1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *	Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *	Fenghua Yu <fenghua.yu@intel.com>
13  *	Bibo Mao <bibo.mao@intel.com>
14  *	Chandramouli Narayanan <mouli@linux.intel.com>
15  *	Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *	Skip non-WB memory and ignore empty memory ranges.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/memblock.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/set_memory.h>
53 #include <asm/tlbflush.h>
54 #include <asm/x86_init.h>
55 #include <asm/uv/uv.h>
56 
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59 
60 static efi_config_table_type_t arch_tables[] __initdata = {
61 #ifdef CONFIG_X86_UV
62 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys},
63 #endif
64 	{NULL_GUID, NULL, NULL},
65 };
66 
67 static const unsigned long * const efi_tables[] = {
68 	&efi.mps,
69 	&efi.acpi,
70 	&efi.acpi20,
71 	&efi.smbios,
72 	&efi.smbios3,
73 	&efi.boot_info,
74 	&efi.hcdp,
75 	&efi.uga,
76 #ifdef CONFIG_X86_UV
77 	&uv_systab_phys,
78 #endif
79 	&efi.fw_vendor,
80 	&efi.runtime,
81 	&efi.config_table,
82 	&efi.esrt,
83 	&efi.properties_table,
84 	&efi.mem_attr_table,
85 #ifdef CONFIG_EFI_RCI2_TABLE
86 	&rci2_table_phys,
87 #endif
88 };
89 
90 u64 efi_setup;		/* efi setup_data physical address */
91 
92 static int add_efi_memmap __initdata;
setup_add_efi_memmap(char * arg)93 static int __init setup_add_efi_memmap(char *arg)
94 {
95 	add_efi_memmap = 1;
96 	return 0;
97 }
98 early_param("add_efi_memmap", setup_add_efi_memmap);
99 
phys_efi_set_virtual_address_map(unsigned long memory_map_size,unsigned long descriptor_size,u32 descriptor_version,efi_memory_desc_t * virtual_map)100 static efi_status_t __init phys_efi_set_virtual_address_map(
101 	unsigned long memory_map_size,
102 	unsigned long descriptor_size,
103 	u32 descriptor_version,
104 	efi_memory_desc_t *virtual_map)
105 {
106 	efi_status_t status;
107 	unsigned long flags;
108 	pgd_t *save_pgd;
109 
110 	save_pgd = efi_call_phys_prolog();
111 	if (!save_pgd)
112 		return EFI_ABORTED;
113 
114 	/* Disable interrupts around EFI calls: */
115 	local_irq_save(flags);
116 	status = efi_call_phys(efi_phys.set_virtual_address_map,
117 			       memory_map_size, descriptor_size,
118 			       descriptor_version, virtual_map);
119 	local_irq_restore(flags);
120 
121 	efi_call_phys_epilog(save_pgd);
122 
123 	return status;
124 }
125 
efi_find_mirror(void)126 void __init efi_find_mirror(void)
127 {
128 	efi_memory_desc_t *md;
129 	u64 mirror_size = 0, total_size = 0;
130 
131 	for_each_efi_memory_desc(md) {
132 		unsigned long long start = md->phys_addr;
133 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
134 
135 		total_size += size;
136 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
137 			memblock_mark_mirror(start, size);
138 			mirror_size += size;
139 		}
140 	}
141 	if (mirror_size)
142 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
143 			mirror_size>>20, total_size>>20);
144 }
145 
146 /*
147  * Tell the kernel about the EFI memory map.  This might include
148  * more than the max 128 entries that can fit in the e820 legacy
149  * (zeropage) memory map.
