1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Adjunct processor matrix VFIO device driver callbacks.
4  *
5  * Copyright IBM Corp. 2018
6  *
7  * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8  *	      Halil Pasic <pasic@linux.ibm.com>
9  *	      Pierre Morel <pmorel@linux.ibm.com>
10  */
11 #include <linux/string.h>
12 #include <linux/vfio.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/ctype.h>
16 #include <linux/bitops.h>
17 #include <linux/kvm_host.h>
18 #include <linux/module.h>
19 #include <linux/uuid.h>
20 #include <asm/kvm.h>
21 #include <asm/zcrypt.h>
22 
23 #include "vfio_ap_private.h"
24 #include "vfio_ap_debug.h"
25 
26 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
27 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
28 
29 #define AP_QUEUE_ASSIGNED "assigned"
30 #define AP_QUEUE_UNASSIGNED "unassigned"
31 #define AP_QUEUE_IN_USE "in use"
32 
33 #define AP_RESET_INTERVAL		20	/* Reset sleep interval (20ms)		*/
34 
35 static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable);
36 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
37 static const struct vfio_device_ops vfio_ap_matrix_dev_ops;
38 static void vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q);
39 
40 /**
41  * get_update_locks_for_kvm: Acquire the locks required to dynamically update a
42  *			     KVM guest's APCB in the proper order.
43  *
44  * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
45  *
46  * The proper locking order is:
47  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
48  *			       guest's APCB.
49  * 2. kvm->lock:	       required to update a guest's APCB
50  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
51  *
52  * Note: If @kvm is NULL, the KVM lock will not be taken.
53  */
get_update_locks_for_kvm(struct kvm * kvm)54 static inline void get_update_locks_for_kvm(struct kvm *kvm)
55 {
56 	mutex_lock(&matrix_dev->guests_lock);
57 	if (kvm)
58 		mutex_lock(&kvm->lock);
59 	mutex_lock(&matrix_dev->mdevs_lock);
60 }
61 
62 /**
63  * release_update_locks_for_kvm: Release the locks used to dynamically update a
64  *				 KVM guest's APCB in the proper order.
65  *
66  * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
67  *
68  * The proper unlocking order is:
69  * 1. matrix_dev->mdevs_lock
70  * 2. kvm->lock
71  * 3. matrix_dev->guests_lock
72  *
73  * Note: If @kvm is NULL, the KVM lock will not be released.
74  */
release_update_locks_for_kvm(struct kvm * kvm)75 static inline void release_update_locks_for_kvm(struct kvm *kvm)
76 {
77 	mutex_unlock(&matrix_dev->mdevs_lock);
78 	if (kvm)
79 		mutex_unlock(&kvm->lock);
80 	mutex_unlock(&matrix_dev->guests_lock);
81 }
82 
83 /**
84  * get_update_locks_for_mdev: Acquire the locks required to dynamically update a
85  *			      KVM guest's APCB in the proper order.
86  *
87  * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
88  *		 configuration data to use to update a KVM guest's APCB.
89  *
90  * The proper locking order is:
91  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
92  *			       guest's APCB.
93  * 2. matrix_mdev->kvm->lock:  required to update a guest's APCB
94  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
95  *
96  * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
97  *	 lock will not be taken.
98  */
get_update_locks_for_mdev(struct ap_matrix_mdev * matrix_mdev)99 static inline void get_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
100 {
101 	mutex_lock(&matrix_dev->guests_lock);
102 	if (matrix_mdev && matrix_mdev->kvm)
103 		mutex_lock(&matrix_mdev->kvm->lock);
104 	mutex_lock(&matrix_dev->mdevs_lock);
105 }
106 
107 /**
108  * release_update_locks_for_mdev: Release the locks used to dynamically update a
109  *				  KVM guest's APCB in the proper order.
110  *
111  * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
112  *		 configuration data to use to update a KVM guest's APCB.
113  *
114  * The proper unlocking order is:
115  * 1. matrix_dev->mdevs_lock
116  * 2. matrix_mdev->kvm->lock
117  * 3. matrix_dev->guests_lock
118  *
119  * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
120  *	 lock will not be released.
121  */
release_update_locks_for_mdev(struct ap_matrix_mdev * matrix_mdev)122 static inline void release_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
123 {
124 	mutex_unlock(&matrix_dev->mdevs_lock);
125 	if (matrix_mdev && matrix_mdev->kvm)
126 		mutex_unlock(&matrix_mdev->kvm->lock);
127 	mutex_unlock(&matrix_dev->guests_lock);
128 }
129 
130 /**
131  * get_update_locks_by_apqn: Find the mdev to which an APQN is assigned and
132  *			     acquire the locks required to update the APCB of
133  *			     the KVM guest to which the mdev is attached.
134  *
135  * @apqn: the APQN of a queue device.
136  *
137  * The proper locking order is:
138  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
139  *			       guest's APCB.
140  * 2. matrix_mdev->kvm->lock:  required to update a guest's APCB
141  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
142  *
143  * Note: If @apqn is not assigned to a matrix_mdev, the matrix_mdev->kvm->lock
144  *	 will not be taken.
145  *
146  * Return: the ap_matrix_mdev object to which @apqn is assigned or NULL if @apqn
147  *	   is not assigned to an ap_matrix_mdev.
148  */
get_update_locks_by_apqn(int apqn)149 static struct ap_matrix_mdev *get_update_locks_by_apqn(int apqn)
150 {
151 	struct ap_matrix_mdev *matrix_mdev;
152 
153 	mutex_lock(&matrix_dev->guests_lock);
154 
155 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
156 		if (test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm) &&
157 		    test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm)) {
158 			if (matrix_mdev->kvm)
159 				mutex_lock(&matrix_mdev->kvm->lock);
160 
161 			mutex_lock(&matrix_dev->mdevs_lock);
162 
163 			return matrix_mdev;
164 		}
165 	}
166 
167 	mutex_lock(&matrix_dev->mdevs_lock);
168 
169 	return NULL;
170 }
171 
172 /**
173  * get_update_locks_for_queue: get the locks required to update the APCB of the
174  *			       KVM guest to which the matrix mdev linked to a
175  *			       vfio_ap_queue object is attached.
176  *
177  * @q: a pointer to a vfio_ap_queue object.
178  *
179  * The proper locking order is:
180  * 1. q->matrix_dev->guests_lock: required to use the KVM pointer to update a
181  *				  KVM guest's APCB.
182  * 2. q->matrix_mdev->kvm->lock:  required to update a guest's APCB
183  * 3. matrix_dev->mdevs_lock:	  required to access data stored in matrix_mdev
184  *
185  * Note: if @queue is not linked to an ap_matrix_mdev object, the KVM lock
186  *	  will not be taken.
187  */
get_update_locks_for_queue(struct vfio_ap_queue * q)188 static inline void get_update_locks_for_queue(struct vfio_ap_queue *q)
189 {
190 	mutex_lock(&matrix_dev->guests_lock);
191 	if (q->matrix_mdev && q->matrix_mdev->kvm)
192 		mutex_lock(&q->matrix_mdev->kvm->lock);
193 	mutex_lock(&matrix_dev->mdevs_lock);
194 }
195 
196 /**
197  * vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a
198  *			    hash table of queues assigned to a matrix mdev
199  * @matrix_mdev: the matrix mdev
200  * @apqn: The APQN of a queue device
201  *
202  * Return: the pointer to the vfio_ap_queue struct representing the queue or
203  *	   NULL if the queue is not assigned to @matrix_mdev
204  */
vfio_ap_mdev_get_queue(struct ap_matrix_mdev * matrix_mdev,int apqn)205 static struct vfio_ap_queue *vfio_ap_mdev_get_queue(
206 					struct ap_matrix_mdev *matrix_mdev,
207 					int apqn)
208 {
209 	struct vfio_ap_queue *q;
210 
211 	hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode,
212 			       apqn) {
213 		if (q && q->apqn == apqn)
214 			return q;
215 	}
216 
217 	return NULL;
218 }
219 
220 /**
221  * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries
222  * @apqn: The AP Queue number
223  *
224  * Checks the IRQ bit for the status of this APQN using ap_tapq.
225  * Returns if the ap_tapq function succeeded and the bit is clear.
226  * Returns if ap_tapq function failed with invalid, deconfigured or
227  * checkstopped AP.
228  * Otherwise retries up to 5 times after waiting 20ms.
229  */
vfio_ap_wait_for_irqclear(int apqn)230 static void vfio_ap_wait_for_irqclear(int apqn)
231 {
232 	struct ap_queue_status status;
233 	int retry = 5;
234 
235 	do {
236 		status = ap_tapq(apqn, NULL);
237 		switch (status.response_code) {
238 		case AP_RESPONSE_NORMAL:
239 		case AP_RESPONSE_RESET_IN_PROGRESS:
240 			if (!status.irq_enabled)
241 				return;
242 			fallthrough;
243 		case AP_RESPONSE_BUSY:
244 			msleep(20);
245 			break;
246 		case AP_RESPONSE_Q_NOT_AVAIL:
247 		case AP_RESPONSE_DECONFIGURED:
248 		case AP_RESPONSE_CHECKSTOPPED:
249 		default:
250 			WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
251 				  status.response_code, apqn);
252 			return;
253 		}
254 	} while (--retry);
255 
256 	WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
257 		  __func__, status.response_code, apqn);
258 }
259 
260 /**
261  * vfio_ap_free_aqic_resources - free vfio_ap_queue resources
262  * @q: The vfio_ap_queue
263  *
264  * Unregisters the ISC in the GIB when the saved ISC not invalid.
265  * Unpins the guest's page holding the NIB when it exists.
266  * Resets the saved_iova and saved_isc to invalid values.
267  */
vfio_ap_free_aqic_resources(struct vfio_ap_queue * q)268 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
269 {
270 	if (!q)
271 		return;
272 	if (q->saved_isc != VFIO_AP_ISC_INVALID &&
273 	    !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
274 		kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
275 		q->saved_isc = VFIO_AP_ISC_INVALID;
276 	}
277 	if (q->saved_iova && !WARN_ON(!q->matrix_mdev)) {
278 		vfio_unpin_pages(&q->matrix_mdev->vdev, q->saved_iova, 1);
279 		q->saved_iova = 0;
280 	}
281 }
282 
283 /**
284  * vfio_ap_irq_disable - disables and clears an ap_queue interrupt
285  * @q: The vfio_ap_queue
286  *
287  * Uses ap_aqic to disable the interruption and in case of success, reset
288  * in progress or IRQ disable command already proceeded: calls
289  * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
290  * and calls vfio_ap_free_aqic_resources() to free the resources associated
291  * with the AP interrupt handling.
292  *
293  * In the case the AP is busy, or a reset is in progress,
294  * retries after 20ms, up to 5 times.
295  *
296  * Returns if ap_aqic function failed with invalid, deconfigured or
297  * checkstopped AP.
298  *
299  * Return: &struct ap_queue_status
300  */
vfio_ap_irq_disable(struct vfio_ap_queue * q)301 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
302 {
303 	union ap_qirq_ctrl aqic_gisa = { .value = 0 };
304 	struct ap_queue_status status;
305 	int retries = 5;
306 
307 	do {
308 		status = ap_aqic(q->apqn, aqic_gisa, 0);
309 		switch (status.response_code) {
310 		case AP_RESPONSE_OTHERWISE_CHANGED:
311 		case AP_RESPONSE_NORMAL:
312 			vfio_ap_wait_for_irqclear(q->apqn);
313 			goto end_free;
314 		case AP_RESPONSE_RESET_IN_PROGRESS:
315 		case AP_RESPONSE_BUSY:
316 			msleep(20);
317 			break;
318 		case AP_RESPONSE_Q_NOT_AVAIL:
319 		case AP_RESPONSE_DECONFIGURED:
320 		case AP_RESPONSE_CHECKSTOPPED:
321 		case AP_RESPONSE_INVALID_ADDRESS:
322 		default:
323 			/* All cases in default means AP not operational */
324 			WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
325 				  status.response_code);
326 			goto end_free;
327 		}
328 	} while (retries--);
329 
330 	WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
331 		  status.response_code);
332 end_free:
333 	vfio_ap_free_aqic_resources(q);
334 	return status;
335 }
336 
337 /**
338  * vfio_ap_validate_nib - validate a notification indicator byte (nib) address.
339  *
340  * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction.
341  * @nib: the location for storing the nib address.
