);
1058
1059 if (next)
1060 sg = __va(next);
1061 else
1062 sg = NULL;
1063 }
1064 }
1065
opal_error_code(int rc)1066 int opal_error_code(int rc)
1067 {
1068 switch (rc) {
1069 case OPAL_SUCCESS: return 0;
1070
1071 case OPAL_PARAMETER: return -EINVAL;
1072 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS;
1073 case OPAL_BUSY:
1074 case OPAL_BUSY_EVENT: return -EBUSY;
1075 case OPAL_NO_MEM: return -ENOMEM;
1076 case OPAL_PERMISSION: return -EPERM;
1077
1078 case OPAL_UNSUPPORTED: return -EIO;
1079 case OPAL_HARDWARE: return -EIO;
1080 case OPAL_INTERNAL_ERROR: return -EIO;
1081 case OPAL_TIMEOUT: return -ETIMEDOUT;
1082 default:
1083 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
1084 return -EIO;
1085 }
1086 }
1087
powernv_set_nmmu_ptcr(unsigned long ptcr)1088 void powernv_set_nmmu_ptcr(unsigned long ptcr)
1089 {
1090 int rc;
1091
1092 if (firmware_has_feature(FW_FEATURE_OPAL)) {
1093 rc = opal_nmmu_set_ptcr(-1UL, ptcr);
1094 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1095 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
1096 }
1097 }
1098
1099 EXPORT_SYMBOL_GPL(opal_poll_events);
1100 EXPORT_SYMBOL_GPL(opal_rtc_read);
1101 EXPORT_SYMBOL_GPL(opal_rtc_write);
1102 EXPORT_SYMBOL_GPL(opal_tpo_read);
1103 EXPORT_SYMBOL_GPL(opal_tpo_write);
1104 EXPORT_SYMBOL_GPL(opal_i2c_request);
1105 /* Export these symbols for PowerNV LED class driver */
1106 EXPORT_SYMBOL_GPL(opal_leds_get_ind);
1107 EXPORT_SYMBOL_GPL(opal_leds_set_ind);
1108 /* Export this symbol for PowerNV Operator Panel class driver */
1109 EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
1110 /* Export this for KVM */
1111 EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
1112 EXPORT_SYMBOL_GPL(opal_int_eoi);
1113 EXPORT_SYMBOL_GPL(opal_error_code);
1114 /* Export the below symbol for NX compression */
1115 EXPORT_SYMBOL(opal_nx_coproc_init);
1116