1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41
42 #include <cluster/masklog.h>
43
44 #include "ocfs2.h"
45
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65
66 #include "buffer_head_io.h"
67
ocfs2_init_file_private(struct inode * inode,struct file * file)68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp;
71
72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 if (!fp)
74 return -ENOMEM;
75
76 fp->fp_file = file;
77 mutex_init(&fp->fp_mutex);
78 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 file->private_data = fp;
80
81 return 0;
82 }
83
ocfs2_free_file_private(struct inode * inode,struct file * file)84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 struct ocfs2_file_private *fp = file->private_data;
87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88
89 if (fp) {
90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 ocfs2_lock_res_free(&fp->fp_flock);
92 kfree(fp);
93 file->private_data = NULL;
94 }
95 }
96
ocfs2_file_open(struct inode * inode,struct file * file)97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 int status;
100 int mode = file->f_flags;
101 struct ocfs2_inode_info *oi = OCFS2_I(inode);
102
103 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 (unsigned long long)oi->ip_blkno,
105 file->f_path.dentry->d_name.len,
106 file->f_path.dentry->d_name.name, mode);
107
108 if (file->f_mode & FMODE_WRITE) {
109 status = dquot_initialize(inode);
110 if (status)
111 goto leave;
112 }
113
114 spin_lock(&oi->ip_lock);
115
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (oi->ip_flags & OCFS2_INODE_DELETED) {
120 spin_unlock(&oi->ip_lock);
121
122 status = -ENOENT;
123 goto leave;
124 }
125
126 if (mode & O_DIRECT)
127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128
129 oi->ip_open_count++;
130 spin_unlock(&oi->ip_lock);
131
132 status = ocfs2_init_file_private(inode, file);
133 if (status) {
134 /*
135 * We want to set open count back if we're failing the
136 * open.
137 */
138 spin_lock(&oi->ip_lock);
139 oi->ip_open_count--;
140 spin_unlock(&oi->ip_lock);
141 }
142
143 file->f_mode |= FMODE_NOWAIT;
144
145 leave:
146 return status;
147 }
148
ocfs2_file_release(struct inode * inode,struct file * file)149 static int ocfs2_file_release(struct inode *inode, struct file *file)
150 {
151 struct ocfs2_inode_info *oi = OCFS2_I(inode);
152
153 spin_lock(&oi->ip_lock);
154 if (!--oi->ip_open_count)
155 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
156
157 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
158 oi->ip_blkno,
159 file->f_path.dentry->d_name.len,
160 file->f_path.dentry->d_name.name,
161 oi->ip_open_count);
162 spin_unlock(&oi->ip_lock);
163
164 ocfs2_free_file_private(inode, file);
165
166 return 0;
167 }
168
ocfs2_dir_open(struct inode * inode,struct file * file)169 static int ocfs2_dir_open(struct inode *inode, struct file *file)
170 {
171 return ocfs2_init_file_private(inode, file);
172 }
173
ocfs2_dir_release(struct inode * inode,struct file * file)174 static int ocfs2_dir_release(struct inode *inode, struct file *file)
175 {
176 ocfs2_free_file_private(inode, file);
177 return 0;
178 }
179
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)180 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
181 int datasync)
182 {
183 int err = 0;
184 struct inode *inode = file->f_mapping->host;
185 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
186 struct ocfs2_inode_info *oi = OCFS2_I(inode);
187 journal_t *journal = osb->journal->j_journal;
188 int ret;
189 tid_t commit_tid;
190 bool needs_barrier = false;
191
192 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
193 oi->ip_blkno,
194 file->f_path.dentry->d_name.len,
195 file->f_path.dentry->d_name.name,
196 (unsigned long long)datasync);
197
198 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
199 return -EROFS;
200
201 err = file_write_and_wait_range(file, start, end);
202 if (err)
203 return err;
204
205 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
206 if (journal->j_flags & JBD2_BARRIER &&
207 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
208 needs_barrier = true;
209 err = jbd2_complete_transaction(journal, commit_tid);
210 if (needs_barrier) {
211 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
212 if (!err)
213 err = ret;
214 }
215
216 if (err)
217 mlog_errno(err);
218
219 return (err < 0) ? -EIO : 0;
220 }
221
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)222 int ocfs2_should_update_atime(struct inode *inode,
223 struct vfsmount *vfsmnt)
224 {
225 struct timespec64 now;
226 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
227
228 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
229 return 0;
230
231 if ((inode->i_flags & S_NOATIME) ||
232 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 return 0;
234
235 /*
236 * We can be called with no vfsmnt structure - NFSD will
237 * sometimes do this.
238 *
239 * Note that our action here is different than touch_atime() -
240 * if we can't tell whether this is a noatime mount, then we
241 * don't know whether to trust the value of s_atime_quantum.
242 */
243 if (vfsmnt == NULL)
244 return 0;
245
246 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
247 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
248 return 0;
249
250 if (vfsmnt->mnt_flags & MNT_RELATIME) {
251 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
252 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
253 return 1;
254
255 return 0;
256 }
257
258 now = current_time(inode);
259 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
260 return 0;
261 else
262 return 1;
263 }
264
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)265 int ocfs2_update_inode_atime(struct inode *inode,
266 struct buffer_head *bh)
267 {
268 int ret;
269 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
270 handle_t *handle;
271 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
272
273 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
274 if (IS_ERR(handle)) {
275 ret = PTR_ERR(handle);
276 mlog_errno(ret);
277 goto out;
278 }
279
280 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
281 OCFS2_JOURNAL_ACCESS_WRITE);
282 if (ret) {
283 mlog_errno(ret);
284 goto out_commit;
285 }
286
287 /*
288 * Don't use ocfs2_mark_inode_dirty() here as we don't always
289 * have i_mutex to guard against concurrent changes to other
290 * inode fields.