342  *
343  * When the PQAP(AQIC) instruction is executed, general register 2 contains the
344  * address of the notification indicator byte (nib) used for IRQ notification.
345  * This function parses and validates the nib from gr2.
346  *
347  * Return: returns zero if the nib address is a valid; otherwise, returns
348  *	   -EINVAL.
349  */
vfio_ap_validate_nib(struct kvm_vcpu * vcpu,dma_addr_t * nib)350 static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, dma_addr_t *nib)
351 {
352 	*nib = vcpu->run->s.regs.gprs[2];
353 
354 	if (!*nib)
355 		return -EINVAL;
356 	if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *nib >> PAGE_SHIFT)))
357 		return -EINVAL;
358 
359 	return 0;
360 }
361 
ensure_nib_shared(unsigned long addr,struct gmap * gmap)362 static int ensure_nib_shared(unsigned long addr, struct gmap *gmap)
363 {
364 	int ret;
365 
366 	/*
367 	 * The nib has to be located in shared storage since guest and
368 	 * host access it. vfio_pin_pages() will do a pin shared and
369 	 * if that fails (possibly because it's not a shared page) it
370 	 * calls export. We try to do a second pin shared here so that
371 	 * the UV gives us an error code if we try to pin a non-shared
372 	 * page.
373 	 *
374 	 * If the page is already pinned shared the UV will return a success.
375 	 */
376 	ret = uv_pin_shared(addr);
377 	if (ret) {
378 		/* vfio_pin_pages() likely exported the page so let's re-import */
379 		gmap_convert_to_secure(gmap, addr);
380 	}
381 	return ret;
382 }
383 
384 /**
385  * vfio_ap_irq_enable - Enable Interruption for a APQN
386  *
387  * @q:	 the vfio_ap_queue holding AQIC parameters
388  * @isc: the guest ISC to register with the GIB interface
389  * @vcpu: the vcpu object containing the registers specifying the parameters
390  *	  passed to the PQAP(AQIC) instruction.
391  *
392  * Pin the NIB saved in *q
393  * Register the guest ISC to GIB interface and retrieve the
394  * host ISC to issue the host side PQAP/AQIC
395  *
396  * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
397  * vfio_pin_pages failed.
398  *
399  * Otherwise return the ap_queue_status returned by the ap_aqic(),
400  * all retry handling will be done by the guest.
401  *
402  * Return: &struct ap_queue_status
403  */
vfio_ap_irq_enable(struct vfio_ap_queue * q,int isc,struct kvm_vcpu * vcpu)404 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
405 						 int isc,
406 						 struct kvm_vcpu *vcpu)
407 {
408 	union ap_qirq_ctrl aqic_gisa = { .value = 0 };
409 	struct ap_queue_status status = {};
410 	struct kvm_s390_gisa *gisa;
411 	struct page *h_page;
412 	int nisc;
413 	struct kvm *kvm;
414 	phys_addr_t h_nib;
415 	dma_addr_t nib;
416 	int ret;
417 
418 	/* Verify that the notification indicator byte address is valid */
419 	if (vfio_ap_validate_nib(vcpu, &nib)) {
420 		VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%pad, apqn=%#04x\n",
421 				 __func__, &nib, q->apqn);
422 
423 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
424 		return status;
425 	}
426 
427 	ret = vfio_pin_pages(&q->matrix_mdev->vdev, nib, 1,
428 			     IOMMU_READ | IOMMU_WRITE, &h_page);
429 	switch (ret) {
430 	case 1:
431 		break;
432 	default:
433 		VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d,"
434 				 "nib=%pad, apqn=%#04x\n",
435 				 __func__, ret, &nib, q->apqn);
436 
437 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
438 		return status;
439 	}
440 
441 	kvm = q->matrix_mdev->kvm;
442 	gisa = kvm->arch.gisa_int.origin;
443 
444 	h_nib = page_to_phys(h_page) | (nib & ~PAGE_MASK);
445 	aqic_gisa.gisc = isc;
446 
447 	/* NIB in non-shared storage is a rc 6 for PV guests */
448 	if (kvm_s390_pv_cpu_is_protected(vcpu) &&
449 	    ensure_nib_shared(h_nib & PAGE_MASK, kvm->arch.gmap)) {
450 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
451 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
452 		return status;
453 	}
454 
455 	nisc = kvm_s390_gisc_register(kvm, isc);
456 	if (nisc < 0) {
457 		VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n",
458 				 __func__, nisc, isc, q->apqn);
459 
460 		status.response_code = AP_RESPONSE_INVALID_GISA;
461 		return status;
462 	}
463 
464 	aqic_gisa.isc = nisc;
465 	aqic_gisa.ir = 1;
466 	aqic_gisa.gisa = virt_to_phys(gisa) >> 4;
467 
468 	status = ap_aqic(q->apqn, aqic_gisa, h_nib);
469 	switch (status.response_code) {
470 	case AP_RESPONSE_NORMAL:
471 		/* See if we did clear older IRQ configuration */
472 		vfio_ap_free_aqic_resources(q);
473 		q->saved_iova = nib;
474 		q->saved_isc = isc;
475 		break;
476 	case AP_RESPONSE_OTHERWISE_CHANGED:
477 		/* We could not modify IRQ settings: clear new configuration */
478 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
479 		kvm_s390_gisc_unregister(kvm, isc);
480 		break;
481 	default:
482 		pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
483 			status.response_code);
484 		vfio_ap_irq_disable(q);
485 		break;
486 	}
487 
488 	if (status.response_code != AP_RESPONSE_NORMAL) {
489 		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: "
490 				 "zone=%#x, ir=%#x, gisc=%#x, f=%#x,"
491 				 "gisa=%#x, isc=%#x, apqn=%#04x\n",
492 				 __func__, status.response_code,
493 				 aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc,
494 				 aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc,
495 				 q->apqn);
496 	}
497 
498 	return status;
499 }
500 
501 /**
502  * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array
503  *				of big endian elements that can be passed by
504  *				value to an s390dbf sprintf event function to
505  *				format a UUID string.
506  *
507  * @guid: the object containing the little endian guid
508  * @uuid: a six-element array of long values that can be passed by value as
509  *	  arguments for a formatting string specifying a UUID.
510  *
511  * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf
512  * event functions if the memory for the passed string is available as long as
513  * the debug feature exists. Since a mediated device can be removed at any
514  * time, it's name can not be used because %s passes the reference to the string
515  * in memory and the reference will go stale once the device is removed .
516  *
517  * The s390dbf string formatting function allows a maximum of 9 arguments for a
518  * message to be displayed in the 'sprintf' view. In order to use the bytes
519  * comprising the mediated device's UUID to display the mediated device name,
520  * they will have to be converted into an array whose elements can be passed by
521  * value to sprintf. For example:
522  *
523  * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 }
524  * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804
525  * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 }
526  * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx"
527  */
vfio_ap_le_guid_to_be_uuid(guid_t * guid,unsigned long * uuid)528 static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid)
529 {
530 	/*
531 	 * The input guid is ordered in little endian, so it needs to be
532 	 * reordered for displaying a UUID as a string. This specifies the
533 	 * guid indices in proper order.
534 	 */
535 	uuid[0] = le32_to_cpup((__le32 *)guid);
536 	uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]);
537 	uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]);
538 	uuid[3] = *((__u16 *)&guid->b[8]);
539 	uuid[4] = *((__u16 *)&guid->b[10]);
540 	uuid[5] = *((__u32 *)&guid->b[12]);
541 }
542 
543 /**
544  * handle_pqap - PQAP instruction callback
545  *
546  * @vcpu: The vcpu on which we received the PQAP instruction
547  *
548  * Get the general register contents to initialize internal variables.
549  * REG[0]: APQN
550  * REG[1]: IR and ISC
551  * REG[2]: NIB
552  *
553  * Response.status may be set to following Response Code:
554  * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
555  * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
556  * - AP_RESPONSE_NORMAL (0) : in case of success
557  *   Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
558  * We take the matrix_dev lock to ensure serialization on queues and
559  * mediated device access.
560  *
561  * Return: 0 if we could handle the request inside KVM.
562  * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
563  */
handle_pqap(struct kvm_vcpu * vcpu)564 static int handle_pqap(struct kvm_vcpu *vcpu)
565 {
566 	uint64_t status;
567 	uint16_t apqn;
568 	unsigned long uuid[6];
569 	struct vfio_ap_queue *q;
570 	struct ap_queue_status qstatus = {
571 			       .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
572 	struct ap_matrix_mdev *matrix_mdev;
573 
574 	apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
575 
576 	/* If we do not use the AIV facility just go to userland */
577 	if (!(vcpu->arch.sie_block->eca & ECA_AIV)) {
578 		VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n",
579 				 __func__, apqn, vcpu->arch.sie_block->eca);
580 
581 		return -EOPNOTSUPP;
582 	}
583 
584 	mutex_lock(&matrix_dev->mdevs_lock);
585 
586 	if (!vcpu->kvm->arch.crypto.pqap_hook) {
587 		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n",
588 				 __func__, apqn);
589 
590 		goto out_unlock;
591 	}
592 
593 	matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
594 				   struct ap_matrix_mdev, pqap_hook);
595 
596 	/* If the there is no guest using the mdev, there is nothing to do */
597 	if (!matrix_mdev->kvm) {
598 		vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid);
599 		VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n",
600 				 __func__, uuid[0],  uuid[1], uuid[2],
601 				 uuid[3], uuid[4], uuid[5], apqn);
602 		goto out_unlock;
603 	}
604 
605 	q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
606 	if (!q) {
607 		VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n",
608 				 __func__, AP_QID_CARD(apqn),
609 				 AP_QID_QUEUE(apqn));
610 		goto out_unlock;
611 	}
612 
613 	status = vcpu->run->s.regs.gprs[1];
614 
615 	/* If IR bit(16) is set we enable the interrupt */
616 	if ((status >> (63 - 16)) & 0x01)
617 		qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu);
618 	else
619 		qstatus = vfio_ap_irq_disable(q);
620 
621 out_unlock:
622 	memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
623 	vcpu->run->s.regs.gprs[1] >>= 32;
624 	mutex_unlock(&matrix_dev->mdevs_lock);
625 	return 0;
626 }
627 
vfio_ap_matrix_init(struct ap_config_info * info,struct ap_matrix * matrix)628 static void vfio_ap_matrix_init(struct ap_config_info *info,
629 				struct ap_matrix *matrix)
630 {
631 	matrix->apm_max = info->apxa ? info->na : 63;
632 	matrix->aqm_max = info->apxa ? info->nd : 15;
633 	matrix->adm_max = info->apxa ? info->nd : 15;
634 }
635 
vfio_ap_mdev_update_guest_apcb(struct ap_matrix_mdev * matrix_mdev)636 static void vfio_ap_mdev_update_guest_apcb(struct ap_matrix_mdev *matrix_mdev)
637 {
638 	if (matrix_mdev->kvm)
639 		kvm_arch_crypto_set_masks(matrix_mdev->kvm,
640 					  matrix_mdev->shadow_apcb.apm,
641 					  matrix_mdev->shadow_apcb.aqm,
642 					  matrix_mdev->shadow_apcb.adm);
643 }
644 
vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev * matrix_mdev)645 static bool vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev *matrix_mdev)
646 {
647 	DECLARE_BITMAP(prev_shadow_adm, AP_DOMAINS);
648 
649 	bitmap_copy(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, AP_DOMAINS);
650 	bitmap_and(matrix_mdev->shadow_apcb.adm, matrix_mdev->matrix.adm,
651 		   (unsigned long *)matrix_dev->info.adm, AP_DOMAINS);
652 
653 	return !bitmap_equal(prev_shadow_adm, matrix_mdev->shadow_apcb.adm,
654 			     AP_DOMAINS);
655 }
656 
657 /*
658  * vfio_ap_mdev_filter_matrix - filter the APQNs assigned to the matrix mdev
659  *				to ensure no queue devices are passed through to
660  *				the guest that are not bound to the vfio_ap
661  *				device driver.
662  *
663  * @matrix_mdev: the matrix mdev whose matrix is to be filtered.
664  *
665  * Note: If an APQN referencing a queue device that is not bound to the vfio_ap
666  *	 driver, its APID will be filtered from the guest's APCB. The matrix
667  *	 structure precludes filtering an individual APQN, so its APID will be
668  *	 filtered.
669  *
670  * Return: a boolean value indicating whether the KVM guest's APCB was changed
671  *	   by the filtering or not.