150  */
151 
do_add_efi_memmap(void)152 static void __init do_add_efi_memmap(void)
153 {
154 	efi_memory_desc_t *md;
155 
156 	for_each_efi_memory_desc(md) {
157 		unsigned long long start = md->phys_addr;
158 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
159 		int e820_type;
160 
161 		switch (md->type) {
162 		case EFI_LOADER_CODE:
163 		case EFI_LOADER_DATA:
164 		case EFI_BOOT_SERVICES_CODE:
165 		case EFI_BOOT_SERVICES_DATA:
166 		case EFI_CONVENTIONAL_MEMORY:
167 			if (md->attribute & EFI_MEMORY_WB)
168 				e820_type = E820_TYPE_RAM;
169 			else
170 				e820_type = E820_TYPE_RESERVED;
171 			break;
172 		case EFI_ACPI_RECLAIM_MEMORY:
173 			e820_type = E820_TYPE_ACPI;
174 			break;
175 		case EFI_ACPI_MEMORY_NVS:
176 			e820_type = E820_TYPE_NVS;
177 			break;
178 		case EFI_UNUSABLE_MEMORY:
179 			e820_type = E820_TYPE_UNUSABLE;
180 			break;
181 		case EFI_PERSISTENT_MEMORY:
182 			e820_type = E820_TYPE_PMEM;
183 			break;
184 		default:
185 			/*
186 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
187 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
188 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
189 			 */
190 			e820_type = E820_TYPE_RESERVED;
191 			break;
192 		}
193 		e820__range_add(start, size, e820_type);
194 	}
195 	e820__update_table(e820_table);
196 }
197 
efi_memblock_x86_reserve_range(void)198 int __init efi_memblock_x86_reserve_range(void)
199 {
200 	struct efi_info *e = &boot_params.efi_info;
201 	struct efi_memory_map_data data;
202 	phys_addr_t pmap;
203 	int rv;
204 
205 	if (efi_enabled(EFI_PARAVIRT))
206 		return 0;
207 
208 #ifdef CONFIG_X86_32
209 	/* Can't handle data above 4GB at this time */
210 	if (e->efi_memmap_hi) {
211 		pr_err("Memory map is above 4GB, disabling EFI.\n");
212 		return -EINVAL;
213 	}
214 	pmap =  e->efi_memmap;
215 #else
216 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
217 #endif
218 	data.phys_map		= pmap;
219 	data.size 		= e->efi_memmap_size;
220 	data.desc_size		= e->efi_memdesc_size;
221 	data.desc_version	= e->efi_memdesc_version;
222 
223 	rv = efi_memmap_init_early(&data);
224 	if (rv)
225 		return rv;
226 
227 	if (add_efi_memmap)
228 		do_add_efi_memmap();
229 
230 	WARN(efi.memmap.desc_version != 1,
231 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
232 	     efi.memmap.desc_version);
233 
234 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
235 
236 	return 0;
237 }
238 
239 #define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
240 #define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
241 #define U64_HIGH_BIT		(~(U64_MAX >> 1))
242 
efi_memmap_entry_valid(const efi_memory_desc_t * md,int i)243 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
244 {
245 	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
246 	u64 end_hi = 0;
247 	char buf[64];
248 
249 	if (md->num_pages == 0) {
250 		end = 0;
251 	} else if (md->num_pages > EFI_PAGES_MAX ||
252 		   EFI_PAGES_MAX - md->num_pages <
253 		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
254 		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
255 			>> OVERFLOW_ADDR_SHIFT;
256 
257 		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
258 			end_hi += 1;
259 	} else {
260 		return true;
261 	}
262 
263 	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
264 
265 	if (end_hi) {
266 		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
267 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
268 			md->phys_addr, end_hi, end);
269 	} else {
270 		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
271 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
272 			md->phys_addr, end);
273 	}
274 	return false;
275 }
276 
efi_clean_memmap(void)277 static void __init efi_clean_memmap(void)
278 {
279 	efi_memory_desc_t *out = efi.memmap.map;
280 	const efi_memory_desc_t *in = out;
281 	const efi_memory_desc_t *end = efi.memmap.map_end;
282 	int i, n_removal;
283 
284 	for (i = n_removal = 0; in < end; i++) {
285 		if (efi_memmap_entry_valid(in, i)) {
286 			if (out != in)
287 				memcpy(out, in, efi.memmap.desc_size);
288 			out = (void *)out + efi.memmap.desc_size;
289 		} else {
290 			n_removal++;
291 		}
292 		in = (void *)in + efi.memmap.desc_size;
293 	}
294 
295 	if (n_removal > 0) {
296 		u64 size = efi.memmap.nr_map - n_removal;
297 
298 		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
299 		efi_memmap_install(efi.memmap.phys_map, size);
300 	}
301 }
302 
efi_print_memmap(void)303 void __init efi_print_memmap(void)