291 */
292 inode->i_atime = current_time(inode);
293 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
294 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
295 ocfs2_update_inode_fsync_trans(handle, inode, 0);
296 ocfs2_journal_dirty(handle, bh);
297
298 out_commit:
299 ocfs2_commit_trans(osb, handle);
300 out:
301 return ret;
302 }
303
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)304 int ocfs2_set_inode_size(handle_t *handle,
305 struct inode *inode,
306 struct buffer_head *fe_bh,
307 u64 new_i_size)
308 {
309 int status;
310
311 i_size_write(inode, new_i_size);
312 inode->i_blocks = ocfs2_inode_sector_count(inode);
313 inode->i_ctime = inode->i_mtime = current_time(inode);
314
315 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
316 if (status < 0) {
317 mlog_errno(status);
318 goto bail;
319 }
320
321 bail:
322 return status;
323 }
324
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)325 int ocfs2_simple_size_update(struct inode *inode,
326 struct buffer_head *di_bh,
327 u64 new_i_size)
328 {
329 int ret;
330 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
331 handle_t *handle = NULL;
332
333 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
334 if (IS_ERR(handle)) {
335 ret = PTR_ERR(handle);
336 mlog_errno(ret);
337 goto out;
338 }
339
340 ret = ocfs2_set_inode_size(handle, inode, di_bh,
341 new_i_size);
342 if (ret < 0)
343 mlog_errno(ret);
344
345 ocfs2_update_inode_fsync_trans(handle, inode, 0);
346 ocfs2_commit_trans(osb, handle);
347 out:
348 return ret;
349 }
350
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)351 static int ocfs2_cow_file_pos(struct inode *inode,
352 struct buffer_head *fe_bh,
353 u64 offset)
354 {
355 int status;
356 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
357 unsigned int num_clusters = 0;
358 unsigned int ext_flags = 0;
359
360 /*
361 * If the new offset is aligned to the range of the cluster, there is
362 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
363 * CoW either.
364 */
365 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
366 return 0;
367
368 status = ocfs2_get_clusters(inode, cpos, &phys,
369 &num_clusters, &ext_flags);
370 if (status) {
371 mlog_errno(status);
372 goto out;
373 }
374
375 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
376 goto out;
377
378 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
379
380 out:
381 return status;
382 }
383
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)384 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
385 struct inode *inode,
386 struct buffer_head *fe_bh,
387 u64 new_i_size)
388 {
389 int status;
390 handle_t *handle;
391 struct ocfs2_dinode *di;
392 u64 cluster_bytes;
393
394 /*
395 * We need to CoW the cluster contains the offset if it is reflinked
396 * since we will call ocfs2_zero_range_for_truncate later which will
397 * write "0" from offset to the end of the cluster.
398 */
399 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
400 if (status) {
401 mlog_errno(status);
402 return status;
403 }
404
405 /* TODO: This needs to actually orphan the inode in this
406 * transaction. */
407
408 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
409 if (IS_ERR(handle)) {
410 status = PTR_ERR(handle);
411 mlog_errno(status);
412 goto out;
413 }
414
415 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
416 OCFS2_JOURNAL_ACCESS_WRITE);
417 if (status < 0) {
418 mlog_errno(status);
419 goto out_commit;
420 }
421
422 /*
423 * Do this before setting i_size.
424 */
425 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
426 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
427 cluster_bytes);
428 if (status) {
429 mlog_errno(status);
430 goto out_commit;
431 }
432
433 i_size_write(inode, new_i_size);
434 inode->i_ctime = inode->i_mtime = current_time(inode);
435
436 di = (struct ocfs2_dinode *) fe_bh->b_data;
437 di->i_size = cpu_to_le64(new_i_size);
438 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
439 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
440 ocfs2_update_inode_fsync_trans(handle, inode, 0);
441
442 ocfs2_journal_dirty(handle, fe_bh);
443
444 out_commit:
445 ocfs2_commit_trans(osb, handle);
446 out:
447 return status;
448 }
449
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)450 int ocfs2_truncate_file(struct inode *inode,
451 struct buffer_head *di_bh,
452 u64 new_i_size)
453 {
454 int status = 0;
455 struct ocfs2_dinode *fe = NULL;
456 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
457
458 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
459 * already validated it */
460 fe = (struct ocfs2_dinode *) di_bh->b_data;
461
462 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
463 (unsigned long long)le64_to_cpu(fe->i_size),
464 (unsigned long long)new_i_size);
465
466 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
467 "Inode %llu, inode i_size = %lld != di "
468 "i_size = %llu, i_flags = 0x%x\n",
469 (unsigned long long)OCFS2_I(inode)->ip_blkno,
470 i_size_read(inode),
471 (unsigned long long)le64_to_cpu(fe->i_size),
472 le32_to_cpu(fe->i_flags));
473
474 if (new_i_size > le64_to_cpu(fe->i_size)) {
475 trace_ocfs2_truncate_file_error(
476 (unsigned long long)le64_to_cpu(fe->i_size),
477 (unsigned long long)new_i_size);
478 status = -EINVAL;
479 mlog_errno(status);
480 goto bail;
481 }
482
483 down_write(&OCFS2_I(inode)->ip_alloc_sem);
484
485 ocfs2_resv_discard(&osb->osb_la_resmap,
486 &OCFS2_I(inode)->ip_la_data_resv);
487
488 /*
489 * The inode lock forced other nodes to sync and drop their
490 * pages, which (correctly) happens even if we have a truncate
491 * without allocation change - ocfs2 cluster sizes can be much
492 * greater than page size, so we have to truncate them
493 * anyway.
