1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2017 Cavium, Inc.
7  * Copyright (C) 2008 Wind River Systems
8  */
9 
10 #include <linux/etherdevice.h>
11 #include <linux/of_platform.h>
12 #include <linux/of_fdt.h>
13 #include <linux/libfdt.h>
14 
15 #include <asm/octeon/octeon.h>
16 #include <asm/octeon/cvmx-helper-board.h>
17 
18 #ifdef CONFIG_USB
19 #include <linux/usb/ehci_def.h>
20 #include <linux/usb/ehci_pdriver.h>
21 #include <linux/usb/ohci_pdriver.h>
22 #include <asm/octeon/cvmx-uctlx-defs.h>
23 
24 #define CVMX_UAHCX_EHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000010ull))
25 #define CVMX_UAHCX_OHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000408ull))
26 
27 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
28 
29 static int octeon2_usb_clock_start_cnt;
30 
octeon2_usb_reset(void)31 static int __init octeon2_usb_reset(void)
32 {
33 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
34 	u32 ucmd;
35 
36 	if (!OCTEON_IS_OCTEON2())
37 		return 0;
38 
39 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
40 	if (clk_rst_ctl.s.hrst) {
41 		ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
42 		ucmd &= ~CMD_RUN;
43 		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
44 		mdelay(2);
45 		ucmd |= CMD_RESET;
46 		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
47 		ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
48 		ucmd |= CMD_RUN;
49 		cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
50 	}
51 
52 	return 0;
53 }
54 arch_initcall(octeon2_usb_reset);
55 
octeon2_usb_clocks_start(struct device * dev)56 static void octeon2_usb_clocks_start(struct device *dev)
57 {
58 	u64 div;
59 	union cvmx_uctlx_if_ena if_ena;
60 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
61 	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
62 	int i;
63 	unsigned long io_clk_64_to_ns;
64 	u32 clock_rate = 12000000;
65 	bool is_crystal_clock = false;
66 
67 
68 	mutex_lock(&octeon2_usb_clocks_mutex);
69 
70 	octeon2_usb_clock_start_cnt++;
71 	if (octeon2_usb_clock_start_cnt != 1)
72 		goto exit;
73 
74 	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
75 
76 	if (dev->of_node) {
77 		struct device_node *uctl_node;
78 		const char *clock_type;
79 
80 		uctl_node = of_get_parent(dev->of_node);
81 		if (!uctl_node) {
82 			dev_err(dev, "No UCTL device node\n");
83 			goto exit;
84 		}
85 		i = of_property_read_u32(uctl_node,
86 					 "refclk-frequency", &clock_rate);
87 		if (i) {
88 			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
89 			goto exit;
90 		}
91 		i = of_property_read_string(uctl_node,
92 					    "refclk-type", &clock_type);
93 
94 		if (!i && strcmp("crystal", clock_type) == 0)
95 			is_crystal_clock = true;
96 	}
97 
98 	/*
99 	 * Step 1: Wait for voltages stable.  That surely happened
100 	 * before starting the kernel.
101 	 *
102 	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
103 	 */
104 	if_ena.u64 = 0;
105 	if_ena.s.en = 1;
106 	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
107 
108 	for (i = 0; i <= 1; i++) {
109 		port_ctl_status.u64 =
110 			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
111 		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
112 		port_ctl_status.s.txvreftune = 15;
113 		port_ctl_status.s.txrisetune = 1;
114 		port_ctl_status.s.txpreemphasistune = 1;
115 		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
116 			       port_ctl_status.u64);
117 	}
118 
119 	/* Step 3: Configure the reference clock, PHY, and HCLK */
120 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
121 
122 	/*
123 	 * If the UCTL looks like it has already been started, skip
124 	 * the initialization, otherwise bus errors are obtained.
