1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * OMAP MPUSS low power code
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Santosh Shilimkar <santosh.shilimkar@ti.com>
7 *
8 * OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU
9 * Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller,
10 * CPU0 and CPU1 LPRM modules.
11 * CPU0, CPU1 and MPUSS each have there own power domain and
12 * hence multiple low power combinations of MPUSS are possible.
13 *
14 * The CPU0 and CPU1 can't support Closed switch Retention (CSWR)
15 * because the mode is not supported by hw constraints of dormant
16 * mode. While waking up from the dormant mode, a reset signal
17 * to the Cortex-A9 processor must be asserted by the external
18 * power controller.
19 *
20 * With architectural inputs and hardware recommendations, only
21 * below modes are supported from power gain vs latency point of view.
22 *
23 * CPU0 CPU1 MPUSS
24 * ----------------------------------------------
25 * ON ON ON
26 * ON(Inactive) OFF ON(Inactive)
27 * OFF OFF CSWR
28 * OFF OFF OSWR
29 * OFF OFF OFF(Device OFF *TBD)
30 * ----------------------------------------------
31 *
32 * Note: CPU0 is the master core and it is the last CPU to go down
33 * and first to wake-up when MPUSS low power states are excercised
34 */
35
36 #include <linux/kernel.h>
37 #include <linux/io.h>
38 #include <linux/errno.h>
39 #include <linux/linkage.h>
40 #include <linux/smp.h>
41
42 #include <asm/cacheflush.h>
43 #include <asm/tlbflush.h>
44 #include <asm/smp_scu.h>
45 #include <asm/pgalloc.h>
46 #include <asm/suspend.h>
47 #include <asm/virt.h>
48 #include <asm/hardware/cache-l2x0.h>
49
50 #include "soc.h"
51 #include "common.h"
52 #include "omap44xx.h"
53 #include "omap4-sar-layout.h"
54 #include "pm.h"
55 #include "prcm_mpu44xx.h"
56 #include "prcm_mpu54xx.h"
57 #include "prminst44xx.h"
58 #include "prcm44xx.h"
59 #include "prm44xx.h"
60 #include "prm-regbits-44xx.h"
61
62 static void __iomem *sar_base;
63 static u32 old_cpu1_ns_pa_addr;
64
65 #if defined(CONFIG_PM) && defined(CONFIG_SMP)
66
67 struct omap4_cpu_pm_info {
68 struct powerdomain *pwrdm;
69 void __iomem *scu_sar_addr;
70 void __iomem *wkup_sar_addr;
71 void __iomem *l2x0_sar_addr;
72 };
73
74 /**
75 * struct cpu_pm_ops - CPU pm operations
76 * @finish_suspend: CPU suspend finisher function pointer
77 * @resume: CPU resume function pointer
78 * @scu_prepare: CPU Snoop Control program function pointer
79 * @hotplug_restart: CPU restart function pointer
80 *
81 * Structure holds functions pointer for CPU low power operations like
82 * suspend, resume and scu programming.
83 */
84 struct cpu_pm_ops {
85 int (*finish_suspend)(unsigned long cpu_state);
86 void (*resume)(void);
87 void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state);
88 void (*hotplug_restart)(void);
89 };
90
91 static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info);
92 static struct powerdomain *mpuss_pd;
93 static u32 cpu_context_offset;
94
default_finish_suspend(unsigned long cpu_state)95 static int default_finish_suspend(unsigned long cpu_state)
96 {
97 omap_do_wfi();
98 return 0;
99 }
100
dummy_cpu_resume(void)101 static void dummy_cpu_resume(void)
102 {}
103
dummy_scu_prepare(unsigned int cpu_id,unsigned int cpu_state)104 static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state)
105 {}
106
107 static struct cpu_pm_ops omap_pm_ops = {
108 .finish_suspend = default_finish_suspend,
109 .resume = dummy_cpu_resume,
110 .scu_prepare = dummy_scu_prepare,
111 .hotplug_restart = dummy_cpu_resume,
112 };
113
114 /*
115 * Program the wakeup routine address for the CPU0 and CPU1
116 * used for OFF or DORMANT wakeup.
