1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/libfdt.h>
24 #include <linux/debugfs.h>
25 #include <linux/serial_core.h>
26 #include <linux/sysfs.h>
27 #include <linux/random.h>
28
29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31
32 #include "of_private.h"
33
34 /*
35 * of_fdt_limit_memory - limit the number of regions in the /memory node
36 * @limit: maximum entries
37 *
38 * Adjust the flattened device tree to have at most 'limit' number of
39 * memory entries in the /memory node. This function may be called
40 * any time after initial_boot_param is set.
41 */
of_fdt_limit_memory(int limit)42 void __init of_fdt_limit_memory(int limit)
43 {
44 int memory;
45 int len;
46 const void *val;
47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 const __be32 *addr_prop;
50 const __be32 *size_prop;
51 int root_offset;
52 int cell_size;
53
54 root_offset = fdt_path_offset(initial_boot_params, "/");
55 if (root_offset < 0)
56 return;
57
58 addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 "#address-cells", NULL);
60 if (addr_prop)
61 nr_address_cells = fdt32_to_cpu(*addr_prop);
62
63 size_prop = fdt_getprop(initial_boot_params, root_offset,
64 "#size-cells", NULL);
65 if (size_prop)
66 nr_size_cells = fdt32_to_cpu(*size_prop);
67
68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69
70 memory = fdt_path_offset(initial_boot_params, "/memory");
71 if (memory > 0) {
72 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 if (len > limit*cell_size) {
74 len = limit*cell_size;
75 pr_debug("Limiting number of entries to %d\n", limit);
76 fdt_setprop(initial_boot_params, memory, "reg", val,
77 len);
78 }
79 }
80 }
81
of_fdt_device_is_available(const void * blob,unsigned long node)82 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
83 {
84 const char *status = fdt_getprop(blob, node, "status", NULL);
85
86 if (!status)
87 return true;
88
89 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
90 return true;
91
92 return false;
93 }
94
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)95 static void *unflatten_dt_alloc(void **mem, unsigned long size,
96 unsigned long align)
97 {
98 void *res;
99
100 *mem = PTR_ALIGN(*mem, align);
101 res = *mem;
102 *mem += size;
103
104 return res;
105 }
106
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)107 static void populate_properties(const void *blob,
108 int offset,
109 void **mem,
110 struct device_node *np,
111 const char *nodename,
112 bool dryrun)
113 {
114 struct property *pp, **pprev = NULL;
115 int cur;
116 bool has_name = false;
117
118 pprev = &np->properties;
119 for (cur = fdt_first_property_offset(blob, offset);
120 cur >= 0;
121 cur = fdt_next_property_offset(blob, cur)) {
122 const __be32 *val;
123 const char *pname;
124 u32 sz;
125
126 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
127 if (!val) {
128 pr_warn("Cannot locate property at 0x%x\n", cur);
129 continue;
130 }
131
132 if (!pname) {
133 pr_warn("Cannot find property name at 0x%x\n", cur);
134 continue;
135 }
136
137 if (!strcmp(pname, "name"))
138 has_name = true;
139
140 pp = unflatten_dt_alloc(mem, sizeof(struct property),
141 __alignof__(struct property));
142 if (dryrun)
143 continue;
144
145 /* We accept flattened tree phandles either in
146 * ePAPR-style "phandle" properties, or the
147 * legacy "linux,phandle" properties. If both
148 * appear and have different values, things
149 * will get weird. Don't do that.
