1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * isp.c
4  *
5  * TI OMAP3 ISP - Core
6  *
7  * Copyright (C) 2006-2010 Nokia Corporation
8  * Copyright (C) 2007-2009 Texas Instruments, Inc.
9  *
10  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11  *	     Sakari Ailus <sakari.ailus@iki.fi>
12  *
13  * Contributors:
14  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
15  *	Sakari Ailus <sakari.ailus@iki.fi>
16  *	David Cohen <dacohen@gmail.com>
17  *	Stanimir Varbanov <svarbanov@mm-sol.com>
18  *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
19  *	Tuukka Toivonen <tuukkat76@gmail.com>
20  *	Sergio Aguirre <saaguirre@ti.com>
21  *	Antti Koskipaa <akoskipa@gmail.com>
22  *	Ivan T. Ivanov <iivanov@mm-sol.com>
23  *	RaniSuneela <r-m@ti.com>
24  *	Atanas Filipov <afilipov@mm-sol.com>
25  *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
26  *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
27  *	Nayden Kanchev <nkanchev@mm-sol.com>
28  *	Phil Carmody <ext-phil.2.carmody@nokia.com>
29  *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
30  *	Dominic Curran <dcurran@ti.com>
31  *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
32  *	Pallavi Kulkarni <p-kulkarni@ti.com>
33  *	Vaibhav Hiremath <hvaibhav@ti.com>
34  *	Mohit Jalori <mjalori@ti.com>
35  *	Sameer Venkatraman <sameerv@ti.com>
36  *	Senthilvadivu Guruswamy <svadivu@ti.com>
37  *	Thara Gopinath <thara@ti.com>
38  *	Toni Leinonen <toni.leinonen@nokia.com>
39  *	Troy Laramy <t-laramy@ti.com>
40  */
41 
42 #include <asm/cacheflush.h>
43 
44 #include <linux/clk.h>
45 #include <linux/clkdev.h>
46 #include <linux/delay.h>
47 #include <linux/device.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/i2c.h>
50 #include <linux/interrupt.h>
51 #include <linux/mfd/syscon.h>
52 #include <linux/module.h>
53 #include <linux/omap-iommu.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/slab.h>
58 #include <linux/sched.h>
59 #include <linux/vmalloc.h>
60 
61 #ifdef CONFIG_ARM_DMA_USE_IOMMU
62 #include <asm/dma-iommu.h>
63 #endif
64 
65 #include <media/v4l2-common.h>
66 #include <media/v4l2-fwnode.h>
67 #include <media/v4l2-device.h>
68 #include <media/v4l2-mc.h>
69 
70 #include "isp.h"
71 #include "ispreg.h"
72 #include "ispccdc.h"
73 #include "isppreview.h"
74 #include "ispresizer.h"
75 #include "ispcsi2.h"
76 #include "ispccp2.h"
77 #include "isph3a.h"
78 #include "isphist.h"
79 
80 static unsigned int autoidle;
81 module_param(autoidle, int, 0444);
82 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
83 
84 static void isp_save_ctx(struct isp_device *isp);
85 
86 static void isp_restore_ctx(struct isp_device *isp);
87 
88 static const struct isp_res_mapping isp_res_maps[] = {
89 	{
90 		.isp_rev = ISP_REVISION_2_0,
91 		.offset = {
92 			/* first MMIO area */
93 			0x0000, /* base, len 0x0070 */
94 			0x0400, /* ccp2, len 0x01f0 */
95 			0x0600, /* ccdc, len 0x00a8 */
96 			0x0a00, /* hist, len 0x0048 */
97 			0x0c00, /* h3a, len 0x0060 */
98 			0x0e00, /* preview, len 0x00a0 */
99 			0x1000, /* resizer, len 0x00ac */
100 			0x1200, /* sbl, len 0x00fc */
101 			/* second MMIO area */
102 			0x0000, /* csi2a, len 0x0170 */
103 			0x0170, /* csiphy2, len 0x000c */
104 		},
105 		.phy_type = ISP_PHY_TYPE_3430,
106 	},
107 	{
108 		.isp_rev = ISP_REVISION_15_0,
109 		.offset = {
110 			/* first MMIO area */
111 			0x0000, /* base, len 0x0070 */
112 			0x0400, /* ccp2, len 0x01f0 */
113 			0x0600, /* ccdc, len 0x00a8 */
114 			0x0a00, /* hist, len 0x0048 */
115 			0x0c00, /* h3a, len 0x0060 */
116 			0x0e00, /* preview, len 0x00a0 */
117 			0x1000, /* resizer, len 0x00ac */
118 			0x1200, /* sbl, len 0x00fc */
119 			/* second MMIO area */
120 			0x0000, /* csi2a, len 0x0170 (1st area) */
121 			0x0170, /* csiphy2, len 0x000c */
122 			0x01c0, /* csi2a, len 0x0040 (2nd area) */
123 			0x0400, /* csi2c, len 0x0170 (1st area) */
124 			0x0570, /* csiphy1, len 0x000c */
125 			0x05c0, /* csi2c, len 0x0040 (2nd area) */
126 		},
127 		.phy_type = ISP_PHY_TYPE_3630,
128 	},
129 };
130 
131 /* Structure for saving/restoring ISP module registers */
132 static struct isp_reg isp_reg_list[] = {
133 	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
134 	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
135 	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
136 	{0, ISP_TOK_TERM, 0}
137 };
138 
139 /*
140  * omap3isp_flush - Post pending L3 bus writes by doing a register readback
141  * @isp: OMAP3 ISP device
142  *
143  * In order to force posting of pending writes, we need to write and
144  * readback the same register, in this case the revision register.
145  *
146  * See this link for reference:
147  *   http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
148  */
omap3isp_flush(struct isp_device * isp)149 void omap3isp_flush(struct isp_device *isp)
150 {
151 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
152 	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
153 }
154 
155 /* -----------------------------------------------------------------------------
156  * XCLK
157  */
158 
159 #define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
160 
isp_xclk_update(struct isp_xclk * xclk,u32 divider)161 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
162 {
163 	switch (xclk->id) {
164 	case ISP_XCLK_A:
165 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
166 				ISPTCTRL_CTRL_DIVA_MASK,
167 				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
168 		break;
169 	case ISP_XCLK_B:
170 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
171 				ISPTCTRL_CTRL_DIVB_MASK,
172 				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
173 		break;
174 	}
175 }
176 
isp_xclk_prepare(struct clk_hw * hw)177 static int isp_xclk_prepare(struct clk_hw *hw)
178 {
179 	struct isp_xclk *xclk = to_isp_xclk(hw);
180 
181 	omap3isp_get(xclk->isp);
182 
183 	return 0;
184 }
185 
isp_xclk_unprepare(struct clk_hw * hw)186 static void isp_xclk_unprepare(struct clk_hw *hw)
187 {
188 	struct isp_xclk *xclk = to_isp_xclk(hw);
189 
190 	omap3isp_put(xclk->isp);
191 }
192 
isp_xclk_enable(struct clk_hw * hw)193 static int isp_xclk_enable(struct clk_hw *hw)
194 {
195 	struct isp_xclk *xclk = to_isp_xclk(hw);
196 	unsigned long flags;
197 
198 	spin_lock_irqsave(&xclk->lock, flags);
199 	isp_xclk_update(xclk, xclk->divider);
200 	xclk->enabled = true;
201 	spin_unlock_irqrestore(&xclk->lock, flags);
202 
203 	return 0;
204 }
205 
isp_xclk_disable(struct clk_hw * hw)206 static void isp_xclk_disable(struct clk_hw *hw)
207 {
208 	struct isp_xclk *xclk = to_isp_xclk(hw);
209 	unsigned long flags;
210 
211 	spin_lock_irqsave(&xclk->lock, flags);
212 	isp_xclk_update(xclk, 0);
213 	xclk->enabled = false;
214 	spin_unlock_irqrestore(&xclk->lock, flags);
215 }
216 
isp_xclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)217 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
218 					  unsigned long parent_rate)
219 {
220 	struct isp_xclk *xclk = to_isp_xclk(hw);
221 
222 	return parent_rate / xclk->divider;
223 }
224 
isp_xclk_calc_divider(unsigned long * rate,unsigned long parent_rate)225 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
226 {
227 	u32 divider;
228 
229 	if (*rate >= parent_rate) {
230 		*rate = parent_rate;
231 		return ISPTCTRL_CTRL_DIV_BYPASS;
232 	}
233 
234 	if (*rate == 0)
235 		*rate = 1;
236 
237 	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
238 	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
239 		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
240 
241 	*rate = parent_rate / divider;
242 	return divider;
243 }
244 
isp_xclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)245 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
246 				unsigned long *parent_rate)
247 {
248 	isp_xclk_calc_divider(&rate, *parent_rate);
249 	return rate;
250 }
251 
isp_xclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)252 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
253 			     unsigned long parent_rate)
254 {
255 	struct isp_xclk *xclk = to_isp_xclk(hw);
256 	unsigned long flags;
257 	u32 divider;
258 
259 	divider = isp_xclk_calc_divider(&rate, parent_rate);
260 
261 	spin_lock_irqsave(&xclk->lock, flags);
262 
263 	xclk->divider = divider;
264 	if (xclk->enabled)
265 		isp_xclk_update(xclk, divider);
266 
267 	spin_unlock_irqrestore(&xclk->lock, flags);
268 
269 	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
270 		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
271 	return 0;
272 }
273 
274 static const struct clk_ops isp_xclk_ops = {
275 	.prepare = isp_xclk_prepare,
276 	.unprepare = isp_xclk_unprepare,
277 	.enable = isp_xclk_enable,
278 	.disable = isp_xclk_disable,
279 	.recalc_rate = isp_xclk_recalc_rate,
280 	.round_rate = isp_xclk_round_rate,
281 	.set_rate = isp_xclk_set_rate,
282 };
283 
284 static const char *isp_xclk_parent_name = "cam_mclk";
285 
isp_xclk_src_get(struct of_phandle_args * clkspec,void * data)286 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
287 {
288 	unsigned int idx = clkspec->args[0];
289 	struct isp_device *isp = data;
290 
291 	if (idx >= ARRAY_SIZE(isp->xclks))
292 		return ERR_PTR(-ENOENT);
293 
294 	return isp->xclks[idx].clk;
295 }
296 
isp_xclk_init(struct isp_device * isp)297 static int isp_xclk_init(struct isp_device *isp)
298 {
299 	struct device_node *np = isp->dev->of_node;
300 	struct clk_init_data init = {};
301 	unsigned int i;
302 
303 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
304 		isp->xclks[i].clk = ERR_PTR(-EINVAL);
305 
306 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
307 		struct isp_xclk *xclk = &isp->xclks[i];
308 
309 		xclk->isp = isp;
310 		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
311 		xclk->divider = 1;
312 		spin_lock_init(&xclk->lock);
313 
314 		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
315 		init.ops = &isp_xclk_ops;
316 		init.parent_names = &isp_xclk_parent_name;
317 		init.num_parents = 1;
318 
319 		xclk->hw.init = &init;
320 		/*
321 		 * The first argument is NULL in order to avoid circular
322 		 * reference, as this driver takes reference on the
323 		 * sensor subdevice modules and the sensors would take
324 		 * reference on this module through clk_get().
