1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2017 IBM Corp.
3 #include <linux/sched/mm.h>
4 #include <linux/mutex.h>
5 #include <linux/mm_types.h>
6 #include <linux/mmu_context.h>
7 #include <asm/copro.h>
8 #include <asm/pnv-ocxl.h>
9 #include <misc/ocxl.h>
10 #include "ocxl_internal.h"
11 #include "trace.h"
12 
13 
14 #define SPA_PASID_BITS		15
15 #define SPA_PASID_MAX		((1 << SPA_PASID_BITS) - 1)
16 #define SPA_PE_MASK		SPA_PASID_MAX
17 #define SPA_SPA_SIZE_LOG	22 /* Each SPA is 4 Mb */
18 
19 #define SPA_CFG_SF		(1ull << (63-0))
20 #define SPA_CFG_TA		(1ull << (63-1))
21 #define SPA_CFG_HV		(1ull << (63-3))
22 #define SPA_CFG_UV		(1ull << (63-4))
23 #define SPA_CFG_XLAT_hpt	(0ull << (63-6)) /* Hashed page table (HPT) mode */
24 #define SPA_CFG_XLAT_roh	(2ull << (63-6)) /* Radix on HPT mode */
25 #define SPA_CFG_XLAT_ror	(3ull << (63-6)) /* Radix on Radix mode */
26 #define SPA_CFG_PR		(1ull << (63-49))
27 #define SPA_CFG_TC		(1ull << (63-54))
28 #define SPA_CFG_DR		(1ull << (63-59))
29 
30 #define SPA_XSL_TF		(1ull << (63-3))  /* Translation fault */
31 #define SPA_XSL_S		(1ull << (63-38)) /* Store operation */
32 
33 #define SPA_PE_VALID		0x80000000
34 
35 
36 struct pe_data {
37 	struct mm_struct *mm;
38 	/* callback to trigger when a translation fault occurs */
39 	void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr);
40 	/* opaque pointer to be passed to the above callback */
41 	void *xsl_err_data;
42 	struct rcu_head rcu;
43 };
44 
45 struct spa {
46 	struct ocxl_process_element *spa_mem;
47 	int spa_order;
48 	struct mutex spa_lock;
49 	struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */
50 	char *irq_name;
51 	int virq;
52 	void __iomem *reg_dsisr;
53 	void __iomem *reg_dar;
54 	void __iomem *reg_tfc;
55 	void __iomem *reg_pe_handle;
56 	/*
57 	 * The following field are used by the memory fault
58 	 * interrupt handler. We can only have one interrupt at a
59 	 * time. The NPU won't raise another interrupt until the
60 	 * previous one has been ack'd by writing to the TFC register
61 	 */
62 	struct xsl_fault {
63 		struct work_struct fault_work;
64 		u64 pe;
65 		u64 dsisr;
66 		u64 dar;
67 		struct pe_data pe_data;
68 	} xsl_fault;
69 };
70 
71 /*
72  * A opencapi link can be used be by several PCI functions. We have
73  * one link per device slot.
74  *
75  * A linked list of opencapi links should suffice, as there's a
76  * limited number of opencapi slots on a system and lookup is only
77  * done when the device is probed
78  */
79 struct ocxl_link {
80 	struct list_head list;
81 	struct kref ref;
82 	int domain;
83 	int bus;
84 	int dev;
85 	atomic_t irq_available;
86 	struct spa *spa;
87 	void *platform_data;
88 };
89 static struct list_head links_list = LIST_HEAD_INIT(links_list);
90 static DEFINE_MUTEX(links_list_lock);
91 
92 enum xsl_response {
93 	CONTINUE,
94 	ADDRESS_ERROR,
95 	RESTART,
96 };
97 
98 
read_irq(struct spa * spa,u64 * dsisr,u64 * dar,u64 * pe)99 static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe)
100 {
101 	u64 reg;
102 
103 	*dsisr = in_be64(spa->reg_dsisr);
104 	*dar = in_be64(spa->reg_dar);
105 	reg = in_be64(spa->reg_pe_handle);
106 	*pe = reg & SPA_PE_MASK;
107 }
108 
ack_irq(struct spa * spa,enum xsl_response r)109 static void ack_irq(struct spa *spa, enum xsl_response r)
110 {
111 	u64 reg = 0;
112 
113 	/* continue is not supported */
114 	if (r == RESTART)