150 */
151 if (!strcmp(pname, "phandle") ||
152 !strcmp(pname, "linux,phandle")) {
153 if (!np->phandle)
154 np->phandle = be32_to_cpup(val);
155 }
156
157 /* And we process the "ibm,phandle" property
158 * used in pSeries dynamic device tree
159 * stuff
160 */
161 if (!strcmp(pname, "ibm,phandle"))
162 np->phandle = be32_to_cpup(val);
163
164 pp->name = (char *)pname;
165 pp->length = sz;
166 pp->value = (__be32 *)val;
167 *pprev = pp;
168 pprev = &pp->next;
169 }
170
171 /* With version 0x10 we may not have the name property,
172 * recreate it here from the unit name if absent
173 */
174 if (!has_name) {
175 const char *p = nodename, *ps = p, *pa = NULL;
176 int len;
177
178 while (*p) {
179 if ((*p) == '@')
180 pa = p;
181 else if ((*p) == '/')
182 ps = p + 1;
183 p++;
184 }
185
186 if (pa < ps)
187 pa = p;
188 len = (pa - ps) + 1;
189 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
190 __alignof__(struct property));
191 if (!dryrun) {
192 pp->name = "name";
193 pp->length = len;
194 pp->value = pp + 1;
195 *pprev = pp;
196 pprev = &pp->next;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203
204 if (!dryrun)
205 *pprev = NULL;
206 }
207
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)208 static bool populate_node(const void *blob,
209 int offset,
210 void **mem,
211 struct device_node *dad,
212 struct device_node **pnp,
213 bool dryrun)
214 {
215 struct device_node *np;
216 const char *pathp;
217 unsigned int l, allocl;
218
219 pathp = fdt_get_name(blob, offset, &l);
220 if (!pathp) {
221 *pnp = NULL;
222 return false;
223 }
224
225 allocl = ++l;
226
227 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
228 __alignof__(struct device_node));
229 if (!dryrun) {
230 char *fn;
231 of_node_init(np);
232 np->full_name = fn = ((char *)np) + sizeof(*np);
233
234 memcpy(fn, pathp, l);
235
236 if (dad != NULL) {
237 np->parent = dad;
238 np->sibling = dad->child;
239 dad->child = np;
240 }
241 }
242
243 populate_properties(blob, offset, mem, np, pathp, dryrun);
244 if (!dryrun) {
245 np->name = of_get_property(np, "name", NULL);
246 if (!np->name)
247 np->name = "<NULL>";
248 }
249
250 *pnp = np;
251 return true;
252 }
253
reverse_nodes(struct device_node * parent)254 static void reverse_nodes(struct device_node *parent)
255 {
256 struct device_node *child, *next;
257
258 /* In-depth first */
259 child = parent->child;
260 while (child) {
261 reverse_nodes(child);
262
263 child = child->sibling;
264 }
265
266 /* Reverse the nodes in the child list */
267 child = parent->child;
268 parent->child = NULL;
269 while (child) {
270 next = child->sibling;
271
272 child->sibling = parent->child;
273 parent->child = child;
274 child = next;
275 }
276 }
277
278 /**
279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
280 * @blob: The parent device tree blob
281 * @mem: Memory chunk to use for allocating device nodes and properties
282 * @dad: Parent struct device_node
283 * @nodepp: The device_node tree created by the call
284 *
285 * It returns the size of unflattened device tree or error code
286 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)287 static int unflatten_dt_nodes(const void *blob,
288 void *mem,
289 struct device_node *dad,
290 struct device_node **nodepp)
291 {
292 struct device_node *root;
293 int offset = 0, depth = 0, initial_depth = 0;
294 #define FDT_MAX_DEPTH 64
295 struct device_node *nps[FDT_MAX_DEPTH];
296 void *base = mem;
297 bool dryrun = !base;
298
299 if (nodepp)
300 *nodepp = NULL;
301
302 /*
303 * We're unflattening device sub-tree if @dad is valid. There are
304 * possibly multiple nodes in the first level of depth. We need
305 * set @depth to 1 to make fdt_next_node() happy as it bails
306 * immediately when negative @depth is found. Otherwise, the device
307 * nodes except the first one won't be unflattened successfully.
308 */
309 if (dad)
310 depth = initial_depth = 1;
311
312 root = dad;
313 nps[depth] = dad;
314
315 for (offset = 0;
316 offset >= 0 && depth >= initial_depth;
317 offset = fdt_next_node(blob, offset, &depth)) {
318 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
319 continue;
320
321 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
322 !of_fdt_device_is_available(blob, offset))
323 continue;
324
325 if (!populate_node(blob, offset, &mem, nps[depth],
326 &nps[depth+1], dryrun))
327 return mem - base;
328
329 if (!dryrun && nodepp && !*nodepp)
330 *nodepp = nps[depth+1];
331 if (!dryrun && !root)
332 root = nps[depth+1];
333 }
334
335 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
336 pr_err("Error %d processing FDT\n", offset);
337 return -EINVAL;
338 }
339
340 /*
341 * Reverse the child list. Some drivers assumes node order matches .dts
342 * node order
343 */
344 if (!dryrun)
345 reverse_nodes(root);
346
347 return mem - base;
348 }
349
350 /**
351 * __unflatten_device_tree - create tree of device_nodes from flat blob
352 *
353 * unflattens a device-tree, creating the
354 * tree of struct device_node. It also fills the "name" and "type"
355 * pointers of the nodes so the normal device-tree walking functions
356 * can be used.