672  */
vfio_ap_mdev_filter_matrix(unsigned long * apm,unsigned long * aqm,struct ap_matrix_mdev * matrix_mdev)673 static bool vfio_ap_mdev_filter_matrix(unsigned long *apm, unsigned long *aqm,
674 				       struct ap_matrix_mdev *matrix_mdev)
675 {
676 	unsigned long apid, apqi, apqn;
677 	DECLARE_BITMAP(prev_shadow_apm, AP_DEVICES);
678 	DECLARE_BITMAP(prev_shadow_aqm, AP_DOMAINS);
679 	struct vfio_ap_queue *q;
680 
681 	bitmap_copy(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, AP_DEVICES);
682 	bitmap_copy(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS);
683 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
684 
685 	/*
686 	 * Copy the adapters, domains and control domains to the shadow_apcb
687 	 * from the matrix mdev, but only those that are assigned to the host's
688 	 * AP configuration.
689 	 */
690 	bitmap_and(matrix_mdev->shadow_apcb.apm, matrix_mdev->matrix.apm,
691 		   (unsigned long *)matrix_dev->info.apm, AP_DEVICES);
692 	bitmap_and(matrix_mdev->shadow_apcb.aqm, matrix_mdev->matrix.aqm,
693 		   (unsigned long *)matrix_dev->info.aqm, AP_DOMAINS);
694 
695 	for_each_set_bit_inv(apid, apm, AP_DEVICES) {
696 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
697 			/*
698 			 * If the APQN is not bound to the vfio_ap device
699 			 * driver, then we can't assign it to the guest's
700 			 * AP configuration. The AP architecture won't
701 			 * allow filtering of a single APQN, so let's filter
702 			 * the APID since an adapter represents a physical
703 			 * hardware device.
704 			 */
705 			apqn = AP_MKQID(apid, apqi);
706 			q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
707 			if (!q || q->reset_status.response_code) {
708 				clear_bit_inv(apid,
709 					      matrix_mdev->shadow_apcb.apm);
710 				break;
711 			}
712 		}
713 	}
714 
715 	return !bitmap_equal(prev_shadow_apm, matrix_mdev->shadow_apcb.apm,
716 			     AP_DEVICES) ||
717 	       !bitmap_equal(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm,
718 			     AP_DOMAINS);
719 }
720 
vfio_ap_mdev_init_dev(struct vfio_device * vdev)721 static int vfio_ap_mdev_init_dev(struct vfio_device *vdev)
722 {
723 	struct ap_matrix_mdev *matrix_mdev =
724 		container_of(vdev, struct ap_matrix_mdev, vdev);
725 
726 	matrix_mdev->mdev = to_mdev_device(vdev->dev);
727 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
728 	matrix_mdev->pqap_hook = handle_pqap;
729 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
730 	hash_init(matrix_mdev->qtable.queues);
731 
732 	return 0;
733 }
734 
vfio_ap_mdev_probe(struct mdev_device * mdev)735 static int vfio_ap_mdev_probe(struct mdev_device *mdev)
736 {
737 	struct ap_matrix_mdev *matrix_mdev;
738 	int ret;
739 
740 	matrix_mdev = vfio_alloc_device(ap_matrix_mdev, vdev, &mdev->dev,
741 					&vfio_ap_matrix_dev_ops);
742 	if (IS_ERR(matrix_mdev))
743 		return PTR_ERR(matrix_mdev);
744 
745 	ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev);
746 	if (ret)
747 		goto err_put_vdev;
748 	matrix_mdev->req_trigger = NULL;
749 	dev_set_drvdata(&mdev->dev, matrix_mdev);
750 	mutex_lock(&matrix_dev->mdevs_lock);
751 	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
752 	mutex_unlock(&matrix_dev->mdevs_lock);
753 	return 0;
754 
755 err_put_vdev:
756 	vfio_put_device(&matrix_mdev->vdev);
757 	return ret;
758 }
759 
vfio_ap_mdev_link_queue(struct ap_matrix_mdev * matrix_mdev,struct vfio_ap_queue * q)760 static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev,
761 				    struct vfio_ap_queue *q)
762 {
763 	if (q) {
764 		q->matrix_mdev = matrix_mdev;
765 		hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn);
766 	}
767 }
768 
vfio_ap_mdev_link_apqn(struct ap_matrix_mdev * matrix_mdev,int apqn)769 static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn)
770 {
771 	struct vfio_ap_queue *q;
772 
773 	q = vfio_ap_find_queue(apqn);
774 	vfio_ap_mdev_link_queue(matrix_mdev, q);
775 }
776 
vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue * q)777 static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q)
778 {
779 	hash_del(&q->mdev_qnode);
780 }
781 
vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue * q)782 static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q)
783 {
784 	q->matrix_mdev = NULL;
785 }
786 
vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev * matrix_mdev)787 static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev)
788 {
789 	struct vfio_ap_queue *q;
790 	unsigned long apid, apqi;
791 
792 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
793 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
794 				     AP_DOMAINS) {
795 			q = vfio_ap_mdev_get_queue(matrix_mdev,
796 						   AP_MKQID(apid, apqi));
797 			if (q)
798 				q->matrix_mdev = NULL;
799 		}
800 	}
801 }
802 
vfio_ap_mdev_remove(struct mdev_device * mdev)803 static void vfio_ap_mdev_remove(struct mdev_device *mdev)
804 {
805 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev);
806 
807 	vfio_unregister_group_dev(&matrix_mdev->vdev);
808 
809 	mutex_lock(&matrix_dev->guests_lock);
810 	mutex_lock(&matrix_dev->mdevs_lock);
811 	vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
812 	vfio_ap_mdev_unlink_fr_queues(matrix_mdev);
813 	list_del(&matrix_mdev->node);
814 	mutex_unlock(&matrix_dev->mdevs_lock);
815 	mutex_unlock(&matrix_dev->guests_lock);
816 	vfio_put_device(&matrix_mdev->vdev);
817 }
818 
819 #define MDEV_SHARING_ERR "Userspace may not re-assign queue %02lx.%04lx " \
820 			 "already assigned to %s"
821 
vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev * matrix_mdev,unsigned long * apm,unsigned long * aqm)822 static void vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev *matrix_mdev,
823 					 unsigned long *apm,
824 					 unsigned long *aqm)
825 {
826 	unsigned long apid, apqi;
827 	const struct device *dev = mdev_dev(matrix_mdev->mdev);
828 	const char *mdev_name = dev_name(dev);
829 
830 	for_each_set_bit_inv(apid, apm, AP_DEVICES)
831 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS)
832 			dev_warn(dev, MDEV_SHARING_ERR, apid, apqi, mdev_name);
833 }
834 
835 /**
836  * vfio_ap_mdev_verify_no_sharing - verify APQNs are not shared by matrix mdevs
837  *
838  * @mdev_apm: mask indicating the APIDs of the APQNs to be verified
839  * @mdev_aqm: mask indicating the APQIs of the APQNs to be verified
840  *
841  * Verifies that each APQN derived from the Cartesian product of a bitmap of
842  * AP adapter IDs and AP queue indexes is not configured for any matrix
843  * mediated device. AP queue sharing is not allowed.
844  *
845  * Return: 0 if the APQNs are not shared; otherwise return -EADDRINUSE.
846  */
vfio_ap_mdev_verify_no_sharing(unsigned long * mdev_apm,unsigned long * mdev_aqm)847 static int vfio_ap_mdev_verify_no_sharing(unsigned long *mdev_apm,
848 					  unsigned long *mdev_aqm)
849 {
850 	struct ap_matrix_mdev *matrix_mdev;
851 	DECLARE_BITMAP(apm, AP_DEVICES);
852 	DECLARE_BITMAP(aqm, AP_DOMAINS);
853 
854 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
855 		/*
856 		 * If the input apm and aqm are fields of the matrix_mdev
857 		 * object, then move on to the next matrix_mdev.
858 		 */
859 		if (mdev_apm == matrix_mdev->matrix.apm &&
860 		    mdev_aqm == matrix_mdev->matrix.aqm)
861 			continue;
862 
863 		memset(apm, 0, sizeof(apm));
864 		memset(aqm, 0, sizeof(aqm));
865 
866 		/*
867 		 * We work on full longs, as we can only exclude the leftover
868 		 * bits in non-inverse order. The leftover is all zeros.
869 		 */
870 		if (!bitmap_and(apm, mdev_apm, matrix_mdev->matrix.apm,
871 				AP_DEVICES))
872 			continue;
873 
874 		if (!bitmap_and(aqm, mdev_aqm, matrix_mdev->matrix.aqm,
875 				AP_DOMAINS))
876 			continue;
877 
878 		vfio_ap_mdev_log_sharing_err(matrix_mdev, apm, aqm);
879 
880 		return -EADDRINUSE;
881 	}
882 
883 	return 0;
884 }
885 
886 /**
887  * vfio_ap_mdev_validate_masks - verify that the APQNs assigned to the mdev are
888  *				 not reserved for the default zcrypt driver and
889  *				 are not assigned to another mdev.
890  *
891  * @matrix_mdev: the mdev to which the APQNs being validated are assigned.
892  *
893  * Return: One of the following values:
894  * o the error returned from the ap_apqn_in_matrix_owned_by_def_drv() function,
895  *   most likely -EBUSY indicating the ap_perms_mutex lock is already held.
896  * o EADDRNOTAVAIL if an APQN assigned to @matrix_mdev is reserved for the
897  *		   zcrypt default driver.
898  * o EADDRINUSE if an APQN assigned to @matrix_mdev is assigned to another mdev
899  * o A zero indicating validation succeeded.
900  */
vfio_ap_mdev_validate_masks(struct ap_matrix_mdev * matrix_mdev)901 static int vfio_ap_mdev_validate_masks(struct ap_matrix_mdev *matrix_mdev)
902 {
903 	if (ap_apqn_in_matrix_owned_by_def_drv(matrix_mdev->matrix.apm,
904 					       matrix_mdev->matrix.aqm))
905 		return -EADDRNOTAVAIL;
906 
907 	return vfio_ap_mdev_verify_no_sharing(matrix_mdev->matrix.apm,
908 					      matrix_mdev->matrix.aqm);
909 }
910 
vfio_ap_mdev_link_adapter(struct ap_matrix_mdev * matrix_mdev,unsigned long apid)911 static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev,
912 				      unsigned long apid)
913 {
914 	unsigned long apqi;
915 
916 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS)
917 		vfio_ap_mdev_link_apqn(matrix_mdev,
918 				       AP_MKQID(apid, apqi));
919 }
920 
921 /**
922  * assign_adapter_store - parses the APID from @buf and sets the
923  * corresponding bit in the mediated matrix device's APM
924  *
925  * @dev:	the matrix device
926  * @attr:	the mediated matrix device's assign_adapter attribute
927  * @buf:	a buffer containing the AP adapter number (APID) to
928  *		be assigned
929  * @count:	the number of bytes in @buf
930  *
931  * Return: the number of bytes processed if the APID is valid; otherwise,
932  * returns one of the following errors:
933  *
934  *	1. -EINVAL
935  *	   The APID is not a valid number
936  *
937  *	2. -ENODEV
938  *	   The APID exceeds the maximum value configured for the system
939  *
940  *	3. -EADDRNOTAVAIL
941  *	   An APQN derived from the cross product of the APID being assigned
942  *	   and the APQIs previously assigned is not bound to the vfio_ap device
943  *	   driver; or, if no APQIs have yet been assigned, the APID is not
944  *	   contained in an APQN bound to the vfio_ap device driver.
945  *
946  *	4. -EADDRINUSE
947  *	   An APQN derived from the cross product of the APID being assigned
948  *	   and the APQIs previously assigned is being used by another mediated
949  *	   matrix device
950  *
951  *	5. -EAGAIN
952  *	   A lock required to validate the mdev's AP configuration could not
953  *	   be obtained.