494 */
495 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
496 truncate_inode_pages(inode->i_mapping, new_i_size);
497
498 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
499 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
500 i_size_read(inode), 1);
501 if (status)
502 mlog_errno(status);
503
504 goto bail_unlock_sem;
505 }
506
507 /* alright, we're going to need to do a full blown alloc size
508 * change. Orphan the inode so that recovery can complete the
509 * truncate if necessary. This does the task of marking
510 * i_size. */
511 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
512 if (status < 0) {
513 mlog_errno(status);
514 goto bail_unlock_sem;
515 }
516
517 status = ocfs2_commit_truncate(osb, inode, di_bh);
518 if (status < 0) {
519 mlog_errno(status);
520 goto bail_unlock_sem;
521 }
522
523 /* TODO: orphan dir cleanup here. */
524 bail_unlock_sem:
525 up_write(&OCFS2_I(inode)->ip_alloc_sem);
526
527 bail:
528 if (!status && OCFS2_I(inode)->ip_clusters == 0)
529 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
530
531 return status;
532 }
533
534 /*
535 * extend file allocation only here.
536 * we'll update all the disk stuff, and oip->alloc_size
537 *
538 * expect stuff to be locked, a transaction started and enough data /
539 * metadata reservations in the contexts.
540 *
541 * Will return -EAGAIN, and a reason if a restart is needed.
542 * If passed in, *reason will always be set, even in error.
543 */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)544 int ocfs2_add_inode_data(struct ocfs2_super *osb,
545 struct inode *inode,
546 u32 *logical_offset,
547 u32 clusters_to_add,
548 int mark_unwritten,
549 struct buffer_head *fe_bh,
550 handle_t *handle,
551 struct ocfs2_alloc_context *data_ac,
552 struct ocfs2_alloc_context *meta_ac,
553 enum ocfs2_alloc_restarted *reason_ret)
554 {
555 int ret;
556 struct ocfs2_extent_tree et;
557
558 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
559 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
560 clusters_to_add, mark_unwritten,
561 data_ac, meta_ac, reason_ret);
562
563 return ret;
564 }
565
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)566 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
567 u32 clusters_to_add, int mark_unwritten)
568 {
569 int status = 0;
570 int restart_func = 0;
571 int credits;
572 u32 prev_clusters;
573 struct buffer_head *bh = NULL;
574 struct ocfs2_dinode *fe = NULL;
575 handle_t *handle = NULL;
576 struct ocfs2_alloc_context *data_ac = NULL;
577 struct ocfs2_alloc_context *meta_ac = NULL;
578 enum ocfs2_alloc_restarted why = RESTART_NONE;
579 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
580 struct ocfs2_extent_tree et;
581 int did_quota = 0;
582
583 /*
584 * Unwritten extent only exists for file systems which
585 * support holes.
586 */
587 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
588
589 status = ocfs2_read_inode_block(inode, &bh);
590 if (status < 0) {
591 mlog_errno(status);
592 goto leave;
593 }
594 fe = (struct ocfs2_dinode *) bh->b_data;
595
596 restart_all:
597 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
598
599 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
600 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
601 &data_ac, &meta_ac);
602 if (status) {
603 mlog_errno(status);
604 goto leave;
605 }
606
607 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
608 handle = ocfs2_start_trans(osb, credits);
609 if (IS_ERR(handle)) {
610 status = PTR_ERR(handle);
611 handle = NULL;
612 mlog_errno(status);
613 goto leave;
614 }
615
616 restarted_transaction:
617 trace_ocfs2_extend_allocation(
618 (unsigned long long)OCFS2_I(inode)->ip_blkno,
619 (unsigned long long)i_size_read(inode),
620 le32_to_cpu(fe->i_clusters), clusters_to_add,
621 why, restart_func);
622
623 status = dquot_alloc_space_nodirty(inode,
624 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 if (status)
626 goto leave;
627 did_quota = 1;
628
629 /* reserve a write to the file entry early on - that we if we
630 * run out of credits in the allocation path, we can still
631 * update i_size. */
632 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 OCFS2_JOURNAL_ACCESS_WRITE);
634 if (status < 0) {
635 mlog_errno(status);
636 goto leave;
637 }
638
639 prev_clusters = OCFS2_I(inode)->ip_clusters;
640
641 status = ocfs2_add_inode_data(osb,
642 inode,
643 &logical_start,
644 clusters_to_add,
645 mark_unwritten,
646 bh,
647 handle,
648 data_ac,
649 meta_ac,
650 &why);
651 if ((status < 0) && (status != -EAGAIN)) {
652 if (status != -ENOSPC)
653 mlog_errno(status);
654 goto leave;
655 }
656 ocfs2_update_inode_fsync_trans(handle, inode, 1);
657 ocfs2_journal_dirty(handle, bh);
658
659 spin_lock(&OCFS2_I(inode)->ip_lock);
660 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 spin_unlock(&OCFS2_I(inode)->ip_lock);
662 /* Release unused quota reservation */
663 dquot_free_space(inode,
664 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 did_quota = 0;
666
667 if (why != RESTART_NONE && clusters_to_add) {
668 if (why == RESTART_META) {
669 restart_func = 1;
670 status = 0;
671 } else {
672 BUG_ON(why != RESTART_TRANS);
673
674 status = ocfs2_allocate_extend_trans(handle, 1);
675 if (status < 0) {
676 /* handle still has to be committed at
677 * this point. */
678 status = -ENOMEM;
679 mlog_errno(status);
680 goto leave;
681 }
682 goto restarted_transaction;
683 }
684 }
685
686 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
687 le32_to_cpu(fe->i_clusters),
688 (unsigned long long)le64_to_cpu(fe->i_size),
689 OCFS2_I(inode)->ip_clusters,
690 (unsigned long long)i_size_read(inode));
691
692 leave:
693 if (status < 0 && did_quota)
694 dquot_free_space(inode,
695 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
696 if (handle) {
697 ocfs2_commit_trans(osb, handle);
698 handle = NULL;
699 }
700 if (data_ac) {
701 ocfs2_free_alloc_context(data_ac);
702 data_ac = NULL;
703 }
704 if (meta_ac) {
705 ocfs2_free_alloc_context(meta_ac);
706 meta_ac = NULL;
707 }
708 if ((!status) && restart_func) {
709 restart_func = 0;
710 goto restart_all;
711 }
712 brelse(bh);
713 bh = NULL;
714
715 return status;
716 }
717
718 /*
719 * While a write will already be ordering the data, a truncate will not.