115 		reg = PPC_BIT(31);
116 	else if (r == ADDRESS_ERROR)
117 		reg = PPC_BIT(30);
118 	else
119 		WARN(1, "Invalid irq response %d\n", r);
120 
121 	if (reg) {
122 		trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe,
123 				spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg);
124 		out_be64(spa->reg_tfc, reg);
125 	}
126 }
127 
xsl_fault_handler_bh(struct work_struct * fault_work)128 static void xsl_fault_handler_bh(struct work_struct *fault_work)
129 {
130 	vm_fault_t flt = 0;
131 	unsigned long access, flags, inv_flags = 0;
132 	enum xsl_response r;
133 	struct xsl_fault *fault = container_of(fault_work, struct xsl_fault,
134 					fault_work);
135 	struct spa *spa = container_of(fault, struct spa, xsl_fault);
136 
137 	int rc;
138 
139 	/*
140 	 * We must release a reference on mm_users whenever exiting this
141 	 * function (taken in the memory fault interrupt handler)
142 	 */
143 	rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr,
144 				&flt);
145 	if (rc) {
146 		pr_debug("copro_handle_mm_fault failed: %d\n", rc);
147 		if (fault->pe_data.xsl_err_cb) {
148 			fault->pe_data.xsl_err_cb(
149 				fault->pe_data.xsl_err_data,
150 				fault->dar, fault->dsisr);
151 		}
152 		r = ADDRESS_ERROR;
153 		goto ack;
154 	}
155 
156 	if (!radix_enabled()) {
157 		/*
158 		 * update_mmu_cache() will not have loaded the hash
159 		 * since current->trap is not a 0x400 or 0x300, so
160 		 * just call hash_page_mm() here.
161 		 */
162 		access = _PAGE_PRESENT | _PAGE_READ;
163 		if (fault->dsisr & SPA_XSL_S)
164 			access |= _PAGE_WRITE;
165 
166 		if (get_region_id(fault->dar) != USER_REGION_ID)
167 			access |= _PAGE_PRIVILEGED;
168 
169 		local_irq_save(flags);
170 		hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300,
171 			inv_flags);
172 		local_irq_restore(flags);
173 	}
174 	r = RESTART;
175 ack:
176 	mmput(fault->pe_data.mm);
177 	ack_irq(spa, r);
178 }
179 
xsl_fault_handler(int irq,void * data)180 static irqreturn_t xsl_fault_handler(int irq, void *data)
181 {
182 	struct ocxl_link *link = (struct ocxl_link *) data;
183 	struct spa *spa = link->spa;
184 	u64 dsisr, dar, pe_handle;
185 	struct pe_data *pe_data;
186 	struct ocxl_process_element *pe;
187 	int pid;
188 	bool schedule = false;
189 
190 	read_irq(spa, &dsisr, &dar, &pe_handle);
191 	trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1);
192 
193 	WARN_ON(pe_handle > SPA_PE_MASK);
194 	pe = spa->spa_mem + pe_handle;
195 	pid = be32_to_cpu(pe->pid);
196 	/* We could be reading all null values here if the PE is being
197 	 * removed while an interrupt kicks in. It's not supposed to
198 	 * happen if the driver notified the AFU to terminate the
199 	 * PASID, and the AFU waited for pending operations before
200 	 * acknowledging. But even if it happens, we won't find a
201 	 * memory context below and fail silently, so it should be ok.
202 	 */
203 	if (!(dsisr & SPA_XSL_TF)) {
204 		WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr);
205 		ack_irq(spa, ADDRESS_ERROR);
206 		return IRQ_HANDLED;
207 	}
208 
209 	rcu_read_lock();
210 	pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle);
211 	if (!pe_data) {
212 		/*
213 		 * Could only happen if the driver didn't notify the
214 		 * AFU about PASID termination before removing the PE,
215 		 * or the AFU didn't wait for all memory access to
216 		 * have completed.