954  */
assign_adapter_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)955 static ssize_t assign_adapter_store(struct device *dev,
956 				    struct device_attribute *attr,
957 				    const char *buf, size_t count)
958 {
959 	int ret;
960 	unsigned long apid;
961 	DECLARE_BITMAP(apm_delta, AP_DEVICES);
962 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
963 
964 	mutex_lock(&ap_perms_mutex);
965 	get_update_locks_for_mdev(matrix_mdev);
966 
967 	ret = kstrtoul(buf, 0, &apid);
968 	if (ret)
969 		goto done;
970 
971 	if (apid > matrix_mdev->matrix.apm_max) {
972 		ret = -ENODEV;
973 		goto done;
974 	}
975 
976 	if (test_bit_inv(apid, matrix_mdev->matrix.apm)) {
977 		ret = count;
978 		goto done;
979 	}
980 
981 	set_bit_inv(apid, matrix_mdev->matrix.apm);
982 
983 	ret = vfio_ap_mdev_validate_masks(matrix_mdev);
984 	if (ret) {
985 		clear_bit_inv(apid, matrix_mdev->matrix.apm);
986 		goto done;
987 	}
988 
989 	vfio_ap_mdev_link_adapter(matrix_mdev, apid);
990 	memset(apm_delta, 0, sizeof(apm_delta));
991 	set_bit_inv(apid, apm_delta);
992 
993 	if (vfio_ap_mdev_filter_matrix(apm_delta,
994 				       matrix_mdev->matrix.aqm, matrix_mdev))
995 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
996 
997 	ret = count;
998 done:
999 	release_update_locks_for_mdev(matrix_mdev);
1000 	mutex_unlock(&ap_perms_mutex);
1001 
1002 	return ret;
1003 }
1004 static DEVICE_ATTR_WO(assign_adapter);
1005 
1006 static struct vfio_ap_queue
vfio_ap_unlink_apqn_fr_mdev(struct ap_matrix_mdev * matrix_mdev,unsigned long apid,unsigned long apqi)1007 *vfio_ap_unlink_apqn_fr_mdev(struct ap_matrix_mdev *matrix_mdev,
1008 			     unsigned long apid, unsigned long apqi)
1009 {
1010 	struct vfio_ap_queue *q = NULL;
1011 
1012 	q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));
1013 	/* If the queue is assigned to the matrix mdev, unlink it. */
1014 	if (q)
1015 		vfio_ap_unlink_queue_fr_mdev(q);
1016 
1017 	return q;
1018 }
1019 
1020 /**
1021  * vfio_ap_mdev_unlink_adapter - unlink all queues associated with unassigned
1022  *				 adapter from the matrix mdev to which the
1023  *				 adapter was assigned.
1024  * @matrix_mdev: the matrix mediated device to which the adapter was assigned.
1025  * @apid: the APID of the unassigned adapter.
1026  * @qtable: table for storing queues associated with unassigned adapter.
1027  */
vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev * matrix_mdev,unsigned long apid,struct ap_queue_table * qtable)1028 static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev,
1029 					unsigned long apid,
1030 					struct ap_queue_table *qtable)
1031 {
1032 	unsigned long apqi;
1033 	struct vfio_ap_queue *q;
1034 
1035 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) {
1036 		q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1037 
1038 		if (q && qtable) {
1039 			if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1040 			    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1041 				hash_add(qtable->queues, &q->mdev_qnode,
1042 					 q->apqn);
1043 		}
1044 	}
1045 }
1046 
vfio_ap_mdev_hot_unplug_adapter(struct ap_matrix_mdev * matrix_mdev,unsigned long apid)1047 static void vfio_ap_mdev_hot_unplug_adapter(struct ap_matrix_mdev *matrix_mdev,
1048 					    unsigned long apid)
1049 {
1050 	int loop_cursor;
1051 	struct vfio_ap_queue *q;
1052 	struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL);
1053 
1054 	hash_init(qtable->queues);
1055 	vfio_ap_mdev_unlink_adapter(matrix_mdev, apid, qtable);
1056 
1057 	if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm)) {
1058 		clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
1059 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1060 	}
1061 
1062 	vfio_ap_mdev_reset_queues(qtable);
1063 
1064 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1065 		vfio_ap_unlink_mdev_fr_queue(q);
1066 		hash_del(&q->mdev_qnode);
1067 	}
1068 
1069 	kfree(qtable);
1070 }
1071 
1072 /**
1073  * unassign_adapter_store - parses the APID from @buf and clears the
1074  * corresponding bit in the mediated matrix device's APM
1075  *
1076  * @dev:	the matrix device
1077  * @attr:	the mediated matrix device's unassign_adapter attribute
1078  * @buf:	a buffer containing the adapter number (APID) to be unassigned
1079  * @count:	the number of bytes in @buf
1080  *
1081  * Return: the number of bytes processed if the APID is valid; otherwise,
1082  * returns one of the following errors:
1083  *	-EINVAL if the APID is not a number
1084  *	-ENODEV if the APID it exceeds the maximum value configured for the
1085  *		system
1086  */
unassign_adapter_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1087 static ssize_t unassign_adapter_store(struct device *dev,
1088 				      struct device_attribute *attr,
1089 				      const char *buf, size_t count)
1090 {
1091 	int ret;
1092 	unsigned long apid;
1093 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1094 
1095 	get_update_locks_for_mdev(matrix_mdev);
1096 
1097 	ret = kstrtoul(buf, 0, &apid);
1098 	if (ret)
1099 		goto done;
1100 
1101 	if (apid > matrix_mdev->matrix.apm_max) {
1102 		ret = -ENODEV;
1103 		goto done;
1104 	}
1105 
1106 	if (!test_bit_inv(apid, matrix_mdev->matrix.apm)) {
1107 		ret = count;
1108 		goto done;
1109 	}
1110 
1111 	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
1112 	vfio_ap_mdev_hot_unplug_adapter(matrix_mdev, apid);
1113 	ret = count;
1114 done:
1115 	release_update_locks_for_mdev(matrix_mdev);
1116 	return ret;
1117 }
1118 static DEVICE_ATTR_WO(unassign_adapter);
1119 
vfio_ap_mdev_link_domain(struct ap_matrix_mdev * matrix_mdev,unsigned long apqi)1120 static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev,
1121 				     unsigned long apqi)
1122 {
1123 	unsigned long apid;
1124 
1125 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES)
1126 		vfio_ap_mdev_link_apqn(matrix_mdev,
1127 				       AP_MKQID(apid, apqi));
1128 }
1129 
1130 /**
1131  * assign_domain_store - parses the APQI from @buf and sets the
1132  * corresponding bit in the mediated matrix device's AQM
1133  *
1134  * @dev:	the matrix device
1135  * @attr:	the mediated matrix device's assign_domain attribute
1136  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
1137  *		be assigned
1138  * @count:	the number of bytes in @buf
1139  *
1140  * Return: the number of bytes processed if the APQI is valid; otherwise returns
1141  * one of the following errors:
1142  *
1143  *	1. -EINVAL
1144  *	   The APQI is not a valid number
1145  *
1146  *	2. -ENODEV
1147  *	   The APQI exceeds the maximum value configured for the system
1148  *
1149  *	3. -EADDRNOTAVAIL
1150  *	   An APQN derived from the cross product of the APQI being assigned
1151  *	   and the APIDs previously assigned is not bound to the vfio_ap device
1152  *	   driver; or, if no APIDs have yet been assigned, the APQI is not
1153  *	   contained in an APQN bound to the vfio_ap device driver.
1154  *
1155  *	4. -EADDRINUSE
1156  *	   An APQN derived from the cross product of the APQI being assigned
1157  *	   and the APIDs previously assigned is being used by another mediated
1158  *	   matrix device
1159  *
1160  *	5. -EAGAIN
1161  *	   The lock required to validate the mdev's AP configuration could not
1162  *	   be obtained.
1163  */
assign_domain_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1164 static ssize_t assign_domain_store(struct device *dev,
1165 				   struct device_attribute *attr,
1166 				   const char *buf, size_t count)
1167 {
1168 	int ret;
1169 	unsigned long apqi;
1170 	DECLARE_BITMAP(aqm_delta, AP_DOMAINS);
1171 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1172 
1173 	mutex_lock(&ap_perms_mutex);
1174 	get_update_locks_for_mdev(matrix_mdev);
1175 
1176 	ret = kstrtoul(buf, 0, &apqi);
1177 	if (ret)
1178 		goto done;
1179 
1180 	if (apqi > matrix_mdev->matrix.aqm_max) {
1181 		ret = -ENODEV;
1182 		goto done;
1183 	}
1184 
1185 	if (test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1186 		ret = count;
1187 		goto done;
1188 	}
1189 
1190 	set_bit_inv(apqi, matrix_mdev->matrix.aqm);
1191 
1192 	ret = vfio_ap_mdev_validate_masks(matrix_mdev);
1193 	if (ret) {
1194 		clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
1195 		goto done;
1196 	}
1197 
1198 	vfio_ap_mdev_link_domain(matrix_mdev, apqi);
1199 	memset(aqm_delta, 0, sizeof(aqm_delta));
1200 	set_bit_inv(apqi, aqm_delta);
1201 
1202 	if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, aqm_delta,
1203 				       matrix_mdev))
1204 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1205 
1206 	ret = count;
1207 done:
1208 	release_update_locks_for_mdev(matrix_mdev);
1209 	mutex_unlock(&ap_perms_mutex);
1210 
1211 	return ret;
1212 }
1213 static DEVICE_ATTR_WO(assign_domain);
1214 
vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev * matrix_mdev,unsigned long apqi,struct ap_queue_table * qtable)1215 static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev,
1216 				       unsigned long apqi,
1217 				       struct ap_queue_table *qtable)
1218 {
1219 	unsigned long apid;
1220 	struct vfio_ap_queue *q;
1221 
1222 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
1223 		q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1224 
1225 		if (q && qtable) {
1226 			if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1227 			    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1228 				hash_add(qtable->queues, &q->mdev_qnode,
1229 					 q->apqn);
1230 		}
1231 	}
1232 }
1233 
vfio_ap_mdev_hot_unplug_domain(struct ap_matrix_mdev * matrix_mdev,unsigned long apqi)1234 static void vfio_ap_mdev_hot_unplug_domain(struct ap_matrix_mdev *matrix_mdev,
1235 					   unsigned long apqi)
1236 {
1237 	int loop_cursor;
1238 	struct vfio_ap_queue *q;
1239 	struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL);
1240 
1241 	hash_init(qtable->queues);
1242 	vfio_ap_mdev_unlink_domain(matrix_mdev, apqi, qtable);
1243 
1244 	if (test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
1245 		clear_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm);
1246 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1247 	}
1248 
1249 	vfio_ap_mdev_reset_queues(qtable);
1250 
1251 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1252 		vfio_ap_unlink_mdev_fr_queue(q);
1253 		hash_del(&q->mdev_qnode);
1254 	}
1255 
1256 	kfree(qtable);
1257 }
1258 
1259 /**
1260  * unassign_domain_store - parses the APQI from @buf and clears the
1261  * corresponding bit in the mediated matrix device's AQM
1262  *
1263  * @dev:	the matrix device
1264  * @attr:	the mediated matrix device's unassign_domain attribute
1265  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
1266  *		be unassigned
1267  * @count:	the number of bytes in @buf
1268  *
1269  * Return: the number of bytes processed if the APQI is valid; otherwise,
1270  * returns one of the following errors:
1271  *	-EINVAL if the APQI is not a number
1272  *	-ENODEV if the APQI exceeds the maximum value configured for the system
1273  */
unassign_domain_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1274 static ssize_t unassign_domain_store(struct device *dev,
1275 				     struct device_attribute *attr,
1276 				     const char *buf, size_t count)
1277 {
1278 	int ret;
1279 	unsigned long apqi;
1280 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1281 
1282 	get_update_locks_for_mdev(matrix_mdev);
1283 
1284 	ret = kstrtoul(buf, 0, &apqi);
1285 	if (ret)
1286 		goto done;
1287 
1288 	if (apqi > matrix_mdev->matrix.aqm_max) {
1289 		ret = -ENODEV;
1290 		goto done;
1291 	}
1292 
1293 	if (!test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1294 		ret = count;
1295 		goto done;
1296 	}
1297 
1298 	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
1299 	vfio_ap_mdev_hot_unplug_domain(matrix_mdev, apqi);
1300 	ret = count;
1301 
1302 done:
1303 	release_update_locks_for_mdev(matrix_mdev);
1304 	return ret;
1305 }
1306 static DEVICE_ATTR_WO(unassign_domain);
1307 
1308 /**
1309  * assign_control_domain_store - parses the domain ID from @buf and sets
1310  * the corresponding bit in the mediated matrix device's ADM
1311  *
1312  * @dev:	the matrix device
1313  * @attr:	the mediated matrix device's assign_control_domain attribute
1314  * @buf:	a buffer containing the domain ID to be assigned
1315  * @count:	the number of bytes in @buf
1316  *
1317  * Return: the number of bytes processed if the domain ID is valid; otherwise,
1318  * returns one of the following errors:
1319  *	-EINVAL if the ID is not a number
1320  *	-ENODEV if the ID exceeds the maximum value configured for the system
1321  */
assign_control_domain_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1322 static ssize_t assign_control_domain_store(struct device *dev,
1323 					   struct device_attribute *attr,
1324 					   const char *buf, size_t count)
1325 {
1326 	int ret;
1327 	unsigned long id;
1328 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1329 
1330 	get_update_locks_for_mdev(matrix_mdev);
1331 
1332 	ret = kstrtoul(buf, 0, &id);
1333 	if (ret)
1334 		goto done;
1335 
1336 	if (id > matrix_mdev->matrix.adm_max) {
1337 		ret = -ENODEV;
1338 		goto done;
1339 	}
1340 
1341 	if (test_bit_inv(id, matrix_mdev->matrix.adm)) {
1342 		ret = count;
1343 		goto done;
1344 	}
1345 
1346 	/* Set the bit in the ADM (bitmask) corresponding to the AP control
1347 	 * domain number (id). The bits in the mask, from most significant to
1348 	 * least significant, correspond to IDs 0 up to the one less than the
1349 	 * number of control domains that can be assigned.
