1 /*
2 * OMAP MPUSS low power code
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Santosh Shilimkar <santosh.shilimkar@ti.com>
6 *
7 * OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU
8 * Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller,
9 * CPU0 and CPU1 LPRM modules.
10 * CPU0, CPU1 and MPUSS each have there own power domain and
11 * hence multiple low power combinations of MPUSS are possible.
12 *
13 * The CPU0 and CPU1 can't support Closed switch Retention (CSWR)
14 * because the mode is not supported by hw constraints of dormant
15 * mode. While waking up from the dormant mode, a reset signal
16 * to the Cortex-A9 processor must be asserted by the external
17 * power controller.
18 *
19 * With architectural inputs and hardware recommendations, only
20 * below modes are supported from power gain vs latency point of view.
21 *
22 * CPU0 CPU1 MPUSS
23 * ----------------------------------------------
24 * ON ON ON
25 * ON(Inactive) OFF ON(Inactive)
26 * OFF OFF CSWR
27 * OFF OFF OSWR
28 * OFF OFF OFF(Device OFF *TBD)
29 * ----------------------------------------------
30 *
31 * Note: CPU0 is the master core and it is the last CPU to go down
32 * and first to wake-up when MPUSS low power states are excercised
33 *
34 *
35 * This program is free software; you can redistribute it and/or modify
36 * it under the terms of the GNU General Public License version 2 as
37 * published by the Free Software Foundation.
38 */
39
40 #include <linux/kernel.h>
41 #include <linux/io.h>
42 #include <linux/errno.h>
43 #include <linux/linkage.h>
44 #include <linux/smp.h>
45
46 #include <asm/cacheflush.h>
47 #include <asm/tlbflush.h>
48 #include <asm/smp_scu.h>
49 #include <asm/pgalloc.h>
50 #include <asm/suspend.h>
51 #include <asm/virt.h>
52 #include <asm/hardware/cache-l2x0.h>
53
54 #include "soc.h"
55 #include "common.h"
56 #include "omap44xx.h"
57 #include "omap4-sar-layout.h"
58 #include "pm.h"
59 #include "prcm_mpu44xx.h"
60 #include "prcm_mpu54xx.h"
61 #include "prminst44xx.h"
62 #include "prcm44xx.h"
63 #include "prm44xx.h"
64 #include "prm-regbits-44xx.h"
65
66 static void __iomem *sar_base;
67 static u32 old_cpu1_ns_pa_addr;
68
69 #if defined(CONFIG_PM) && defined(CONFIG_SMP)
70
71 struct omap4_cpu_pm_info {
72 struct powerdomain *pwrdm;
73 void __iomem *scu_sar_addr;
74 void __iomem *wkup_sar_addr;
75 void __iomem *l2x0_sar_addr;
76 };
77
78 /**
79 * struct cpu_pm_ops - CPU pm operations
80 * @finish_suspend: CPU suspend finisher function pointer
81 * @resume: CPU resume function pointer
82 * @scu_prepare: CPU Snoop Control program function pointer
83 * @hotplug_restart: CPU restart function pointer
84 *
85 * Structure holds functions pointer for CPU low power operations like
86 * suspend, resume and scu programming.
87 */
88 struct cpu_pm_ops {
89 int (*finish_suspend)(unsigned long cpu_state);
90 void (*resume)(void);
91 void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state);
92 void (*hotplug_restart)(void);
93 };
94
95 static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info);
96 static struct powerdomain *mpuss_pd;
97 static u32 cpu_context_offset;
98
default_finish_suspend(unsigned long cpu_state)99 static int default_finish_suspend(unsigned long cpu_state)
100 {
101 omap_do_wfi();
102 return 0;
103 }
104
dummy_cpu_resume(void)105 static void dummy_cpu_resume(void)
106 {}
107
dummy_scu_prepare(unsigned int cpu_id,unsigned int cpu_state)108 static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state)
109 {}
110
111 static struct cpu_pm_ops omap_pm_ops = {
112 .finish_suspend = default_finish_suspend,
113 .resume = dummy_cpu_resume,
114 .scu_prepare = dummy_scu_prepare,
115 .hotplug_restart = dummy_cpu_resume,
116 };
117
118 /*
119 * Program the wakeup routine address for the CPU0 and CPU1
120 * used for OFF or DORMANT wakeup.