304 {
305 	efi_memory_desc_t *md;
306 	int i = 0;
307 
308 	for_each_efi_memory_desc(md) {
309 		char buf[64];
310 
311 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
312 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
313 			md->phys_addr,
314 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
315 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
316 	}
317 }
318 
efi_systab_init(void * phys)319 static int __init efi_systab_init(void *phys)
320 {
321 	if (efi_enabled(EFI_64BIT)) {
322 		efi_system_table_64_t *systab64;
323 		struct efi_setup_data *data = NULL;
324 		u64 tmp = 0;
325 
326 		if (efi_setup) {
327 			data = early_memremap(efi_setup, sizeof(*data));
328 			if (!data)
329 				return -ENOMEM;
330 		}
331 		systab64 = early_memremap((unsigned long)phys,
332 					 sizeof(*systab64));
333 		if (systab64 == NULL) {
334 			pr_err("Couldn't map the system table!\n");
335 			if (data)
336 				early_memunmap(data, sizeof(*data));
337 			return -ENOMEM;
338 		}
339 
340 		efi_systab.hdr = systab64->hdr;
341 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
342 					      systab64->fw_vendor;
343 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
344 		efi_systab.fw_revision = systab64->fw_revision;
345 		efi_systab.con_in_handle = systab64->con_in_handle;
346 		tmp |= systab64->con_in_handle;
347 		efi_systab.con_in = systab64->con_in;
348 		tmp |= systab64->con_in;
349 		efi_systab.con_out_handle = systab64->con_out_handle;
350 		tmp |= systab64->con_out_handle;
351 		efi_systab.con_out = systab64->con_out;
352 		tmp |= systab64->con_out;
353 		efi_systab.stderr_handle = systab64->stderr_handle;
354 		tmp |= systab64->stderr_handle;
355 		efi_systab.stderr = systab64->stderr;
356 		tmp |= systab64->stderr;
357 		efi_systab.runtime = data ?
358 				     (void *)(unsigned long)data->runtime :
359 				     (void *)(unsigned long)systab64->runtime;
360 		tmp |= data ? data->runtime : systab64->runtime;
361 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
362 		tmp |= systab64->boottime;
363 		efi_systab.nr_tables = systab64->nr_tables;
364 		efi_systab.tables = data ? (unsigned long)data->tables :
365 					   systab64->tables;
366 		tmp |= data ? data->tables : systab64->tables;
367 
368 		early_memunmap(systab64, sizeof(*systab64));
369 		if (data)
370 			early_memunmap(data, sizeof(*data));
371 #ifdef CONFIG_X86_32
372 		if (tmp >> 32) {
373 			pr_err("EFI data located above 4GB, disabling EFI.\n");
374 			return -EINVAL;
375 		}
376 #endif
377 	} else {
378 		efi_system_table_32_t *systab32;
379 
380 		systab32 = early_memremap((unsigned long)phys,
381 					 sizeof(*systab32));
382 		if (systab32 == NULL) {
383 			pr_err("Couldn't map the system table!\n");
384 			return -ENOMEM;
385 		}
386 
387 		efi_systab.hdr = systab32->hdr;
388 		efi_systab.fw_vendor = systab32->fw_vendor;
389 		efi_systab.fw_revision = systab32->fw_revision;
390 		efi_systab.con_in_handle = systab32->con_in_handle;
391 		efi_systab.con_in = systab32->con_in;
392 		efi_systab.con_out_handle = systab32->con_out_handle;
393 		efi_systab.con_out = systab32->con_out;
394 		efi_systab.stderr_handle = systab32->stderr_handle;
395 		efi_systab.stderr = systab32->stderr;
396 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
397 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
398 		efi_systab.nr_tables = systab32->nr_tables;
399 		efi_systab.tables = systab32->tables;
400 
401 		early_memunmap(systab32, sizeof(*systab32));
402 	}
403 
404 	efi.systab = &efi_systab;
405 
406 	/*
407 	 * Verify the EFI Table
408 	 */
409 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
410 		pr_err("System table signature incorrect!\n");
411 		return -EINVAL;
412 	}
413 	if ((efi.systab->hdr.revision >> 16) == 0)
414 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
415 		       efi.systab->hdr.revision >> 16,
416 		       efi.systab->hdr.revision & 0xffff);
417 
418 	return 0;
419 }
420 
efi_runtime_init32(void)421 static int __init efi_runtime_init32(void)
422 {
423 	efi_runtime_services_32_t *runtime;
424 
425 	runtime = early_memremap((unsigned long)efi.systab->runtime,
426 			sizeof(efi_runtime_services_32_t));
427 	if (!runtime) {
428 		pr_err("Could not map the runtime service table!\n");
429 		return -ENOMEM;
430 	}
431 
432 	/*
433 	 * We will only need *early* access to the SetVirtualAddressMap
434 	 * EFI runtime service. All other runtime services will be called
435 	 * via the virtual mapping.
