1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP MPUSS low power code
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  *	Santosh Shilimkar <santosh.shilimkar@ti.com>
7  *
8  * OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU
9  * Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller,
10  * CPU0 and CPU1 LPRM modules.
11  * CPU0, CPU1 and MPUSS each have there own power domain and
12  * hence multiple low power combinations of MPUSS are possible.
13  *
14  * The CPU0 and CPU1 can't support Closed switch Retention (CSWR)
15  * because the mode is not supported by hw constraints of dormant
16  * mode. While waking up from the dormant mode, a reset  signal
17  * to the Cortex-A9 processor must be asserted by the external
18  * power controller.
19  *
20  * With architectural inputs and hardware recommendations, only
21  * below modes are supported from power gain vs latency point of view.
22  *
23  *	CPU0		CPU1		MPUSS
24  *	----------------------------------------------
25  *	ON		ON		ON
26  *	ON(Inactive)	OFF		ON(Inactive)
27  *	OFF		OFF		CSWR
28  *	OFF		OFF		OSWR
29  *	OFF		OFF		OFF(Device OFF *TBD)
30  *	----------------------------------------------
31  *
32  * Note: CPU0 is the master core and it is the last CPU to go down
33  * and first to wake-up when MPUSS low power states are excercised
34  */
35 
36 #include <linux/kernel.h>
37 #include <linux/io.h>
38 #include <linux/errno.h>
39 #include <linux/linkage.h>
40 #include <linux/smp.h>
41 
42 #include <asm/cacheflush.h>
43 #include <asm/tlbflush.h>
44 #include <asm/smp_scu.h>
45 #include <asm/pgalloc.h>
46 #include <asm/suspend.h>
47 #include <asm/virt.h>
48 #include <asm/hardware/cache-l2x0.h>
49 
50 #include "soc.h"
51 #include "common.h"
52 #include "omap44xx.h"
53 #include "omap4-sar-layout.h"
54 #include "pm.h"
55 #include "prcm_mpu44xx.h"
56 #include "prcm_mpu54xx.h"
57 #include "prminst44xx.h"
58 #include "prcm44xx.h"
59 #include "prm44xx.h"
60 #include "prm-regbits-44xx.h"
61 
62 static void __iomem *sar_base;
63 static u32 old_cpu1_ns_pa_addr;
64 
65 #if defined(CONFIG_PM) && defined(CONFIG_SMP)
66 
67 struct omap4_cpu_pm_info {
68 	struct powerdomain *pwrdm;
69 	void __iomem *scu_sar_addr;
70 	void __iomem *wkup_sar_addr;
71 	void __iomem *l2x0_sar_addr;
72 };
73 
74 /**
75  * struct cpu_pm_ops - CPU pm operations
76  * @finish_suspend:	CPU suspend finisher function pointer
77  * @resume:		CPU resume function pointer
78  * @scu_prepare:	CPU Snoop Control program function pointer
79  * @hotplug_restart:	CPU restart function pointer
80  *
81  * Structure holds functions pointer for CPU low power operations like
82  * suspend, resume and scu programming.
83  */
84 struct cpu_pm_ops {
85 	int (*finish_suspend)(unsigned long cpu_state);
86 	void (*resume)(void);
87 	void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state);
88 	void (*hotplug_restart)(void);
89 };
90 
91 static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info);
92 static struct powerdomain *mpuss_pd;
93 static u32 cpu_context_offset;
94 
default_finish_suspend(unsigned long cpu_state)95 static int default_finish_suspend(unsigned long cpu_state)
96 {
97 	omap_do_wfi();
98 	return 0;
99 }
100 
dummy_cpu_resume(void)101 static void dummy_cpu_resume(void)
102 {}
103 
dummy_scu_prepare(unsigned int cpu_id,unsigned int cpu_state)104 static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state)
105 {}
106 
107 static struct cpu_pm_ops omap_pm_ops = {
108 	.finish_suspend		= default_finish_suspend,
109 	.resume			= dummy_cpu_resume,
110 	.scu_prepare		= dummy_scu_prepare,
111 	.hotplug_restart	= dummy_cpu_resume,
112 };
113 
114 /*
115  * Program the wakeup routine address for the CPU0 and CPU1
116  * used for OFF or DORMANT wakeup.