720 * Thus, we need to explicitly order the zeroed pages.
721 */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh)722 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
723 struct buffer_head *di_bh)
724 {
725 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
726 handle_t *handle = NULL;
727 int ret = 0;
728
729 if (!ocfs2_should_order_data(inode))
730 goto out;
731
732 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
733 if (IS_ERR(handle)) {
734 ret = -ENOMEM;
735 mlog_errno(ret);
736 goto out;
737 }
738
739 ret = ocfs2_jbd2_file_inode(handle, inode);
740 if (ret < 0) {
741 mlog_errno(ret);
742 goto out;
743 }
744
745 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
746 OCFS2_JOURNAL_ACCESS_WRITE);
747 if (ret)
748 mlog_errno(ret);
749 ocfs2_update_inode_fsync_trans(handle, inode, 1);
750
751 out:
752 if (ret) {
753 if (!IS_ERR(handle))
754 ocfs2_commit_trans(osb, handle);
755 handle = ERR_PTR(ret);
756 }
757 return handle;
758 }
759
760 /* Some parts of this taken from generic_cont_expand, which turned out
761 * to be too fragile to do exactly what we need without us having to
762 * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)763 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
764 u64 abs_to, struct buffer_head *di_bh)
765 {
766 struct address_space *mapping = inode->i_mapping;
767 struct page *page;
768 unsigned long index = abs_from >> PAGE_SHIFT;
769 handle_t *handle;
770 int ret = 0;
771 unsigned zero_from, zero_to, block_start, block_end;
772 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
773
774 BUG_ON(abs_from >= abs_to);
775 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
776 BUG_ON(abs_from & (inode->i_blkbits - 1));
777
778 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
779 if (IS_ERR(handle)) {
780 ret = PTR_ERR(handle);
781 goto out;
782 }
783
784 page = find_or_create_page(mapping, index, GFP_NOFS);
785 if (!page) {
786 ret = -ENOMEM;
787 mlog_errno(ret);
788 goto out_commit_trans;
789 }
790
791 /* Get the offsets within the page that we want to zero */
792 zero_from = abs_from & (PAGE_SIZE - 1);
793 zero_to = abs_to & (PAGE_SIZE - 1);
794 if (!zero_to)
795 zero_to = PAGE_SIZE;
796
797 trace_ocfs2_write_zero_page(
798 (unsigned long long)OCFS2_I(inode)->ip_blkno,
799 (unsigned long long)abs_from,
800 (unsigned long long)abs_to,
801 index, zero_from, zero_to);
802
803 /* We know that zero_from is block aligned */
804 for (block_start = zero_from; block_start < zero_to;
805 block_start = block_end) {
806 block_end = block_start + i_blocksize(inode);
807
808 /*
809 * block_start is block-aligned. Bump it by one to force
810 * __block_write_begin and block_commit_write to zero the
811 * whole block.
812 */
813 ret = __block_write_begin(page, block_start + 1, 0,
814 ocfs2_get_block);
815 if (ret < 0) {
816 mlog_errno(ret);
817 goto out_unlock;
818 }
819
820
821 /* must not update i_size! */
822 ret = block_commit_write(page, block_start + 1,
823 block_start + 1);
824 if (ret < 0)
825 mlog_errno(ret);
826 else
827 ret = 0;
828 }
829
830 /*
831 * fs-writeback will release the dirty pages without page lock
832 * whose offset are over inode size, the release happens at
833 * block_write_full_page().
834 */
835 i_size_write(inode, abs_to);
836 inode->i_blocks = ocfs2_inode_sector_count(inode);
837 di->i_size = cpu_to_le64((u64)i_size_read(inode));
838 inode->i_mtime = inode->i_ctime = current_time(inode);
839 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
840 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
841 di->i_mtime_nsec = di->i_ctime_nsec;
842 if (handle) {
843 ocfs2_journal_dirty(handle, di_bh);
844 ocfs2_update_inode_fsync_trans(handle, inode, 1);
845 }
846
847 out_unlock:
848 unlock_page(page);
849 put_page(page);
850 out_commit_trans:
851 if (handle)
852 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
853 out:
854 return ret;
855 }
856
857 /*
858 * Find the next range to zero. We do this in terms of bytes because
859 * that's what ocfs2_zero_extend() wants, and it is dealing with the
860 * pagecache. We may return multiple extents.
861 *
862 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
863 * needs to be zeroed. range_start and range_end return the next zeroing
864 * range. A subsequent call should pass the previous range_end as its
865 * zero_start. If range_end is 0, there's nothing to do.
866 *
867 * Unwritten extents are skipped over. Refcounted extents are CoWd.