436 	 */
437 	efi_phys.set_virtual_address_map =
438 			(efi_set_virtual_address_map_t *)
439 			(unsigned long)runtime->set_virtual_address_map;
440 	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
441 
442 	return 0;
443 }
444 
efi_runtime_init64(void)445 static int __init efi_runtime_init64(void)
446 {
447 	efi_runtime_services_64_t *runtime;
448 
449 	runtime = early_memremap((unsigned long)efi.systab->runtime,
450 			sizeof(efi_runtime_services_64_t));
451 	if (!runtime) {
452 		pr_err("Could not map the runtime service table!\n");
453 		return -ENOMEM;
454 	}
455 
456 	/*
457 	 * We will only need *early* access to the SetVirtualAddressMap
458 	 * EFI runtime service. All other runtime services will be called
459 	 * via the virtual mapping.
460 	 */
461 	efi_phys.set_virtual_address_map =
462 			(efi_set_virtual_address_map_t *)
463 			(unsigned long)runtime->set_virtual_address_map;
464 	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
465 
466 	return 0;
467 }
468 
efi_runtime_init(void)469 static int __init efi_runtime_init(void)
470 {
471 	int rv;
472 
473 	/*
474 	 * Check out the runtime services table. We need to map
475 	 * the runtime services table so that we can grab the physical
476 	 * address of several of the EFI runtime functions, needed to
477 	 * set the firmware into virtual mode.
478 	 *
479 	 * When EFI_PARAVIRT is in force then we could not map runtime
480 	 * service memory region because we do not have direct access to it.
481 	 * However, runtime services are available through proxy functions
482 	 * (e.g. in case of Xen dom0 EFI implementation they call special
483 	 * hypercall which executes relevant EFI functions) and that is why
484 	 * they are always enabled.
485 	 */
486 
487 	if (!efi_enabled(EFI_PARAVIRT)) {
488 		if (efi_enabled(EFI_64BIT))
489 			rv = efi_runtime_init64();
490 		else
491 			rv = efi_runtime_init32();
492 
493 		if (rv)
494 			return rv;
495 	}
496 
497 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
498 
499 	return 0;
500 }
501 
efi_init(void)502 void __init efi_init(void)
503 {
504 	efi_char16_t *c16;
505 	char vendor[100] = "unknown";
506 	int i = 0;
507 	void *tmp;
508 
509 #ifdef CONFIG_X86_32
510 	if (boot_params.efi_info.efi_systab_hi ||
511 	    boot_params.efi_info.efi_memmap_hi) {
512 		pr_info("Table located above 4GB, disabling EFI.\n");
513 		return;
514 	}
515 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
516 #else
517 	efi_phys.systab = (efi_system_table_t *)
518 			  (boot_params.efi_info.efi_systab |
519 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
520 #endif
521 
522 	if (efi_systab_init(efi_phys.systab))
523 		return;
524 
525 	efi.config_table = (unsigned long)efi.systab->tables;
526 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
527 	efi.runtime	 = (unsigned long)efi.systab->runtime;
528 
529 	/*
530 	 * Show what we know for posterity
531 	 */
532 	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
533 	if (c16) {
534 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
535 			vendor[i] = *c16++;
536 		vendor[i] = '\0';
537 	} else
538 		pr_err("Could not map the firmware vendor!\n");
539 	early_memunmap(tmp, 2);
540 
541 	pr_info("EFI v%u.%.02u by %s\n",
542 		efi.systab->hdr.revision >> 16,
543 		efi.systab->hdr.revision & 0xffff, vendor);
544 
545 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
546 		return;
547 
548 	if (efi_config_init(arch_tables))
549 		return;
550 
551 	/*
552 	 * Note: We currently don't support runtime services on an EFI
553 	 * that doesn't match the kernel 32/64-bit mode.