125 	 */
126 	if (clk_rst_ctl.s.hrst)
127 		goto end_clock;
128 	/* 3a */
129 	clk_rst_ctl.s.p_por = 1;
130 	clk_rst_ctl.s.hrst = 0;
131 	clk_rst_ctl.s.p_prst = 0;
132 	clk_rst_ctl.s.h_clkdiv_rst = 0;
133 	clk_rst_ctl.s.o_clkdiv_rst = 0;
134 	clk_rst_ctl.s.h_clkdiv_en = 0;
135 	clk_rst_ctl.s.o_clkdiv_en = 0;
136 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
137 
138 	/* 3b */
139 	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
140 	switch (clock_rate) {
141 	default:
142 		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
143 			clock_rate);
144 		/* Fall through */
145 	case 12000000:
146 		clk_rst_ctl.s.p_refclk_div = 0;
147 		break;
148 	case 24000000:
149 		clk_rst_ctl.s.p_refclk_div = 1;
150 		break;
151 	case 48000000:
152 		clk_rst_ctl.s.p_refclk_div = 2;
153 		break;
154 	}
155 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
156 
157 	/* 3c */
158 	div = octeon_get_io_clock_rate() / 130000000ull;
159 
160 	switch (div) {
161 	case 0:
162 		div = 1;
163 		break;
164 	case 1:
165 	case 2:
166 	case 3:
167 	case 4:
168 		break;
169 	case 5:
170 		div = 4;
171 		break;
172 	case 6:
173 	case 7:
174 		div = 6;
175 		break;
176 	case 8:
177 	case 9:
178 	case 10:
179 	case 11:
180 		div = 8;
181 		break;
182 	default:
183 		div = 12;
184 		break;
185 	}
186 	clk_rst_ctl.s.h_div = div;
187 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
188 	/* Read it back, */
189 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
190 	clk_rst_ctl.s.h_clkdiv_en = 1;
191 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
192 	/* 3d */
193 	clk_rst_ctl.s.h_clkdiv_rst = 1;
194 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
195 
196 	/* 3e: delay 64 io clocks */
197 	ndelay(io_clk_64_to_ns);
198 
199 	/*
200 	 * Step 4: Program the power-on reset field in the UCTL
201 	 * clock-reset-control register.
202 	 */
203 	clk_rst_ctl.s.p_por = 0;
204 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
205 
206 	/* Step 5:    Wait 3 ms for the PHY clock to start. */
207 	mdelay(3);
208 
209 	/* Steps 6..9 for ATE only, are skipped. */
210 
211 	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
212 	/* 10a */
213 	clk_rst_ctl.s.o_clkdiv_rst = 1;
214 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
215 
216 	/* 10b */
217 	clk_rst_ctl.s.o_clkdiv_en = 1;
218 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219 
220 	/* 10c */
221 	ndelay(io_clk_64_to_ns);
222 
223 	/*
224 	 * Step 11: Program the PHY reset field:
225 	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
226 	 */
227 	clk_rst_ctl.s.p_prst = 1;
228 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
229 
230 	/* Step 11b */
231 	udelay(1);
232 
233 	/* Step 11c */
234 	clk_rst_ctl.s.p_prst = 0;
235 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
236 
237 	/* Step 11d */
238 	mdelay(1);
239 
240 	/* Step 11e */
241 	clk_rst_ctl.s.p_prst = 1;
242 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
243 
244 	/* Step 12: Wait 1 uS. */
245 	udelay(1);
246 
247 	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
248 	clk_rst_ctl.s.hrst = 1;
249 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
250 
251 end_clock:
252 	/* Set uSOF cycle period to 60,000 bits. */
253 	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
254 
255 exit:
256 	mutex_unlock(&octeon2_usb_clocks_mutex);
257 }
258 
octeon2_usb_clocks_stop(void)259 static void octeon2_usb_clocks_stop(void)
260 {
261 	mutex_lock(&octeon2_usb_clocks_mutex);
262 	octeon2_usb_clock_start_cnt--;
263 	mutex_unlock(&octeon2_usb_clocks_mutex);
264 }
265 
octeon_ehci_power_on(struct platform_device * pdev)266 static int octeon_ehci_power_on(struct platform_device *pdev)
267 {
268 	octeon2_usb_clocks_start(&pdev->dev);
269 	return 0;
270 }
271 
octeon_ehci_power_off(struct platform_device * pdev)272 static void octeon_ehci_power_off(struct platform_device *pdev)
273 {
274 	octeon2_usb_clocks_stop();
275 }
276 
277 static struct usb_ehci_pdata octeon_ehci_pdata = {
278 	/* Octeon EHCI matches CPU endianness. */
279 #ifdef __BIG_ENDIAN
280 	.big_endian_mmio	= 1,
281 #endif
282 	/*
283 	 * We can DMA from anywhere. But the descriptors must be in
284 	 * the lower 4GB.