117  */
set_cpu_wakeup_addr(unsigned int cpu_id,u32 addr)118 static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr)
119 {
120 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
121 
122 	if (pm_info->wkup_sar_addr)
123 		writel_relaxed(addr, pm_info->wkup_sar_addr);
124 }
125 
126 /*
127  * Store the SCU power status value to scratchpad memory
128  */
scu_pwrst_prepare(unsigned int cpu_id,unsigned int cpu_state)129 static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state)
130 {
131 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
132 	u32 scu_pwr_st;
133 
134 	switch (cpu_state) {
135 	case PWRDM_POWER_RET:
136 		scu_pwr_st = SCU_PM_DORMANT;
137 		break;
138 	case PWRDM_POWER_OFF:
139 		scu_pwr_st = SCU_PM_POWEROFF;
140 		break;
141 	case PWRDM_POWER_ON:
142 	case PWRDM_POWER_INACTIVE:
143 	default:
144 		scu_pwr_st = SCU_PM_NORMAL;
145 		break;
146 	}
147 
148 	if (pm_info->scu_sar_addr)
149 		writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr);
150 }
151 
152 /* Helper functions for MPUSS OSWR */
mpuss_clear_prev_logic_pwrst(void)153 static inline void mpuss_clear_prev_logic_pwrst(void)
154 {
155 	u32 reg;
156 
157 	reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
158 		OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
159 	omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION,
160 		OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
161 }
162 
cpu_clear_prev_logic_pwrst(unsigned int cpu_id)163 static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id)
164 {
165 	u32 reg;
166 
167 	if (cpu_id) {
168 		reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST,
169 					cpu_context_offset);
170 		omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST,
171 					cpu_context_offset);
172 	} else {
173 		reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST,
174 					cpu_context_offset);
175 		omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST,
176 					cpu_context_offset);
177 	}
178 }
179 
180 /*
181  * Store the CPU cluster state for L2X0 low power operations.
182  */
l2x0_pwrst_prepare(unsigned int cpu_id,unsigned int save_state)183 static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state)
184 {
185 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
186 
187 	if (pm_info->l2x0_sar_addr)
188 		writel_relaxed(save_state, pm_info->l2x0_sar_addr);
189 }
190 
191 /*
192  * Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to
193  * in every restore MPUSS OFF path.
194  */
195 #ifdef CONFIG_CACHE_L2X0
save_l2x0_context(void)196 static void __init save_l2x0_context(void)
197 {
198 	void __iomem *l2x0_base = omap4_get_l2cache_base();
199 
200 	if (l2x0_base && sar_base) {
201 		writel_relaxed(l2x0_saved_regs.aux_ctrl,
202 			       sar_base + L2X0_AUXCTRL_OFFSET);
203 		writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
204 			       sar_base + L2X0_PREFETCH_CTRL_OFFSET);
205 	}
206 }
207 #else
save_l2x0_context(void)208 static void __init save_l2x0_context(void)
209 {}
210 #endif
211 
212 /**
213  * omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
214  * The purpose of this function is to manage low power programming
215  * of OMAP4 MPUSS subsystem
216  * @cpu : CPU ID
217  * @power_state: Low power state.
218  *
219  * MPUSS states for the context save:
220  * save_state =
221  *	0 - Nothing lost and no need to save: MPUSS INACTIVE
222  *	1 - CPUx L1 and logic lost: MPUSS CSWR
223  *	2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR
224  *	3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF
225  */
omap4_enter_lowpower(unsigned int cpu,unsigned int power_state)226 int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state)
227 {
228 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
229 	unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET;
230 	unsigned int wakeup_cpu;
231 
232 	if (omap_rev() == OMAP4430_REV_ES1_0)
233 		return -ENXIO;
234 
235 	switch (power_state) {
236 	case PWRDM_POWER_ON:
237 	case PWRDM_POWER_INACTIVE:
238 		save_state = 0;
239 		break;
240 	case PWRDM_POWER_OFF:
241 		cpu_logic_state = PWRDM_POWER_OFF;
242 		save_state = 1;
243 		break;
244 	case PWRDM_POWER_RET:
245 		if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE))
246 			save_state = 0;
247 		break;
248 	default:
249 		/*
250 		 * CPUx CSWR is invalid hardware state. Also CPUx OSWR
251 		 * doesn't make much scense, since logic is lost and $L1
252 		 * needs to be cleaned because of coherency. This makes
253 		 * CPUx OSWR equivalent to CPUX OFF and hence not supported
254 		 */
255 		WARN_ON(1);
256 		return -ENXIO;
257 	}
258 
259 	pwrdm_pre_transition(NULL);
260 
261 	/*
262 	 * Check MPUSS next state and save interrupt controller if needed.