117 */
set_cpu_wakeup_addr(unsigned int cpu_id,u32 addr)118 static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr)
119 {
120 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
121
122 if (pm_info->wkup_sar_addr)
123 writel_relaxed(addr, pm_info->wkup_sar_addr);
124 }
125
126 /*
127 * Store the SCU power status value to scratchpad memory
128 */
scu_pwrst_prepare(unsigned int cpu_id,unsigned int cpu_state)129 static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state)
130 {
131 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
132 u32 scu_pwr_st;
133
134 switch (cpu_state) {
135 case PWRDM_POWER_RET:
136 scu_pwr_st = SCU_PM_DORMANT;
137 break;
138 case PWRDM_POWER_OFF:
139 scu_pwr_st = SCU_PM_POWEROFF;
140 break;
141 case PWRDM_POWER_ON:
142 case PWRDM_POWER_INACTIVE:
143 default:
144 scu_pwr_st = SCU_PM_NORMAL;
145 break;
146 }
147
148 if (pm_info->scu_sar_addr)
149 writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr);
150 }
151
152 /* Helper functions for MPUSS OSWR */
mpuss_clear_prev_logic_pwrst(void)153 static inline void mpuss_clear_prev_logic_pwrst(void)
154 {
155 u32 reg;
156
157 reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
158 OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
159 omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION,
160 OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
161 }
162
cpu_clear_prev_logic_pwrst(unsigned int cpu_id)163 static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id)
164 {
165 u32 reg;
166
167 if (cpu_id) {
168 reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST,
169 cpu_context_offset);
170 omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST,
171 cpu_context_offset);
172 } else {
173 reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST,
174 cpu_context_offset);
175 omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST,
176 cpu_context_offset);
177 }
178 }
179
180 /*
181 * Store the CPU cluster state for L2X0 low power operations.
182 */
l2x0_pwrst_prepare(unsigned int cpu_id,unsigned int save_state)183 static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state)
184 {
185 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
186
187 if (pm_info->l2x0_sar_addr)
188 writel_relaxed(save_state, pm_info->l2x0_sar_addr);
189 }
190
191 /*
192 * Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to
193 * in every restore MPUSS OFF path.
194 */
195 #ifdef CONFIG_CACHE_L2X0
save_l2x0_context(void)196 static void __init save_l2x0_context(void)
197 {
198 void __iomem *l2x0_base = omap4_get_l2cache_base();
199
200 if (l2x0_base && sar_base) {
201 writel_relaxed(l2x0_saved_regs.aux_ctrl,
202 sar_base + L2X0_AUXCTRL_OFFSET);
203 writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
204 sar_base + L2X0_PREFETCH_CTRL_OFFSET);
205 }
206 }
207 #else
save_l2x0_context(void)208 static void __init save_l2x0_context(void)
209 {}
210 #endif
211
212 /**
213 * omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
214 * The purpose of this function is to manage low power programming
215 * of OMAP4 MPUSS subsystem
216 * @cpu : CPU ID
217 * @power_state: Low power state.
218 *
219 * MPUSS states for the context save:
220 * save_state =
221 * 0 - Nothing lost and no need to save: MPUSS INACTIVE
222 * 1 - CPUx L1 and logic lost: MPUSS CSWR
223 * 2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR
224 * 3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF
225 */
omap4_enter_lowpower(unsigned int cpu,unsigned int power_state)226 int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state)
227 {
228 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
229 unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET;
230 unsigned int wakeup_cpu;
231
232 if (omap_rev() == OMAP4430_REV_ES1_0)
233 return -ENXIO;
234
235 switch (power_state) {
236 case PWRDM_POWER_ON:
237 case PWRDM_POWER_INACTIVE:
238 save_state = 0;
239 break;
240 case PWRDM_POWER_OFF:
241 cpu_logic_state = PWRDM_POWER_OFF;
242 save_state = 1;
243 break;
244 case PWRDM_POWER_RET:
245 if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE))
246 save_state = 0;
247 break;
248 default:
249 /*
250 * CPUx CSWR is invalid hardware state. Also CPUx OSWR
251 * doesn't make much scense, since logic is lost and $L1
252 * needs to be cleaned because of coherency. This makes
253 * CPUx OSWR equivalent to CPUX OFF and hence not supported
254 */
255 WARN_ON(1);
256 return -ENXIO;
257 }
258
259 pwrdm_pre_transition(NULL);
260
261 /*
262 * Check MPUSS next state and save interrupt controller if needed.