325 		 */
326 		xclk->clk = clk_register(NULL, &xclk->hw);
327 		if (IS_ERR(xclk->clk))
328 			return PTR_ERR(xclk->clk);
329 	}
330 
331 	if (np)
332 		of_clk_add_provider(np, isp_xclk_src_get, isp);
333 
334 	return 0;
335 }
336 
isp_xclk_cleanup(struct isp_device * isp)337 static void isp_xclk_cleanup(struct isp_device *isp)
338 {
339 	struct device_node *np = isp->dev->of_node;
340 	unsigned int i;
341 
342 	if (np)
343 		of_clk_del_provider(np);
344 
345 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
346 		struct isp_xclk *xclk = &isp->xclks[i];
347 
348 		if (!IS_ERR(xclk->clk))
349 			clk_unregister(xclk->clk);
350 	}
351 }
352 
353 /* -----------------------------------------------------------------------------
354  * Interrupts
355  */
356 
357 /*
358  * isp_enable_interrupts - Enable ISP interrupts.
359  * @isp: OMAP3 ISP device
360  */
isp_enable_interrupts(struct isp_device * isp)361 static void isp_enable_interrupts(struct isp_device *isp)
362 {
363 	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
364 			     | IRQ0ENABLE_CSIB_IRQ
365 			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
366 			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
367 			     | IRQ0ENABLE_CCDC_VD0_IRQ
368 			     | IRQ0ENABLE_CCDC_VD1_IRQ
369 			     | IRQ0ENABLE_HS_VS_IRQ
370 			     | IRQ0ENABLE_HIST_DONE_IRQ
371 			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
372 			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
373 			     | IRQ0ENABLE_PRV_DONE_IRQ
374 			     | IRQ0ENABLE_RSZ_DONE_IRQ;
375 
376 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
377 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
378 }
379 
380 /*
381  * isp_disable_interrupts - Disable ISP interrupts.
382  * @isp: OMAP3 ISP device
383  */
isp_disable_interrupts(struct isp_device * isp)384 static void isp_disable_interrupts(struct isp_device *isp)
385 {
386 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
387 }
388 
389 /*
390  * isp_core_init - ISP core settings
391  * @isp: OMAP3 ISP device
392  * @idle: Consider idle state.
393  *
394  * Set the power settings for the ISP and SBL bus and configure the HS/VS
395  * interrupt source.
396  *
397  * We need to configure the HS/VS interrupt source before interrupts get
398  * enabled, as the sensor might be free-running and the ISP default setting
399  * (HS edge) would put an unnecessary burden on the CPU.
400  */
isp_core_init(struct isp_device * isp,int idle)401 static void isp_core_init(struct isp_device *isp, int idle)
402 {
403 	isp_reg_writel(isp,
404 		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
405 				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
406 			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
407 			((isp->revision == ISP_REVISION_15_0) ?
408 			  ISP_SYSCONFIG_AUTOIDLE : 0),
409 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
410 
411 	isp_reg_writel(isp,
412 		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
413 		       ISPCTRL_SYNC_DETECT_VSRISE,
414 		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
415 }
416 
417 /*
418  * Configure the bridge and lane shifter. Valid inputs are
419  *
420  * CCDC_INPUT_PARALLEL: Parallel interface
421  * CCDC_INPUT_CSI2A: CSI2a receiver
422  * CCDC_INPUT_CCP2B: CCP2b receiver
423  * CCDC_INPUT_CSI2C: CSI2c receiver
424  *
425  * The bridge and lane shifter are configured according to the selected input
426  * and the ISP platform data.
427  */
omap3isp_configure_bridge(struct isp_device * isp,enum ccdc_input_entity input,const struct isp_parallel_cfg * parcfg,unsigned int shift,unsigned int bridge)428 void omap3isp_configure_bridge(struct isp_device *isp,
429 			       enum ccdc_input_entity input,
430 			       const struct isp_parallel_cfg *parcfg,
431 			       unsigned int shift, unsigned int bridge)
432 {
433 	u32 ispctrl_val;
434 
435 	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
436 	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
437 	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
438 	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
439 	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
440 	ispctrl_val |= bridge;
441 
442 	switch (input) {
443 	case CCDC_INPUT_PARALLEL:
444 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
445 		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
446 		shift += parcfg->data_lane_shift;
447 		break;
448 
449 	case CCDC_INPUT_CSI2A:
450 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
451 		break;
452 
453 	case CCDC_INPUT_CCP2B:
454 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
455 		break;
456 
457 	case CCDC_INPUT_CSI2C:
458 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
459 		break;
460 
461 	default:
462 		return;
463 	}
464 
465 	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
466 
467 	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
468 }
469 
omap3isp_hist_dma_done(struct isp_device * isp)470 void omap3isp_hist_dma_done(struct isp_device *isp)
471 {
472 	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
473 	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
474 		/* Histogram cannot be enabled in this frame anymore */
475 		atomic_set(&isp->isp_hist.buf_err, 1);
476 		dev_dbg(isp->dev,
477 			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
478 	}
479 }
480 
isp_isr_dbg(struct isp_device * isp,u32 irqstatus)481 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
482 {
483 	static const char *name[] = {
484 		"CSIA_IRQ",
485 		"res1",
486 		"res2",
487 		"CSIB_LCM_IRQ",
488 		"CSIB_IRQ",
489 		"res5",
490 		"res6",
491 		"res7",
492 		"CCDC_VD0_IRQ",
493 		"CCDC_VD1_IRQ",
494 		"CCDC_VD2_IRQ",
495 		"CCDC_ERR_IRQ",
496 		"H3A_AF_DONE_IRQ",
497 		"H3A_AWB_DONE_IRQ",
498 		"res14",
499 		"res15",
500 		"HIST_DONE_IRQ",
501 		"CCDC_LSC_DONE",
502 		"CCDC_LSC_PREFETCH_COMPLETED",
503 		"CCDC_LSC_PREFETCH_ERROR",
504 		"PRV_DONE_IRQ",
505 		"CBUFF_IRQ",
506 		"res22",
507 		"res23",
508 		"RSZ_DONE_IRQ",
509 		"OVF_IRQ",
510 		"res26",
511 		"res27",
512 		"MMU_ERR_IRQ",
513 		"OCP_ERR_IRQ",
514 		"SEC_ERR_IRQ",
515 		"HS_VS_IRQ",
516 	};
517 	int i;
518 
519 	dev_dbg(isp->dev, "ISP IRQ: ");
520 
521 	for (i = 0; i < ARRAY_SIZE(name); i++) {
522 		if ((1 << i) & irqstatus)
523 			printk(KERN_CONT "%s ", name[i]);
524 	}
525 	printk(KERN_CONT "\n");
526 }
527 
isp_isr_sbl(struct isp_device * isp)528 static void isp_isr_sbl(struct isp_device *isp)
529 {
530 	struct device *dev = isp->dev;
531 	struct isp_pipeline *pipe;
532 	u32 sbl_pcr;
533 
534 	/*
535 	 * Handle shared buffer logic overflows for video buffers.
536 	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
537 	 */
538 	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
539 	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
540 	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
541 
542 	if (sbl_pcr)
543 		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
544 
545 	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
546 		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
547 		if (pipe != NULL)
548 			pipe->error = true;
549 	}
550 
551 	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
552 		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
553 		if (pipe != NULL)
554 			pipe->error = true;
555 	}
556 
557 	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
558 		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
559 		if (pipe != NULL)
560 			pipe->error = true;
561 	}
562 
563 	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
564 		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
565 		if (pipe != NULL)
566 			pipe->error = true;
567 	}
568 
569 	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
570 		       | ISPSBL_PCR_RSZ2_WBL_OVF
571 		       | ISPSBL_PCR_RSZ3_WBL_OVF
572 		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
573 		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
574 		if (pipe != NULL)
575 			pipe->error = true;
576 	}
577 
578 	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
579 		omap3isp_stat_sbl_overflow(&isp->isp_af);
580 
581 	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
582 		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
583 }
584 
585 /*
586  * isp_isr - Interrupt Service Routine for Camera ISP module.
587  * @irq: Not used currently.
588  * @_isp: Pointer to the OMAP3 ISP device
589  *
590  * Handles the corresponding callback if plugged in.