554 	 */
555 
556 	if (!efi_runtime_supported())
557 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
558 	else {
559 		if (efi_runtime_disabled() || efi_runtime_init()) {
560 			efi_memmap_unmap();
561 			return;
562 		}
563 	}
564 
565 	efi_clean_memmap();
566 
567 	if (efi_enabled(EFI_DBG))
568 		efi_print_memmap();
569 }
570 
efi_set_executable(efi_memory_desc_t * md,bool executable)571 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
572 {
573 	u64 addr, npages;
574 
575 	addr = md->virt_addr;
576 	npages = md->num_pages;
577 
578 	memrange_efi_to_native(&addr, &npages);
579 
580 	if (executable)
581 		set_memory_x(addr, npages);
582 	else
583 		set_memory_nx(addr, npages);
584 }
585 
runtime_code_page_mkexec(void)586 void __init runtime_code_page_mkexec(void)
587 {
588 	efi_memory_desc_t *md;
589 
590 	/* Make EFI runtime service code area executable */
591 	for_each_efi_memory_desc(md) {
592 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
593 			continue;
594 
595 		efi_set_executable(md, true);
596 	}
597 }
598 
efi_memory_uc(u64 addr,unsigned long size)599 void __init efi_memory_uc(u64 addr, unsigned long size)
600 {
601 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
602 	u64 npages;
603 
604 	npages = round_up(size, page_shift) / page_shift;
605 	memrange_efi_to_native(&addr, &npages);
606 	set_memory_uc(addr, npages);
607 }
608 
old_map_region(efi_memory_desc_t * md)609 void __init old_map_region(efi_memory_desc_t *md)
610 {
611 	u64 start_pfn, end_pfn, end;
612 	unsigned long size;
613 	void *va;
614 
615 	start_pfn = PFN_DOWN(md->phys_addr);
616 	size	  = md->num_pages << PAGE_SHIFT;
617 	end	  = md->phys_addr + size;
618 	end_pfn   = PFN_UP(end);
619 
620 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
621 		va = __va(md->phys_addr);
622 
623 		if (!(md->attribute & EFI_MEMORY_WB))
624 			efi_memory_uc((u64)(unsigned long)va, size);
625 	} else
626 		va = efi_ioremap(md->phys_addr, size,
627 				 md->type, md->attribute);
628 
629 	md->virt_addr = (u64) (unsigned long) va;
630 	if (!va)
631 		pr_err("ioremap of 0x%llX failed!\n",
632 		       (unsigned long long)md->phys_addr);
633 }
634 
635 /* Merge contiguous regions of the same type and attribute */
efi_merge_regions(void)636 static void __init efi_merge_regions(void)
637 {
638 	efi_memory_desc_t *md, *prev_md = NULL;
639 
640 	for_each_efi_memory_desc(md) {
641 		u64 prev_size;
642 
643 		if (!prev_md) {
644 			prev_md = md;
645 			continue;
646 		}
647 
648 		if (prev_md->type != md->type ||
649 		    prev_md->attribute != md->attribute) {
650 			prev_md = md;
651 			continue;
652 		}
653 
654 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
655 
656 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
657 			prev_md->num_pages += md->num_pages;
658 			md->type = EFI_RESERVED_TYPE;
659 			md->attribute = 0;
660 			continue;
661 		}
662 		prev_md = md;
663 	}
664 }
665 
get_systab_virt_addr(efi_memory_desc_t * md)666 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
667 {
668 	unsigned long size;
669 	u64 end, systab;
670 
671 	size = md->num_pages << EFI_PAGE_SHIFT;
672 	end = md->phys_addr + size;
673 	systab = (u64)(unsigned long)efi_phys.systab;
674 	if (md->phys_addr <= systab && systab < end) {
675 		systab += md->virt_addr - md->phys_addr;
676 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
677 	}
678 }
679 
realloc_pages(void * old_memmap,int old_shift)680 static void *realloc_pages(void *old_memmap, int old_shift)
681 {
682 	void *ret;
683 
684 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
685 	if (!ret)
686 		goto out;
687 
688 	/*
689 	 * A first-time allocation doesn't have anything to copy.