121 */
set_cpu_wakeup_addr(unsigned int cpu_id,u32 addr)122 static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr)
123 {
124 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
125
126 if (pm_info->wkup_sar_addr)
127 writel_relaxed(addr, pm_info->wkup_sar_addr);
128 }
129
130 /*
131 * Store the SCU power status value to scratchpad memory
132 */
scu_pwrst_prepare(unsigned int cpu_id,unsigned int cpu_state)133 static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state)
134 {
135 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
136 u32 scu_pwr_st;
137
138 switch (cpu_state) {
139 case PWRDM_POWER_RET:
140 scu_pwr_st = SCU_PM_DORMANT;
141 break;
142 case PWRDM_POWER_OFF:
143 scu_pwr_st = SCU_PM_POWEROFF;
144 break;
145 case PWRDM_POWER_ON:
146 case PWRDM_POWER_INACTIVE:
147 default:
148 scu_pwr_st = SCU_PM_NORMAL;
149 break;
150 }
151
152 if (pm_info->scu_sar_addr)
153 writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr);
154 }
155
156 /* Helper functions for MPUSS OSWR */
mpuss_clear_prev_logic_pwrst(void)157 static inline void mpuss_clear_prev_logic_pwrst(void)
158 {
159 u32 reg;
160
161 reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
162 OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
163 omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION,
164 OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
165 }
166
cpu_clear_prev_logic_pwrst(unsigned int cpu_id)167 static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id)
168 {
169 u32 reg;
170
171 if (cpu_id) {
172 reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST,
173 cpu_context_offset);
174 omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST,
175 cpu_context_offset);
176 } else {
177 reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST,
178 cpu_context_offset);
179 omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST,
180 cpu_context_offset);
181 }
182 }
183
184 /*
185 * Store the CPU cluster state for L2X0 low power operations.
186 */
l2x0_pwrst_prepare(unsigned int cpu_id,unsigned int save_state)187 static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state)
188 {
189 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
190
191 if (pm_info->l2x0_sar_addr)
192 writel_relaxed(save_state, pm_info->l2x0_sar_addr);
193 }
194
195 /*
196 * Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to
197 * in every restore MPUSS OFF path.
198 */
199 #ifdef CONFIG_CACHE_L2X0
save_l2x0_context(void)200 static void __init save_l2x0_context(void)
201 {
202 void __iomem *l2x0_base = omap4_get_l2cache_base();
203
204 if (l2x0_base && sar_base) {
205 writel_relaxed(l2x0_saved_regs.aux_ctrl,
206 sar_base + L2X0_AUXCTRL_OFFSET);
207 writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
208 sar_base + L2X0_PREFETCH_CTRL_OFFSET);
209 }
210 }
211 #else
save_l2x0_context(void)212 static void __init save_l2x0_context(void)
213 {}
214 #endif
215
216 /**
217 * omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
218 * The purpose of this function is to manage low power programming
219 * of OMAP4 MPUSS subsystem
220 * @cpu : CPU ID
221 * @power_state: Low power state.
222 *
223 * MPUSS states for the context save:
224 * save_state =
225 * 0 - Nothing lost and no need to save: MPUSS INACTIVE
226 * 1 - CPUx L1 and logic lost: MPUSS CSWR
227 * 2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR
228 * 3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF
229 */
omap4_enter_lowpower(unsigned int cpu,unsigned int power_state)230 int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state)
231 {
232 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
233 unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET;
234 unsigned int wakeup_cpu;
235
236 if (omap_rev() == OMAP4430_REV_ES1_0)
237 return -ENXIO;
238
239 switch (power_state) {
240 case PWRDM_POWER_ON:
241 case PWRDM_POWER_INACTIVE:
242 save_state = 0;
243 break;
244 case PWRDM_POWER_OFF:
245 cpu_logic_state = PWRDM_POWER_OFF;
246 save_state = 1;
247 break;
248 case PWRDM_POWER_RET:
249 if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE))
250 save_state = 0;
251 break;
252 default:
253 /*
254 * CPUx CSWR is invalid hardware state. Also CPUx OSWR
255 * doesn't make much scense, since logic is lost and $L1
256 * needs to be cleaned because of coherency. This makes
257 * CPUx OSWR equivalent to CPUX OFF and hence not supported
258 */
259 WARN_ON(1);
260 return -ENXIO;
261 }
262
263 pwrdm_pre_transition(NULL);
264
265 /*
266 * Check MPUSS next state and save interrupt controller if needed.