591  */
isp_isr(int irq,void * _isp)592 static irqreturn_t isp_isr(int irq, void *_isp)
593 {
594 	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
595 				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
596 				       IRQ0STATUS_CCDC_VD0_IRQ |
597 				       IRQ0STATUS_CCDC_VD1_IRQ |
598 				       IRQ0STATUS_HS_VS_IRQ;
599 	struct isp_device *isp = _isp;
600 	u32 irqstatus;
601 
602 	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
603 	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
604 
605 	isp_isr_sbl(isp);
606 
607 	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
608 		omap3isp_csi2_isr(&isp->isp_csi2a);
609 
610 	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
611 		omap3isp_ccp2_isr(&isp->isp_ccp2);
612 
613 	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
614 		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
615 			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
616 		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
617 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
618 		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
619 		omap3isp_stat_isr_frame_sync(&isp->isp_af);
620 		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
621 	}
622 
623 	if (irqstatus & ccdc_events)
624 		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
625 
626 	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
627 		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
628 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
629 		omap3isp_preview_isr(&isp->isp_prev);
630 	}
631 
632 	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
633 		omap3isp_resizer_isr(&isp->isp_res);
634 
635 	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
636 		omap3isp_stat_isr(&isp->isp_aewb);
637 
638 	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
639 		omap3isp_stat_isr(&isp->isp_af);
640 
641 	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
642 		omap3isp_stat_isr(&isp->isp_hist);
643 
644 	omap3isp_flush(isp);
645 
646 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
647 	isp_isr_dbg(isp, irqstatus);
648 #endif
649 
650 	return IRQ_HANDLED;
651 }
652 
653 static const struct media_device_ops isp_media_ops = {
654 	.link_notify = v4l2_pipeline_link_notify,
655 };
656 
657 /* -----------------------------------------------------------------------------
658  * Pipeline stream management
659  */
660 
661 /*
662  * isp_pipeline_enable - Enable streaming on a pipeline
663  * @pipe: ISP pipeline
664  * @mode: Stream mode (single shot or continuous)
665  *
666  * Walk the entities chain starting at the pipeline output video node and start
667  * all modules in the chain in the given mode.
668  *
669  * Return 0 if successful, or the return value of the failed video::s_stream
670  * operation otherwise.
671  */
isp_pipeline_enable(struct isp_pipeline * pipe,enum isp_pipeline_stream_state mode)672 static int isp_pipeline_enable(struct isp_pipeline *pipe,
673 			       enum isp_pipeline_stream_state mode)
674 {
675 	struct isp_device *isp = pipe->output->isp;
676 	struct media_entity *entity;
677 	struct media_pad *pad;
678 	struct v4l2_subdev *subdev;
679 	unsigned long flags;
680 	int ret;
681 
682 	/* Refuse to start streaming if an entity included in the pipeline has
683 	 * crashed. This check must be performed before the loop below to avoid
684 	 * starting entities if the pipeline won't start anyway (those entities
685 	 * would then likely fail to stop, making the problem worse).
686 	 */
687 	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
688 		return -EIO;
689 
690 	spin_lock_irqsave(&pipe->lock, flags);
691 	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
692 	spin_unlock_irqrestore(&pipe->lock, flags);
693 
694 	pipe->do_propagation = false;
695 
696 	entity = &pipe->output->video.entity;
697 	while (1) {
698 		pad = &entity->pads[0];
699 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
700 			break;
701 
702 		pad = media_entity_remote_pad(pad);
703 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
704 			break;
705 
706 		entity = pad->entity;
707 		subdev = media_entity_to_v4l2_subdev(entity);
708 
709 		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
710 		if (ret < 0 && ret != -ENOIOCTLCMD)
711 			return ret;
712 
713 		if (subdev == &isp->isp_ccdc.subdev) {
714 			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
715 					s_stream, mode);
716 			v4l2_subdev_call(&isp->isp_af.subdev, video,
717 					s_stream, mode);
718 			v4l2_subdev_call(&isp->isp_hist.subdev, video,
719 					s_stream, mode);
720 			pipe->do_propagation = true;
721 		}
722 
723 		/* Stop at the first external sub-device. */
724 		if (subdev->dev != isp->dev)
725 			break;
726 	}
727 
728 	return 0;
729 }
730 
isp_pipeline_wait_resizer(struct isp_device * isp)731 static int isp_pipeline_wait_resizer(struct isp_device *isp)
732 {
733 	return omap3isp_resizer_busy(&isp->isp_res);
734 }
735 
isp_pipeline_wait_preview(struct isp_device * isp)736 static int isp_pipeline_wait_preview(struct isp_device *isp)
737 {
738 	return omap3isp_preview_busy(&isp->isp_prev);
739 }
740 
isp_pipeline_wait_ccdc(struct isp_device * isp)741 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
742 {
743 	return omap3isp_stat_busy(&isp->isp_af)
744 	    || omap3isp_stat_busy(&isp->isp_aewb)
745 	    || omap3isp_stat_busy(&isp->isp_hist)
746 	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
747 }
748 
749 #define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
750 
isp_pipeline_wait(struct isp_device * isp,int (* busy)(struct isp_device * isp))751 static int isp_pipeline_wait(struct isp_device *isp,
752 			     int(*busy)(struct isp_device *isp))
753 {
754 	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
755 
756 	while (!time_after(jiffies, timeout)) {
757 		if (!busy(isp))
758 			return 0;
759 	}
760 
761 	return 1;
762 }
763 
764 /*
765  * isp_pipeline_disable - Disable streaming on a pipeline
766  * @pipe: ISP pipeline
767  *
768  * Walk the entities chain starting at the pipeline output video node and stop
769  * all modules in the chain. Wait synchronously for the modules to be stopped if
770  * necessary.
771  *
772  * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
773  * can't be stopped (in which case a software reset of the ISP is probably
774  * necessary).
775  */
isp_pipeline_disable(struct isp_pipeline * pipe)776 static int isp_pipeline_disable(struct isp_pipeline *pipe)
777 {
778 	struct isp_device *isp = pipe->output->isp;
779 	struct media_entity *entity;
780 	struct media_pad *pad;
781 	struct v4l2_subdev *subdev;
782 	int failure = 0;
783 	int ret;
784 
785 	/*
786 	 * We need to stop all the modules after CCDC first or they'll
787 	 * never stop since they may not get a full frame from CCDC.
788 	 */
789 	entity = &pipe->output->video.entity;
790 	while (1) {
791 		pad = &entity->pads[0];
792 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
793 			break;
794 
795 		pad = media_entity_remote_pad(pad);
796 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
797 			break;
798 
799 		entity = pad->entity;
800 		subdev = media_entity_to_v4l2_subdev(entity);
801 
802 		if (subdev == &isp->isp_ccdc.subdev) {
803 			v4l2_subdev_call(&isp->isp_aewb.subdev,
804 					 video, s_stream, 0);
805 			v4l2_subdev_call(&isp->isp_af.subdev,
806 					 video, s_stream, 0);
807 			v4l2_subdev_call(&isp->isp_hist.subdev,
808 					 video, s_stream, 0);
809 		}
810 
811 		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
812 
813 		if (subdev == &isp->isp_res.subdev)
814 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
815 		else if (subdev == &isp->isp_prev.subdev)
816 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
817 		else if (subdev == &isp->isp_ccdc.subdev)
818 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
819 
820 		/* Handle stop failures. An entity that fails to stop can
821 		 * usually just be restarted. Flag the stop failure nonetheless
822 		 * to trigger an ISP reset the next time the device is released,
823 		 * just in case.
824 		 *
825 		 * The preview engine is a special case. A failure to stop can
826 		 * mean a hardware crash. When that happens the preview engine
827 		 * won't respond to read/write operations on the L4 bus anymore,
828 		 * resulting in a bus fault and a kernel oops next time it gets
829 		 * accessed. Mark it as crashed to prevent pipelines including
830 		 * it from being started.
831 		 */
832 		if (ret) {
833 			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
834 			isp->stop_failure = true;
835 			if (subdev == &isp->isp_prev.subdev)
836 				media_entity_enum_set(&isp->crashed,
837 						      &subdev->entity);
838 			failure = -ETIMEDOUT;
839 		}
840 
841 		/* Stop at the first external sub-device. */
842 		if (subdev->dev != isp->dev)
843 			break;
844 	}
845 
846 	return failure;
847 }
848 
849 /*
850  * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
851  * @pipe: ISP pipeline
852  * @state: Stream state (stopped, single shot or continuous)
853  *
854  * Set the pipeline to the given stream state. Pipelines can be started in
855  * single-shot or continuous mode.
856  *
857  * Return 0 if successful, or the return value of the failed video::s_stream
858  * operation otherwise. The pipeline state is not updated when the operation
859  * fails, except when stopping the pipeline.
860  */
omap3isp_pipeline_set_stream(struct isp_pipeline * pipe,enum isp_pipeline_stream_state state)861 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
862 				 enum isp_pipeline_stream_state state)
863 {
864 	int ret;
865 
866 	if (state == ISP_PIPELINE_STREAM_STOPPED)
867 		ret = isp_pipeline_disable(pipe);
868 	else
869 		ret = isp_pipeline_enable(pipe, state);
870 
871 	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
872 		pipe->stream_state = state;
873 
874 	return ret;
875 }
876 
877 /*
878  * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
879  * @pipe: ISP pipeline
880  *
881  * Cancelling a stream mark all buffers on all video nodes in the pipeline as
882  * erroneous and makes sure no new buffer can be queued. This function is called
883  * when a fatal error that prevents any further operation on the pipeline
884  * occurs.
885  */
omap3isp_pipeline_cancel_stream(struct isp_pipeline * pipe)886 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
887 {
888 	if (pipe->input)
889 		omap3isp_video_cancel_stream(pipe->input);
890 	if (pipe->output)
891 		omap3isp_video_cancel_stream(pipe->output);
892 }
893 
894 /*
895  * isp_pipeline_resume - Resume streaming on a pipeline
896  * @pipe: ISP pipeline
897  *
898  * Resume video output and input and re-enable pipeline.
899  */
isp_pipeline_resume(struct isp_pipeline * pipe)900 static void isp_pipeline_resume(struct isp_pipeline *pipe)
901 {
902 	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
903 
904 	omap3isp_video_resume(pipe->output, !singleshot);
905 	if (singleshot)
906 		omap3isp_video_resume(pipe->input, 0);
907 	isp_pipeline_enable(pipe, pipe->stream_state);
908 }
909 
910 /*
911  * isp_pipeline_suspend - Suspend streaming on a pipeline
912  * @pipe: ISP pipeline
913  *
914  * Suspend pipeline.