1350 	 */
1351 	set_bit_inv(id, matrix_mdev->matrix.adm);
1352 	if (vfio_ap_mdev_filter_cdoms(matrix_mdev))
1353 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1354 
1355 	ret = count;
1356 done:
1357 	release_update_locks_for_mdev(matrix_mdev);
1358 	return ret;
1359 }
1360 static DEVICE_ATTR_WO(assign_control_domain);
1361 
1362 /**
1363  * unassign_control_domain_store - parses the domain ID from @buf and
1364  * clears the corresponding bit in the mediated matrix device's ADM
1365  *
1366  * @dev:	the matrix device
1367  * @attr:	the mediated matrix device's unassign_control_domain attribute
1368  * @buf:	a buffer containing the domain ID to be unassigned
1369  * @count:	the number of bytes in @buf
1370  *
1371  * Return: the number of bytes processed if the domain ID is valid; otherwise,
1372  * returns one of the following errors:
1373  *	-EINVAL if the ID is not a number
1374  *	-ENODEV if the ID exceeds the maximum value configured for the system
1375  */
unassign_control_domain_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1376 static ssize_t unassign_control_domain_store(struct device *dev,
1377 					     struct device_attribute *attr,
1378 					     const char *buf, size_t count)
1379 {
1380 	int ret;
1381 	unsigned long domid;
1382 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1383 
1384 	get_update_locks_for_mdev(matrix_mdev);
1385 
1386 	ret = kstrtoul(buf, 0, &domid);
1387 	if (ret)
1388 		goto done;
1389 
1390 	if (domid > matrix_mdev->matrix.adm_max) {
1391 		ret = -ENODEV;
1392 		goto done;
1393 	}
1394 
1395 	if (!test_bit_inv(domid, matrix_mdev->matrix.adm)) {
1396 		ret = count;
1397 		goto done;
1398 	}
1399 
1400 	clear_bit_inv(domid, matrix_mdev->matrix.adm);
1401 
1402 	if (test_bit_inv(domid, matrix_mdev->shadow_apcb.adm)) {
1403 		clear_bit_inv(domid, matrix_mdev->shadow_apcb.adm);
1404 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1405 	}
1406 
1407 	ret = count;
1408 done:
1409 	release_update_locks_for_mdev(matrix_mdev);
1410 	return ret;
1411 }
1412 static DEVICE_ATTR_WO(unassign_control_domain);
1413 
control_domains_show(struct device * dev,struct device_attribute * dev_attr,char * buf)1414 static ssize_t control_domains_show(struct device *dev,
1415 				    struct device_attribute *dev_attr,
1416 				    char *buf)
1417 {
1418 	unsigned long id;
1419 	int nchars = 0;
1420 	int n;
1421 	char *bufpos = buf;
1422 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1423 	unsigned long max_domid = matrix_mdev->matrix.adm_max;
1424 
1425 	mutex_lock(&matrix_dev->mdevs_lock);
1426 	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
1427 		n = sprintf(bufpos, "%04lx\n", id);
1428 		bufpos += n;
1429 		nchars += n;
1430 	}
1431 	mutex_unlock(&matrix_dev->mdevs_lock);
1432 
1433 	return nchars;
1434 }
1435 static DEVICE_ATTR_RO(control_domains);
1436 
vfio_ap_mdev_matrix_show(struct ap_matrix * matrix,char * buf)1437 static ssize_t vfio_ap_mdev_matrix_show(struct ap_matrix *matrix, char *buf)
1438 {
1439 	char *bufpos = buf;
1440 	unsigned long apid;
1441 	unsigned long apqi;
1442 	unsigned long apid1;
1443 	unsigned long apqi1;
1444 	unsigned long napm_bits = matrix->apm_max + 1;
1445 	unsigned long naqm_bits = matrix->aqm_max + 1;
1446 	int nchars = 0;
1447 	int n;
1448 
1449 	apid1 = find_first_bit_inv(matrix->apm, napm_bits);
1450 	apqi1 = find_first_bit_inv(matrix->aqm, naqm_bits);
1451 
1452 	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
1453 		for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1454 			for_each_set_bit_inv(apqi, matrix->aqm,
1455 					     naqm_bits) {
1456 				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
1457 					    apqi);
1458 				bufpos += n;
1459 				nchars += n;
1460 			}
1461 		}
1462 	} else if (apid1 < napm_bits) {
1463 		for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1464 			n = sprintf(bufpos, "%02lx.\n", apid);
1465 			bufpos += n;
1466 			nchars += n;
1467 		}
1468 	} else if (apqi1 < naqm_bits) {
1469 		for_each_set_bit_inv(apqi, matrix->aqm, naqm_bits) {
1470 			n = sprintf(bufpos, ".%04lx\n", apqi);
1471 			bufpos += n;
1472 			nchars += n;
1473 		}
1474 	}
1475 
1476 	return nchars;
1477 }
1478 
matrix_show(struct device * dev,struct device_attribute * attr,char * buf)1479 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
1480 			   char *buf)
1481 {
1482 	ssize_t nchars;
1483 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1484 
1485 	mutex_lock(&matrix_dev->mdevs_lock);
1486 	nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->matrix, buf);
1487 	mutex_unlock(&matrix_dev->mdevs_lock);
1488 
1489 	return nchars;
1490 }
1491 static DEVICE_ATTR_RO(matrix);
1492 
guest_matrix_show(struct device * dev,struct device_attribute * attr,char * buf)1493 static ssize_t guest_matrix_show(struct device *dev,
1494 				 struct device_attribute *attr, char *buf)
1495 {
1496 	ssize_t nchars;
1497 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1498 
1499 	mutex_lock(&matrix_dev->mdevs_lock);
1500 	nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->shadow_apcb, buf);
1501 	mutex_unlock(&matrix_dev->mdevs_lock);
1502 
1503 	return nchars;
1504 }
1505 static DEVICE_ATTR_RO(guest_matrix);
1506 
1507 static struct attribute *vfio_ap_mdev_attrs[] = {
1508 	&dev_attr_assign_adapter.attr,
1509 	&dev_attr_unassign_adapter.attr,
1510 	&dev_attr_assign_domain.attr,
1511 	&dev_attr_unassign_domain.attr,
1512 	&dev_attr_assign_control_domain.attr,
1513 	&dev_attr_unassign_control_domain.attr,
1514 	&dev_attr_control_domains.attr,
1515 	&dev_attr_matrix.attr,
1516 	&dev_attr_guest_matrix.attr,
1517 	NULL,
1518 };
1519 
1520 static struct attribute_group vfio_ap_mdev_attr_group = {
1521 	.attrs = vfio_ap_mdev_attrs
1522 };
1523 
1524 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1525 	&vfio_ap_mdev_attr_group,
1526 	NULL
1527 };
1528 
1529 /**
1530  * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed
1531  * to manage AP resources for the guest whose state is represented by @kvm
1532  *
1533  * @matrix_mdev: a mediated matrix device
1534  * @kvm: reference to KVM instance
1535  *
1536  * Return: 0 if no other mediated matrix device has a reference to @kvm;
1537  * otherwise, returns an -EPERM.
1538  */
vfio_ap_mdev_set_kvm(struct ap_matrix_mdev * matrix_mdev,struct kvm * kvm)1539 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1540 				struct kvm *kvm)
1541 {
1542 	struct ap_matrix_mdev *m;
1543 
1544 	if (kvm->arch.crypto.crycbd) {
1545 		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1546 		kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1547 		up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1548 
1549 		get_update_locks_for_kvm(kvm);
1550 
1551 		list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1552 			if (m != matrix_mdev && m->kvm == kvm) {
1553 				release_update_locks_for_kvm(kvm);
1554 				return -EPERM;
1555 			}
1556 		}
1557 
1558 		kvm_get_kvm(kvm);
1559 		matrix_mdev->kvm = kvm;
1560 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1561 
1562 		release_update_locks_for_kvm(kvm);
1563 	}
1564 
1565 	return 0;
1566 }
1567 
unmap_iova(struct ap_matrix_mdev * matrix_mdev,u64 iova,u64 length)1568 static void unmap_iova(struct ap_matrix_mdev *matrix_mdev, u64 iova, u64 length)
1569 {
1570 	struct ap_queue_table *qtable = &matrix_mdev->qtable;
1571 	struct vfio_ap_queue *q;
1572 	int loop_cursor;
1573 
1574 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1575 		if (q->saved_iova >= iova && q->saved_iova < iova + length)
1576 			vfio_ap_irq_disable(q);
1577 	}
1578 }
1579 
vfio_ap_mdev_dma_unmap(struct vfio_device * vdev,u64 iova,u64 length)1580 static void vfio_ap_mdev_dma_unmap(struct vfio_device *vdev, u64 iova,
1581 				   u64 length)
1582 {
1583 	struct ap_matrix_mdev *matrix_mdev =
1584 		container_of(vdev, struct ap_matrix_mdev, vdev);
1585 
1586 	mutex_lock(&matrix_dev->mdevs_lock);
1587 
1588 	unmap_iova(matrix_mdev, iova, length);
1589 
1590 	mutex_unlock(&matrix_dev->mdevs_lock);
1591 }
1592 
1593 /**
1594  * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed
1595  * by @matrix_mdev.
1596  *
1597  * @matrix_mdev: a matrix mediated device
1598  */
vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev * matrix_mdev)1599 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1600 {
1601 	struct kvm *kvm = matrix_mdev->kvm;
1602 
1603 	if (kvm && kvm->arch.crypto.crycbd) {
1604 		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1605 		kvm->arch.crypto.pqap_hook = NULL;
1606 		up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1607 
1608 		get_update_locks_for_kvm(kvm);
1609 
1610 		kvm_arch_crypto_clear_masks(kvm);
1611 		vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
1612 		kvm_put_kvm(kvm);
1613 		matrix_mdev->kvm = NULL;
1614 
1615 		release_update_locks_for_kvm(kvm);
1616 	}
1617 }
1618 
vfio_ap_find_queue(int apqn)1619 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1620 {
1621 	struct ap_queue *queue;
1622 	struct vfio_ap_queue *q = NULL;
1623 
1624 	queue = ap_get_qdev(apqn);
1625 	if (!queue)
1626 		return NULL;
1627 
1628 	if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver)
1629 		q = dev_get_drvdata(&queue->ap_dev.device);
1630 
1631 	put_device(&queue->ap_dev.device);
1632 
1633 	return q;
1634 }
1635 
apq_status_check(int apqn,struct ap_queue_status * status)1636 static int apq_status_check(int apqn, struct ap_queue_status *status)
1637 {
1638 	switch (status->response_code) {
1639 	case AP_RESPONSE_NORMAL:
1640 	case AP_RESPONSE_DECONFIGURED:
1641 		return 0;
1642 	case AP_RESPONSE_RESET_IN_PROGRESS:
1643 	case AP_RESPONSE_BUSY:
1644 		return -EBUSY;
1645 	case AP_RESPONSE_ASSOC_SECRET_NOT_UNIQUE:
1646 	case AP_RESPONSE_ASSOC_FAILED:
1647 		/*
1648 		 * These asynchronous response codes indicate a PQAP(AAPQ)
1649 		 * instruction to associate a secret with the guest failed. All
1650 		 * subsequent AP instructions will end with the asynchronous
1651 		 * response code until the AP queue is reset; so, let's return
1652 		 * a value indicating a reset needs to be performed again.