267 * In MPUSS OSWR or device OFF, interrupt controller contest is lost.
268 */
269 mpuss_clear_prev_logic_pwrst();
270 if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) &&
271 (pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF))
272 save_state = 2;
273
274 cpu_clear_prev_logic_pwrst(cpu);
275 pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
276 pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state);
277 set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume));
278 omap_pm_ops.scu_prepare(cpu, power_state);
279 l2x0_pwrst_prepare(cpu, save_state);
280
281 /*
282 * Call low level function with targeted low power state.
283 */
284 if (save_state)
285 cpu_suspend(save_state, omap_pm_ops.finish_suspend);
286 else
287 omap_pm_ops.finish_suspend(save_state);
288
289 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu)
290 gic_dist_enable();
291
292 /*
293 * Restore the CPUx power state to ON otherwise CPUx
294 * power domain can transitions to programmed low power
295 * state while doing WFI outside the low powe code. On
296 * secure devices, CPUx does WFI which can result in
297 * domain transition
298 */
299 wakeup_cpu = smp_processor_id();
300 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
301
302 pwrdm_post_transition(NULL);
303
304 return 0;
305 }
306
307 /**
308 * omap4_hotplug_cpu: OMAP4 CPU hotplug entry
309 * @cpu : CPU ID
310 * @power_state: CPU low power state.
311 */
omap4_hotplug_cpu(unsigned int cpu,unsigned int power_state)312 int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
313 {
314 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
315 unsigned int cpu_state = 0;
316
317 if (omap_rev() == OMAP4430_REV_ES1_0)
318 return -ENXIO;
319
320 /* Use the achievable power state for the domain */
321 power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm,
322 false, power_state);
323
324 if (power_state == PWRDM_POWER_OFF)
325 cpu_state = 1;
326
327 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
328 pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
329 set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart));
330 omap_pm_ops.scu_prepare(cpu, power_state);
331
332 /*
333 * CPU never retuns back if targeted power state is OFF mode.
334 * CPU ONLINE follows normal CPU ONLINE ptah via
335 * omap4_secondary_startup().
336 */
337 omap_pm_ops.finish_suspend(cpu_state);
338
339 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
340 return 0;
341 }
342
343
344 /*
345 * Enable Mercury Fast HG retention mode by default.