357 * @blob: The blob to expand
358 * @dad: Parent device node
359 * @mynodes: The device_node tree created by the call
360 * @dt_alloc: An allocator that provides a virtual address to memory
361 * for the resulting tree
362 * @detached: if true set OF_DETACHED on @mynodes
363 *
364 * Returns NULL on failure or the memory chunk containing the unflattened
365 * device tree on success.
366 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)367 void *__unflatten_device_tree(const void *blob,
368 struct device_node *dad,
369 struct device_node **mynodes,
370 void *(*dt_alloc)(u64 size, u64 align),
371 bool detached)
372 {
373 int size;
374 void *mem;
375
376 pr_debug(" -> unflatten_device_tree()\n");
377
378 if (!blob) {
379 pr_debug("No device tree pointer\n");
380 return NULL;
381 }
382
383 pr_debug("Unflattening device tree:\n");
384 pr_debug("magic: %08x\n", fdt_magic(blob));
385 pr_debug("size: %08x\n", fdt_totalsize(blob));
386 pr_debug("version: %08x\n", fdt_version(blob));
387
388 if (fdt_check_header(blob)) {
389 pr_err("Invalid device tree blob header\n");
390 return NULL;
391 }
392
393 /* First pass, scan for size */
394 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
395 if (size < 0)
396 return NULL;
397
398 size = ALIGN(size, 4);
399 pr_debug(" size is %d, allocating...\n", size);
400
401 /* Allocate memory for the expanded device tree */
402 mem = dt_alloc(size + 4, __alignof__(struct device_node));
403 if (!mem)
404 return NULL;
405
406 memset(mem, 0, size);
407
408 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
409
410 pr_debug(" unflattening %p...\n", mem);
411
412 /* Second pass, do actual unflattening */
413 unflatten_dt_nodes(blob, mem, dad, mynodes);
414 if (be32_to_cpup(mem + size) != 0xdeadbeef)
415 pr_warning("End of tree marker overwritten: %08x\n",
416 be32_to_cpup(mem + size));
417
418 if (detached && mynodes) {
419 of_node_set_flag(*mynodes, OF_DETACHED);
420 pr_debug("unflattened tree is detached\n");
421 }
422
423 pr_debug(" <- unflatten_device_tree()\n");
424 return mem;
425 }
426
kernel_tree_alloc(u64 size,u64 align)427 static void *kernel_tree_alloc(u64 size, u64 align)
428 {
429 return kzalloc(size, GFP_KERNEL);
430 }
431
432 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
433
434 /**
435 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
436 * @blob: Flat device tree blob
437 * @dad: Parent device node
438 * @mynodes: The device tree created by the call
439 *
440 * unflattens the device-tree passed by the firmware, creating the
441 * tree of struct device_node. It also fills the "name" and "type"
442 * pointers of the nodes so the normal device-tree walking functions
443 * can be used.
444 *
445 * Returns NULL on failure or the memory chunk containing the unflattened
446 * device tree on success.