285 	 */
286 	.dma_mask_64	= 0,
287 	.power_on	= octeon_ehci_power_on,
288 	.power_off	= octeon_ehci_power_off,
289 };
290 
octeon_ehci_hw_start(struct device * dev)291 static void __init octeon_ehci_hw_start(struct device *dev)
292 {
293 	union cvmx_uctlx_ehci_ctl ehci_ctl;
294 
295 	octeon2_usb_clocks_start(dev);
296 
297 	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
298 	/* Use 64-bit addressing. */
299 	ehci_ctl.s.ehci_64b_addr_en = 1;
300 	ehci_ctl.s.l2c_addr_msb = 0;
301 #ifdef __BIG_ENDIAN
302 	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
303 	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
304 #else
305 	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
306 	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
307 	ehci_ctl.s.inv_reg_a2 = 1;
308 #endif
309 	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
310 
311 	octeon2_usb_clocks_stop();
312 }
313 
octeon_ehci_device_init(void)314 static int __init octeon_ehci_device_init(void)
315 {
316 	struct platform_device *pd;
317 	struct device_node *ehci_node;
318 	int ret = 0;
319 
320 	ehci_node = of_find_node_by_name(NULL, "ehci");
321 	if (!ehci_node)
322 		return 0;
323 
324 	pd = of_find_device_by_node(ehci_node);
325 	of_node_put(ehci_node);
326 	if (!pd)
327 		return 0;
328 
329 	pd->dev.platform_data = &octeon_ehci_pdata;
330 	octeon_ehci_hw_start(&pd->dev);
331 
332 	return ret;
333 }
334 device_initcall(octeon_ehci_device_init);
335 
octeon_ohci_power_on(struct platform_device * pdev)336 static int octeon_ohci_power_on(struct platform_device *pdev)
337 {
338 	octeon2_usb_clocks_start(&pdev->dev);
339 	return 0;
340 }
341 
octeon_ohci_power_off(struct platform_device * pdev)342 static void octeon_ohci_power_off(struct platform_device *pdev)
343 {
344 	octeon2_usb_clocks_stop();
345 }
346 
347 static struct usb_ohci_pdata octeon_ohci_pdata = {
348 	/* Octeon OHCI matches CPU endianness. */
349 #ifdef __BIG_ENDIAN
350 	.big_endian_mmio	= 1,
351 #endif
352 	.power_on	= octeon_ohci_power_on,
353 	.power_off	= octeon_ohci_power_off,
354 };
355 
octeon_ohci_hw_start(struct device * dev)356 static void __init octeon_ohci_hw_start(struct device *dev)
357 {
358 	union cvmx_uctlx_ohci_ctl ohci_ctl;
359 
360 	octeon2_usb_clocks_start(dev);
361 
362 	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
363 	ohci_ctl.s.l2c_addr_msb = 0;
364 #ifdef __BIG_ENDIAN
365 	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
366 	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
367 #else
368 	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
369 	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
370 	ohci_ctl.s.inv_reg_a2 = 1;
371 #endif
372 	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
373 
374 	octeon2_usb_clocks_stop();
375 }
376 
octeon_ohci_device_init(void)377 static int __init octeon_ohci_device_init(void)
378 {
379 	struct platform_device *pd;
380 	struct device_node *ohci_node;
381 	int ret = 0;
382 
383 	ohci_node = of_find_node_by_name(NULL, "ohci");
384 	if (!ohci_node)
385 		return 0;
386 
387 	pd = of_find_device_by_node(ohci_node);
388 	of_node_put(ohci_node);
389 	if (!pd)
390 		return 0;
391 
392 	pd->dev.platform_data = &octeon_ohci_pdata;
393 	octeon_ohci_hw_start(&pd->dev);
394 
395 	return ret;
396 }
397 device_initcall(octeon_ohci_device_init);
398 
399 #endif /* CONFIG_USB */
400 
401 /* Octeon Random Number Generator.  */
octeon_rng_device_init(void)402 static int __init octeon_rng_device_init(void)
403 {
404 	struct platform_device *pd;
405 	int ret = 0;
406 
407 	struct resource rng_resources[] = {
408 		{
409 			.flags	= IORESOURCE_MEM,
410 			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
411 			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
412 		}, {
413 			.flags	= IORESOURCE_MEM,
414 			.start	= cvmx_build_io_address(8, 0),
415 			.end	= cvmx_build_io_address(8, 0) + 0x7
416 		}
417 	};
418 
419 	pd = platform_device_alloc("octeon_rng", -1);
420 	if (!pd) {
421 		ret = -ENOMEM;