346 */
enable_mercury_retention_mode(void)347 static void enable_mercury_retention_mode(void)
348 {
349 u32 reg;
350
351 reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST,
352 OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
353 /* Enable HG_EN, HG_RAMPUP = fast mode */
354 reg |= BIT(24) | BIT(25);
355 omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST,
356 OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
357 }
358
359 /*
360 * Initialise OMAP4 MPUSS
361 */
omap4_mpuss_init(void)362 int __init omap4_mpuss_init(void)
363 {
364 struct omap4_cpu_pm_info *pm_info;
365
366 if (omap_rev() == OMAP4430_REV_ES1_0) {
367 WARN(1, "Power Management not supported on OMAP4430 ES1.0\n");
368 return -ENODEV;
369 }
370
371 /* Initilaise per CPU PM information */
372 pm_info = &per_cpu(omap4_pm_info, 0x0);
373 if (sar_base) {
374 pm_info->scu_sar_addr = sar_base + SCU_OFFSET0;
375 if (cpu_is_omap44xx())
376 pm_info->wkup_sar_addr = sar_base +
377 CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
378 else
379 pm_info->wkup_sar_addr = sar_base +
380 OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
381 pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0;
382 }
383 pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm");
384 if (!pm_info->pwrdm) {
385 pr_err("Lookup failed for CPU0 pwrdm\n");
386 return -ENODEV;
387 }
388
389 /* Clear CPU previous power domain state */
390 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
391 cpu_clear_prev_logic_pwrst(0);
392
393 /* Initialise CPU0 power domain state to ON */
394 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
395
396 pm_info = &per_cpu(omap4_pm_info, 0x1);
397 if (sar_base) {
398 pm_info->scu_sar_addr = sar_base + SCU_OFFSET1;
399 if (cpu_is_omap44xx())
400 pm_info->wkup_sar_addr = sar_base +
401 CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
402 else
403 pm_info->wkup_sar_addr = sar_base +
404 OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
405 pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1;
406 }
407
408 pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm");
409 if (!pm_info->pwrdm) {
410 pr_err("Lookup failed for CPU1 pwrdm\n");
411 return -ENODEV;
412 }
413
414 /* Clear CPU previous power domain state */
415 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
416 cpu_clear_prev_logic_pwrst(1);
417
418 /* Initialise CPU1 power domain state to ON */
419 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
420
421 mpuss_pd = pwrdm_lookup("mpu_pwrdm");
422 if (!mpuss_pd) {
423 pr_err("Failed to lookup MPUSS power domain\n");
424 return -ENODEV;
425 }
426 pwrdm_clear_all_prev_pwrst(mpuss_pd);
427 mpuss_clear_prev_logic_pwrst();
428
429 if (sar_base) {
430 /* Save device type on scratchpad for low level code to use */
431 writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0,
432 sar_base + OMAP_TYPE_OFFSET);
433 save_l2x0_context();
434 }
435
436 if (cpu_is_omap44xx()) {
437 omap_pm_ops.finish_suspend = omap4_finish_suspend;
438 omap_pm_ops.resume = omap4_cpu_resume;
439 omap_pm_ops.scu_prepare = scu_pwrst_prepare;
440 omap_pm_ops.hotplug_restart = omap4_secondary_startup;
441 cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET;
442 } else if (soc_is_omap54xx() || soc_is_dra7xx()) {
443 cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET;
444 enable_mercury_retention_mode();
445 }
446
447 if (cpu_is_omap446x())
448 omap_pm_ops.hotplug_restart = omap4460_secondary_startup;
449
450 return 0;
451 }
452
453 #endif
454
omap4_get_cpu1_ns_pa_addr(void)455 u32 omap4_get_cpu1_ns_pa_addr(void)
456 {
457 return old_cpu1_ns_pa_addr;
458 }
459
460 /*
461 * For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
462 * current kernel's secondary_startup() early before
463 * clockdomains_init(). Otherwise clockdomain_init() can
464 * wake CPU1 and cause a hang.
465 */
omap4_mpuss_early_init(void)466 void __init omap4_mpuss_early_init(void)
467 {
468 unsigned long startup_pa;
469 void __iomem *ns_pa_addr;
470
471 if (!(soc_is_omap44xx() || soc_is_omap54xx()))
472 return;
473
474 sar_base = omap4_get_sar_ram_base();
475
476 /* Save old NS_PA_ADDR for validity checks later on */
477 if (soc_is_omap44xx())
478 ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
479 else
480 ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
481 old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr);
482
483 if (soc_is_omap443x())
484 startup_pa = __pa_symbol(omap4_secondary_startup);
485 else if (soc_is_omap446x())
486 startup_pa = __pa_symbol(omap4460_secondary_startup);
487 else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
488 startup_pa = __pa_symbol(omap5_secondary_hyp_startup);
489 else
490 startup_pa = __pa_symbol(omap5_secondary_startup);
491
492 if (soc_is_omap44xx())
493 writel_relaxed(startup_pa, sar_base +
494 CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
495 else
496 writel_relaxed(startup_pa, sar_base +
497 OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
498 }
499