447 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)448 void *of_fdt_unflatten_tree(const unsigned long *blob,
449 struct device_node *dad,
450 struct device_node **mynodes)
451 {
452 void *mem;
453
454 mutex_lock(&of_fdt_unflatten_mutex);
455 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
456 true);
457 mutex_unlock(&of_fdt_unflatten_mutex);
458
459 return mem;
460 }
461 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
462
463 /* Everything below here references initial_boot_params directly. */
464 int __initdata dt_root_addr_cells;
465 int __initdata dt_root_size_cells;
466
467 void *initial_boot_params __ro_after_init;
468
469 #ifdef CONFIG_OF_EARLY_FLATTREE
470
471 static u32 of_fdt_crc32;
472
473 /**
474 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
475 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)476 static int __init __reserved_mem_reserve_reg(unsigned long node,
477 const char *uname)
478 {
479 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
480 phys_addr_t base, size;
481 int len;
482 const __be32 *prop;
483 int first = 1;
484 bool nomap;
485
486 prop = of_get_flat_dt_prop(node, "reg", &len);
487 if (!prop)
488 return -ENOENT;
489
490 if (len && len % t_len != 0) {
491 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
492 uname);
493 return -EINVAL;
494 }
495
496 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
497
498 while (len >= t_len) {
499 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
500 size = dt_mem_next_cell(dt_root_size_cells, &prop);
501
502 if (size &&
503 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
504 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
505 uname, &base, (unsigned long)size / SZ_1M);
506 else
507 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
508 uname, &base, (unsigned long)size / SZ_1M);
509
510 len -= t_len;
511 if (first) {
512 fdt_reserved_mem_save_node(node, uname, base, size);
513 first = 0;
514 }
515 }
516 return 0;
517 }
518
519 /**
520 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
521 * in /reserved-memory matches the values supported by the current implementation,
522 * also check if ranges property has been provided
523 */
__reserved_mem_check_root(unsigned long node)524 static int __init __reserved_mem_check_root(unsigned long node)
525 {
526 const __be32 *prop;
527
528 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
529 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
530 return -EINVAL;
531
532 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
533 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
534 return -EINVAL;
535
536 prop = of_get_flat_dt_prop(node, "ranges", NULL);
537 if (!prop)
538 return -EINVAL;
539 return 0;
540 }
541
542 /**
543 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
544 */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)545 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
546 int depth, void *data)
547 {
548 static int found;
549 int err;
550
551 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
552 if (__reserved_mem_check_root(node) != 0) {
553 pr_err("Reserved memory: unsupported node format, ignoring\n");
554 /* break scan */
555 return 1;
556 }
557 found = 1;
558 /* scan next node */
559 return 0;
560 } else if (!found) {
561 /* scan next node */
562 return 0;
563 } else if (found && depth < 2) {
564 /* scanning of /reserved-memory has been finished */
565 return 1;
566 }
567
568 if (!of_fdt_device_is_available(initial_boot_params, node))
569 return 0;
570
571 err = __reserved_mem_reserve_reg(node, uname);
572 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
573 fdt_reserved_mem_save_node(node, uname, 0, 0);
574
575 /* scan next node */
576 return 0;
577 }
578
579 /**
580 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
581 *
582 * This function grabs memory from early allocator for device exclusive use
583 * defined in device tree structures. It should be called by arch specific code
584 * once the early allocator (i.e. memblock) has been fully activated.
585 */
early_init_fdt_scan_reserved_mem(void)586 void __init early_init_fdt_scan_reserved_mem(void)
587 {
588 int n;
589 u64 base, size;
590
591 if (!initial_boot_params)
592 return;
593
594 /* Process header /memreserve/ fields */
595 for (n = 0; ; n++) {
596 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
597 if (!size)
598 break;
599 early_init_dt_reserve_memory_arch(base, size, false);
600 }
601
602 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
603 fdt_init_reserved_mem();
604 }
605
606 /**
607 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
608 */
early_init_fdt_reserve_self(void)609 void __init early_init_fdt_reserve_self(void)
610 {
611 if (!initial_boot_params)
612 return;
613
614 /* Reserve the dtb region */
615 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
616 fdt_totalsize(initial_boot_params),
617 false);
618 }
619
620 /**
621 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
622 * @it: callback function
623 * @data: context data pointer
624 *
625 * This function is used to scan the flattened device-tree, it is
626 * used to extract the memory information at boot before we can
627 * unflatten the tree
628 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)629 int __init of_scan_flat_dt(int (*it)(unsigned long node,
630 const char *uname, int depth,
631 void *data),
632 void *data)
633 {
634 const void *blob = initial_boot_params;
635 const char *pathp;
636 int offset, rc = 0, depth = -1;
637
638 if (!blob)
639 return 0;
640
641 for (offset = fdt_next_node(blob, -1, &depth);
642 offset >= 0 && depth >= 0 && !rc;
643 offset = fdt_next_node(blob, offset, &depth)) {
644
645 pathp = fdt_get_name(blob, offset, NULL);
646 if (*pathp == '/')
647 pathp = kbasename(pathp);
648 rc = it(offset, pathp, depth, data);
649 }
650 return rc;
651 }
652
653 /**
654 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
655 * @it: callback function
656 * @data: context data pointer
657 *
658 * This function is used to scan sub-nodes of a node.