217 		 *
218 		 * Either way, we fail early, but we shouldn't log an
219 		 * error message, as it is a valid (if unexpected)
220 		 * scenario
221 		 */
222 		rcu_read_unlock();
223 		pr_debug("Unknown mm context for xsl interrupt\n");
224 		ack_irq(spa, ADDRESS_ERROR);
225 		return IRQ_HANDLED;
226 	}
227 
228 	if (!pe_data->mm) {
229 		/*
230 		 * translation fault from a kernel context - an OpenCAPI
231 		 * device tried to access a bad kernel address
232 		 */
233 		rcu_read_unlock();
234 		pr_warn("Unresolved OpenCAPI xsl fault in kernel context\n");
235 		ack_irq(spa, ADDRESS_ERROR);
236 		return IRQ_HANDLED;
237 	}
238 	WARN_ON(pe_data->mm->context.id != pid);
239 
240 	if (mmget_not_zero(pe_data->mm)) {
241 			spa->xsl_fault.pe = pe_handle;
242 			spa->xsl_fault.dar = dar;
243 			spa->xsl_fault.dsisr = dsisr;
244 			spa->xsl_fault.pe_data = *pe_data;
245 			schedule = true;
246 			/* mm_users count released by bottom half */
247 	}
248 	rcu_read_unlock();
249 	if (schedule)
250 		schedule_work(&spa->xsl_fault.fault_work);
251 	else
252 		ack_irq(spa, ADDRESS_ERROR);
253 	return IRQ_HANDLED;
254 }
255 
unmap_irq_registers(struct spa * spa)256 static void unmap_irq_registers(struct spa *spa)
257 {
258 	pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc,
259 				spa->reg_pe_handle);
260 }
261 
map_irq_registers(struct pci_dev * dev,struct spa * spa)262 static int map_irq_registers(struct pci_dev *dev, struct spa *spa)
263 {
264 	return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar,
265 				&spa->reg_tfc, &spa->reg_pe_handle);
266 }
267 
setup_xsl_irq(struct pci_dev * dev,struct ocxl_link * link)268 static int setup_xsl_irq(struct pci_dev *dev, struct ocxl_link *link)
269 {
270 	struct spa *spa = link->spa;
271 	int rc;
272 	int hwirq;
273 
274 	rc = pnv_ocxl_get_xsl_irq(dev, &hwirq);
275 	if (rc)
276 		return rc;
277 
278 	rc = map_irq_registers(dev, spa);
279 	if (rc)
280 		return rc;
281 
282 	spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x",
283 				link->domain, link->bus, link->dev);
284 	if (!spa->irq_name) {
285 		dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n");
286 		rc = -ENOMEM;
287 		goto err_xsl;
288 	}
289 	/*
290 	 * At some point, we'll need to look into allowing a higher
291 	 * number of interrupts. Could we have an IRQ domain per link?
292 	 */
293 	spa->virq = irq_create_mapping(NULL, hwirq);
294 	if (!spa->virq) {
295 		dev_err(&dev->dev,
296 			"irq_create_mapping failed for translation interrupt\n");
297 		rc = -EINVAL;
298 		goto err_name;
299 	}
300 
301 	dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq);
302 
303 	rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name,
304 			link);
305 	if (rc) {
306 		dev_err(&dev->dev,
307 			"request_irq failed for translation interrupt: %d\n",
308 			rc);
309 		rc = -EINVAL;
310 		goto err_mapping;
311 	}
312 	return 0;
313 
314 err_mapping:
315 	irq_dispose_mapping(spa->virq);
316 err_name:
317 	kfree(spa->irq_name);
318 err_xsl:
319 	unmap_irq_registers(spa);
320 	return rc;
321 }
322 
release_xsl_irq(struct ocxl_link * link)323 static void release_xsl_irq(struct ocxl_link *link)
324 {
325 	struct spa *spa = link->spa;
326 
327 	if (spa->virq) {
328 		free_irq(spa->virq, link);
329 		irq_dispose_mapping(spa->virq);
330 	}
331 	kfree(spa->irq_name);
332 	unmap_irq_registers(spa);
333 }
334 
alloc_spa(struct pci_dev * dev,struct ocxl_link * link)335 static int alloc_spa(struct pci_dev *dev, struct ocxl_link *link)
336 {
337 	struct spa *spa;
338 
339 	spa = kzalloc(sizeof(struct spa), GFP_KERNEL);
340 	if (!spa)
341 		return -ENOMEM;
342 
343 	mutex_init(&spa->spa_lock);
344 	INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL);
345 	INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh);
346 