868 */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)869 static int ocfs2_zero_extend_get_range(struct inode *inode,
870 struct buffer_head *di_bh,
871 u64 zero_start, u64 zero_end,
872 u64 *range_start, u64 *range_end)
873 {
874 int rc = 0, needs_cow = 0;
875 u32 p_cpos, zero_clusters = 0;
876 u32 zero_cpos =
877 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
878 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
879 unsigned int num_clusters = 0;
880 unsigned int ext_flags = 0;
881
882 while (zero_cpos < last_cpos) {
883 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
884 &num_clusters, &ext_flags);
885 if (rc) {
886 mlog_errno(rc);
887 goto out;
888 }
889
890 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
891 zero_clusters = num_clusters;
892 if (ext_flags & OCFS2_EXT_REFCOUNTED)
893 needs_cow = 1;
894 break;
895 }
896
897 zero_cpos += num_clusters;
898 }
899 if (!zero_clusters) {
900 *range_end = 0;
901 goto out;
902 }
903
904 while ((zero_cpos + zero_clusters) < last_cpos) {
905 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
906 &p_cpos, &num_clusters,
907 &ext_flags);
908 if (rc) {
909 mlog_errno(rc);
910 goto out;
911 }
912
913 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
914 break;
915 if (ext_flags & OCFS2_EXT_REFCOUNTED)
916 needs_cow = 1;
917 zero_clusters += num_clusters;
918 }
919 if ((zero_cpos + zero_clusters) > last_cpos)
920 zero_clusters = last_cpos - zero_cpos;
921
922 if (needs_cow) {
923 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
924 zero_clusters, UINT_MAX);
925 if (rc) {
926 mlog_errno(rc);
927 goto out;
928 }
929 }
930
931 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
932 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
933 zero_cpos + zero_clusters);
934
935 out:
936 return rc;
937 }
938
939 /*
940 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
941 * has made sure that the entire range needs zeroing.
942 */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)943 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
944 u64 range_end, struct buffer_head *di_bh)
945 {
946 int rc = 0;
947 u64 next_pos;
948 u64 zero_pos = range_start;
949
950 trace_ocfs2_zero_extend_range(
951 (unsigned long long)OCFS2_I(inode)->ip_blkno,
952 (unsigned long long)range_start,
953 (unsigned long long)range_end);
954 BUG_ON(range_start >= range_end);
955
956 while (zero_pos < range_end) {
957 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
958 if (next_pos > range_end)
959 next_pos = range_end;
960 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
961 if (rc < 0) {
962 mlog_errno(rc);
963 break;
964 }
965 zero_pos = next_pos;
966
967 /*
968 * Very large extends have the potential to lock up
969 * the cpu for extended periods of time.
970 */
971 cond_resched();
972 }
973
974 return rc;
975 }
976
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)977 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
978 loff_t zero_to_size)
979 {
980 int ret = 0;
981 u64 zero_start, range_start = 0, range_end = 0;
982 struct super_block *sb = inode->i_sb;
983
984 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
985 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
986 (unsigned long long)zero_start,
987 (unsigned long long)i_size_read(inode));
988 while (zero_start < zero_to_size) {
989 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
990 zero_to_size,
991 &range_start,
992 &range_end);
993 if (ret) {
994 mlog_errno(ret);
995 break;
996 }
997 if (!range_end)
998 break;
999 /* Trim the ends */
1000 if (range_start < zero_start)
1001 range_start = zero_start;
1002 if (range_end > zero_to_size)
1003 range_end = zero_to_size;
1004
1005 ret = ocfs2_zero_extend_range(inode, range_start,
1006 range_end, di_bh);
1007 if (ret) {
1008 mlog_errno(ret);
1009 break;
1010 }
1011 zero_start = range_end;
1012 }
1013
1014 return ret;
1015 }
1016
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1017 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1018 u64 new_i_size, u64 zero_to)
1019 {
1020 int ret;
1021 u32 clusters_to_add;
1022 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1023
1024 /*
1025 * Only quota files call this without a bh, and they can't be
1026 * refcounted.
1027 */
1028 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1029 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1030
1031 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1032 if (clusters_to_add < oi->ip_clusters)
1033 clusters_to_add = 0;
1034 else
1035 clusters_to_add -= oi->ip_clusters;
1036
1037 if (clusters_to_add) {
1038 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1039 clusters_to_add, 0);
1040 if (ret) {
1041 mlog_errno(ret);
1042 goto out;
1043 }
1044 }
1045
1046 /*
1047 * Call this even if we don't add any clusters to the tree. We
1048 * still need to zero the area between the old i_size and the
1049 * new i_size.
1050 */
1051 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1052 if (ret < 0)
1053 mlog_errno(ret);
1054
1055 out:
1056 return ret;
1057 }
1058
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1059 static int ocfs2_extend_file(struct inode *inode,
1060 struct buffer_head *di_bh,
1061 u64 new_i_size)
1062 {
1063 int ret = 0;
1064 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1065
1066 BUG_ON(!di_bh);
1067
1068 /* setattr sometimes calls us like this. */
1069 if (new_i_size == 0)
1070 goto out;
1071
1072 if (i_size_read(inode) == new_i_size)
1073 goto out;
1074 BUG_ON(new_i_size < i_size_read(inode));
1075
1076 /*
1077 * The alloc sem blocks people in read/write from reading our
1078 * allocation until we're done changing it. We depend on
1079 * i_mutex to block other extend/truncate calls while we're
1080 * here. We even have to hold it for sparse files because there
1081 * might be some tail zeroing.
1082 */
1083 down_write(&oi->ip_alloc_sem);
1084
1085 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1086 /*
1087 * We can optimize small extends by keeping the inodes
1088 * inline data.