659 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)660 int __init of_scan_flat_dt_subnodes(unsigned long parent,
661 int (*it)(unsigned long node,
662 const char *uname,
663 void *data),
664 void *data)
665 {
666 const void *blob = initial_boot_params;
667 int node;
668
669 fdt_for_each_subnode(node, blob, parent) {
670 const char *pathp;
671 int rc;
672
673 pathp = fdt_get_name(blob, node, NULL);
674 if (*pathp == '/')
675 pathp = kbasename(pathp);
676 rc = it(node, pathp, data);
677 if (rc)
678 return rc;
679 }
680 return 0;
681 }
682
683 /**
684 * of_get_flat_dt_subnode_by_name - get the subnode by given name
685 *
686 * @node: the parent node
687 * @uname: the name of subnode
688 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
689 */
690
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)691 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
692 {
693 return fdt_subnode_offset(initial_boot_params, node, uname);
694 }
695
696 /**
697 * of_get_flat_dt_root - find the root node in the flat blob
698 */
of_get_flat_dt_root(void)699 unsigned long __init of_get_flat_dt_root(void)
700 {
701 return 0;
702 }
703
704 /**
705 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
706 *
707 * This function can be used within scan_flattened_dt callback to get
708 * access to properties
709 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)710 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
711 int *size)
712 {
713 return fdt_getprop(initial_boot_params, node, name, size);
714 }
715
716 /**
717 * of_fdt_is_compatible - Return true if given node from the given blob has
718 * compat in its compatible list
719 * @blob: A device tree blob
720 * @node: node to test
721 * @compat: compatible string to compare with compatible list.
722 *
723 * On match, returns a non-zero value with smaller values returned for more
724 * specific compatible values.
725 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)726 static int of_fdt_is_compatible(const void *blob,
727 unsigned long node, const char *compat)
728 {
729 const char *cp;
730 int cplen;
731 unsigned long l, score = 0;
732
733 cp = fdt_getprop(blob, node, "compatible", &cplen);
734 if (cp == NULL)
735 return 0;
736 while (cplen > 0) {
737 score++;
738 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
739 return score;
740 l = strlen(cp) + 1;
741 cp += l;
742 cplen -= l;
743 }
744
745 return 0;
746 }
747
748 /**
749 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
750 * @node: node to test
751 * @compat: compatible string to compare with compatible list.
752 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)753 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
754 {
755 return of_fdt_is_compatible(initial_boot_params, node, compat);
756 }
757
758 /**
759 * of_flat_dt_match - Return true if node matches a list of compatible values
760 */
of_flat_dt_match(unsigned long node,const char * const * compat)761 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
762 {
763 unsigned int tmp, score = 0;
764
765 if (!compat)
766 return 0;
767
768 while (*compat) {
769 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
770 if (tmp && (score == 0 || (tmp < score)))
771 score = tmp;
772 compat++;
773 }
774
775 return score;
776 }
777
778 /**
779 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
780 */
of_get_flat_dt_phandle(unsigned long node)781 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
782 {
783 return fdt_get_phandle(initial_boot_params, node);
784 }
785
786 struct fdt_scan_status {
787 const char *name;
788 int namelen;
789 int depth;
790 int found;
791 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
792 void *data;
793 };
794
of_flat_dt_get_machine_name(void)795 const char * __init of_flat_dt_get_machine_name(void)
796 {
797 const char *name;
798 unsigned long dt_root = of_get_flat_dt_root();
799
800 name = of_get_flat_dt_prop(dt_root, "model", NULL);
801 if (!name)
802 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
803 return name;
804 }
805
806 /**
807 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
808 *
809 * @default_match: A machine specific ptr to return in case of no match.
810 * @get_next_compat: callback function to return next compatible match table.
811 *
812 * Iterate through machine match tables to find the best match for the machine
813 * compatible string in the FDT.