690 	 */
691 	if (!old_memmap)
692 		return ret;
693 
694 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
695 
696 out:
697 	free_pages((unsigned long)old_memmap, old_shift);
698 	return ret;
699 }
700 
701 /*
702  * Iterate the EFI memory map in reverse order because the regions
703  * will be mapped top-down. The end result is the same as if we had
704  * mapped things forward, but doesn't require us to change the
705  * existing implementation of efi_map_region().
706  */
efi_map_next_entry_reverse(void * entry)707 static inline void *efi_map_next_entry_reverse(void *entry)
708 {
709 	/* Initial call */
710 	if (!entry)
711 		return efi.memmap.map_end - efi.memmap.desc_size;
712 
713 	entry -= efi.memmap.desc_size;
714 	if (entry < efi.memmap.map)
715 		return NULL;
716 
717 	return entry;
718 }
719 
720 /*
721  * efi_map_next_entry - Return the next EFI memory map descriptor
722  * @entry: Previous EFI memory map descriptor
723  *
724  * This is a helper function to iterate over the EFI memory map, which
725  * we do in different orders depending on the current configuration.
726  *
727  * To begin traversing the memory map @entry must be %NULL.
728  *
729  * Returns %NULL when we reach the end of the memory map.
730  */
efi_map_next_entry(void * entry)731 static void *efi_map_next_entry(void *entry)
732 {
733 	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
734 		/*
735 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
736 		 * config table feature requires us to map all entries
737 		 * in the same order as they appear in the EFI memory
738 		 * map. That is to say, entry N must have a lower
739 		 * virtual address than entry N+1. This is because the
740 		 * firmware toolchain leaves relative references in
741 		 * the code/data sections, which are split and become
742 		 * separate EFI memory regions. Mapping things
743 		 * out-of-order leads to the firmware accessing
744 		 * unmapped addresses.
745 		 *
746 		 * Since we need to map things this way whether or not
747 		 * the kernel actually makes use of
748 		 * EFI_PROPERTIES_TABLE, let's just switch to this
749 		 * scheme by default for 64-bit.
750 		 */
751 		return efi_map_next_entry_reverse(entry);
752 	}
753 
754 	/* Initial call */
755 	if (!entry)
756 		return efi.memmap.map;
757 
758 	entry += efi.memmap.desc_size;
759 	if (entry >= efi.memmap.map_end)
760 		return NULL;
761 
762 	return entry;
763 }
764 
should_map_region(efi_memory_desc_t * md)765 static bool should_map_region(efi_memory_desc_t *md)
766 {
767 	/*
768 	 * Runtime regions always require runtime mappings (obviously).
769 	 */
770 	if (md->attribute & EFI_MEMORY_RUNTIME)
771 		return true;
772 
773 	/*
774 	 * 32-bit EFI doesn't suffer from the bug that requires us to
775 	 * reserve boot services regions, and mixed mode support
776 	 * doesn't exist for 32-bit kernels.
777 	 */
778 	if (IS_ENABLED(CONFIG_X86_32))
779 		return false;
780 
781 	/*
782 	 * Map all of RAM so that we can access arguments in the 1:1
783 	 * mapping when making EFI runtime calls.
784 	 */
785 	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
786 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
787 		    md->type == EFI_LOADER_DATA ||
788 		    md->type == EFI_LOADER_CODE)
789 			return true;
790 	}
791 
792 	/*
793 	 * Map boot services regions as a workaround for buggy
794 	 * firmware that accesses them even when they shouldn't.
795 	 *
796 	 * See efi_{reserve,free}_boot_services().
797 	 */
798 	if (md->type == EFI_BOOT_SERVICES_CODE ||
799 	    md->type == EFI_BOOT_SERVICES_DATA)
800 		return true;
801 
802 	return false;
803 }
804 
805 /*
806  * Map the efi memory ranges of the runtime services and update new_mmap with
807  * virtual addresses.