1089 */
1090 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1091 up_write(&oi->ip_alloc_sem);
1092 goto out_update_size;
1093 }
1094
1095 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1096 if (ret) {
1097 up_write(&oi->ip_alloc_sem);
1098 mlog_errno(ret);
1099 goto out;
1100 }
1101 }
1102
1103 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1104 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1105 else
1106 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1107 new_i_size);
1108
1109 up_write(&oi->ip_alloc_sem);
1110
1111 if (ret < 0) {
1112 mlog_errno(ret);
1113 goto out;
1114 }
1115
1116 out_update_size:
1117 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1118 if (ret < 0)
1119 mlog_errno(ret);
1120
1121 out:
1122 return ret;
1123 }
1124
ocfs2_setattr(struct dentry * dentry,struct iattr * attr)1125 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1126 {
1127 int status = 0, size_change;
1128 int inode_locked = 0;
1129 struct inode *inode = d_inode(dentry);
1130 struct super_block *sb = inode->i_sb;
1131 struct ocfs2_super *osb = OCFS2_SB(sb);
1132 struct buffer_head *bh = NULL;
1133 handle_t *handle = NULL;
1134 struct dquot *transfer_to[MAXQUOTAS] = { };
1135 int qtype;
1136 int had_lock;
1137 struct ocfs2_lock_holder oh;
1138
1139 trace_ocfs2_setattr(inode, dentry,
1140 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1141 dentry->d_name.len, dentry->d_name.name,
1142 attr->ia_valid, attr->ia_mode,
1143 from_kuid(&init_user_ns, attr->ia_uid),
1144 from_kgid(&init_user_ns, attr->ia_gid));
1145
1146 /* ensuring we don't even attempt to truncate a symlink */
1147 if (S_ISLNK(inode->i_mode))
1148 attr->ia_valid &= ~ATTR_SIZE;
1149
1150 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1151 | ATTR_GID | ATTR_UID | ATTR_MODE)
1152 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1153 return 0;
1154
1155 status = setattr_prepare(dentry, attr);
1156 if (status)
1157 return status;
1158
1159 if (is_quota_modification(inode, attr)) {
1160 status = dquot_initialize(inode);
1161 if (status)
1162 return status;
1163 }
1164 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1165 if (size_change) {
1166 /*
1167 * Here we should wait dio to finish before inode lock
1168 * to avoid a deadlock between ocfs2_setattr() and
1169 * ocfs2_dio_end_io_write()
1170 */
1171 inode_dio_wait(inode);
1172
1173 status = ocfs2_rw_lock(inode, 1);
1174 if (status < 0) {
1175 mlog_errno(status);
1176 goto bail;
1177 }
1178 }
1179
1180 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1181 if (had_lock < 0) {
1182 status = had_lock;
1183 goto bail_unlock_rw;
1184 } else if (had_lock) {
1185 /*
1186 * As far as we know, ocfs2_setattr() could only be the first
1187 * VFS entry point in the call chain of recursive cluster
1188 * locking issue.
1189 *
1190 * For instance:
1191 * chmod_common()
1192 * notify_change()
1193 * ocfs2_setattr()
1194 * posix_acl_chmod()
1195 * ocfs2_iop_get_acl()
1196 *
1197 * But, we're not 100% sure if it's always true, because the
1198 * ordering of the VFS entry points in the call chain is out
1199 * of our control. So, we'd better dump the stack here to
1200 * catch the other cases of recursive locking.
1201 */
1202 mlog(ML_ERROR, "Another case of recursive locking:\n");
1203 dump_stack();
1204 }
1205 inode_locked = 1;
1206
1207 if (size_change) {
1208 status = inode_newsize_ok(inode, attr->ia_size);
1209 if (status)
1210 goto bail_unlock;
1211
1212 if (i_size_read(inode) >= attr->ia_size) {
1213 if (ocfs2_should_order_data(inode)) {
1214 status = ocfs2_begin_ordered_truncate(inode,
1215 attr->ia_size);
1216 if (status)
1217 goto bail_unlock;
1218 }
1219 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1220 } else
1221 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1222 if (status < 0) {
1223 if (status != -ENOSPC)
1224 mlog_errno(status);
1225 status = -ENOSPC;
1226 goto bail_unlock;
1227 }
1228 }
1229
1230 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1231 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1232 /*
1233 * Gather pointers to quota structures so that allocation /
1234 * freeing of quota structures happens here and not inside
1235 * dquot_transfer() where we have problems with lock ordering
1236 */
1237 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1240 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1241 if (IS_ERR(transfer_to[USRQUOTA])) {
1242 status = PTR_ERR(transfer_to[USRQUOTA]);
1243 goto bail_unlock;
1244 }
1245 }
1246 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1247 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1248 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1249 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1250 if (IS_ERR(transfer_to[GRPQUOTA])) {
1251 status = PTR_ERR(transfer_to[GRPQUOTA]);
1252 goto bail_unlock;
1253 }
1254 }
1255 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1256 2 * ocfs2_quota_trans_credits(sb));
1257 if (IS_ERR(handle)) {
1258 status = PTR_ERR(handle);
1259 mlog_errno(status);
1260 goto bail_unlock;
1261 }
1262 status = __dquot_transfer(inode, transfer_to);
1263 if (status < 0)
1264 goto bail_commit;
1265 } else {
1266 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1267 if (IS_ERR(handle)) {
1268 status = PTR_ERR(handle);
1269 mlog_errno(status);
1270 goto bail_unlock;
1271 }
1272 }
1273
1274 setattr_copy(inode, attr);
1275 mark_inode_dirty(inode);
1276
1277 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1278 if (status < 0)
1279 mlog_errno(status);
1280
1281 bail_commit:
1282 ocfs2_commit_trans(osb, handle);
1283 bail_unlock:
1284 if (status && inode_locked) {
1285 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1286 inode_locked = 0;
1287 }
1288 bail_unlock_rw:
1289 if (size_change)
1290 ocfs2_rw_unlock(inode, 1);
1291 bail:
1292
1293 /* Release quota pointers in case we acquired them */
1294 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1295 dqput(transfer_to[qtype]);
1296
1297 if (!status && attr->ia_valid & ATTR_MODE) {
1298 status = ocfs2_acl_chmod(inode, bh);
1299 if (status < 0)
1300 mlog_errno(status);
1301 }
1302 if (inode_locked)
1303 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1304
1305 brelse(bh);
1306 return status;
1307 }
1308
ocfs2_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)1309 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1310 u32 request_mask, unsigned int flags)
1311 {
1312 struct inode *inode = d_inode(path->dentry);
1313 struct super_block *sb = path->dentry->d_sb;
1314 struct ocfs2_super *osb = sb->s_fs_info;
1315 int err;
1316
1317 err = ocfs2_inode_revalidate(path->dentry);
1318 if (err) {
1319 if (err != -ENOENT)
1320 mlog_errno(err);
1321 goto bail;
1322 }
1323
1324 generic_fillattr(inode, stat);
1325 /*
1326 * If there is inline data in the inode, the inode will normally not
1327 * have data blocks allocated (it may have an external xattr block).