1653 		 */
1654 		return -EAGAIN;
1655 	default:
1656 		WARN(true,
1657 		     "failed to verify reset of queue %02x.%04x: TAPQ rc=%u\n",
1658 		     AP_QID_CARD(apqn), AP_QID_QUEUE(apqn),
1659 		     status->response_code);
1660 		return -EIO;
1661 	}
1662 }
1663 
1664 #define WAIT_MSG "Waited %dms for reset of queue %02x.%04x (%u, %u, %u)"
1665 
apq_reset_check(struct work_struct * reset_work)1666 static void apq_reset_check(struct work_struct *reset_work)
1667 {
1668 	int ret = -EBUSY, elapsed = 0;
1669 	struct ap_queue_status status;
1670 	struct vfio_ap_queue *q;
1671 
1672 	q = container_of(reset_work, struct vfio_ap_queue, reset_work);
1673 	memcpy(&status, &q->reset_status, sizeof(status));
1674 	while (true) {
1675 		msleep(AP_RESET_INTERVAL);
1676 		elapsed += AP_RESET_INTERVAL;
1677 		status = ap_tapq(q->apqn, NULL);
1678 		ret = apq_status_check(q->apqn, &status);
1679 		if (ret == -EIO)
1680 			return;
1681 		if (ret == -EBUSY) {
1682 			pr_notice_ratelimited(WAIT_MSG, elapsed,
1683 					      AP_QID_CARD(q->apqn),
1684 					      AP_QID_QUEUE(q->apqn),
1685 					      status.response_code,
1686 					      status.queue_empty,
1687 					      status.irq_enabled);
1688 		} else {
1689 			if (q->reset_status.response_code == AP_RESPONSE_RESET_IN_PROGRESS ||
1690 			    q->reset_status.response_code == AP_RESPONSE_BUSY ||
1691 			    q->reset_status.response_code == AP_RESPONSE_STATE_CHANGE_IN_PROGRESS ||
1692 			    ret == -EAGAIN) {
1693 				status = ap_zapq(q->apqn, 0);
1694 				memcpy(&q->reset_status, &status, sizeof(status));
1695 				continue;
1696 			}
1697 			/*
1698 			 * When an AP adapter is deconfigured, the
1699 			 * associated queues are reset, so let's set the
1700 			 * status response code to 0 so the queue may be
1701 			 * passed through (i.e., not filtered)
1702 			 */
1703 			if (status.response_code == AP_RESPONSE_DECONFIGURED)
1704 				q->reset_status.response_code = 0;
1705 			if (q->saved_isc != VFIO_AP_ISC_INVALID)
1706 				vfio_ap_free_aqic_resources(q);
1707 			break;
1708 		}
1709 	}
1710 }
1711 
vfio_ap_mdev_reset_queue(struct vfio_ap_queue * q)1712 static void vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q)
1713 {
1714 	struct ap_queue_status status;
1715 
1716 	if (!q)
1717 		return;
1718 	status = ap_zapq(q->apqn, 0);
1719 	memcpy(&q->reset_status, &status, sizeof(status));
1720 	switch (status.response_code) {
1721 	case AP_RESPONSE_NORMAL:
1722 	case AP_RESPONSE_RESET_IN_PROGRESS:
1723 	case AP_RESPONSE_BUSY:
1724 	case AP_RESPONSE_STATE_CHANGE_IN_PROGRESS:
1725 		/*
1726 		 * Let's verify whether the ZAPQ completed successfully on a work queue.
1727 		 */
1728 		queue_work(system_long_wq, &q->reset_work);
1729 		break;
1730 	case AP_RESPONSE_DECONFIGURED:
1731 		/*
1732 		 * When an AP adapter is deconfigured, the associated
1733 		 * queues are reset, so let's set the status response code to 0
1734 		 * so the queue may be passed through (i.e., not filtered).
1735 		 */
1736 		q->reset_status.response_code = 0;
1737 		vfio_ap_free_aqic_resources(q);
1738 		break;
1739 	default:
1740 		WARN(true,
1741 		     "PQAP/ZAPQ for %02x.%04x failed with invalid rc=%u\n",
1742 		     AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn),
1743 		     status.response_code);
1744 	}
1745 }
1746 
vfio_ap_mdev_reset_queues(struct ap_queue_table * qtable)1747 static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable)
1748 {
1749 	int ret = 0, loop_cursor;
1750 	struct vfio_ap_queue *q;
1751 
1752 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode)
1753 		vfio_ap_mdev_reset_queue(q);
1754 
1755 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1756 		flush_work(&q->reset_work);
1757 
1758 		if (q->reset_status.response_code)
1759 			ret = -EIO;
1760 	}
1761 
1762 	return ret;
1763 }
1764 
vfio_ap_mdev_open_device(struct vfio_device * vdev)1765 static int vfio_ap_mdev_open_device(struct vfio_device *vdev)
1766 {
1767 	struct ap_matrix_mdev *matrix_mdev =
1768 		container_of(vdev, struct ap_matrix_mdev, vdev);
1769 
1770 	if (!vdev->kvm)
1771 		return -EINVAL;
1772 
1773 	return vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm);
1774 }
1775 
vfio_ap_mdev_close_device(struct vfio_device * vdev)1776 static void vfio_ap_mdev_close_device(struct vfio_device *vdev)
1777 {
1778 	struct ap_matrix_mdev *matrix_mdev =
1779 		container_of(vdev, struct ap_matrix_mdev, vdev);
1780 
1781 	vfio_ap_mdev_unset_kvm(matrix_mdev);
1782 }
1783 
vfio_ap_mdev_request(struct vfio_device * vdev,unsigned int count)1784 static void vfio_ap_mdev_request(struct vfio_device *vdev, unsigned int count)
1785 {
1786 	struct device *dev = vdev->dev;
1787 	struct ap_matrix_mdev *matrix_mdev;
1788 
1789 	matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev);
1790 
1791 	if (matrix_mdev->req_trigger) {
1792 		if (!(count % 10))
1793 			dev_notice_ratelimited(dev,
1794 					       "Relaying device request to user (#%u)\n",
1795 					       count);
1796 
1797 		eventfd_signal(matrix_mdev->req_trigger, 1);
1798 	} else if (count == 0) {
1799 		dev_notice(dev,
1800 			   "No device request registered, blocked until released by user\n");
1801 	}
1802 }
1803 
vfio_ap_mdev_get_device_info(unsigned long arg)1804 static int vfio_ap_mdev_get_device_info(unsigned long arg)
1805 {
1806 	unsigned long minsz;
1807 	struct vfio_device_info info;
1808 
1809 	minsz = offsetofend(struct vfio_device_info, num_irqs);
1810 
1811 	if (copy_from_user(&info, (void __user *)arg, minsz))
1812 		return -EFAULT;
1813 
1814 	if (info.argsz < minsz)
1815 		return -EINVAL;
1816 
1817 	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1818 	info.num_regions = 0;
1819 	info.num_irqs = VFIO_AP_NUM_IRQS;
1820 
1821 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1822 }
1823 
vfio_ap_get_irq_info(unsigned long arg)1824 static ssize_t vfio_ap_get_irq_info(unsigned long arg)
1825 {
1826 	unsigned long minsz;
1827 	struct vfio_irq_info info;
1828 
1829 	minsz = offsetofend(struct vfio_irq_info, count);
1830 
1831 	if (copy_from_user(&info, (void __user *)arg, minsz))
1832 		return -EFAULT;
1833 
1834 	if (info.argsz < minsz || info.index >= VFIO_AP_NUM_IRQS)
1835 		return -EINVAL;
1836 
1837 	switch (info.index) {
1838 	case VFIO_AP_REQ_IRQ_INDEX:
1839 		info.count = 1;
1840 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1841 		break;
1842 	default:
1843 		return -EINVAL;
1844 	}
1845 
1846 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1847 }
1848 
vfio_ap_irq_set_init(struct vfio_irq_set * irq_set,unsigned long arg)1849 static int vfio_ap_irq_set_init(struct vfio_irq_set *irq_set, unsigned long arg)
1850 {
1851 	int ret;
1852 	size_t data_size;
1853 	unsigned long minsz;
1854 
1855 	minsz = offsetofend(struct vfio_irq_set, count);
1856 
1857 	if (copy_from_user(irq_set, (void __user *)arg, minsz))
1858 		return -EFAULT;
1859 
1860 	ret = vfio_set_irqs_validate_and_prepare(irq_set, 1, VFIO_AP_NUM_IRQS,
1861 						 &data_size);
1862 	if (ret)
1863 		return ret;
1864 
1865 	if (!(irq_set->flags & VFIO_IRQ_SET_ACTION_TRIGGER))
1866 		return -EINVAL;
1867 
1868 	return 0;
1869 }
1870 
vfio_ap_set_request_irq(struct ap_matrix_mdev * matrix_mdev,unsigned long arg)1871 static int vfio_ap_set_request_irq(struct ap_matrix_mdev *matrix_mdev,
1872 				   unsigned long arg)
1873 {
1874 	s32 fd;
1875 	void __user *data;
1876 	unsigned long minsz;
1877 	struct eventfd_ctx *req_trigger;
1878 
1879 	minsz = offsetofend(struct vfio_irq_set, count);
1880 	data = (void __user *)(arg + minsz);
1881 
1882 	if (get_user(fd, (s32 __user *)data))
1883 		return -EFAULT;
1884 
1885 	if (fd == -1) {
1886 		if (matrix_mdev->req_trigger)
1887 			eventfd_ctx_put(matrix_mdev->req_trigger);
1888 		matrix_mdev->req_trigger = NULL;
1889 	} else if (fd >= 0) {
1890 		req_trigger = eventfd_ctx_fdget(fd);
1891 		if (IS_ERR(req_trigger))
1892 			return PTR_ERR(req_trigger);
1893 
1894 		if (matrix_mdev->req_trigger)
1895 			eventfd_ctx_put(matrix_mdev->req_trigger);
1896 
1897 		matrix_mdev->req_trigger = req_trigger;
1898 	} else {
1899 		return -EINVAL;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
vfio_ap_set_irqs(struct ap_matrix_mdev * matrix_mdev,unsigned long arg)1905 static int vfio_ap_set_irqs(struct ap_matrix_mdev *matrix_mdev,
1906 			    unsigned long arg)
1907 {
1908 	int ret;
1909 	struct vfio_irq_set irq_set;
1910 
1911 	ret = vfio_ap_irq_set_init(&irq_set, arg);
1912 	if (ret)
1913 		return ret;
1914 
1915 	switch (irq_set.flags & VFIO_IRQ_SET_DATA_TYPE_MASK) {
1916 	case VFIO_IRQ_SET_DATA_EVENTFD:
1917 		switch (irq_set.index) {
1918 		case VFIO_AP_REQ_IRQ_INDEX:
1919 			return vfio_ap_set_request_irq(matrix_mdev, arg);
1920 		default:
1921 			return -EINVAL;
1922 		}
1923 	default:
1924 		return -EINVAL;
1925 	}
1926 }
1927 
vfio_ap_mdev_ioctl(struct vfio_device * vdev,unsigned int cmd,unsigned long arg)1928 static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev,
1929 				    unsigned int cmd, unsigned long arg)
1930 {
1931 	struct ap_matrix_mdev *matrix_mdev =
1932 		container_of(vdev, struct ap_matrix_mdev, vdev);
1933 	int ret;
1934 
1935 	mutex_lock(&matrix_dev->mdevs_lock);
1936 	switch (cmd) {
1937 	case VFIO_DEVICE_GET_INFO:
1938 		ret = vfio_ap_mdev_get_device_info(arg);
1939 		break;
1940 	case VFIO_DEVICE_RESET:
1941 		ret = vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
1942 		break;
1943 	case VFIO_DEVICE_GET_IRQ_INFO:
1944 			ret = vfio_ap_get_irq_info(arg);
1945 			break;
1946 	case VFIO_DEVICE_SET_IRQS:
1947 		ret = vfio_ap_set_irqs(matrix_mdev, arg);
1948 		break;
1949 	default:
1950 		ret = -EOPNOTSUPP;
1951 		break;
1952 	}
1953 	mutex_unlock(&matrix_dev->mdevs_lock);
1954 
1955 	return ret;
1956 }
1957 
vfio_ap_mdev_for_queue(struct vfio_ap_queue * q)1958 static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q)
1959 {
1960 	struct ap_matrix_mdev *matrix_mdev;
1961 	unsigned long apid = AP_QID_CARD(q->apqn);
1962 	unsigned long apqi = AP_QID_QUEUE(q->apqn);
1963 
1964 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
1965 		if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
1966 		    test_bit_inv(apqi, matrix_mdev->matrix.aqm))