263 	 * In MPUSS OSWR or device OFF, interrupt controller  contest is lost.
264 	 */
265 	mpuss_clear_prev_logic_pwrst();
266 	if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) &&
267 		(pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF))
268 		save_state = 2;
269 
270 	cpu_clear_prev_logic_pwrst(cpu);
271 	pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
272 	pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state);
273 	set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume));
274 	omap_pm_ops.scu_prepare(cpu, power_state);
275 	l2x0_pwrst_prepare(cpu, save_state);
276 
277 	/*
278 	 * Call low level function  with targeted low power state.
279 	 */
280 	if (save_state)
281 		cpu_suspend(save_state, omap_pm_ops.finish_suspend);
282 	else
283 		omap_pm_ops.finish_suspend(save_state);
284 
285 	if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu)
286 		gic_dist_enable();
287 
288 	/*
289 	 * Restore the CPUx power state to ON otherwise CPUx
290 	 * power domain can transitions to programmed low power
291 	 * state while doing WFI outside the low powe code. On
292 	 * secure devices, CPUx does WFI which can result in
293 	 * domain transition
294 	 */
295 	wakeup_cpu = smp_processor_id();
296 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
297 
298 	pwrdm_post_transition(NULL);
299 
300 	return 0;
301 }
302 
303 /**
304  * omap4_hotplug_cpu: OMAP4 CPU hotplug entry
305  * @cpu : CPU ID
306  * @power_state: CPU low power state.
307  */
omap4_hotplug_cpu(unsigned int cpu,unsigned int power_state)308 int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
309 {
310 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
311 	unsigned int cpu_state = 0;
312 
313 	if (omap_rev() == OMAP4430_REV_ES1_0)
314 		return -ENXIO;
315 
316 	/* Use the achievable power state for the domain */
317 	power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm,
318 					       false, power_state);
319 
320 	if (power_state == PWRDM_POWER_OFF)
321 		cpu_state = 1;
322 
323 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
324 	pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
325 	set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart));
326 	omap_pm_ops.scu_prepare(cpu, power_state);
327 
328 	/*
329 	 * CPU never retuns back if targeted power state is OFF mode.
330 	 * CPU ONLINE follows normal CPU ONLINE ptah via
331 	 * omap4_secondary_startup().
332 	 */
333 	omap_pm_ops.finish_suspend(cpu_state);
334 
335 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
336 	return 0;
337 }
338 
339 
340 /*
341  * Enable Mercury Fast HG retention mode by default.