1328 * Report at least one sector for such files, so tools like tar, rsync,
1329 * others don't incorrectly think the file is completely sparse.
1330 */
1331 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1332 stat->blocks += (stat->size + 511)>>9;
1333
1334 /* We set the blksize from the cluster size for performance */
1335 stat->blksize = osb->s_clustersize;
1336
1337 bail:
1338 return err;
1339 }
1340
ocfs2_permission(struct inode * inode,int mask)1341 int ocfs2_permission(struct inode *inode, int mask)
1342 {
1343 int ret, had_lock;
1344 struct ocfs2_lock_holder oh;
1345
1346 if (mask & MAY_NOT_BLOCK)
1347 return -ECHILD;
1348
1349 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1350 if (had_lock < 0) {
1351 ret = had_lock;
1352 goto out;
1353 } else if (had_lock) {
1354 /* See comments in ocfs2_setattr() for details.
1355 * The call chain of this case could be:
1356 * do_sys_open()
1357 * may_open()
1358 * inode_permission()
1359 * ocfs2_permission()
1360 * ocfs2_iop_get_acl()
1361 */
1362 mlog(ML_ERROR, "Another case of recursive locking:\n");
1363 dump_stack();
1364 }
1365
1366 ret = generic_permission(inode, mask);
1367
1368 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1369 out:
1370 return ret;
1371 }
1372
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1373 static int __ocfs2_write_remove_suid(struct inode *inode,
1374 struct buffer_head *bh)
1375 {
1376 int ret;
1377 handle_t *handle;
1378 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1379 struct ocfs2_dinode *di;
1380
1381 trace_ocfs2_write_remove_suid(
1382 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1383 inode->i_mode);
1384
1385 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1386 if (IS_ERR(handle)) {
1387 ret = PTR_ERR(handle);
1388 mlog_errno(ret);
1389 goto out;
1390 }
1391
1392 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1393 OCFS2_JOURNAL_ACCESS_WRITE);
1394 if (ret < 0) {
1395 mlog_errno(ret);
1396 goto out_trans;
1397 }
1398
1399 inode->i_mode &= ~S_ISUID;
1400 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1401 inode->i_mode &= ~S_ISGID;
1402
1403 di = (struct ocfs2_dinode *) bh->b_data;
1404 di->i_mode = cpu_to_le16(inode->i_mode);
1405 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1406
1407 ocfs2_journal_dirty(handle, bh);
1408
1409 out_trans:
1410 ocfs2_commit_trans(osb, handle);
1411 out:
1412 return ret;
1413 }
1414
ocfs2_write_remove_suid(struct inode * inode)1415 static int ocfs2_write_remove_suid(struct inode *inode)
1416 {
1417 int ret;
1418 struct buffer_head *bh = NULL;
1419
1420 ret = ocfs2_read_inode_block(inode, &bh);
1421 if (ret < 0) {
1422 mlog_errno(ret);
1423 goto out;
1424 }
1425
1426 ret = __ocfs2_write_remove_suid(inode, bh);
1427 out:
1428 brelse(bh);
1429 return ret;
1430 }
1431
1432 /*
1433 * Allocate enough extents to cover the region starting at byte offset
1434 * start for len bytes. Existing extents are skipped, any extents
1435 * added are marked as "unwritten".
1436 */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1437 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1438 u64 start, u64 len)
1439 {
1440 int ret;
1441 u32 cpos, phys_cpos, clusters, alloc_size;
1442 u64 end = start + len;
1443 struct buffer_head *di_bh = NULL;
1444
1445 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1446 ret = ocfs2_read_inode_block(inode, &di_bh);
1447 if (ret) {
1448 mlog_errno(ret);
1449 goto out;
1450 }
1451
1452 /*
1453 * Nothing to do if the requested reservation range
1454 * fits within the inode.
1455 */
1456 if (ocfs2_size_fits_inline_data(di_bh, end))
1457 goto out;
1458
1459 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1460 if (ret) {
1461 mlog_errno(ret);
1462 goto out;
1463 }
1464 }
1465
1466 /*
1467 * We consider both start and len to be inclusive.
1468 */
1469 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1470 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1471 clusters -= cpos;
1472
1473 while (clusters) {
1474 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1475 &alloc_size, NULL);
1476 if (ret) {
1477 mlog_errno(ret);
1478 goto out;
1479 }
1480
1481 /*
1482 * Hole or existing extent len can be arbitrary, so
1483 * cap it to our own allocation request.
1484 */
1485 if (alloc_size > clusters)
1486 alloc_size = clusters;
1487
1488 if (phys_cpos) {
1489 /*
1490 * We already have an allocation at this
1491 * region so we can safely skip it.
1492 */
1493 goto next;
1494 }
1495
1496 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1497 if (ret) {
1498 if (ret != -ENOSPC)
1499 mlog_errno(ret);
1500 goto out;
1501 }
1502
1503 next:
1504 cpos += alloc_size;
1505 clusters -= alloc_size;
1506 }
1507
1508 ret = 0;
1509 out:
1510
1511 brelse(di_bh);
1512 return ret;
1513 }
1514
1515 /*
1516 * Truncate a byte range, avoiding pages within partial clusters. This
1517 * preserves those pages for the zeroing code to write to.