915  */
isp_pipeline_suspend(struct isp_pipeline * pipe)916 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
917 {
918 	isp_pipeline_disable(pipe);
919 }
920 
921 /*
922  * isp_pipeline_is_last - Verify if entity has an enabled link to the output
923  *			  video node
924  * @me: ISP module's media entity
925  *
926  * Returns 1 if the entity has an enabled link to the output video node or 0
927  * otherwise. It's true only while pipeline can have no more than one output
928  * node.
929  */
isp_pipeline_is_last(struct media_entity * me)930 static int isp_pipeline_is_last(struct media_entity *me)
931 {
932 	struct isp_pipeline *pipe;
933 	struct media_pad *pad;
934 
935 	if (!me->pipe)
936 		return 0;
937 	pipe = to_isp_pipeline(me);
938 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
939 		return 0;
940 	pad = media_entity_remote_pad(&pipe->output->pad);
941 	return pad->entity == me;
942 }
943 
944 /*
945  * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
946  * @me: ISP module's media entity
947  *
948  * Suspend the whole pipeline if module's entity has an enabled link to the
949  * output video node. It works only while pipeline can have no more than one
950  * output node.
951  */
isp_suspend_module_pipeline(struct media_entity * me)952 static void isp_suspend_module_pipeline(struct media_entity *me)
953 {
954 	if (isp_pipeline_is_last(me))
955 		isp_pipeline_suspend(to_isp_pipeline(me));
956 }
957 
958 /*
959  * isp_resume_module_pipeline - Resume pipeline to which belongs the module
960  * @me: ISP module's media entity
961  *
962  * Resume the whole pipeline if module's entity has an enabled link to the
963  * output video node. It works only while pipeline can have no more than one
964  * output node.
965  */
isp_resume_module_pipeline(struct media_entity * me)966 static void isp_resume_module_pipeline(struct media_entity *me)
967 {
968 	if (isp_pipeline_is_last(me))
969 		isp_pipeline_resume(to_isp_pipeline(me));
970 }
971 
972 /*
973  * isp_suspend_modules - Suspend ISP submodules.
974  * @isp: OMAP3 ISP device
975  *
976  * Returns 0 if suspend left in idle state all the submodules properly,
977  * or returns 1 if a general Reset is required to suspend the submodules.
978  */
isp_suspend_modules(struct isp_device * isp)979 static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
980 {
981 	unsigned long timeout;
982 
983 	omap3isp_stat_suspend(&isp->isp_aewb);
984 	omap3isp_stat_suspend(&isp->isp_af);
985 	omap3isp_stat_suspend(&isp->isp_hist);
986 	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
987 	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
988 	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
989 	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
990 	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
991 
992 	timeout = jiffies + ISP_STOP_TIMEOUT;
993 	while (omap3isp_stat_busy(&isp->isp_af)
994 	    || omap3isp_stat_busy(&isp->isp_aewb)
995 	    || omap3isp_stat_busy(&isp->isp_hist)
996 	    || omap3isp_preview_busy(&isp->isp_prev)
997 	    || omap3isp_resizer_busy(&isp->isp_res)
998 	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
999 		if (time_after(jiffies, timeout)) {
1000 			dev_info(isp->dev, "can't stop modules.\n");
1001 			return 1;
1002 		}
1003 		msleep(1);
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * isp_resume_modules - Resume ISP submodules.
1011  * @isp: OMAP3 ISP device
1012  */
isp_resume_modules(struct isp_device * isp)1013 static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1014 {
1015 	omap3isp_stat_resume(&isp->isp_aewb);
1016 	omap3isp_stat_resume(&isp->isp_af);
1017 	omap3isp_stat_resume(&isp->isp_hist);
1018 	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1019 	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1020 	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1021 	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1022 	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1023 }
1024 
1025 /*
1026  * isp_reset - Reset ISP with a timeout wait for idle.
1027  * @isp: OMAP3 ISP device
1028  */
isp_reset(struct isp_device * isp)1029 static int isp_reset(struct isp_device *isp)
1030 {
1031 	unsigned long timeout = 0;
1032 
1033 	isp_reg_writel(isp,
1034 		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1035 		       | ISP_SYSCONFIG_SOFTRESET,
1036 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1037 	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1038 			       ISP_SYSSTATUS) & 0x1)) {
1039 		if (timeout++ > 10000) {
1040 			dev_alert(isp->dev, "cannot reset ISP\n");
1041 			return -ETIMEDOUT;
1042 		}
1043 		udelay(1);
1044 	}
1045 
1046 	isp->stop_failure = false;
1047 	media_entity_enum_zero(&isp->crashed);
1048 	return 0;
1049 }
1050 
1051 /*
1052  * isp_save_context - Saves the values of the ISP module registers.
1053  * @isp: OMAP3 ISP device
1054  * @reg_list: Structure containing pairs of register address and value to
1055  *            modify on OMAP.
1056  */
1057 static void
isp_save_context(struct isp_device * isp,struct isp_reg * reg_list)1058 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1059 {
1060 	struct isp_reg *next = reg_list;
1061 
1062 	for (; next->reg != ISP_TOK_TERM; next++)
1063 		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1064 }
1065 
1066 /*
1067  * isp_restore_context - Restores the values of the ISP module registers.
1068  * @isp: OMAP3 ISP device
1069  * @reg_list: Structure containing pairs of register address and value to
1070  *            modify on OMAP.
1071  */
1072 static void
isp_restore_context(struct isp_device * isp,struct isp_reg * reg_list)1073 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1074 {
1075 	struct isp_reg *next = reg_list;
1076 
1077 	for (; next->reg != ISP_TOK_TERM; next++)
1078 		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1079 }
1080 
1081 /*
1082  * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1083  * @isp: OMAP3 ISP device
1084  *
1085  * Routine for saving the context of each module in the ISP.
1086  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1087  */
isp_save_ctx(struct isp_device * isp)1088 static void isp_save_ctx(struct isp_device *isp)
1089 {
1090 	isp_save_context(isp, isp_reg_list);
1091 	omap_iommu_save_ctx(isp->dev);
1092 }
1093 
1094 /*
1095  * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1096  * @isp: OMAP3 ISP device
1097  *
1098  * Routine for restoring the context of each module in the ISP.
1099  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1100  */
isp_restore_ctx(struct isp_device * isp)1101 static void isp_restore_ctx(struct isp_device *isp)
1102 {
1103 	isp_restore_context(isp, isp_reg_list);
1104 	omap_iommu_restore_ctx(isp->dev);
1105 	omap3isp_ccdc_restore_context(isp);
1106 	omap3isp_preview_restore_context(isp);
1107 }
1108 
1109 /* -----------------------------------------------------------------------------
1110  * SBL resources management
1111  */
1112 #define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1113 				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1114 				 OMAP3_ISP_SBL_PREVIEW_READ | \
1115 				 OMAP3_ISP_SBL_RESIZER_READ)
1116 #define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1117 				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1118 				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1119 				 OMAP3_ISP_SBL_CCDC_WRITE | \
1120 				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1121 
omap3isp_sbl_enable(struct isp_device * isp,enum isp_sbl_resource res)1122 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1123 {
1124 	u32 sbl = 0;
1125 
1126 	isp->sbl_resources |= res;
1127 
1128 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1129 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1130 
1131 	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1132 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1133 
1134 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1135 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1136 
1137 	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1138 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1139 
1140 	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1141 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1142 
1143 	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1144 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1145 
1146 	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1147 }
1148 
omap3isp_sbl_disable(struct isp_device * isp,enum isp_sbl_resource res)1149 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1150 {
1151 	u32 sbl = 0;
1152 
1153 	isp->sbl_resources &= ~res;
1154 
1155 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1156 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1157 
1158 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1159 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1160 
1161 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1162 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1163 
1164 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1165 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1166 
1167 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1168 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1169 
1170 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1171 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1172 
1173 	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1174 }
1175 
1176 /*
1177  * isp_module_sync_idle - Helper to sync module with its idle state
1178  * @me: ISP submodule's media entity
1179  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1180  * @stopping: flag which tells module wants to stop
1181  *
1182  * This function checks if ISP submodule needs to wait for next interrupt. If
1183  * yes, makes the caller to sleep while waiting for such event.
1184  */
omap3isp_module_sync_idle(struct media_entity * me,wait_queue_head_t * wait,atomic_t * stopping)1185 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1186 			      atomic_t *stopping)
1187 {
1188 	struct isp_pipeline *pipe = to_isp_pipeline(me);
1189 
1190 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1191 	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1192 	     !isp_pipeline_ready(pipe)))
1193 		return 0;
1194 
1195 	/*
1196 	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1197 	 * scenario. We'll call it here to avoid race conditions.
1198 	 */
1199 	atomic_set(stopping, 1);
1200 	smp_mb();
1201 
1202 	/*
1203 	 * If module is the last one, it's writing to memory. In this case,
1204 	 * it's necessary to check if the module is already paused due to
1205 	 * DMA queue underrun or if it has to wait for next interrupt to be
1206 	 * idle.
1207 	 * If it isn't the last one, the function won't sleep but *stopping
1208 	 * will still be set to warn next submodule caller's interrupt the
1209 	 * module wants to be idle.
1210 	 */
1211 	if (isp_pipeline_is_last(me)) {
1212 		struct isp_video *video = pipe->output;
1213 		unsigned long flags;
1214 		spin_lock_irqsave(&video->irqlock, flags);
1215 		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1216 			spin_unlock_irqrestore(&video->irqlock, flags);
1217 			atomic_set(stopping, 0);
1218 			smp_mb();
1219 			return 0;
1220 		}
1221 		spin_unlock_irqrestore(&video->irqlock, flags);
1222 		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1223 					msecs_to_jiffies(1000))) {
1224 			atomic_set(stopping, 0);
1225 			smp_mb();
1226 			return -ETIMEDOUT;
1227 		}
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1235  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1236  * @stopping: flag which tells module wants to stop
1237  *
1238  * This function checks if ISP submodule was stopping. In case of yes, it
1239  * notices the caller by setting stopping to 0 and waking up the wait queue.
1240  * Returns 1 if it was stopping or 0 otherwise.