263 * In MPUSS OSWR or device OFF, interrupt controller contest is lost.
264 */
265 mpuss_clear_prev_logic_pwrst();
266 if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) &&
267 (pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF))
268 save_state = 2;
269
270 cpu_clear_prev_logic_pwrst(cpu);
271 pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
272 pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state);
273 set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume));
274 omap_pm_ops.scu_prepare(cpu, power_state);
275 l2x0_pwrst_prepare(cpu, save_state);
276
277 /*
278 * Call low level function with targeted low power state.
279 */
280 if (save_state)
281 cpu_suspend(save_state, omap_pm_ops.finish_suspend);
282 else
283 omap_pm_ops.finish_suspend(save_state);
284
285 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu)
286 gic_dist_enable();
287
288 /*
289 * Restore the CPUx power state to ON otherwise CPUx
290 * power domain can transitions to programmed low power
291 * state while doing WFI outside the low powe code. On
292 * secure devices, CPUx does WFI which can result in
293 * domain transition
294 */
295 wakeup_cpu = smp_processor_id();
296 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
297
298 pwrdm_post_transition(NULL);
299
300 return 0;
301 }
302
303 /**
304 * omap4_hotplug_cpu: OMAP4 CPU hotplug entry
305 * @cpu : CPU ID
306 * @power_state: CPU low power state.
307 */
omap4_hotplug_cpu(unsigned int cpu,unsigned int power_state)308 int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
309 {
310 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
311 unsigned int cpu_state = 0;
312
313 if (omap_rev() == OMAP4430_REV_ES1_0)
314 return -ENXIO;
315
316 /* Use the achievable power state for the domain */
317 power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm,
318 false, power_state);
319
320 if (power_state == PWRDM_POWER_OFF)
321 cpu_state = 1;
322
323 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
324 pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
325 set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart));
326 omap_pm_ops.scu_prepare(cpu, power_state);
327
328 /*
329 * CPU never retuns back if targeted power state is OFF mode.
330 * CPU ONLINE follows normal CPU ONLINE ptah via
331 * omap4_secondary_startup().
332 */
333 omap_pm_ops.finish_suspend(cpu_state);
334
335 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
336 return 0;
337 }
338
339
340 /*
341 * Enable Mercury Fast HG retention mode by default.