422 		goto out;
423 	}
424 
425 	ret = platform_device_add_resources(pd, rng_resources,
426 					    ARRAY_SIZE(rng_resources));
427 	if (ret)
428 		goto fail;
429 
430 	ret = platform_device_add(pd);
431 	if (ret)
432 		goto fail;
433 
434 	return ret;
435 fail:
436 	platform_device_put(pd);
437 
438 out:
439 	return ret;
440 }
441 device_initcall(octeon_rng_device_init);
442 
443 const struct of_device_id octeon_ids[] __initconst = {
444 	{ .compatible = "simple-bus", },
445 	{ .compatible = "cavium,octeon-6335-uctl", },
446 	{ .compatible = "cavium,octeon-5750-usbn", },
447 	{ .compatible = "cavium,octeon-3860-bootbus", },
448 	{ .compatible = "cavium,mdio-mux", },
449 	{ .compatible = "gpio-leds", },
450 	{ .compatible = "cavium,octeon-7130-usb-uctl", },
451 	{},
452 };
453 
octeon_has_88e1145(void)454 static bool __init octeon_has_88e1145(void)
455 {
456 	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
457 	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
458 	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
459 }
460 
octeon_fdt_set_phy(int eth,int phy_addr)461 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
462 {
463 	const __be32 *phy_handle;
464 	const __be32 *alt_phy_handle;
465 	const __be32 *reg;
466 	u32 phandle;
467 	int phy;
468 	int alt_phy;
469 	const char *p;
470 	int current_len;
471 	char new_name[20];
472 
473 	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
474 	if (!phy_handle)
475 		return;
476 
477 	phandle = be32_to_cpup(phy_handle);
478 	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
479 
480 	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
481 	if (alt_phy_handle) {
482 		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
483 
484 		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
485 	} else {
486 		alt_phy = -1;
487 	}
488 
489 	if (phy_addr < 0 || phy < 0) {
490 		/* Delete the PHY things */
491 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
492 		/* This one may fail */
493 		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
494 		if (phy >= 0)
495 			fdt_nop_node(initial_boot_params, phy);
496 		if (alt_phy >= 0)
497 			fdt_nop_node(initial_boot_params, alt_phy);
498 		return;
499 	}
500 
501 	if (phy_addr >= 256 && alt_phy > 0) {
502 		const struct fdt_property *phy_prop;
503 		struct fdt_property *alt_prop;
504 		u32 phy_handle_name;
505 
506 		/* Use the alt phy node instead.*/
507 		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
508 		phy_handle_name = phy_prop->nameoff;
509 		fdt_nop_node(initial_boot_params, phy);
510 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
511 		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
512 		alt_prop->nameoff = phy_handle_name;
513 		phy = alt_phy;
514 	}
515 
516 	phy_addr &= 0xff;
517 
518 	if (octeon_has_88e1145()) {
519 		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
520 		memset(new_name, 0, sizeof(new_name));
521 		strcpy(new_name, "marvell,88e1145");
522 		p = fdt_getprop(initial_boot_params, phy, "compatible",
523 				&current_len);
524 		if (p && current_len >= strlen(new_name))
525 			fdt_setprop_inplace(initial_boot_params, phy,
526 					"compatible", new_name, current_len);
527 	}
528 
529 	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
530 	if (phy_addr == be32_to_cpup(reg))
531 		return;
532 
533 	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
534 
535 	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
536 
537 	p = fdt_get_name(initial_boot_params, phy, &current_len);
538 	if (p && current_len == strlen(new_name))
539 		fdt_set_name(initial_boot_params, phy, new_name);
540 	else
541 		pr_err("Error: could not rename ethernet phy: <%s>", p);
542 }
543 
octeon_fdt_set_mac_addr(int n,u64 * pmac)544 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
545 {
546 	const u8 *old_mac;
547 	int old_len;
548 	u8 new_mac[6];
549 	u64 mac = *pmac;
550 	int r;
551 
552 	old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
553 			      &old_len);