1967 			return matrix_mdev;
1968 	}
1969 
1970 	return NULL;
1971 }
1972 
status_show(struct device * dev,struct device_attribute * attr,char * buf)1973 static ssize_t status_show(struct device *dev,
1974 			   struct device_attribute *attr,
1975 			   char *buf)
1976 {
1977 	ssize_t nchars = 0;
1978 	struct vfio_ap_queue *q;
1979 	struct ap_matrix_mdev *matrix_mdev;
1980 	struct ap_device *apdev = to_ap_dev(dev);
1981 
1982 	mutex_lock(&matrix_dev->mdevs_lock);
1983 	q = dev_get_drvdata(&apdev->device);
1984 	matrix_mdev = vfio_ap_mdev_for_queue(q);
1985 
1986 	if (matrix_mdev) {
1987 		if (matrix_mdev->kvm)
1988 			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
1989 					   AP_QUEUE_IN_USE);
1990 		else
1991 			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
1992 					   AP_QUEUE_ASSIGNED);
1993 	} else {
1994 		nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
1995 				   AP_QUEUE_UNASSIGNED);
1996 	}
1997 
1998 	mutex_unlock(&matrix_dev->mdevs_lock);
1999 
2000 	return nchars;
2001 }
2002 
2003 static DEVICE_ATTR_RO(status);
2004 
2005 static struct attribute *vfio_queue_attrs[] = {
2006 	&dev_attr_status.attr,
2007 	NULL,
2008 };
2009 
2010 static const struct attribute_group vfio_queue_attr_group = {
2011 	.attrs = vfio_queue_attrs,
2012 };
2013 
2014 static const struct vfio_device_ops vfio_ap_matrix_dev_ops = {
2015 	.init = vfio_ap_mdev_init_dev,
2016 	.open_device = vfio_ap_mdev_open_device,
2017 	.close_device = vfio_ap_mdev_close_device,
2018 	.ioctl = vfio_ap_mdev_ioctl,
2019 	.dma_unmap = vfio_ap_mdev_dma_unmap,
2020 	.bind_iommufd = vfio_iommufd_emulated_bind,
2021 	.unbind_iommufd = vfio_iommufd_emulated_unbind,
2022 	.attach_ioas = vfio_iommufd_emulated_attach_ioas,
2023 	.detach_ioas = vfio_iommufd_emulated_detach_ioas,
2024 	.request = vfio_ap_mdev_request
2025 };
2026 
2027 static struct mdev_driver vfio_ap_matrix_driver = {
2028 	.device_api = VFIO_DEVICE_API_AP_STRING,
2029 	.max_instances = MAX_ZDEV_ENTRIES_EXT,
2030 	.driver = {
2031 		.name = "vfio_ap_mdev",
2032 		.owner = THIS_MODULE,
2033 		.mod_name = KBUILD_MODNAME,
2034 		.dev_groups = vfio_ap_mdev_attr_groups,
2035 	},
2036 	.probe = vfio_ap_mdev_probe,
2037 	.remove = vfio_ap_mdev_remove,
2038 };
2039 
vfio_ap_mdev_register(void)2040 int vfio_ap_mdev_register(void)
2041 {
2042 	int ret;
2043 
2044 	ret = mdev_register_driver(&vfio_ap_matrix_driver);
2045 	if (ret)
2046 		return ret;
2047 
2048 	matrix_dev->mdev_type.sysfs_name = VFIO_AP_MDEV_TYPE_HWVIRT;
2049 	matrix_dev->mdev_type.pretty_name = VFIO_AP_MDEV_NAME_HWVIRT;
2050 	matrix_dev->mdev_types[0] = &matrix_dev->mdev_type;
2051 	ret = mdev_register_parent(&matrix_dev->parent, &matrix_dev->device,
2052 				   &vfio_ap_matrix_driver,
2053 				   matrix_dev->mdev_types, 1);
2054 	if (ret)
2055 		goto err_driver;
2056 	return 0;
2057 
2058 err_driver:
2059 	mdev_unregister_driver(&vfio_ap_matrix_driver);
2060 	return ret;
2061 }
2062 
vfio_ap_mdev_unregister(void)2063 void vfio_ap_mdev_unregister(void)
2064 {
2065 	mdev_unregister_parent(&matrix_dev->parent);
2066 	mdev_unregister_driver(&vfio_ap_matrix_driver);
2067 }
2068 
vfio_ap_mdev_probe_queue(struct ap_device * apdev)2069 int vfio_ap_mdev_probe_queue(struct ap_device *apdev)
2070 {
2071 	int ret;
2072 	struct vfio_ap_queue *q;
2073 	struct ap_matrix_mdev *matrix_mdev;
2074 
2075 	ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group);
2076 	if (ret)
2077 		return ret;
2078 
2079 	q = kzalloc(sizeof(*q), GFP_KERNEL);
2080 	if (!q) {
2081 		ret = -ENOMEM;
2082 		goto err_remove_group;
2083 	}
2084 
2085 	q->apqn = to_ap_queue(&apdev->device)->qid;
2086 	q->saved_isc = VFIO_AP_ISC_INVALID;
2087 	memset(&q->reset_status, 0, sizeof(q->reset_status));
2088 	INIT_WORK(&q->reset_work, apq_reset_check);
2089 	matrix_mdev = get_update_locks_by_apqn(q->apqn);
2090 
2091 	if (matrix_mdev) {
2092 		vfio_ap_mdev_link_queue(matrix_mdev, q);
2093 
2094 		if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm,
2095 					       matrix_mdev->matrix.aqm,
2096 					       matrix_mdev))
2097 			vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2098 	}
2099 	dev_set_drvdata(&apdev->device, q);
2100 	release_update_locks_for_mdev(matrix_mdev);
2101 
2102 	return 0;
2103 
2104 err_remove_group:
2105 	sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
2106 	return ret;
2107 }
2108 
vfio_ap_mdev_remove_queue(struct ap_device * apdev)2109 void vfio_ap_mdev_remove_queue(struct ap_device *apdev)
2110 {
2111 	unsigned long apid, apqi;
2112 	struct vfio_ap_queue *q;
2113 	struct ap_matrix_mdev *matrix_mdev;
2114 
2115 	sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
2116 	q = dev_get_drvdata(&apdev->device);
2117 	get_update_locks_for_queue(q);
2118 	matrix_mdev = q->matrix_mdev;
2119 
2120 	if (matrix_mdev) {
2121 		vfio_ap_unlink_queue_fr_mdev(q);
2122 
2123 		apid = AP_QID_CARD(q->apqn);
2124 		apqi = AP_QID_QUEUE(q->apqn);
2125 
2126 		/*
2127 		 * If the queue is assigned to the guest's APCB, then remove
2128 		 * the adapter's APID from the APCB and hot it into the guest.
2129 		 */
2130 		if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
2131 		    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
2132 			clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
2133 			vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2134 		}
2135 	}
2136 
2137 	vfio_ap_mdev_reset_queue(q);
2138 	flush_work(&q->reset_work);
2139 	dev_set_drvdata(&apdev->device, NULL);
2140 	kfree(q);
2141 	release_update_locks_for_mdev(matrix_mdev);
2142 }
2143 
2144 /**
2145  * vfio_ap_mdev_resource_in_use: check whether any of a set of APQNs is
2146  *				 assigned to a mediated device under the control
2147  *				 of the vfio_ap device driver.
2148  *
2149  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check.
2150  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check.
2151  *
2152  * Return:
2153  *	* -EADDRINUSE if one or more of the APQNs specified via @apm/@aqm are
2154  *	  assigned to a mediated device under the control of the vfio_ap
2155  *	  device driver.
2156  *	* Otherwise, return 0.
2157  */
vfio_ap_mdev_resource_in_use(unsigned long * apm,unsigned long * aqm)2158 int vfio_ap_mdev_resource_in_use(unsigned long *apm, unsigned long *aqm)
2159 {
2160 	int ret;
2161 
2162 	mutex_lock(&matrix_dev->guests_lock);
2163 	mutex_lock(&matrix_dev->mdevs_lock);
2164 	ret = vfio_ap_mdev_verify_no_sharing(apm, aqm);
2165 	mutex_unlock(&matrix_dev->mdevs_lock);
2166 	mutex_unlock(&matrix_dev->guests_lock);
2167 
2168 	return ret;
2169 }
2170 
2171 /**
2172  * vfio_ap_mdev_hot_unplug_cfg - hot unplug the adapters, domains and control
2173  *				 domains that have been removed from the host's
2174  *				 AP configuration from a guest.
2175  *
2176  * @matrix_mdev: an ap_matrix_mdev object attached to a KVM guest.
2177  * @aprem: the adapters that have been removed from the host's AP configuration
2178  * @aqrem: the domains that have been removed from the host's AP configuration
2179  * @cdrem: the control domains that have been removed from the host's AP
2180  *	   configuration.
2181  */
vfio_ap_mdev_hot_unplug_cfg(struct ap_matrix_mdev * matrix_mdev,unsigned long * aprem,unsigned long * aqrem,unsigned long * cdrem)2182 static void vfio_ap_mdev_hot_unplug_cfg(struct ap_matrix_mdev *matrix_mdev,
2183 					unsigned long *aprem,
2184 					unsigned long *aqrem,
2185 					unsigned long *cdrem)
2186 {
2187 	int do_hotplug = 0;
2188 
2189 	if (!bitmap_empty(aprem, AP_DEVICES)) {
2190 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.apm,
2191 					    matrix_mdev->shadow_apcb.apm,
2192 					    aprem, AP_DEVICES);
2193 	}
2194 
2195 	if (!bitmap_empty(aqrem, AP_DOMAINS)) {
2196 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.aqm,
2197 					    matrix_mdev->shadow_apcb.aqm,
2198 					    aqrem, AP_DEVICES);
2199 	}
2200 
2201 	if (!bitmap_empty(cdrem, AP_DOMAINS))
2202 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.adm,
2203 					    matrix_mdev->shadow_apcb.adm,
2204 					    cdrem, AP_DOMAINS);
2205 
2206 	if (do_hotplug)
2207 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2208 }
2209 
2210 /**
2211  * vfio_ap_mdev_cfg_remove - determines which guests are using the adapters,
2212  *			     domains and control domains that have been removed
2213  *			     from the host AP configuration and unplugs them
2214  *			     from those guests.
2215  *
2216  * @ap_remove:	bitmap specifying which adapters have been removed from the host
2217  *		config.
2218  * @aq_remove:	bitmap specifying which domains have been removed from the host
2219  *		config.
2220  * @cd_remove:	bitmap specifying which control domains have been removed from
2221  *		the host config.
2222  */
vfio_ap_mdev_cfg_remove(unsigned long * ap_remove,unsigned long * aq_remove,unsigned long * cd_remove)2223 static void vfio_ap_mdev_cfg_remove(unsigned long *ap_remove,
2224 				    unsigned long *aq_remove,
2225 				    unsigned long *cd_remove)
2226 {
2227 	struct ap_matrix_mdev *matrix_mdev;
2228 	DECLARE_BITMAP(aprem, AP_DEVICES);
2229 	DECLARE_BITMAP(aqrem, AP_DOMAINS);
2230 	DECLARE_BITMAP(cdrem, AP_DOMAINS);
2231 	int do_remove = 0;
2232 
2233 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2234 		mutex_lock(&matrix_mdev->kvm->lock);
2235 		mutex_lock(&matrix_dev->mdevs_lock);
2236 
2237 		do_remove |= bitmap_and(aprem, ap_remove,
2238 					  matrix_mdev->matrix.apm,
2239 					  AP_DEVICES);
2240 		do_remove |= bitmap_and(aqrem, aq_remove,
2241 					  matrix_mdev->matrix.aqm,
2242 					  AP_DOMAINS);
2243 		do_remove |= bitmap_andnot(cdrem, cd_remove,
2244 					     matrix_mdev->matrix.adm,
2245 					     AP_DOMAINS);
2246 
2247 		if (do_remove)
2248 			vfio_ap_mdev_hot_unplug_cfg(matrix_mdev, aprem, aqrem,
2249 						    cdrem);
2250 
2251 		mutex_unlock(&matrix_dev->mdevs_lock);
2252 		mutex_unlock(&matrix_mdev->kvm->lock);
2253 	}
2254 }
2255 
2256 /**
2257  * vfio_ap_mdev_on_cfg_remove - responds to the removal of adapters, domains and
2258  *				control domains from the host AP configuration
2259  *				by unplugging them from the guests that are
2260  *				using them.