342  */
enable_mercury_retention_mode(void)343 static void enable_mercury_retention_mode(void)
344 {
345 	u32 reg;
346 
347 	reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST,
348 				  OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
349 	/* Enable HG_EN, HG_RAMPUP = fast mode */
350 	reg |= BIT(24) | BIT(25);
351 	omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST,
352 				      OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
353 }
354 
355 /*
356  * Initialise OMAP4 MPUSS
357  */
omap4_mpuss_init(void)358 int __init omap4_mpuss_init(void)
359 {
360 	struct omap4_cpu_pm_info *pm_info;
361 
362 	if (omap_rev() == OMAP4430_REV_ES1_0) {
363 		WARN(1, "Power Management not supported on OMAP4430 ES1.0\n");
364 		return -ENODEV;
365 	}
366 
367 	/* Initilaise per CPU PM information */
368 	pm_info = &per_cpu(omap4_pm_info, 0x0);
369 	if (sar_base) {
370 		pm_info->scu_sar_addr = sar_base + SCU_OFFSET0;
371 		if (cpu_is_omap44xx())
372 			pm_info->wkup_sar_addr = sar_base +
373 				CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
374 		else
375 			pm_info->wkup_sar_addr = sar_base +
376 				OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
377 		pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0;
378 	}
379 	pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm");
380 	if (!pm_info->pwrdm) {
381 		pr_err("Lookup failed for CPU0 pwrdm\n");
382 		return -ENODEV;
383 	}
384 
385 	/* Clear CPU previous power domain state */
386 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
387 	cpu_clear_prev_logic_pwrst(0);
388 
389 	/* Initialise CPU0 power domain state to ON */
390 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
391 
392 	pm_info = &per_cpu(omap4_pm_info, 0x1);
393 	if (sar_base) {
394 		pm_info->scu_sar_addr = sar_base + SCU_OFFSET1;
395 		if (cpu_is_omap44xx())
396 			pm_info->wkup_sar_addr = sar_base +
397 				CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
398 		else
399 			pm_info->wkup_sar_addr = sar_base +
400 				OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
401 		pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1;
402 	}
403 
404 	pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm");
405 	if (!pm_info->pwrdm) {
406 		pr_err("Lookup failed for CPU1 pwrdm\n");
407 		return -ENODEV;
408 	}
409 
410 	/* Clear CPU previous power domain state */
411 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
412 	cpu_clear_prev_logic_pwrst(1);
413 
414 	/* Initialise CPU1 power domain state to ON */
415 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
416 
417 	mpuss_pd = pwrdm_lookup("mpu_pwrdm");
418 	if (!mpuss_pd) {
419 		pr_err("Failed to lookup MPUSS power domain\n");
420 		return -ENODEV;
421 	}
422 	pwrdm_clear_all_prev_pwrst(mpuss_pd);
423 	mpuss_clear_prev_logic_pwrst();
424 
425 	if (sar_base) {
426 		/* Save device type on scratchpad for low level code to use */
427 		writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0,
428 			       sar_base + OMAP_TYPE_OFFSET);
429 		save_l2x0_context();
430 	}
431 
432 	if (cpu_is_omap44xx()) {
433 		omap_pm_ops.finish_suspend = omap4_finish_suspend;
434 		omap_pm_ops.resume = omap4_cpu_resume;
435 		omap_pm_ops.scu_prepare = scu_pwrst_prepare;
436 		omap_pm_ops.hotplug_restart = omap4_secondary_startup;
437 		cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET;
438 	} else if (soc_is_omap54xx() || soc_is_dra7xx()) {
439 		cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET;
440 		enable_mercury_retention_mode();
441 	}
442 
443 	if (cpu_is_omap446x())
444 		omap_pm_ops.hotplug_restart = omap4460_secondary_startup;
445 
446 	return 0;
447 }
448 
449 #endif
450 
omap4_get_cpu1_ns_pa_addr(void)451 u32 omap4_get_cpu1_ns_pa_addr(void)
452 {
453 	return old_cpu1_ns_pa_addr;
454 }
455 
456 /*
457  * For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
458  * current kernel's secondary_startup() early before
459  * clockdomains_init(). Otherwise clockdomain_init() can
460  * wake CPU1 and cause a hang.
461  */
omap4_mpuss_early_init(void)462 void __init omap4_mpuss_early_init(void)
463 {
464 	unsigned long startup_pa;
465 	void __iomem *ns_pa_addr;
466 
467 	if (!(soc_is_omap44xx() || soc_is_omap54xx()))
468 		return;
469 
470 	sar_base = omap4_get_sar_ram_base();
471 
472 	/* Save old NS_PA_ADDR for validity checks later on */
473 	if (soc_is_omap44xx())
474 		ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
475 	else
476 		ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
477 	old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr);
478 
479 	if (soc_is_omap443x())
480 		startup_pa = __pa_symbol(omap4_secondary_startup);
481 	else if (soc_is_omap446x())
482 		startup_pa = __pa_symbol(omap4460_secondary_startup);
483 	else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
484 		startup_pa = __pa_symbol(omap5_secondary_hyp_startup);
485 	else
486 		startup_pa = __pa_symbol(omap5_secondary_startup);
487 
488 	if (soc_is_omap44xx())
489 		writel_relaxed(startup_pa, sar_base +
490 			       CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
491 	else
492 		writel_relaxed(startup_pa, sar_base +
493 			       OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
494 }
495