814 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))815 const void * __init of_flat_dt_match_machine(const void *default_match,
816 const void * (*get_next_compat)(const char * const**))
817 {
818 const void *data = NULL;
819 const void *best_data = default_match;
820 const char *const *compat;
821 unsigned long dt_root;
822 unsigned int best_score = ~1, score = 0;
823
824 dt_root = of_get_flat_dt_root();
825 while ((data = get_next_compat(&compat))) {
826 score = of_flat_dt_match(dt_root, compat);
827 if (score > 0 && score < best_score) {
828 best_data = data;
829 best_score = score;
830 }
831 }
832 if (!best_data) {
833 const char *prop;
834 int size;
835
836 pr_err("\n unrecognized device tree list:\n[ ");
837
838 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
839 if (prop) {
840 while (size > 0) {
841 printk("'%s' ", prop);
842 size -= strlen(prop) + 1;
843 prop += strlen(prop) + 1;
844 }
845 }
846 printk("]\n\n");
847 return NULL;
848 }
849
850 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
851
852 return best_data;
853 }
854
855 #ifdef CONFIG_BLK_DEV_INITRD
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)856 static void __early_init_dt_declare_initrd(unsigned long start,
857 unsigned long end)
858 {
859 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
860 * enabled since __va() is called too early. ARM64 does make use
861 * of phys_initrd_start/phys_initrd_size so we can skip this
862 * conversion.
863 */
864 if (!IS_ENABLED(CONFIG_ARM64)) {
865 initrd_start = (unsigned long)__va(start);
866 initrd_end = (unsigned long)__va(end);
867 initrd_below_start_ok = 1;
868 }
869 }
870
871 /**
872 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
873 * @node: reference to node containing initrd location ('chosen')
874 */
early_init_dt_check_for_initrd(unsigned long node)875 static void __init early_init_dt_check_for_initrd(unsigned long node)
876 {
877 u64 start, end;
878 int len;
879 const __be32 *prop;
880
881 pr_debug("Looking for initrd properties... ");
882
883 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
884 if (!prop)
885 return;
886 start = of_read_number(prop, len/4);
887
888 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
889 if (!prop)
890 return;
891 end = of_read_number(prop, len/4);
892
893 __early_init_dt_declare_initrd(start, end);
894 phys_initrd_start = start;
895 phys_initrd_size = end - start;
896
897 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
898 (unsigned long long)start, (unsigned long long)end);
899 }
900 #else
early_init_dt_check_for_initrd(unsigned long node)901 static inline void early_init_dt_check_for_initrd(unsigned long node)
902 {
903 }
904 #endif /* CONFIG_BLK_DEV_INITRD */
905
906 #ifdef CONFIG_SERIAL_EARLYCON
907
early_init_dt_scan_chosen_stdout(void)908 int __init early_init_dt_scan_chosen_stdout(void)
909 {
910 int offset;
911 const char *p, *q, *options = NULL;
912 int l;
913 const struct earlycon_id **p_match;
914 const void *fdt = initial_boot_params;
915
916 offset = fdt_path_offset(fdt, "/chosen");
917 if (offset < 0)
918 offset = fdt_path_offset(fdt, "/chosen@0");
919 if (offset < 0)
920 return -ENOENT;
921
922 p = fdt_getprop(fdt, offset, "stdout-path", &l);
923 if (!p)
924 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
925 if (!p || !l)
926 return -ENOENT;
927
928 q = strchrnul(p, ':');
929 if (*q != '\0')
930 options = q + 1;
931 l = q - p;
932
933 /* Get the node specified by stdout-path */
934 offset = fdt_path_offset_namelen(fdt, p, l);
935 if (offset < 0) {
936 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
937 return 0;
938 }
939
940 for (p_match = __earlycon_table; p_match < __earlycon_table_end;
941 p_match++) {
942 const struct earlycon_id *match = *p_match;
943
944 if (!match->compatible[0])
945 continue;
946
947 if (fdt_node_check_compatible(fdt, offset, match->compatible))
948 continue;
949
950 of_setup_earlycon(match, offset, options);
951 return 0;
952 }
953 return -ENODEV;
954 }
955 #endif
956
957 /**
958 * early_init_dt_scan_root - fetch the top level address and size cells
959 */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)960 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
961 int depth, void *data)
962 {
963 const __be32 *prop;
964
965 if (depth != 0)
966 return 0;
967
968 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
969 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
970
971 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
972 if (prop)
973 dt_root_size_cells = be32_to_cpup(prop);
974 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
975
976 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
977 if (prop)
978 dt_root_addr_cells = be32_to_cpup(prop);
979 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
980
981 /* break now */
982 return 1;