808  */
efi_map_regions(int * count,int * pg_shift)809 static void * __init efi_map_regions(int *count, int *pg_shift)
810 {
811 	void *p, *new_memmap = NULL;
812 	unsigned long left = 0;
813 	unsigned long desc_size;
814 	efi_memory_desc_t *md;
815 
816 	desc_size = efi.memmap.desc_size;
817 
818 	p = NULL;
819 	while ((p = efi_map_next_entry(p))) {
820 		md = p;
821 
822 		if (!should_map_region(md))
823 			continue;
824 
825 		efi_map_region(md);
826 		get_systab_virt_addr(md);
827 
828 		if (left < desc_size) {
829 			new_memmap = realloc_pages(new_memmap, *pg_shift);
830 			if (!new_memmap)
831 				return NULL;
832 
833 			left += PAGE_SIZE << *pg_shift;
834 			(*pg_shift)++;
835 		}
836 
837 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
838 
839 		left -= desc_size;
840 		(*count)++;
841 	}
842 
843 	return new_memmap;
844 }
845 
kexec_enter_virtual_mode(void)846 static void __init kexec_enter_virtual_mode(void)
847 {
848 #ifdef CONFIG_KEXEC_CORE
849 	efi_memory_desc_t *md;
850 	unsigned int num_pages;
851 
852 	efi.systab = NULL;
853 
854 	/*
855 	 * We don't do virtual mode, since we don't do runtime services, on
856 	 * non-native EFI. With efi=old_map, we don't do runtime services in
857 	 * kexec kernel because in the initial boot something else might
858 	 * have been mapped at these virtual addresses.
859 	 */
860 	if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
861 		efi_memmap_unmap();
862 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
863 		return;
864 	}
865 
866 	if (efi_alloc_page_tables()) {
867 		pr_err("Failed to allocate EFI page tables\n");
868 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
869 		return;
870 	}
871 
872 	/*
873 	* Map efi regions which were passed via setup_data. The virt_addr is a
874 	* fixed addr which was used in first kernel of a kexec boot.
875 	*/
876 	for_each_efi_memory_desc(md) {
877 		efi_map_region_fixed(md); /* FIXME: add error handling */
878 		get_systab_virt_addr(md);
879 	}
880 
881 	/*
882 	 * Unregister the early EFI memmap from efi_init() and install
883 	 * the new EFI memory map.
884 	 */
885 	efi_memmap_unmap();
886 
887 	if (efi_memmap_init_late(efi.memmap.phys_map,
888 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
889 		pr_err("Failed to remap late EFI memory map\n");
890 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
891 		return;
892 	}
893 
894 	BUG_ON(!efi.systab);
895 
896 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
897 	num_pages >>= PAGE_SHIFT;
898 
899 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
900 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
901 		return;
902 	}
903 
904 	efi_sync_low_kernel_mappings();
905 
906 	/*
907 	 * Now that EFI is in virtual mode, update the function
908 	 * pointers in the runtime service table to the new virtual addresses.
909 	 *
910 	 * Call EFI services through wrapper functions.
911 	 */
912 	efi.runtime_version = efi_systab.hdr.revision;
913 
914 	efi_native_runtime_setup();
915 
916 	efi.set_virtual_address_map = NULL;
917 
918 	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
919 		runtime_code_page_mkexec();
920 #endif
921 }
922 
923 /*
924  * This function will switch the EFI runtime services to virtual mode.
925  * Essentially, we look through the EFI memmap and map every region that
926  * has the runtime attribute bit set in its memory descriptor into the
927  * efi_pgd page table.
928  *
929  * The old method which used to update that memory descriptor with the
930  * virtual address obtained from ioremap() is still supported when the
931  * kernel is booted with efi=old_map on its command line. Same old
932  * method enabled the runtime services to be called without having to
933  * thunk back into physical mode for every invocation.
934  *
935  * The new method does a pagetable switch in a preemption-safe manner
936  * so that we're in a different address space when calling a runtime
937  * function. For function arguments passing we do copy the PUDs of the
938  * kernel page table into efi_pgd prior to each call.
939  *
940  * Specially for kexec boot, efi runtime maps in previous kernel should
941  * be passed in via setup_data. In that case runtime ranges will be mapped
942  * to the same virtual addresses as the first kernel, see
943  * kexec_enter_virtual_mode().