347 	spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT;
348 	spa->spa_mem = (struct ocxl_process_element *)
349 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order);
350 	if (!spa->spa_mem) {
351 		dev_err(&dev->dev, "Can't allocate Shared Process Area\n");
352 		kfree(spa);
353 		return -ENOMEM;
354 	}
355 	pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus,
356 		link->dev, spa->spa_mem);
357 
358 	link->spa = spa;
359 	return 0;
360 }
361 
free_spa(struct ocxl_link * link)362 static void free_spa(struct ocxl_link *link)
363 {
364 	struct spa *spa = link->spa;
365 
366 	pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus,
367 		link->dev);
368 
369 	if (spa && spa->spa_mem) {
370 		free_pages((unsigned long) spa->spa_mem, spa->spa_order);
371 		kfree(spa);
372 		link->spa = NULL;
373 	}
374 }
375 
alloc_link(struct pci_dev * dev,int PE_mask,struct ocxl_link ** out_link)376 static int alloc_link(struct pci_dev *dev, int PE_mask, struct ocxl_link **out_link)
377 {
378 	struct ocxl_link *link;
379 	int rc;
380 
381 	link = kzalloc(sizeof(struct ocxl_link), GFP_KERNEL);
382 	if (!link)
383 		return -ENOMEM;
384 
385 	kref_init(&link->ref);
386 	link->domain = pci_domain_nr(dev->bus);
387 	link->bus = dev->bus->number;
388 	link->dev = PCI_SLOT(dev->devfn);
389 	atomic_set(&link->irq_available, MAX_IRQ_PER_LINK);
390 
391 	rc = alloc_spa(dev, link);
392 	if (rc)
393 		goto err_free;
394 
395 	rc = setup_xsl_irq(dev, link);
396 	if (rc)
397 		goto err_spa;
398 
399 	/* platform specific hook */
400 	rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask,
401 				&link->platform_data);
402 	if (rc)
403 		goto err_xsl_irq;
404 
405 	*out_link = link;
406 	return 0;
407 
408 err_xsl_irq:
409 	release_xsl_irq(link);
410 err_spa:
411 	free_spa(link);
412 err_free:
413 	kfree(link);
414 	return rc;
415 }
416 
free_link(struct ocxl_link * link)417 static void free_link(struct ocxl_link *link)
418 {
419 	release_xsl_irq(link);
420 	free_spa(link);
421 	kfree(link);
422 }
423 
ocxl_link_setup(struct pci_dev * dev,int PE_mask,void ** link_handle)424 int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle)
425 {
426 	int rc = 0;
427 	struct ocxl_link *link;
428 
429 	mutex_lock(&links_list_lock);
430 	list_for_each_entry(link, &links_list, list) {
431 		/* The functions of a device all share the same link */
432 		if (link->domain == pci_domain_nr(dev->bus) &&
433 			link->bus == dev->bus->number &&
434 			link->dev == PCI_SLOT(dev->devfn)) {
435 			kref_get(&link->ref);
436 			*link_handle = link;
437 			goto unlock;
438 		}
439 	}
440 	rc = alloc_link(dev, PE_mask, &link);
441 	if (rc)
442 		goto unlock;
443 
444 	list_add(&link->list, &links_list);
445 	*link_handle = link;
446 unlock:
447 	mutex_unlock(&links_list_lock);
448 	return rc;
449 }
450 EXPORT_SYMBOL_GPL(ocxl_link_setup);
451 
release_xsl(struct kref * ref)452 static void release_xsl(struct kref *ref)
453 {
454 	struct ocxl_link *link = container_of(ref, struct ocxl_link, ref);
455 
456 	list_del(&link->list);
457 	/* call platform code before releasing data */
458 	pnv_ocxl_spa_release(link->platform_data);
459 	free_link(link);
460 }
461 
ocxl_link_release(struct pci_dev * dev,void * link_handle)462 void ocxl_link_release(struct pci_dev *dev, void *link_handle)
463 {
464 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
465 
466 	mutex_lock(&links_list_lock);
467 	kref_put(&link->ref, release_xsl);
468 	mutex_unlock(&links_list_lock);
469 }
470 EXPORT_SYMBOL_GPL(ocxl_link_release);
471 
calculate_cfg_state(bool kernel)472 static u64 calculate_cfg_state(bool kernel)
473 {
474 	u64 state;
475 
476 	state = SPA_CFG_DR;
477 	if (mfspr(SPRN_LPCR) & LPCR_TC)
478 		state |= SPA_CFG_TC;
479 	if (radix_enabled())
480 		state |= SPA_CFG_XLAT_ror;