983 }
984
dt_mem_next_cell(int s,const __be32 ** cellp)985 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
986 {
987 const __be32 *p = *cellp;
988
989 *cellp = p + s;
990 return of_read_number(p, s);
991 }
992
993 /**
994 * early_init_dt_scan_memory - Look for and parse memory nodes
995 */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)996 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
997 int depth, void *data)
998 {
999 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1000 const __be32 *reg, *endp;
1001 int l;
1002 bool hotpluggable;
1003
1004 /* We are scanning "memory" nodes only */
1005 if (type == NULL || strcmp(type, "memory") != 0)
1006 return 0;
1007
1008 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1009 if (reg == NULL)
1010 reg = of_get_flat_dt_prop(node, "reg", &l);
1011 if (reg == NULL)
1012 return 0;
1013
1014 endp = reg + (l / sizeof(__be32));
1015 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1016
1017 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1018
1019 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1020 u64 base, size;
1021
1022 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1023 size = dt_mem_next_cell(dt_root_size_cells, ®);
1024
1025 if (size == 0)
1026 continue;
1027 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1028 (unsigned long long)size);
1029
1030 early_init_dt_add_memory_arch(base, size);
1031
1032 if (!hotpluggable)
1033 continue;
1034
1035 if (early_init_dt_mark_hotplug_memory_arch(base, size))
1036 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1037 base, base + size);
1038 }
1039
1040 return 0;
1041 }
1042
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1043 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1044 int depth, void *data)
1045 {
1046 int l;
1047 const char *p;
1048 const void *rng_seed;
1049
1050 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1051
1052 if (depth != 1 || !data ||
1053 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1054 return 0;
1055
1056 early_init_dt_check_for_initrd(node);
1057
1058 /* Retrieve command line */
1059 p = of_get_flat_dt_prop(node, "bootargs", &l);
1060 if (p != NULL && l > 0)
1061 strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1062
1063 /*
1064 * CONFIG_CMDLINE is meant to be a default in case nothing else
1065 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1066 * is set in which case we override whatever was found earlier.
1067 */
1068 #ifdef CONFIG_CMDLINE
1069 #if defined(CONFIG_CMDLINE_EXTEND)
1070 strlcat(data, " ", COMMAND_LINE_SIZE);
1071 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1072 #elif defined(CONFIG_CMDLINE_FORCE)
1073 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1074 #else
1075 /* No arguments from boot loader, use kernel's cmdl*/
1076 if (!((char *)data)[0])
1077 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1078 #endif
1079 #endif /* CONFIG_CMDLINE */
1080
1081 pr_debug("Command line is: %s\n", (char*)data);
1082
1083 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1084 if (rng_seed && l > 0) {
1085 add_bootloader_randomness(rng_seed, l);
1086
1087 /* try to clear seed so it won't be found. */
1088 fdt_nop_property(initial_boot_params, node, "rng-seed");
1089
1090 /* update CRC check value */
1091 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1092 fdt_totalsize(initial_boot_params));
1093 }
1094
1095 /* break now */
1096 return 1;
1097 }
1098
1099 #ifndef MIN_MEMBLOCK_ADDR
1100 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1101 #endif
1102 #ifndef MAX_MEMBLOCK_ADDR
1103 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1104 #endif
1105
early_init_dt_add_memory_arch(u64 base,u64 size)1106 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1107 {
1108 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1109
1110 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1111 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1112 base, base + size);
1113 return;
1114 }
1115
1116 if (!PAGE_ALIGNED(base)) {
1117 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1118 base = PAGE_ALIGN(base);
1119 }
1120 size &= PAGE_MASK;
1121
1122 if (base > MAX_MEMBLOCK_ADDR) {
1123 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1124 base, base + size);
1125 return;
1126 }
1127
1128 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1129 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1130 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1131 size = MAX_MEMBLOCK_ADDR - base + 1;
1132 }
1133
1134 if (base + size < phys_offset) {
1135 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1136 base, base + size);
1137 return;
1138 }
1139 if (base < phys_offset) {
1140 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1141 base, phys_offset);
1142 size -= phys_offset - base;