944  */
__efi_enter_virtual_mode(void)945 static void __init __efi_enter_virtual_mode(void)
946 {
947 	int count = 0, pg_shift = 0;
948 	void *new_memmap = NULL;
949 	efi_status_t status;
950 	unsigned long pa;
951 
952 	efi.systab = NULL;
953 
954 	if (efi_alloc_page_tables()) {
955 		pr_err("Failed to allocate EFI page tables\n");
956 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
957 		return;
958 	}
959 
960 	efi_merge_regions();
961 	new_memmap = efi_map_regions(&count, &pg_shift);
962 	if (!new_memmap) {
963 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
964 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
965 		return;
966 	}
967 
968 	pa = __pa(new_memmap);
969 
970 	/*
971 	 * Unregister the early EFI memmap from efi_init() and install
972 	 * the new EFI memory map that we are about to pass to the
973 	 * firmware via SetVirtualAddressMap().
974 	 */
975 	efi_memmap_unmap();
976 
977 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
978 		pr_err("Failed to remap late EFI memory map\n");
979 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
980 		return;
981 	}
982 
983 	if (efi_enabled(EFI_DBG)) {
984 		pr_info("EFI runtime memory map:\n");
985 		efi_print_memmap();
986 	}
987 
988 	BUG_ON(!efi.systab);
989 
990 	if (efi_setup_page_tables(pa, 1 << pg_shift)) {
991 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
992 		return;
993 	}
994 
995 	efi_sync_low_kernel_mappings();
996 
997 	if (efi_is_native()) {
998 		status = phys_efi_set_virtual_address_map(
999 				efi.memmap.desc_size * count,
1000 				efi.memmap.desc_size,
1001 				efi.memmap.desc_version,
1002 				(efi_memory_desc_t *)pa);
1003 	} else {
1004 		status = efi_thunk_set_virtual_address_map(
1005 				efi_phys.set_virtual_address_map,
1006 				efi.memmap.desc_size * count,
1007 				efi.memmap.desc_size,
1008 				efi.memmap.desc_version,
1009 				(efi_memory_desc_t *)pa);
1010 	}
1011 
1012 	if (status != EFI_SUCCESS) {
1013 		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1014 			 status);
1015 		panic("EFI call to SetVirtualAddressMap() failed!");
1016 	}
1017 
1018 	efi_free_boot_services();
1019 
1020 	/*
1021 	 * Now that EFI is in virtual mode, update the function
1022 	 * pointers in the runtime service table to the new virtual addresses.
1023 	 *
1024 	 * Call EFI services through wrapper functions.
1025 	 */
1026 	efi.runtime_version = efi_systab.hdr.revision;
1027 
1028 	if (efi_is_native())
1029 		efi_native_runtime_setup();
1030 	else
1031 		efi_thunk_runtime_setup();
1032 
1033 	efi.set_virtual_address_map = NULL;
1034 
1035 	/*
1036 	 * Apply more restrictive page table mapping attributes now that
1037 	 * SVAM() has been called and the firmware has performed all
1038 	 * necessary relocation fixups for the new virtual addresses.
1039 	 */
1040 	efi_runtime_update_mappings();
1041 
1042 	/* clean DUMMY object */
1043 	efi_delete_dummy_variable();
1044 }
1045 
efi_enter_virtual_mode(void)1046 void __init efi_enter_virtual_mode(void)
1047 {
1048 	if (efi_enabled(EFI_PARAVIRT))
1049 		return;
1050 
1051 	if (efi_setup)
1052 		kexec_enter_virtual_mode();
1053 	else
1054 		__efi_enter_virtual_mode();
1055 
1056 	efi_dump_pagetable();
1057 }
1058 
arch_parse_efi_cmdline(char * str)1059 static int __init arch_parse_efi_cmdline(char *str)
1060 {
1061 	if (!str) {
1062 		pr_warn("need at least one option\n");
1063 		return -EINVAL;
1064 	}
1065 
1066 	if (parse_option_str(str, "old_map"))
1067 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1068 
1069 	return 0;
1070 }
1071 early_param("efi", arch_parse_efi_cmdline);
1072 
efi_is_table_address(unsigned long phys_addr)1073 bool efi_is_table_address(unsigned long phys_addr)
1074 {
1075 	unsigned int i;
1076 
1077 	if (phys_addr == EFI_INVALID_TABLE_ADDR)
1078 		return false;
1079 
1080 	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
1081 		if (*(efi_tables[i]) == phys_addr)
1082 			return true;
1083 
1084 	return false;
1085 }
1086