554 	if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
555 		return;
556 
557 	new_mac[0] = (mac >> 40) & 0xff;
558 	new_mac[1] = (mac >> 32) & 0xff;
559 	new_mac[2] = (mac >> 24) & 0xff;
560 	new_mac[3] = (mac >> 16) & 0xff;
561 	new_mac[4] = (mac >> 8) & 0xff;
562 	new_mac[5] = mac & 0xff;
563 
564 	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
565 				new_mac, sizeof(new_mac));
566 
567 	if (r) {
568 		pr_err("Setting \"local-mac-address\" failed %d", r);
569 		return;
570 	}
571 	*pmac = mac + 1;
572 }
573 
octeon_fdt_rm_ethernet(int node)574 static void __init octeon_fdt_rm_ethernet(int node)
575 {
576 	const __be32 *phy_handle;
577 
578 	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
579 	if (phy_handle) {
580 		u32 ph = be32_to_cpup(phy_handle);
581 		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
582 
583 		if (p >= 0)
584 			fdt_nop_node(initial_boot_params, p);
585 	}
586 	fdt_nop_node(initial_boot_params, node);
587 }
588 
octeon_fdt_pip_port(int iface,int i,int p,int max)589 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
590 {
591 	char name_buffer[20];
592 	int eth;
593 	int phy_addr;
594 	int ipd_port;
595 
596 	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
597 	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
598 	if (eth < 0)
599 		return;
600 	if (p > max) {
601 		pr_debug("Deleting port %x:%x\n", i, p);
602 		octeon_fdt_rm_ethernet(eth);
603 		return;
604 	}
605 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
606 		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
607 	else
608 		ipd_port = 16 * i + p;
609 
610 	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
611 	octeon_fdt_set_phy(eth, phy_addr);
612 }
613 
octeon_fdt_pip_iface(int pip,int idx)614 static void __init octeon_fdt_pip_iface(int pip, int idx)
615 {
616 	char name_buffer[20];
617 	int iface;
618 	int p;
619 	int count = 0;
620 
621 	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
622 	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
623 	if (iface < 0)
624 		return;
625 
626 	if (cvmx_helper_interface_enumerate(idx) == 0)
627 		count = cvmx_helper_ports_on_interface(idx);
628 
629 	for (p = 0; p < 16; p++)
630 		octeon_fdt_pip_port(iface, idx, p, count - 1);
631 }
632 
octeon_fill_mac_addresses(void)633 void __init octeon_fill_mac_addresses(void)
634 {
635 	const char *alias_prop;
636 	char name_buffer[20];
637 	u64 mac_addr_base;
638 	int aliases;
639 	int pip;
640 	int i;
641 
642 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
643 	if (aliases < 0)
644 		return;
645 
646 	mac_addr_base =
647 		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
648 		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
649 		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
650 		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
651 		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
652 		 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
653 
654 	for (i = 0; i < 2; i++) {
655 		int mgmt;
656 
657 		snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
658 		alias_prop = fdt_getprop(initial_boot_params, aliases,
659 					 name_buffer, NULL);
660 		if (!alias_prop)
661 			continue;
662 		mgmt = fdt_path_offset(initial_boot_params, alias_prop);
663 		if (mgmt < 0)
664 			continue;
665 		octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
666 	}
667 
668 	alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
669 	if (!alias_prop)
670 		return;
671 
672 	pip = fdt_path_offset(initial_boot_params, alias_prop);
673 	if (pip < 0)
674 		return;
675 
676 	for (i = 0; i <= 4; i++) {
677 		int iface;
678 		int p;
679 
680 		snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
681 		iface = fdt_subnode_offset(initial_boot_params, pip,
682 					   name_buffer);
683 		if (iface < 0)
684 			continue;
685 		for (p = 0; p < 16; p++) {
686 			int eth;
687 
688 			snprintf(name_buffer, sizeof(name_buffer),
689 				 "ethernet@%x", p);