1241  */
omap3isp_module_sync_is_stopping(wait_queue_head_t * wait,atomic_t * stopping)1242 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1243 				     atomic_t *stopping)
1244 {
1245 	if (atomic_cmpxchg(stopping, 1, 0)) {
1246 		wake_up(wait);
1247 		return 1;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 /* --------------------------------------------------------------------------
1254  * Clock management
1255  */
1256 
1257 #define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1258 				 ISPCTRL_HIST_CLK_EN | \
1259 				 ISPCTRL_RSZ_CLK_EN | \
1260 				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1261 				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1262 
__isp_subclk_update(struct isp_device * isp)1263 static void __isp_subclk_update(struct isp_device *isp)
1264 {
1265 	u32 clk = 0;
1266 
1267 	/* AEWB and AF share the same clock. */
1268 	if (isp->subclk_resources &
1269 	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1270 		clk |= ISPCTRL_H3A_CLK_EN;
1271 
1272 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1273 		clk |= ISPCTRL_HIST_CLK_EN;
1274 
1275 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1276 		clk |= ISPCTRL_RSZ_CLK_EN;
1277 
1278 	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1279 	 *       RAM as well.
1280 	 */
1281 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1282 		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1283 
1284 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1285 		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1286 
1287 	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1288 			ISPCTRL_CLKS_MASK, clk);
1289 }
1290 
omap3isp_subclk_enable(struct isp_device * isp,enum isp_subclk_resource res)1291 void omap3isp_subclk_enable(struct isp_device *isp,
1292 			    enum isp_subclk_resource res)
1293 {
1294 	isp->subclk_resources |= res;
1295 
1296 	__isp_subclk_update(isp);
1297 }
1298 
omap3isp_subclk_disable(struct isp_device * isp,enum isp_subclk_resource res)1299 void omap3isp_subclk_disable(struct isp_device *isp,
1300 			     enum isp_subclk_resource res)
1301 {
1302 	isp->subclk_resources &= ~res;
1303 
1304 	__isp_subclk_update(isp);
1305 }
1306 
1307 /*
1308  * isp_enable_clocks - Enable ISP clocks
1309  * @isp: OMAP3 ISP device
1310  *
1311  * Return 0 if successful, or clk_prepare_enable return value if any of them
1312  * fails.
1313  */
isp_enable_clocks(struct isp_device * isp)1314 static int isp_enable_clocks(struct isp_device *isp)
1315 {
1316 	int r;
1317 	unsigned long rate;
1318 
1319 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1320 	if (r) {
1321 		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1322 		goto out_clk_enable_ick;
1323 	}
1324 	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1325 	if (r) {
1326 		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1327 		goto out_clk_enable_mclk;
1328 	}
1329 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1330 	if (r) {
1331 		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1332 		goto out_clk_enable_mclk;
1333 	}
1334 	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1335 	if (rate != CM_CAM_MCLK_HZ)
1336 		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1337 				   " expected : %d\n"
1338 				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1339 	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1340 	if (r) {
1341 		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1342 		goto out_clk_enable_csi2_fclk;
1343 	}
1344 	return 0;
1345 
1346 out_clk_enable_csi2_fclk:
1347 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1348 out_clk_enable_mclk:
1349 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1350 out_clk_enable_ick:
1351 	return r;
1352 }
1353 
1354 /*
1355  * isp_disable_clocks - Disable ISP clocks
1356  * @isp: OMAP3 ISP device
1357  */
isp_disable_clocks(struct isp_device * isp)1358 static void isp_disable_clocks(struct isp_device *isp)
1359 {
1360 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1361 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1362 	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1363 }
1364 
1365 static const char *isp_clocks[] = {
1366 	"cam_ick",
1367 	"cam_mclk",
1368 	"csi2_96m_fck",
1369 	"l3_ick",
1370 };
1371 
isp_get_clocks(struct isp_device * isp)1372 static int isp_get_clocks(struct isp_device *isp)
1373 {
1374 	struct clk *clk;
1375 	unsigned int i;
1376 
1377 	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1378 		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1379 		if (IS_ERR(clk)) {
1380 			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1381 			return PTR_ERR(clk);
1382 		}
1383 
1384 		isp->clock[i] = clk;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 /*
1391  * omap3isp_get - Acquire the ISP resource.
1392  *
1393  * Initializes the clocks for the first acquire.
1394  *
1395  * Increment the reference count on the ISP. If the first reference is taken,
1396  * enable clocks and power-up all submodules.
1397  *
1398  * Return a pointer to the ISP device structure, or NULL if an error occurred.
1399  */
__omap3isp_get(struct isp_device * isp,bool irq)1400 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1401 {
1402 	struct isp_device *__isp = isp;
1403 
1404 	if (isp == NULL)
1405 		return NULL;
1406 
1407 	mutex_lock(&isp->isp_mutex);
1408 	if (isp->ref_count > 0)
1409 		goto out;
1410 
1411 	if (isp_enable_clocks(isp) < 0) {
1412 		__isp = NULL;
1413 		goto out;
1414 	}
1415 
1416 	/* We don't want to restore context before saving it! */
1417 	if (isp->has_context)
1418 		isp_restore_ctx(isp);
1419 
1420 	if (irq)
1421 		isp_enable_interrupts(isp);
1422 
1423 out:
1424 	if (__isp != NULL)
1425 		isp->ref_count++;
1426 	mutex_unlock(&isp->isp_mutex);
1427 
1428 	return __isp;
1429 }
1430 
omap3isp_get(struct isp_device * isp)1431 struct isp_device *omap3isp_get(struct isp_device *isp)
1432 {
1433 	return __omap3isp_get(isp, true);
1434 }
1435 
1436 /*
1437  * omap3isp_put - Release the ISP
1438  *
1439  * Decrement the reference count on the ISP. If the last reference is released,
1440  * power-down all submodules, disable clocks and free temporary buffers.
1441  */
__omap3isp_put(struct isp_device * isp,bool save_ctx)1442 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1443 {
1444 	if (isp == NULL)
1445 		return;
1446 
1447 	mutex_lock(&isp->isp_mutex);
1448 	BUG_ON(isp->ref_count == 0);
1449 	if (--isp->ref_count == 0) {
1450 		isp_disable_interrupts(isp);
1451 		if (save_ctx) {
1452 			isp_save_ctx(isp);
1453 			isp->has_context = 1;
1454 		}
1455 		/* Reset the ISP if an entity has failed to stop. This is the
1456 		 * only way to recover from such conditions.
1457 		 */
1458 		if (!media_entity_enum_empty(&isp->crashed) ||
1459 		    isp->stop_failure)
1460 			isp_reset(isp);
1461 		isp_disable_clocks(isp);
1462 	}
1463 	mutex_unlock(&isp->isp_mutex);
1464 }
1465 
omap3isp_put(struct isp_device * isp)1466 void omap3isp_put(struct isp_device *isp)
1467 {
1468 	__omap3isp_put(isp, true);
1469 }
1470 
1471 /* --------------------------------------------------------------------------
1472  * Platform device driver
1473  */
1474 
1475 /*
1476  * omap3isp_print_status - Prints the values of the ISP Control Module registers
1477  * @isp: OMAP3 ISP device
1478  */
1479 #define ISP_PRINT_REGISTER(isp, name)\
1480 	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1481 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1482 #define SBL_PRINT_REGISTER(isp, name)\
1483 	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1484 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1485 
omap3isp_print_status(struct isp_device * isp)1486 void omap3isp_print_status(struct isp_device *isp)
1487 {
1488 	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1489 
1490 	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1491 	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1492 	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1493 	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1494 	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1495 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1496 	ISP_PRINT_REGISTER(isp, CTRL);
1497 	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1498 	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1499 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1500 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1501 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1502 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1503 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1504 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1505 
1506 	SBL_PRINT_REGISTER(isp, PCR);
1507 	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1508 
1509 	dev_dbg(isp->dev, "--------------------------------------------\n");
1510 }
1511 
1512 #ifdef CONFIG_PM
1513 
1514 /*
1515  * Power management support.
1516  *
1517  * As the ISP can't properly handle an input video stream interruption on a non
1518  * frame boundary, the ISP pipelines need to be stopped before sensors get
1519  * suspended. However, as suspending the sensors can require a running clock,
1520  * which can be provided by the ISP, the ISP can't be completely suspended
1521  * before the sensor.
1522  *
1523  * To solve this problem power management support is split into prepare/complete
1524  * and suspend/resume operations. The pipelines are stopped in prepare() and the
1525  * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1526  * resume(), and the the pipelines are restarted in complete().
1527  *
1528  * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1529  * yet.
1530  */
isp_pm_prepare(struct device * dev)1531 static int isp_pm_prepare(struct device *dev)
1532 {
1533 	struct isp_device *isp = dev_get_drvdata(dev);
1534 	int reset;
1535 
1536 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1537 
1538 	if (isp->ref_count == 0)
1539 		return 0;
1540 
1541 	reset = isp_suspend_modules(isp);
1542 	isp_disable_interrupts(isp);
1543 	isp_save_ctx(isp);
1544 	if (reset)
1545 		isp_reset(isp);
1546 
1547 	return 0;
1548 }
1549 
isp_pm_suspend(struct device * dev)1550 static int isp_pm_suspend(struct device *dev)
1551 {
1552 	struct isp_device *isp = dev_get_drvdata(dev);
1553 
1554 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1555 
1556 	if (isp->ref_count)
1557 		isp_disable_clocks(isp);
1558 
1559 	return 0;
1560 }
1561 
isp_pm_resume(struct device * dev)1562 static int isp_pm_resume(struct device *dev)
1563 {
1564 	struct isp_device *isp = dev_get_drvdata(dev);
1565 
1566 	if (isp->ref_count == 0)
1567 		return 0;
1568 
1569 	return isp_enable_clocks(isp);
1570 }
1571 
isp_pm_complete(struct device * dev)1572 static void isp_pm_complete(struct device *dev)
1573 {
1574 	struct isp_device *isp = dev_get_drvdata(dev);
1575 
1576 	if (isp->ref_count == 0)
1577 		return;
1578 
1579 	isp_restore_ctx(isp);
1580 	isp_enable_interrupts(isp);
1581 	isp_resume_modules(isp);
1582 }
1583 
1584 #else
1585 
1586 #define isp_pm_prepare	NULL
1587 #define isp_pm_suspend	NULL
1588 #define isp_pm_resume	NULL
1589 #define isp_pm_complete	NULL
1590 
1591 #endif /* CONFIG_PM */
1592 
isp_unregister_entities(struct isp_device * isp)1593 static void isp_unregister_entities(struct isp_device *isp)
1594 {
1595 	media_device_unregister(&isp->media_dev);
1596 
1597 	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1598 	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1599 	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1600 	omap3isp_preview_unregister_entities(&isp->isp_prev);
1601 	omap3isp_resizer_unregister_entities(&isp->isp_res);
1602 	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1603 	omap3isp_stat_unregister_entities(&isp->isp_af);
1604 	omap3isp_stat_unregister_entities(&isp->isp_hist);
1605 
1606 	v4l2_device_unregister(&isp->v4l2_dev);
1607 	media_device_cleanup(&isp->media_dev);
1608 }
1609 
isp_link_entity(struct isp_device * isp,struct media_entity * entity,enum isp_interface_type interface)1610 static int isp_link_entity(
1611 	struct isp_device *isp, struct media_entity *entity,
1612 	enum isp_interface_type interface)
1613 {
1614 	struct media_entity *input;
1615 	unsigned int flags;
1616 	unsigned int pad;
1617 	unsigned int i;
1618 
1619 	/* Connect the sensor to the correct interface module.