481 	else
482 		state |= SPA_CFG_XLAT_hpt;
483 	state |= SPA_CFG_HV;
484 	if (kernel) {
485 		if (mfmsr() & MSR_SF)
486 			state |= SPA_CFG_SF;
487 	} else {
488 		state |= SPA_CFG_PR;
489 		if (!test_tsk_thread_flag(current, TIF_32BIT))
490 			state |= SPA_CFG_SF;
491 	}
492 	return state;
493 }
494 
ocxl_link_add_pe(void * link_handle,int pasid,u32 pidr,u32 tidr,u64 amr,struct mm_struct * mm,void (* xsl_err_cb)(void * data,u64 addr,u64 dsisr),void * xsl_err_data)495 int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr,
496 		u64 amr, struct mm_struct *mm,
497 		void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr),
498 		void *xsl_err_data)
499 {
500 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
501 	struct spa *spa = link->spa;
502 	struct ocxl_process_element *pe;
503 	int pe_handle, rc = 0;
504 	struct pe_data *pe_data;
505 
506 	BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128);
507 	if (pasid > SPA_PASID_MAX)
508 		return -EINVAL;
509 
510 	mutex_lock(&spa->spa_lock);
511 	pe_handle = pasid & SPA_PE_MASK;
512 	pe = spa->spa_mem + pe_handle;
513 
514 	if (pe->software_state) {
515 		rc = -EBUSY;
516 		goto unlock;
517 	}
518 
519 	pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL);
520 	if (!pe_data) {
521 		rc = -ENOMEM;
522 		goto unlock;
523 	}
524 
525 	pe_data->mm = mm;
526 	pe_data->xsl_err_cb = xsl_err_cb;
527 	pe_data->xsl_err_data = xsl_err_data;
528 
529 	memset(pe, 0, sizeof(struct ocxl_process_element));
530 	pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0));
531 	pe->lpid = cpu_to_be32(mfspr(SPRN_LPID));
532 	pe->pid = cpu_to_be32(pidr);
533 	pe->tid = cpu_to_be32(tidr);
534 	pe->amr = cpu_to_be64(amr);
535 	pe->software_state = cpu_to_be32(SPA_PE_VALID);
536 
537 	/*
538 	 * For user contexts, register a copro so that TLBIs are seen
539 	 * by the nest MMU. If we have a kernel context, TLBIs are
540 	 * already global.
541 	 */
542 	if (mm)
543 		mm_context_add_copro(mm);
544 	/*
545 	 * Barrier is to make sure PE is visible in the SPA before it
546 	 * is used by the device. It also helps with the global TLBI
547 	 * invalidation
548 	 */
549 	mb();
550 	radix_tree_insert(&spa->pe_tree, pe_handle, pe_data);
551 
552 	/*
553 	 * The mm must stay valid for as long as the device uses it. We
554 	 * lower the count when the context is removed from the SPA.
555 	 *
556 	 * We grab mm_count (and not mm_users), as we don't want to
557 	 * end up in a circular dependency if a process mmaps its
558 	 * mmio, therefore incrementing the file ref count when
559 	 * calling mmap(), and forgets to unmap before exiting. In
560 	 * that scenario, when the kernel handles the death of the
561 	 * process, the file is not cleaned because unmap was not
562 	 * called, and the mm wouldn't be freed because we would still
563 	 * have a reference on mm_users. Incrementing mm_count solves
564 	 * the problem.
565 	 */
566 	if (mm)
567 		mmgrab(mm);
568 	trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr);
569 unlock:
570 	mutex_unlock(&spa->spa_lock);
571 	return rc;
572 }
573 EXPORT_SYMBOL_GPL(ocxl_link_add_pe);
574 
ocxl_link_update_pe(void * link_handle,int pasid,__u16 tid)575 int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid)
576 {
577 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
578 	struct spa *spa = link->spa;
579 	struct ocxl_process_element *pe;
580 	int pe_handle, rc;
581 
582 	if (pasid > SPA_PASID_MAX)
583 		return -EINVAL;
584 
585 	pe_handle = pasid & SPA_PE_MASK;
586 	pe = spa->spa_mem + pe_handle;
587 
588 	mutex_lock(&spa->spa_lock);
589 
590 	pe->tid = cpu_to_be32(tid);
591 
592 	/*
593 	 * The barrier makes sure the PE is updated
594 	 * before we clear the NPU context cache below, so that the
595 	 * old PE cannot be reloaded erroneously.