690 			eth = fdt_subnode_offset(initial_boot_params, iface,
691 						 name_buffer);
692 			if (eth < 0)
693 				continue;
694 			octeon_fdt_set_mac_addr(eth, &mac_addr_base);
695 		}
696 	}
697 }
698 
octeon_prune_device_tree(void)699 int __init octeon_prune_device_tree(void)
700 {
701 	int i, max_port, uart_mask;
702 	const char *pip_path;
703 	const char *alias_prop;
704 	char name_buffer[20];
705 	int aliases;
706 
707 	if (fdt_check_header(initial_boot_params))
708 		panic("Corrupt Device Tree.");
709 
710 	WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
711 	     "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
712 	     cvmx_board_type_to_string(octeon_bootinfo->board_type));
713 
714 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
715 	if (aliases < 0) {
716 		pr_err("Error: No /aliases node in device tree.");
717 		return -EINVAL;
718 	}
719 
720 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
721 		max_port = 2;
722 	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
723 		max_port = 1;
724 	else
725 		max_port = 0;
726 
727 	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
728 		max_port = 0;
729 
730 	for (i = 0; i < 2; i++) {
731 		int mgmt;
732 
733 		snprintf(name_buffer, sizeof(name_buffer),
734 			 "mix%d", i);
735 		alias_prop = fdt_getprop(initial_boot_params, aliases,
736 					name_buffer, NULL);
737 		if (alias_prop) {
738 			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
739 			if (mgmt < 0)
740 				continue;
741 			if (i >= max_port) {
742 				pr_debug("Deleting mix%d\n", i);
743 				octeon_fdt_rm_ethernet(mgmt);
744 				fdt_nop_property(initial_boot_params, aliases,
745 						 name_buffer);
746 			} else {
747 				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
748 
749 				octeon_fdt_set_phy(mgmt, phy_addr);
750 			}
751 		}
752 	}
753 
754 	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
755 	if (pip_path) {
756 		int pip = fdt_path_offset(initial_boot_params, pip_path);
757 
758 		if (pip	 >= 0)
759 			for (i = 0; i <= 4; i++)
760 				octeon_fdt_pip_iface(pip, i);
761 	}
762 
763 	/* I2C */
764 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
765 	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
766 	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
767 	    OCTEON_IS_MODEL(OCTEON_CN56XX))
768 		max_port = 2;
769 	else
770 		max_port = 1;
771 
772 	for (i = 0; i < 2; i++) {
773 		int i2c;
774 
775 		snprintf(name_buffer, sizeof(name_buffer),
776 			 "twsi%d", i);
777 		alias_prop = fdt_getprop(initial_boot_params, aliases,
778 					name_buffer, NULL);
779 
780 		if (alias_prop) {
781 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
782 			if (i2c < 0)
783 				continue;
784 			if (i >= max_port) {
785 				pr_debug("Deleting twsi%d\n", i);
786 				fdt_nop_node(initial_boot_params, i2c);
787 				fdt_nop_property(initial_boot_params, aliases,
788 						 name_buffer);
789 			}
790 		}
791 	}
792 
793 	/* SMI/MDIO */
794 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
795 		max_port = 4;
796 	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
797 		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
798 		 OCTEON_IS_MODEL(OCTEON_CN56XX))
799 		max_port = 2;
800 	else
801 		max_port = 1;
802 
803 	for (i = 0; i < 2; i++) {
804 		int i2c;
805 
806 		snprintf(name_buffer, sizeof(name_buffer),
807 			 "smi%d", i);
808 		alias_prop = fdt_getprop(initial_boot_params, aliases,
809 					name_buffer, NULL);
810 		if (alias_prop) {
811 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
812 			if (i2c < 0)
813 				continue;
814 			if (i >= max_port) {
815 				pr_debug("Deleting smi%d\n", i);
816 				fdt_nop_node(initial_boot_params, i2c);
817 				fdt_nop_property(initial_boot_params, aliases,
818 						 name_buffer);
819 			}
820 		}
821 	}
822 
823 	/* Serial */
824 	uart_mask = 3;
825 
826 	/* Right now CN52XX is the only chip with a third uart */
827 	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
828 		uart_mask |= 4; /* uart2 */
829 