1620 	 * Parallel sensors are connected directly to the CCDC, while
1621 	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1622 	 * receiver through CSIPHY1 or CSIPHY2.
1623 	 */
1624 	switch (interface) {
1625 	case ISP_INTERFACE_PARALLEL:
1626 		input = &isp->isp_ccdc.subdev.entity;
1627 		pad = CCDC_PAD_SINK;
1628 		flags = 0;
1629 		break;
1630 
1631 	case ISP_INTERFACE_CSI2A_PHY2:
1632 		input = &isp->isp_csi2a.subdev.entity;
1633 		pad = CSI2_PAD_SINK;
1634 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1635 		break;
1636 
1637 	case ISP_INTERFACE_CCP2B_PHY1:
1638 	case ISP_INTERFACE_CCP2B_PHY2:
1639 		input = &isp->isp_ccp2.subdev.entity;
1640 		pad = CCP2_PAD_SINK;
1641 		flags = 0;
1642 		break;
1643 
1644 	case ISP_INTERFACE_CSI2C_PHY1:
1645 		input = &isp->isp_csi2c.subdev.entity;
1646 		pad = CSI2_PAD_SINK;
1647 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1648 		break;
1649 
1650 	default:
1651 		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1652 			interface);
1653 		return -EINVAL;
1654 	}
1655 
1656 	/*
1657 	 * Not all interfaces are available on all revisions of the
1658 	 * ISP. The sub-devices of those interfaces aren't initialised
1659 	 * in such a case. Check this by ensuring the num_pads is
1660 	 * non-zero.
1661 	 */
1662 	if (!input->num_pads) {
1663 		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1664 			interface);
1665 		return -EINVAL;
1666 	}
1667 
1668 	for (i = 0; i < entity->num_pads; i++) {
1669 		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1670 			break;
1671 	}
1672 	if (i == entity->num_pads) {
1673 		dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1674 			__func__, entity->name);
1675 		return -EINVAL;
1676 	}
1677 
1678 	return media_create_pad_link(entity, i, input, pad, flags);
1679 }
1680 
isp_register_entities(struct isp_device * isp)1681 static int isp_register_entities(struct isp_device *isp)
1682 {
1683 	int ret;
1684 
1685 	isp->media_dev.dev = isp->dev;
1686 	strscpy(isp->media_dev.model, "TI OMAP3 ISP",
1687 		sizeof(isp->media_dev.model));
1688 	isp->media_dev.hw_revision = isp->revision;
1689 	isp->media_dev.ops = &isp_media_ops;
1690 	media_device_init(&isp->media_dev);
1691 
1692 	isp->v4l2_dev.mdev = &isp->media_dev;
1693 	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1694 	if (ret < 0) {
1695 		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1696 			__func__, ret);
1697 		goto done;
1698 	}
1699 
1700 	/* Register internal entities */
1701 	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1702 	if (ret < 0)
1703 		goto done;
1704 
1705 	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1706 	if (ret < 0)
1707 		goto done;
1708 
1709 	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1710 	if (ret < 0)
1711 		goto done;
1712 
1713 	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1714 						 &isp->v4l2_dev);
1715 	if (ret < 0)
1716 		goto done;
1717 
1718 	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1719 	if (ret < 0)
1720 		goto done;
1721 
1722 	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1723 	if (ret < 0)
1724 		goto done;
1725 
1726 	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1727 	if (ret < 0)
1728 		goto done;
1729 
1730 	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1731 	if (ret < 0)
1732 		goto done;
1733 
1734 done:
1735 	if (ret < 0)
1736 		isp_unregister_entities(isp);
1737 
1738 	return ret;
1739 }
1740 
1741 /*
1742  * isp_create_links() - Create links for internal and external ISP entities
1743  * @isp : Pointer to ISP device
1744  *
1745  * This function creates all links between ISP internal and external entities.
1746  *
1747  * Return: A negative error code on failure or zero on success. Possible error
1748  * codes are those returned by media_create_pad_link().
1749  */
isp_create_links(struct isp_device * isp)1750 static int isp_create_links(struct isp_device *isp)
1751 {
1752 	int ret;
1753 
1754 	/* Create links between entities and video nodes. */
1755 	ret = media_create_pad_link(
1756 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1757 			&isp->isp_csi2a.video_out.video.entity, 0, 0);
1758 	if (ret < 0)
1759 		return ret;
1760 
1761 	ret = media_create_pad_link(
1762 			&isp->isp_ccp2.video_in.video.entity, 0,
1763 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1764 	if (ret < 0)
1765 		return ret;
1766 
1767 	ret = media_create_pad_link(
1768 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1769 			&isp->isp_ccdc.video_out.video.entity, 0, 0);
1770 	if (ret < 0)
1771 		return ret;
1772 
1773 	ret = media_create_pad_link(
1774 			&isp->isp_prev.video_in.video.entity, 0,
1775 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1776 	if (ret < 0)
1777 		return ret;
1778 
1779 	ret = media_create_pad_link(
1780 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1781 			&isp->isp_prev.video_out.video.entity, 0, 0);
1782 	if (ret < 0)
1783 		return ret;
1784 
1785 	ret = media_create_pad_link(
1786 			&isp->isp_res.video_in.video.entity, 0,
1787 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1788 	if (ret < 0)
1789 		return ret;
1790 
1791 	ret = media_create_pad_link(
1792 			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1793 			&isp->isp_res.video_out.video.entity, 0, 0);
1794 
1795 	if (ret < 0)
1796 		return ret;
1797 
1798 	/* Create links between entities. */
1799 	ret = media_create_pad_link(
1800 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1801 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1802 	if (ret < 0)
1803 		return ret;
1804 
1805 	ret = media_create_pad_link(
1806 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1807 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1808 	if (ret < 0)
1809 		return ret;
1810 
1811 	ret = media_create_pad_link(
1812 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1813 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1814 	if (ret < 0)
1815 		return ret;
1816 
1817 	ret = media_create_pad_link(
1818 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1819 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1820 	if (ret < 0)
1821 		return ret;
1822 
1823 	ret = media_create_pad_link(
1824 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1825 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1826 	if (ret < 0)
1827 		return ret;
1828 
1829 	ret = media_create_pad_link(
1830 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1831 			&isp->isp_aewb.subdev.entity, 0,
1832 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1833 	if (ret < 0)
1834 		return ret;
1835 
1836 	ret = media_create_pad_link(
1837 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1838 			&isp->isp_af.subdev.entity, 0,
1839 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1840 	if (ret < 0)
1841 		return ret;
1842 
1843 	ret = media_create_pad_link(
1844 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1845 			&isp->isp_hist.subdev.entity, 0,
1846 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1847 	if (ret < 0)
1848 		return ret;
1849 
1850 	return 0;
1851 }
1852 
isp_cleanup_modules(struct isp_device * isp)1853 static void isp_cleanup_modules(struct isp_device *isp)
1854 {
1855 	omap3isp_h3a_aewb_cleanup(isp);
1856 	omap3isp_h3a_af_cleanup(isp);
1857 	omap3isp_hist_cleanup(isp);
1858 	omap3isp_resizer_cleanup(isp);
1859 	omap3isp_preview_cleanup(isp);
1860 	omap3isp_ccdc_cleanup(isp);
1861 	omap3isp_ccp2_cleanup(isp);
1862 	omap3isp_csi2_cleanup(isp);
1863 	omap3isp_csiphy_cleanup(isp);
1864 }
1865 
isp_initialize_modules(struct isp_device * isp)1866 static int isp_initialize_modules(struct isp_device *isp)
1867 {
1868 	int ret;
1869 
1870 	ret = omap3isp_csiphy_init(isp);
1871 	if (ret < 0) {
1872 		dev_err(isp->dev, "CSI PHY initialization failed\n");
1873 		return ret;
1874 	}
1875 
1876 	ret = omap3isp_csi2_init(isp);
1877 	if (ret < 0) {
1878 		dev_err(isp->dev, "CSI2 initialization failed\n");
1879 		goto error_csi2;
1880 	}
1881 
1882 	ret = omap3isp_ccp2_init(isp);
1883 	if (ret < 0) {
1884 		if (ret != -EPROBE_DEFER)
1885 			dev_err(isp->dev, "CCP2 initialization failed\n");
1886 		goto error_ccp2;
1887 	}
1888 
1889 	ret = omap3isp_ccdc_init(isp);
1890 	if (ret < 0) {
1891 		dev_err(isp->dev, "CCDC initialization failed\n");
1892 		goto error_ccdc;
1893 	}
1894 
1895 	ret = omap3isp_preview_init(isp);
1896 	if (ret < 0) {
1897 		dev_err(isp->dev, "Preview initialization failed\n");
1898 		goto error_preview;
1899 	}
1900 
1901 	ret = omap3isp_resizer_init(isp);
1902 	if (ret < 0) {
1903 		dev_err(isp->dev, "Resizer initialization failed\n");
1904 		goto error_resizer;
1905 	}
1906 
1907 	ret = omap3isp_hist_init(isp);
1908 	if (ret < 0) {
1909 		dev_err(isp->dev, "Histogram initialization failed\n");
1910 		goto error_hist;
1911 	}
1912 
1913 	ret = omap3isp_h3a_aewb_init(isp);
1914 	if (ret < 0) {
1915 		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1916 		goto error_h3a_aewb;
1917 	}
1918 
1919 	ret = omap3isp_h3a_af_init(isp);
1920 	if (ret < 0) {
1921 		dev_err(isp->dev, "H3A AF initialization failed\n");
1922 		goto error_h3a_af;
1923 	}
1924 
1925 	return 0;
1926 
1927 error_h3a_af:
1928 	omap3isp_h3a_aewb_cleanup(isp);
1929 error_h3a_aewb:
1930 	omap3isp_hist_cleanup(isp);
1931 error_hist:
1932 	omap3isp_resizer_cleanup(isp);
1933 error_resizer:
1934 	omap3isp_preview_cleanup(isp);
1935 error_preview:
1936 	omap3isp_ccdc_cleanup(isp);
1937 error_ccdc:
1938 	omap3isp_ccp2_cleanup(isp);
1939 error_ccp2:
1940 	omap3isp_csi2_cleanup(isp);
1941 error_csi2:
1942 	omap3isp_csiphy_cleanup(isp);
1943 
1944 	return ret;
1945 }
1946 
isp_detach_iommu(struct isp_device * isp)1947 static void isp_detach_iommu(struct isp_device *isp)
1948 {
1949 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1950 	arm_iommu_detach_device(isp->dev);
1951 	arm_iommu_release_mapping(isp->mapping);
1952 	isp->mapping = NULL;
1953 #endif
1954 }
1955 
isp_attach_iommu(struct isp_device * isp)1956 static int isp_attach_iommu(struct isp_device *isp)
1957 {
1958 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1959 	struct dma_iommu_mapping *mapping;
1960 	int ret;
1961 
1962 	/*
1963 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1964 	 * VAs. This will allocate a corresponding IOMMU domain.