596 	 */
597 	mb();
598 
599 	/*
600 	 * hook to platform code
601 	 * On powerpc, the entry needs to be cleared from the context
602 	 * cache of the NPU.
603 	 */
604 	rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
605 	WARN_ON(rc);
606 
607 	mutex_unlock(&spa->spa_lock);
608 	return rc;
609 }
610 
ocxl_link_remove_pe(void * link_handle,int pasid)611 int ocxl_link_remove_pe(void *link_handle, int pasid)
612 {
613 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
614 	struct spa *spa = link->spa;
615 	struct ocxl_process_element *pe;
616 	struct pe_data *pe_data;
617 	int pe_handle, rc;
618 
619 	if (pasid > SPA_PASID_MAX)
620 		return -EINVAL;
621 
622 	/*
623 	 * About synchronization with our memory fault handler:
624 	 *
625 	 * Before removing the PE, the driver is supposed to have
626 	 * notified the AFU, which should have cleaned up and make
627 	 * sure the PASID is no longer in use, including pending
628 	 * interrupts. However, there's no way to be sure...
629 	 *
630 	 * We clear the PE and remove the context from our radix
631 	 * tree. From that point on, any new interrupt for that
632 	 * context will fail silently, which is ok. As mentioned
633 	 * above, that's not expected, but it could happen if the
634 	 * driver or AFU didn't do the right thing.
635 	 *
636 	 * There could still be a bottom half running, but we don't
637 	 * need to wait/flush, as it is managing a reference count on
638 	 * the mm it reads from the radix tree.
639 	 */
640 	pe_handle = pasid & SPA_PE_MASK;
641 	pe = spa->spa_mem + pe_handle;
642 
643 	mutex_lock(&spa->spa_lock);
644 
645 	if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) {
646 		rc = -EINVAL;
647 		goto unlock;
648 	}
649 
650 	trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid,
651 				be32_to_cpu(pe->pid), be32_to_cpu(pe->tid));
652 
653 	memset(pe, 0, sizeof(struct ocxl_process_element));
654 	/*
655 	 * The barrier makes sure the PE is removed from the SPA
656 	 * before we clear the NPU context cache below, so that the
657 	 * old PE cannot be reloaded erroneously.
658 	 */
659 	mb();
660 
661 	/*
662 	 * hook to platform code
663 	 * On powerpc, the entry needs to be cleared from the context
664 	 * cache of the NPU.
665 	 */
666 	rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
667 	WARN_ON(rc);
668 
669 	pe_data = radix_tree_delete(&spa->pe_tree, pe_handle);
670 	if (!pe_data) {
671 		WARN(1, "Couldn't find pe data when removing PE\n");
672 	} else {
673 		if (pe_data->mm) {
674 			mm_context_remove_copro(pe_data->mm);
675 			mmdrop(pe_data->mm);
676 		}
677 		kfree_rcu(pe_data, rcu);
678 	}
679 unlock:
680 	mutex_unlock(&spa->spa_lock);
681 	return rc;
682 }
683 EXPORT_SYMBOL_GPL(ocxl_link_remove_pe);
684 
ocxl_link_irq_alloc(void * link_handle,int * hw_irq,u64 * trigger_addr)685 int ocxl_link_irq_alloc(void *link_handle, int *hw_irq, u64 *trigger_addr)
686 {
687 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
688 	int rc, irq;
689 	u64 addr;
690 
691 	if (atomic_dec_if_positive(&link->irq_available) < 0)
692 		return -ENOSPC;
693 
694 	rc = pnv_ocxl_alloc_xive_irq(&irq, &addr);
695 	if (rc) {
696 		atomic_inc(&link->irq_available);
697 		return rc;
698 	}
699 
700 	*hw_irq = irq;
701 	*trigger_addr = addr;
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc);
705 
ocxl_link_free_irq(void * link_handle,int hw_irq)706 void ocxl_link_free_irq(void *link_handle, int hw_irq)
707 {
708 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
709 
710 	pnv_ocxl_free_xive_irq(hw_irq);
711 	atomic_inc(&link->irq_available);
712 }
713 EXPORT_SYMBOL_GPL(ocxl_link_free_irq);
714