342 */
enable_mercury_retention_mode(void)343 static void enable_mercury_retention_mode(void)
344 {
345 u32 reg;
346
347 reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST,
348 OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
349 /* Enable HG_EN, HG_RAMPUP = fast mode */
350 reg |= BIT(24) | BIT(25);
351 omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST,
352 OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
353 }
354
355 /*
356 * Initialise OMAP4 MPUSS
357 */
omap4_mpuss_init(void)358 int __init omap4_mpuss_init(void)
359 {
360 struct omap4_cpu_pm_info *pm_info;
361
362 if (omap_rev() == OMAP4430_REV_ES1_0) {
363 WARN(1, "Power Management not supported on OMAP4430 ES1.0\n");
364 return -ENODEV;
365 }
366
367 /* Initilaise per CPU PM information */
368 pm_info = &per_cpu(omap4_pm_info, 0x0);
369 if (sar_base) {
370 pm_info->scu_sar_addr = sar_base + SCU_OFFSET0;
371 if (cpu_is_omap44xx())
372 pm_info->wkup_sar_addr = sar_base +
373 CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
374 else
375 pm_info->wkup_sar_addr = sar_base +
376 OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
377 pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0;
378 }
379 pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm");
380 if (!pm_info->pwrdm) {
381 pr_err("Lookup failed for CPU0 pwrdm\n");
382 return -ENODEV;
383 }
384
385 /* Clear CPU previous power domain state */
386 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
387 cpu_clear_prev_logic_pwrst(0);
388
389 /* Initialise CPU0 power domain state to ON */
390 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
391
392 pm_info = &per_cpu(omap4_pm_info, 0x1);
393 if (sar_base) {
394 pm_info->scu_sar_addr = sar_base + SCU_OFFSET1;
395 if (cpu_is_omap44xx())
396 pm_info->wkup_sar_addr = sar_base +
397 CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
398 else
399 pm_info->wkup_sar_addr = sar_base +
400 OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
401 pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1;
402 }
403
404 pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm");
405 if (!pm_info->pwrdm) {
406 pr_err("Lookup failed for CPU1 pwrdm\n");
407 return -ENODEV;
408 }
409
410 /* Clear CPU previous power domain state */
411 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
412 cpu_clear_prev_logic_pwrst(1);
413
414 /* Initialise CPU1 power domain state to ON */
415 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
416
417 mpuss_pd = pwrdm_lookup("mpu_pwrdm");
418 if (!mpuss_pd) {
419 pr_err("Failed to lookup MPUSS power domain\n");
420 return -ENODEV;
421 }
422 pwrdm_clear_all_prev_pwrst(mpuss_pd);
423 mpuss_clear_prev_logic_pwrst();
424
425 if (sar_base) {
426 /* Save device type on scratchpad for low level code to use */
427 writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0,
428 sar_base + OMAP_TYPE_OFFSET);
429 save_l2x0_context();
430 }
431
432 if (cpu_is_omap44xx()) {
433 omap_pm_ops.finish_suspend = omap4_finish_suspend;
434 omap_pm_ops.resume = omap4_cpu_resume;
435 omap_pm_ops.scu_prepare = scu_pwrst_prepare;
436 omap_pm_ops.hotplug_restart = omap4_secondary_startup;
437 cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET;
438 } else if (soc_is_omap54xx() || soc_is_dra7xx()) {
439 cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET;
440 enable_mercury_retention_mode();
441 }
442
443 if (cpu_is_omap446x())
444 omap_pm_ops.hotplug_restart = omap4460_secondary_startup;
445
446 return 0;
447 }
448
449 #endif
450
omap4_get_cpu1_ns_pa_addr(void)451 u32 omap4_get_cpu1_ns_pa_addr(void)
452 {
453 return old_cpu1_ns_pa_addr;
454 }
455
456 /*
457 * For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
458 * current kernel's secondary_startup() early before
459 * clockdomains_init(). Otherwise clockdomain_init() can
460 * wake CPU1 and cause a hang.
461 */
omap4_mpuss_early_init(void)462 void __init omap4_mpuss_early_init(void)
463 {
464 unsigned long startup_pa;
465 void __iomem *ns_pa_addr;
466
467 if (!(soc_is_omap44xx() || soc_is_omap54xx()))
468 return;
469
470 sar_base = omap4_get_sar_ram_base();
471
472 /* Save old NS_PA_ADDR for validity checks later on */
473 if (soc_is_omap44xx())
474 ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
475 else
476 ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
477 old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr);
478
479 if (soc_is_omap443x())
480 startup_pa = __pa_symbol(omap4_secondary_startup);
481 else if (soc_is_omap446x())
482 startup_pa = __pa_symbol(omap4460_secondary_startup);
483 else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
484 startup_pa = __pa_symbol(omap5_secondary_hyp_startup);
485 else
486 startup_pa = __pa_symbol(omap5_secondary_startup);
487
488 if (soc_is_omap44xx())
489 writel_relaxed(startup_pa, sar_base +
490 CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
491 else
492 writel_relaxed(startup_pa, sar_base +
493 OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
494 }
495