2261  * @cur_config_info: the current host AP configuration information
2262  * @prev_config_info: the previous host AP configuration information
2263  */
vfio_ap_mdev_on_cfg_remove(struct ap_config_info * cur_config_info,struct ap_config_info * prev_config_info)2264 static void vfio_ap_mdev_on_cfg_remove(struct ap_config_info *cur_config_info,
2265 				       struct ap_config_info *prev_config_info)
2266 {
2267 	int do_remove;
2268 	DECLARE_BITMAP(aprem, AP_DEVICES);
2269 	DECLARE_BITMAP(aqrem, AP_DOMAINS);
2270 	DECLARE_BITMAP(cdrem, AP_DOMAINS);
2271 
2272 	do_remove = bitmap_andnot(aprem,
2273 				  (unsigned long *)prev_config_info->apm,
2274 				  (unsigned long *)cur_config_info->apm,
2275 				  AP_DEVICES);
2276 	do_remove |= bitmap_andnot(aqrem,
2277 				   (unsigned long *)prev_config_info->aqm,
2278 				   (unsigned long *)cur_config_info->aqm,
2279 				   AP_DEVICES);
2280 	do_remove |= bitmap_andnot(cdrem,
2281 				   (unsigned long *)prev_config_info->adm,
2282 				   (unsigned long *)cur_config_info->adm,
2283 				   AP_DEVICES);
2284 
2285 	if (do_remove)
2286 		vfio_ap_mdev_cfg_remove(aprem, aqrem, cdrem);
2287 }
2288 
2289 /**
2290  * vfio_ap_filter_apid_by_qtype: filter APIDs from an AP mask for adapters that
2291  *				 are older than AP type 10 (CEX4).
2292  * @apm: a bitmap of the APIDs to examine
2293  * @aqm: a bitmap of the APQIs of the queues to query for the AP type.
2294  */
vfio_ap_filter_apid_by_qtype(unsigned long * apm,unsigned long * aqm)2295 static void vfio_ap_filter_apid_by_qtype(unsigned long *apm, unsigned long *aqm)
2296 {
2297 	bool apid_cleared;
2298 	struct ap_queue_status status;
2299 	unsigned long apid, apqi;
2300 	struct ap_tapq_gr2 info;
2301 
2302 	for_each_set_bit_inv(apid, apm, AP_DEVICES) {
2303 		apid_cleared = false;
2304 
2305 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
2306 			status = ap_test_queue(AP_MKQID(apid, apqi), 1, &info);
2307 			switch (status.response_code) {
2308 			/*
2309 			 * According to the architecture in each case
2310 			 * below, the queue's info should be filled.
2311 			 */
2312 			case AP_RESPONSE_NORMAL:
2313 			case AP_RESPONSE_RESET_IN_PROGRESS:
2314 			case AP_RESPONSE_DECONFIGURED:
2315 			case AP_RESPONSE_CHECKSTOPPED:
2316 			case AP_RESPONSE_BUSY:
2317 				/*
2318 				 * The vfio_ap device driver only
2319 				 * supports CEX4 and newer adapters, so
2320 				 * remove the APID if the adapter is
2321 				 * older than a CEX4.
2322 				 */
2323 				if (info.at < AP_DEVICE_TYPE_CEX4) {
2324 					clear_bit_inv(apid, apm);
2325 					apid_cleared = true;
2326 				}
2327 
2328 				break;
2329 
2330 			default:
2331 				/*
2332 				 * If we don't know the adapter type,
2333 				 * clear its APID since it can't be
2334 				 * determined whether the vfio_ap
2335 				 * device driver supports it.
2336 				 */
2337 				clear_bit_inv(apid, apm);
2338 				apid_cleared = true;
2339 				break;
2340 			}
2341 
2342 			/*
2343 			 * If we've already cleared the APID from the apm, there
2344 			 * is no need to continue examining the remainin AP
2345 			 * queues to determine the type of the adapter.
2346 			 */
2347 			if (apid_cleared)
2348 				continue;
2349 		}
2350 	}
2351 }
2352 
2353 /**
2354  * vfio_ap_mdev_cfg_add - store bitmaps specifying the adapters, domains and
2355  *			  control domains that have been added to the host's
2356  *			  AP configuration for each matrix mdev to which they
2357  *			  are assigned.
2358  *
2359  * @apm_add: a bitmap specifying the adapters that have been added to the AP
2360  *	     configuration.
2361  * @aqm_add: a bitmap specifying the domains that have been added to the AP
2362  *	     configuration.
2363  * @adm_add: a bitmap specifying the control domains that have been added to the
2364  *	     AP configuration.
2365  */
vfio_ap_mdev_cfg_add(unsigned long * apm_add,unsigned long * aqm_add,unsigned long * adm_add)2366 static void vfio_ap_mdev_cfg_add(unsigned long *apm_add, unsigned long *aqm_add,
2367 				 unsigned long *adm_add)
2368 {
2369 	struct ap_matrix_mdev *matrix_mdev;
2370 
2371 	if (list_empty(&matrix_dev->mdev_list))
2372 		return;
2373 
2374 	vfio_ap_filter_apid_by_qtype(apm_add, aqm_add);
2375 
2376 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2377 		bitmap_and(matrix_mdev->apm_add,
2378 			   matrix_mdev->matrix.apm, apm_add, AP_DEVICES);
2379 		bitmap_and(matrix_mdev->aqm_add,
2380 			   matrix_mdev->matrix.aqm, aqm_add, AP_DOMAINS);
2381 		bitmap_and(matrix_mdev->adm_add,
2382 			   matrix_mdev->matrix.adm, adm_add, AP_DEVICES);
2383 	}
2384 }
2385 
2386 /**
2387  * vfio_ap_mdev_on_cfg_add - responds to the addition of adapters, domains and
2388  *			     control domains to the host AP configuration
2389  *			     by updating the bitmaps that specify what adapters,
2390  *			     domains and control domains have been added so they
2391  *			     can be hot plugged into the guest when the AP bus
2392  *			     scan completes (see vfio_ap_on_scan_complete
2393  *			     function).
2394  * @cur_config_info: the current AP configuration information
2395  * @prev_config_info: the previous AP configuration information
2396  */
vfio_ap_mdev_on_cfg_add(struct ap_config_info * cur_config_info,struct ap_config_info * prev_config_info)2397 static void vfio_ap_mdev_on_cfg_add(struct ap_config_info *cur_config_info,
2398 				    struct ap_config_info *prev_config_info)
2399 {
2400 	bool do_add;
2401 	DECLARE_BITMAP(apm_add, AP_DEVICES);
2402 	DECLARE_BITMAP(aqm_add, AP_DOMAINS);
2403 	DECLARE_BITMAP(adm_add, AP_DOMAINS);
2404 
2405 	do_add = bitmap_andnot(apm_add,
2406 			       (unsigned long *)cur_config_info->apm,
2407 			       (unsigned long *)prev_config_info->apm,
2408 			       AP_DEVICES);
2409 	do_add |= bitmap_andnot(aqm_add,
2410 				(unsigned long *)cur_config_info->aqm,
2411 				(unsigned long *)prev_config_info->aqm,
2412 				AP_DOMAINS);
2413 	do_add |= bitmap_andnot(adm_add,
2414 				(unsigned long *)cur_config_info->adm,
2415 				(unsigned long *)prev_config_info->adm,
2416 				AP_DOMAINS);
2417 
2418 	if (do_add)
2419 		vfio_ap_mdev_cfg_add(apm_add, aqm_add, adm_add);
2420 }
2421 
2422 /**
2423  * vfio_ap_on_cfg_changed - handles notification of changes to the host AP
2424  *			    configuration.
2425  *
2426  * @cur_cfg_info: the current host AP configuration
2427  * @prev_cfg_info: the previous host AP configuration
2428  */
vfio_ap_on_cfg_changed(struct ap_config_info * cur_cfg_info,struct ap_config_info * prev_cfg_info)2429 void vfio_ap_on_cfg_changed(struct ap_config_info *cur_cfg_info,
2430 			    struct ap_config_info *prev_cfg_info)
2431 {
2432 	if (!cur_cfg_info || !prev_cfg_info)
2433 		return;
2434 
2435 	mutex_lock(&matrix_dev->guests_lock);
2436 
2437 	vfio_ap_mdev_on_cfg_remove(cur_cfg_info, prev_cfg_info);
2438 	vfio_ap_mdev_on_cfg_add(cur_cfg_info, prev_cfg_info);
2439 	memcpy(&matrix_dev->info, cur_cfg_info, sizeof(*cur_cfg_info));
2440 
2441 	mutex_unlock(&matrix_dev->guests_lock);
2442 }
2443 
vfio_ap_mdev_hot_plug_cfg(struct ap_matrix_mdev * matrix_mdev)2444 static void vfio_ap_mdev_hot_plug_cfg(struct ap_matrix_mdev *matrix_mdev)
2445 {
2446 	bool do_hotplug = false;
2447 	int filter_domains = 0;
2448 	int filter_adapters = 0;
2449 	DECLARE_BITMAP(apm, AP_DEVICES);
2450 	DECLARE_BITMAP(aqm, AP_DOMAINS);
2451 
2452 	mutex_lock(&matrix_mdev->kvm->lock);
2453 	mutex_lock(&matrix_dev->mdevs_lock);
2454 
2455 	filter_adapters = bitmap_and(apm, matrix_mdev->matrix.apm,
2456 				     matrix_mdev->apm_add, AP_DEVICES);
2457 	filter_domains = bitmap_and(aqm, matrix_mdev->matrix.aqm,
2458 				    matrix_mdev->aqm_add, AP_DOMAINS);
2459 
2460 	if (filter_adapters && filter_domains)
2461 		do_hotplug |= vfio_ap_mdev_filter_matrix(apm, aqm, matrix_mdev);
2462 	else if (filter_adapters)
2463 		do_hotplug |=
2464 			vfio_ap_mdev_filter_matrix(apm,
2465 						   matrix_mdev->shadow_apcb.aqm,
2466 						   matrix_mdev);
2467 	else
2468 		do_hotplug |=
2469 			vfio_ap_mdev_filter_matrix(matrix_mdev->shadow_apcb.apm,
2470 						   aqm, matrix_mdev);
2471 
2472 	if (bitmap_intersects(matrix_mdev->matrix.adm, matrix_mdev->adm_add,
2473 			      AP_DOMAINS))
2474 		do_hotplug |= vfio_ap_mdev_filter_cdoms(matrix_mdev);
2475 
2476 	if (do_hotplug)
2477 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2478 
2479 	mutex_unlock(&matrix_dev->mdevs_lock);
2480 	mutex_unlock(&matrix_mdev->kvm->lock);
2481 }
2482 
vfio_ap_on_scan_complete(struct ap_config_info * new_config_info,struct ap_config_info * old_config_info)2483 void vfio_ap_on_scan_complete(struct ap_config_info *new_config_info,
2484 			      struct ap_config_info *old_config_info)
2485 {
2486 	struct ap_matrix_mdev *matrix_mdev;
2487 
2488 	mutex_lock(&matrix_dev->guests_lock);
2489 
2490 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2491 		if (bitmap_empty(matrix_mdev->apm_add, AP_DEVICES) &&
2492 		    bitmap_empty(matrix_mdev->aqm_add, AP_DOMAINS) &&
2493 		    bitmap_empty(matrix_mdev->adm_add, AP_DOMAINS))
2494 			continue;
2495 
2496 		vfio_ap_mdev_hot_plug_cfg(matrix_mdev);
2497 		bitmap_clear(matrix_mdev->apm_add, 0, AP_DEVICES);
2498 		bitmap_clear(matrix_mdev->aqm_add, 0, AP_DOMAINS);
2499 		bitmap_clear(matrix_mdev->adm_add, 0, AP_DOMAINS);
2500 	}
2501 
2502 	mutex_unlock(&matrix_dev->guests_lock);
2503 }
2504