1143 base = phys_offset;
1144 }
1145 memblock_add(base, size);
1146 }
1147
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1148 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1149 {
1150 return memblock_mark_hotplug(base, size);
1151 }
1152
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1153 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1154 phys_addr_t size, bool nomap)
1155 {
1156 if (nomap)
1157 return memblock_remove(base, size);
1158 return memblock_reserve(base, size);
1159 }
1160
early_init_dt_alloc_memory_arch(u64 size,u64 align)1161 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1162 {
1163 void *ptr = memblock_alloc(size, align);
1164
1165 if (!ptr)
1166 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1167 __func__, size, align);
1168
1169 return ptr;
1170 }
1171
early_init_dt_verify(void * params)1172 bool __init early_init_dt_verify(void *params)
1173 {
1174 if (!params)
1175 return false;
1176
1177 /* check device tree validity */
1178 if (fdt_check_header(params))
1179 return false;
1180
1181 /* Setup flat device-tree pointer */
1182 initial_boot_params = params;
1183 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1184 fdt_totalsize(initial_boot_params));
1185 return true;
1186 }
1187
1188
early_init_dt_scan_nodes(void)1189 void __init early_init_dt_scan_nodes(void)
1190 {
1191 int rc = 0;
1192
1193 /* Retrieve various information from the /chosen node */
1194 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1195 if (!rc)
1196 pr_warn("No chosen node found, continuing without\n");
1197
1198 /* Initialize {size,address}-cells info */
1199 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1200
1201 /* Setup memory, calling early_init_dt_add_memory_arch */
1202 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1203 }
1204
early_init_dt_scan(void * params)1205 bool __init early_init_dt_scan(void *params)
1206 {
1207 bool status;
1208
1209 status = early_init_dt_verify(params);
1210 if (!status)
1211 return false;
1212
1213 early_init_dt_scan_nodes();
1214 return true;
1215 }
1216
1217 /**
1218 * unflatten_device_tree - create tree of device_nodes from flat blob
1219 *
1220 * unflattens the device-tree passed by the firmware, creating the
1221 * tree of struct device_node. It also fills the "name" and "type"
1222 * pointers of the nodes so the normal device-tree walking functions
1223 * can be used.
1224 */
unflatten_device_tree(void)1225 void __init unflatten_device_tree(void)
1226 {
1227 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1228 early_init_dt_alloc_memory_arch, false);
1229
1230 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1231 of_alias_scan(early_init_dt_alloc_memory_arch);
1232
1233 unittest_unflatten_overlay_base();
1234 }
1235
1236 /**
1237 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1238 *
1239 * Copies and unflattens the device-tree passed by the firmware, creating the
1240 * tree of struct device_node. It also fills the "name" and "type"
1241 * pointers of the nodes so the normal device-tree walking functions
1242 * can be used. This should only be used when the FDT memory has not been
1243 * reserved such is the case when the FDT is built-in to the kernel init
1244 * section. If the FDT memory is reserved already then unflatten_device_tree
1245 * should be used instead.
1246 */
unflatten_and_copy_device_tree(void)1247 void __init unflatten_and_copy_device_tree(void)
1248 {
1249 int size;
1250 void *dt;
1251
1252 if (!initial_boot_params) {
1253 pr_warn("No valid device tree found, continuing without\n");
1254 return;
1255 }
1256
1257 size = fdt_totalsize(initial_boot_params);
1258 dt = early_init_dt_alloc_memory_arch(size,
1259 roundup_pow_of_two(FDT_V17_SIZE));
1260
1261 if (dt) {
1262 memcpy(dt, initial_boot_params, size);
1263 initial_boot_params = dt;
1264 }
1265 unflatten_device_tree();
1266 }
1267
1268 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1269 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1270 struct bin_attribute *bin_attr,
1271 char *buf, loff_t off, size_t count)
1272 {
1273 memcpy(buf, initial_boot_params + off, count);
1274 return count;
1275 }
1276
of_fdt_raw_init(void)1277 static int __init of_fdt_raw_init(void)
1278 {
1279 static struct bin_attribute of_fdt_raw_attr =
1280 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1281
1282 if (!initial_boot_params)
1283 return 0;
1284
1285 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1286 fdt_totalsize(initial_boot_params))) {
1287 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1288 return 0;
1289 }
1290 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1291 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1292 }
1293 late_initcall(of_fdt_raw_init);
1294 #endif
1295
1296 #endif /* CONFIG_OF_EARLY_FLATTREE */
1297