830 	for (i = 0; i < 3; i++) {
831 		int uart;
832 
833 		snprintf(name_buffer, sizeof(name_buffer),
834 			 "uart%d", i);
835 		alias_prop = fdt_getprop(initial_boot_params, aliases,
836 					name_buffer, NULL);
837 
838 		if (alias_prop) {
839 			uart = fdt_path_offset(initial_boot_params, alias_prop);
840 			if (uart_mask & (1 << i)) {
841 				__be32 f;
842 
843 				f = cpu_to_be32(octeon_get_io_clock_rate());
844 				fdt_setprop_inplace(initial_boot_params,
845 						    uart, "clock-frequency",
846 						    &f, sizeof(f));
847 				continue;
848 			}
849 			pr_debug("Deleting uart%d\n", i);
850 			fdt_nop_node(initial_boot_params, uart);
851 			fdt_nop_property(initial_boot_params, aliases,
852 					 name_buffer);
853 		}
854 	}
855 
856 	/* Compact Flash */
857 	alias_prop = fdt_getprop(initial_boot_params, aliases,
858 				 "cf0", NULL);
859 	if (alias_prop) {
860 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
861 		unsigned long base_ptr, region_base, region_size;
862 		unsigned long region1_base = 0;
863 		unsigned long region1_size = 0;
864 		int cs, bootbus;
865 		bool is_16bit = false;
866 		bool is_true_ide = false;
867 		__be32 new_reg[6];
868 		__be32 *ranges;
869 		int len;
870 
871 		int cf = fdt_path_offset(initial_boot_params, alias_prop);
872 
873 		base_ptr = 0;
874 		if (octeon_bootinfo->major_version == 1
875 			&& octeon_bootinfo->minor_version >= 1) {
876 			if (octeon_bootinfo->compact_flash_common_base_addr)
877 				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
878 		} else {
879 			base_ptr = 0x1d000800;
880 		}
881 
882 		if (!base_ptr)
883 			goto no_cf;
884 
885 		/* Find CS0 region. */
886 		for (cs = 0; cs < 8; cs++) {
887 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
888 			region_base = mio_boot_reg_cfg.s.base << 16;
889 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
890 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
891 				&& base_ptr < region_base + region_size) {
892 				is_16bit = mio_boot_reg_cfg.s.width;
893 				break;
894 			}
895 		}
896 		if (cs >= 7) {
897 			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
898 			goto no_cf;
899 		}
900 
901 		if (!(base_ptr & 0xfffful)) {
902 			/*
903 			 * Boot loader signals availability of DMA (true_ide
904 			 * mode) by setting low order bits of base_ptr to
905 			 * zero.
906 			 */
907 
908 			/* Asume that CS1 immediately follows. */
909 			mio_boot_reg_cfg.u64 =
910 				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
911 			region1_base = mio_boot_reg_cfg.s.base << 16;
912 			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
913 			if (!mio_boot_reg_cfg.s.en)
914 				goto no_cf;
915 			is_true_ide = true;
916 
917 		} else {
918 			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
919 			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
920 			if (!is_16bit) {
921 				__be32 width = cpu_to_be32(8);
922 
923 				fdt_setprop_inplace(initial_boot_params, cf,
924 						"cavium,bus-width", &width, sizeof(width));
925 			}
926 		}
927 		new_reg[0] = cpu_to_be32(cs);
928 		new_reg[1] = cpu_to_be32(0);
929 		new_reg[2] = cpu_to_be32(0x10000);
930 		new_reg[3] = cpu_to_be32(cs + 1);
931 		new_reg[4] = cpu_to_be32(0);
932 		new_reg[5] = cpu_to_be32(0x10000);
933 		fdt_setprop_inplace(initial_boot_params, cf,
934 				    "reg",  new_reg, sizeof(new_reg));
935 
936 		bootbus = fdt_parent_offset(initial_boot_params, cf);
937 		if (bootbus < 0)
938 			goto no_cf;
939 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
940 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
941 			goto no_cf;
942 
943 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
944 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
945 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
946 		if (is_true_ide) {
947 			cs++;
948 			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
949 			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
950 			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
951 		}