1965 	 */
1966 	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1967 	if (IS_ERR(mapping)) {
1968 		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1969 		return PTR_ERR(mapping);
1970 	}
1971 
1972 	isp->mapping = mapping;
1973 
1974 	/* Attach the ARM VA mapping to the device. */
1975 	ret = arm_iommu_attach_device(isp->dev, mapping);
1976 	if (ret < 0) {
1977 		dev_err(isp->dev, "failed to attach device to VA mapping\n");
1978 		goto error;
1979 	}
1980 
1981 	return 0;
1982 
1983 error:
1984 	arm_iommu_release_mapping(isp->mapping);
1985 	isp->mapping = NULL;
1986 	return ret;
1987 #else
1988 	return -ENODEV;
1989 #endif
1990 }
1991 
1992 /*
1993  * isp_remove - Remove ISP platform device
1994  * @pdev: Pointer to ISP platform device
1995  *
1996  * Always returns 0.
1997  */
isp_remove(struct platform_device * pdev)1998 static int isp_remove(struct platform_device *pdev)
1999 {
2000 	struct isp_device *isp = platform_get_drvdata(pdev);
2001 
2002 	v4l2_async_notifier_unregister(&isp->notifier);
2003 	isp_unregister_entities(isp);
2004 	isp_cleanup_modules(isp);
2005 	isp_xclk_cleanup(isp);
2006 
2007 	__omap3isp_get(isp, false);
2008 	isp_detach_iommu(isp);
2009 	__omap3isp_put(isp, false);
2010 
2011 	media_entity_enum_cleanup(&isp->crashed);
2012 	v4l2_async_notifier_cleanup(&isp->notifier);
2013 
2014 	kfree(isp);
2015 
2016 	return 0;
2017 }
2018 
2019 enum isp_of_phy {
2020 	ISP_OF_PHY_PARALLEL = 0,
2021 	ISP_OF_PHY_CSIPHY1,
2022 	ISP_OF_PHY_CSIPHY2,
2023 };
2024 
isp_subdev_notifier_complete(struct v4l2_async_notifier * async)2025 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2026 {
2027 	struct isp_device *isp = container_of(async, struct isp_device,
2028 					      notifier);
2029 	struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2030 	struct v4l2_subdev *sd;
2031 	int ret;
2032 
2033 	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2034 	if (ret)
2035 		return ret;
2036 
2037 	list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2038 		if (sd->notifier != &isp->notifier)
2039 			continue;
2040 
2041 		ret = isp_link_entity(isp, &sd->entity,
2042 				      v4l2_subdev_to_bus_cfg(sd)->interface);
2043 		if (ret < 0)
2044 			return ret;
2045 	}
2046 
2047 	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2048 	if (ret < 0)
2049 		return ret;
2050 
2051 	return media_device_register(&isp->media_dev);
2052 }
2053 
isp_parse_of_parallel_endpoint(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct isp_bus_cfg * buscfg)2054 static void isp_parse_of_parallel_endpoint(struct device *dev,
2055 					   struct v4l2_fwnode_endpoint *vep,
2056 					   struct isp_bus_cfg *buscfg)
2057 {
2058 	buscfg->interface = ISP_INTERFACE_PARALLEL;
2059 	buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
2060 	buscfg->bus.parallel.clk_pol =
2061 		!!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2062 	buscfg->bus.parallel.hs_pol =
2063 		!!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2064 	buscfg->bus.parallel.vs_pol =
2065 		!!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2066 	buscfg->bus.parallel.fld_pol =
2067 		!!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2068 	buscfg->bus.parallel.data_pol =
2069 		!!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2070 	buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2071 }
2072 
isp_parse_of_csi2_endpoint(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct isp_bus_cfg * buscfg)2073 static void isp_parse_of_csi2_endpoint(struct device *dev,
2074 				       struct v4l2_fwnode_endpoint *vep,
2075 				       struct isp_bus_cfg *buscfg)
2076 {
2077 	unsigned int i;
2078 
2079 	buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
2080 	buscfg->bus.csi2.lanecfg.clk.pol =
2081 		vep->bus.mipi_csi2.lane_polarities[0];
2082 	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2083 		buscfg->bus.csi2.lanecfg.clk.pol,
2084 		buscfg->bus.csi2.lanecfg.clk.pos);
2085 
2086 	buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
2087 
2088 	for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2089 		buscfg->bus.csi2.lanecfg.data[i].pos =
2090 			vep->bus.mipi_csi2.data_lanes[i];
2091 		buscfg->bus.csi2.lanecfg.data[i].pol =
2092 			vep->bus.mipi_csi2.lane_polarities[i + 1];
2093 		dev_dbg(dev,
2094 			"data lane %u polarity %u, pos %u\n", i,
2095 			buscfg->bus.csi2.lanecfg.data[i].pol,
2096 			buscfg->bus.csi2.lanecfg.data[i].pos);
2097 	}
2098 	/*
2099 	 * FIXME: now we assume the CRC is always there. Implement a way to
2100 	 * obtain this information from the sensor. Frame descriptors, perhaps?