952 		goto end_cf;
953 no_cf:
954 		fdt_nop_node(initial_boot_params, cf);
955 
956 end_cf:
957 		;
958 	}
959 
960 	/* 8 char LED */
961 	alias_prop = fdt_getprop(initial_boot_params, aliases,
962 				 "led0", NULL);
963 	if (alias_prop) {
964 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
965 		unsigned long base_ptr, region_base, region_size;
966 		int cs, bootbus;
967 		__be32 new_reg[6];
968 		__be32 *ranges;
969 		int len;
970 		int led = fdt_path_offset(initial_boot_params, alias_prop);
971 
972 		base_ptr = octeon_bootinfo->led_display_base_addr;
973 		if (base_ptr == 0)
974 			goto no_led;
975 		/* Find CS0 region. */
976 		for (cs = 0; cs < 8; cs++) {
977 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
978 			region_base = mio_boot_reg_cfg.s.base << 16;
979 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
980 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
981 				&& base_ptr < region_base + region_size)
982 				break;
983 		}
984 
985 		if (cs > 7)
986 			goto no_led;
987 
988 		new_reg[0] = cpu_to_be32(cs);
989 		new_reg[1] = cpu_to_be32(0x20);
990 		new_reg[2] = cpu_to_be32(0x20);
991 		new_reg[3] = cpu_to_be32(cs);
992 		new_reg[4] = cpu_to_be32(0);
993 		new_reg[5] = cpu_to_be32(0x20);
994 		fdt_setprop_inplace(initial_boot_params, led,
995 				    "reg",  new_reg, sizeof(new_reg));
996 
997 		bootbus = fdt_parent_offset(initial_boot_params, led);
998 		if (bootbus < 0)
999 			goto no_led;
1000 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1001 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
1002 			goto no_led;
1003 
1004 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1005 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1006 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1007 		goto end_led;
1008 
1009 no_led:
1010 		fdt_nop_node(initial_boot_params, led);
1011 end_led:
1012 		;
1013 	}
1014 
1015 #ifdef CONFIG_USB
1016 	/* OHCI/UHCI USB */
1017 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1018 				 "uctl", NULL);
1019 	if (alias_prop) {
1020 		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1021 
1022 		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1023 				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1024 			pr_debug("Deleting uctl\n");
1025 			fdt_nop_node(initial_boot_params, uctl);
1026 			fdt_nop_property(initial_boot_params, aliases, "uctl");
1027 		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1028 			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1029 			/* Missing "refclk-type" defaults to crystal. */
1030 			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1031 		}
1032 	}
1033 
1034 	/* DWC2 USB */
1035 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1036 				 "usbn", NULL);
1037 	if (alias_prop) {
1038 		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1039 
1040 		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1041 				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
1042 			pr_debug("Deleting usbn\n");
1043 			fdt_nop_node(initial_boot_params, usbn);
1044 			fdt_nop_property(initial_boot_params, aliases, "usbn");
1045 		} else  {
1046 			__be32 new_f[1];
1047 			enum cvmx_helper_board_usb_clock_types c;
1048 
1049 			c = __cvmx_helper_board_usb_get_clock_type();
1050 			switch (c) {
1051 			case USB_CLOCK_TYPE_REF_48:
1052 				new_f[0] = cpu_to_be32(48000000);
1053 				fdt_setprop_inplace(initial_boot_params, usbn,
1054 						    "refclk-frequency",  new_f, sizeof(new_f));
1055 				/* Fall through ...*/
1056 			case USB_CLOCK_TYPE_REF_12:
1057 				/* Missing "refclk-type" defaults to external. */
1058 				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1059 				break;
1060 			default:
1061 				break;
1062 			}
1063 		}
1064 	}
1065 #endif
1066 
1067 	return 0;
1068 }
1069 
octeon_publish_devices(void)1070 static int __init octeon_publish_devices(void)
1071 {
1072 	return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1073 }
1074 arch_initcall(octeon_publish_devices);
1075