2101 	 */
2102 	buscfg->bus.csi2.crc = 1;
2103 }
2104 
isp_parse_of_csi1_endpoint(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct isp_bus_cfg * buscfg)2105 static void isp_parse_of_csi1_endpoint(struct device *dev,
2106 				       struct v4l2_fwnode_endpoint *vep,
2107 				       struct isp_bus_cfg *buscfg)
2108 {
2109 	buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
2110 	buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
2111 	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2112 		buscfg->bus.ccp2.lanecfg.clk.pol,
2113 	buscfg->bus.ccp2.lanecfg.clk.pos);
2114 
2115 	buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
2116 	buscfg->bus.ccp2.lanecfg.data[0].pol =
2117 		vep->bus.mipi_csi1.lane_polarity[1];
2118 
2119 	dev_dbg(dev, "data lane polarity %u, pos %u\n",
2120 		buscfg->bus.ccp2.lanecfg.data[0].pol,
2121 		buscfg->bus.ccp2.lanecfg.data[0].pos);
2122 
2123 	buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
2124 	buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2125 	buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
2126 	buscfg->bus.ccp2.vp_clk_pol = 1;
2127 
2128 	buscfg->bus.ccp2.crc = 1;
2129 }
2130 
isp_alloc_isd(struct isp_async_subdev ** isd,struct isp_bus_cfg ** buscfg)2131 static int isp_alloc_isd(struct isp_async_subdev **isd,
2132 			 struct isp_bus_cfg **buscfg)
2133 {
2134 	struct isp_async_subdev *__isd;
2135 
2136 	__isd = kzalloc(sizeof(*__isd), GFP_KERNEL);
2137 	if (!__isd)
2138 		return -ENOMEM;
2139 
2140 	*isd = __isd;
2141 	*buscfg = &__isd->bus;
2142 
2143 	return 0;
2144 }
2145 
2146 static struct {
2147 	u32 phy;
2148 	u32 csi2_if;
2149 	u32 csi1_if;
2150 } isp_bus_interfaces[2] = {
2151 	{ ISP_OF_PHY_CSIPHY1,
2152 	  ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
2153 	{ ISP_OF_PHY_CSIPHY2,
2154 	  ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
2155 };
2156 
isp_parse_of_endpoints(struct isp_device * isp)2157 static int isp_parse_of_endpoints(struct isp_device *isp)
2158 {
2159 	struct fwnode_handle *ep;
2160 	struct isp_async_subdev *isd = NULL;
2161 	struct isp_bus_cfg *buscfg;
2162 	unsigned int i;
2163 
2164 	ep = fwnode_graph_get_endpoint_by_id(
2165 		dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
2166 		FWNODE_GRAPH_ENDPOINT_NEXT);
2167 
2168 	if (ep) {
2169 		struct v4l2_fwnode_endpoint vep = {
2170 			.bus_type = V4L2_MBUS_PARALLEL
2171 		};
2172 		int ret;
2173 
2174 		dev_dbg(isp->dev, "parsing parallel interface\n");
2175 
2176 		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2177 
2178 		if (!ret) {
2179 			ret = isp_alloc_isd(&isd, &buscfg);
2180 			if (ret)
2181 				return ret;
2182 		}
2183 
2184 		if (!ret) {
2185 			isp_parse_of_parallel_endpoint(isp->dev, &vep, buscfg);
2186 			ret = v4l2_async_notifier_add_fwnode_remote_subdev(
2187 				&isp->notifier, ep, &isd->asd);
2188 		}
2189 
2190 		fwnode_handle_put(ep);
2191 		if (ret)
2192 			kfree(isd);
2193 	}
2194 
2195 	for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
2196 		struct v4l2_fwnode_endpoint vep = {
2197 			.bus_type = V4L2_MBUS_CSI2_DPHY
2198 		};
2199 		int ret;
2200 
2201 		ep = fwnode_graph_get_endpoint_by_id(
2202 			dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
2203 			FWNODE_GRAPH_ENDPOINT_NEXT);
2204 
2205 		if (!ep)
2206 			continue;
2207 
2208 		dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
2209 			to_of_node(ep));
2210 
2211 		ret = isp_alloc_isd(&isd, &buscfg);
2212 		if (ret)
2213 			return ret;
2214 
2215 		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2216 		if (!ret) {
2217 			buscfg->interface = isp_bus_interfaces[i].csi2_if;
2218 			isp_parse_of_csi2_endpoint(isp->dev, &vep, buscfg);
2219 		} else if (ret == -ENXIO) {
2220 			vep = (struct v4l2_fwnode_endpoint)
2221 				{ .bus_type = V4L2_MBUS_CSI1 };
2222 			ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2223 
2224 			if (ret == -ENXIO) {
2225 				vep = (struct v4l2_fwnode_endpoint)
2226 					{ .bus_type = V4L2_MBUS_CCP2 };
2227 				ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2228 			}
2229 			if (!ret) {
2230 				buscfg->interface =
2231 					isp_bus_interfaces[i].csi1_if;
2232 				isp_parse_of_csi1_endpoint(isp->dev, &vep,
2233 							   buscfg);
2234 			}
2235 		}
2236 
2237 		if (!ret)
2238 			ret = v4l2_async_notifier_add_fwnode_remote_subdev(
2239 				&isp->notifier, ep, &isd->asd);
2240 
2241 		fwnode_handle_put(ep);
2242 		if (ret)
2243 			kfree(isd);
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2250 	.complete = isp_subdev_notifier_complete,
2251 };
2252 
2253 /*
2254  * isp_probe - Probe ISP platform device
2255  * @pdev: Pointer to ISP platform device
2256  *
2257  * Returns 0 if successful,
2258  *   -ENOMEM if no memory available,
2259  *   -ENODEV if no platform device resources found
2260  *     or no space for remapping registers,
2261  *   -EINVAL if couldn't install ISR,
2262  *   or clk_get return error value.
2263  */
isp_probe(struct platform_device * pdev)2264 static int isp_probe(struct platform_device *pdev)
2265 {
2266 	struct isp_device *isp;
2267 	struct resource *mem;
2268 	int ret;
2269 	int i, m;
2270 
2271 	isp = kzalloc(sizeof(*isp), GFP_KERNEL);
2272 	if (!isp) {
2273 		dev_err(&pdev->dev, "could not allocate memory\n");
2274 		return -ENOMEM;
2275 	}
2276 
2277 	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2278 				       "ti,phy-type", &isp->phy_type);
2279 	if (ret)
2280 		goto error_release_isp;
2281 
2282 	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2283 						      "syscon");
2284 	if (IS_ERR(isp->syscon)) {
2285 		ret = PTR_ERR(isp->syscon);
2286 		goto error_release_isp;
2287 	}
2288 
2289 	ret = of_property_read_u32_index(pdev->dev.of_node,
2290 					 "syscon", 1, &isp->syscon_offset);
2291 	if (ret)
2292 		goto error_release_isp;
2293 
2294 	isp->autoidle = autoidle;
2295 
2296 	mutex_init(&isp->isp_mutex);
2297 	spin_lock_init(&isp->stat_lock);
2298 	v4l2_async_notifier_init(&isp->notifier);
2299 	isp->dev = &pdev->dev;
2300 
2301 	ret = isp_parse_of_endpoints(isp);
2302 	if (ret < 0)
2303 		goto error;
2304 
2305 	isp->ref_count = 0;
2306 
2307 	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2308 	if (ret)
2309 		goto error;
2310 
2311 	platform_set_drvdata(pdev, isp);
2312 
2313 	/* Regulators */
2314 	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2315 	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2316 
2317 	/* Clocks
2318 	 *
2319 	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2320 	 * manually to read the revision before calling __omap3isp_get().
2321 	 *
2322 	 * Start by mapping the ISP MMIO area, which is in two pieces.
2323 	 * The ISP IOMMU is in between. Map both now, and fill in the
2324 	 * ISP revision specific portions a little later in the
2325 	 * function.
2326 	 */
2327 	for (i = 0; i < 2; i++) {
2328 		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2329 
2330 		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2331 		isp->mmio_base[map_idx] =
2332 			devm_ioremap_resource(isp->dev, mem);
2333 		if (IS_ERR(isp->mmio_base[map_idx]))
2334 			return PTR_ERR(isp->mmio_base[map_idx]);
2335 	}
2336 
2337 	ret = isp_get_clocks(isp);
2338 	if (ret < 0)
2339 		goto error;
2340 
2341 	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2342 	if (ret < 0)
2343 		goto error;
2344 
2345 	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2346 	dev_info(isp->dev, "Revision %d.%d found\n",
2347 		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2348 
2349 	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2350 
2351 	if (__omap3isp_get(isp, false) == NULL) {
2352 		ret = -ENODEV;
2353 		goto error;
2354 	}
2355 
2356 	ret = isp_reset(isp);
2357 	if (ret < 0)
2358 		goto error_isp;
2359 
2360 	ret = isp_xclk_init(isp);
2361 	if (ret < 0)
2362 		goto error_isp;
2363 
2364 	/* Memory resources */
2365 	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2366 		if (isp->revision == isp_res_maps[m].isp_rev)
2367 			break;
2368 
2369 	if (m == ARRAY_SIZE(isp_res_maps)) {
2370 		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2371 			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2372 		ret = -ENODEV;
2373 		goto error_isp;
2374 	}
2375 
2376 	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2377 		isp->mmio_base[i] =
2378 			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2379 
2380 	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2381 		isp->mmio_base[i] =
2382 			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2383 			+ isp_res_maps[m].offset[i];
2384 
2385 	isp->mmio_hist_base_phys =
2386 		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2387 
2388 	/* IOMMU */
2389 	ret = isp_attach_iommu(isp);
2390 	if (ret < 0) {
2391 		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2392 		goto error_isp;
2393 	}
2394 
2395 	/* Interrupt */
2396 	ret = platform_get_irq(pdev, 0);
2397 	if (ret <= 0) {
2398 		ret = -ENODEV;
2399 		goto error_iommu;
2400 	}
2401 	isp->irq_num = ret;
2402 
2403 	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2404 			     "OMAP3 ISP", isp)) {
2405 		dev_err(isp->dev, "Unable to request IRQ\n");
2406 		ret = -EINVAL;
2407 		goto error_iommu;
2408 	}
2409 
2410 	/* Entities */
2411 	ret = isp_initialize_modules(isp);
2412 	if (ret < 0)
2413 		goto error_iommu;
2414 
2415 	ret = isp_register_entities(isp);
2416 	if (ret < 0)
2417 		goto error_modules;
2418 
2419 	ret = isp_create_links(isp);
2420 	if (ret < 0)
2421 		goto error_register_entities;
2422 
2423 	isp->notifier.ops = &isp_subdev_notifier_ops;
2424 
2425 	ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2426 	if (ret)
2427 		goto error_register_entities;
2428 
2429 	isp_core_init(isp, 1);
2430 	omap3isp_put(isp);
2431 
2432 	return 0;
2433 
2434 error_register_entities:
2435 	isp_unregister_entities(isp);
2436 error_modules:
2437 	isp_cleanup_modules(isp);
2438 error_iommu:
2439 	isp_detach_iommu(isp);
2440 error_isp:
2441 	isp_xclk_cleanup(isp);
2442 	__omap3isp_put(isp, false);
2443 error:
2444 	v4l2_async_notifier_cleanup(&isp->notifier);
2445 	mutex_destroy(&isp->isp_mutex);
2446 error_release_isp:
2447 	kfree(isp);
2448 
2449 	return ret;
2450 }
2451 
2452 static const struct dev_pm_ops omap3isp_pm_ops = {
2453 	.prepare = isp_pm_prepare,
2454 	.suspend = isp_pm_suspend,
2455 	.resume = isp_pm_resume,
2456 	.complete = isp_pm_complete,
2457 };
2458 
2459 static const struct platform_device_id omap3isp_id_table[] = {
2460 	{ "omap3isp", 0 },
2461 	{ },
2462 };
2463 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2464 
2465 static const struct of_device_id omap3isp_of_table[] = {
2466 	{ .compatible = "ti,omap3-isp" },
2467 	{ },
2468 };
2469 MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2470 
2471 static struct platform_driver omap3isp_driver = {
2472 	.probe = isp_probe,
2473 	.remove = isp_remove,
2474 	.id_table = omap3isp_id_table,
2475 	.driver = {
2476 		.name = "omap3isp",
2477 		.pm	= &omap3isp_pm_ops,
2478 		.of_match_table = omap3isp_of_table,
2479 	},
2480 };
2481 
2482 module_platform_driver(omap3isp_driver);
2483 
2484 MODULE_AUTHOR("Nokia Corporation");
2485 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2486 MODULE_LICENSE("GPL");
2487 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2488