1518 */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1519 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1520 u64 byte_len)
1521 {
1522 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523 loff_t start, end;
1524 struct address_space *mapping = inode->i_mapping;
1525
1526 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1527 end = byte_start + byte_len;
1528 end = end & ~(osb->s_clustersize - 1);
1529
1530 if (start < end) {
1531 unmap_mapping_range(mapping, start, end - start, 0);
1532 truncate_inode_pages_range(mapping, start, end - 1);
1533 }
1534 }
1535
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1536 static int ocfs2_zero_partial_clusters(struct inode *inode,
1537 u64 start, u64 len)
1538 {
1539 int ret = 0;
1540 u64 tmpend = 0;
1541 u64 end = start + len;
1542 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1543 unsigned int csize = osb->s_clustersize;
1544 handle_t *handle;
1545
1546 /*
1547 * The "start" and "end" values are NOT necessarily part of
1548 * the range whose allocation is being deleted. Rather, this
1549 * is what the user passed in with the request. We must zero
1550 * partial clusters here. There's no need to worry about
1551 * physical allocation - the zeroing code knows to skip holes.
1552 */
1553 trace_ocfs2_zero_partial_clusters(
1554 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1555 (unsigned long long)start, (unsigned long long)end);
1556
1557 /*
1558 * If both edges are on a cluster boundary then there's no
1559 * zeroing required as the region is part of the allocation to
1560 * be truncated.
1561 */
1562 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1563 goto out;
1564
1565 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1566 if (IS_ERR(handle)) {
1567 ret = PTR_ERR(handle);
1568 mlog_errno(ret);
1569 goto out;
1570 }
1571
1572 /*
1573 * If start is on a cluster boundary and end is somewhere in another
1574 * cluster, we have not COWed the cluster starting at start, unless
1575 * end is also within the same cluster. So, in this case, we skip this
1576 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1577 * to the next one.
1578 */
1579 if ((start & (csize - 1)) != 0) {
1580 /*
1581 * We want to get the byte offset of the end of the 1st
1582 * cluster.
1583 */
1584 tmpend = (u64)osb->s_clustersize +
1585 (start & ~(osb->s_clustersize - 1));
1586 if (tmpend > end)
1587 tmpend = end;
1588
1589 trace_ocfs2_zero_partial_clusters_range1(
1590 (unsigned long long)start,
1591 (unsigned long long)tmpend);
1592
1593 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1594 tmpend);
1595 if (ret)
1596 mlog_errno(ret);
1597 }
1598
1599 if (tmpend < end) {
1600 /*
1601 * This may make start and end equal, but the zeroing
1602 * code will skip any work in that case so there's no
1603 * need to catch it up here.
1604 */
1605 start = end & ~(osb->s_clustersize - 1);
1606
1607 trace_ocfs2_zero_partial_clusters_range2(
1608 (unsigned long long)start, (unsigned long long)end);
1609
1610 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1611 if (ret)
1612 mlog_errno(ret);
1613 }
1614 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1615
1616 ocfs2_commit_trans(osb, handle);
1617 out:
1618 return ret;
1619 }
1620
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1621 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1622 {
1623 int i;
1624 struct ocfs2_extent_rec *rec = NULL;
1625
1626 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1627
1628 rec = &el->l_recs[i];
1629
1630 if (le32_to_cpu(rec->e_cpos) < pos)
1631 break;
1632 }
1633
1634 return i;
1635 }
1636
1637 /*
1638 * Helper to calculate the punching pos and length in one run, we handle the
1639 * following three cases in order:
1640 *
1641 * - remove the entire record
1642 * - remove a partial record
1643 * - no record needs to be removed (hole-punching completed)
1644 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1645 static void ocfs2_calc_trunc_pos(struct inode *inode,
1646 struct ocfs2_extent_list *el,
1647 struct ocfs2_extent_rec *rec,
1648 u32 trunc_start, u32 *trunc_cpos,
1649 u32 *trunc_len, u32 *trunc_end,
1650 u64 *blkno, int *done)
1651 {
1652 int ret = 0;
1653 u32 coff, range;
1654
1655 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1656
1657 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1658 /*
1659 * remove an entire extent record.
1660 */
1661 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1662 /*
1663 * Skip holes if any.
1664 */
1665 if (range < *trunc_end)
1666 *trunc_end = range;
1667 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1668 *blkno = le64_to_cpu(rec->e_blkno);
1669 *trunc_end = le32_to_cpu(rec->e_cpos);
1670 } else if (range > trunc_start) {
1671 /*
1672 * remove a partial extent record, which means we're
1673 * removing the last extent record.
1674 */
1675 *trunc_cpos = trunc_start;
1676 /*
1677 * skip hole if any.
1678 */
1679 if (range < *trunc_end)
1680 *trunc_end = range;
1681 *trunc_len = *trunc_end - trunc_start;
1682 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1683 *blkno = le64_to_cpu(rec->e_blkno) +
1684 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1685 *trunc_end = trunc_start;
1686 } else {
1687 /*
1688 * It may have two following possibilities:
1689 *
1690 * - last record has been removed
1691 * - trunc_start was within a hole
1692 *
1693 * both two cases mean the completion of hole punching.
1694 */
1695 ret = 1;
1696 }
1697
1698 *done = ret;
1699 }
1700
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1701 int ocfs2_remove_inode_range(struct inode *inode,
1702 struct buffer_head *di_bh, u64 byte_start,
1703 u64 byte_len)
1704 {
1705 int ret = 0, flags = 0, done = 0, i;
1706 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1707 u32 cluster_in_el;
1708 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1709 struct ocfs2_cached_dealloc_ctxt dealloc;
1710 struct address_space *mapping = inode->i_mapping;
1711 struct ocfs2_extent_tree et;
1712 struct ocfs2_path *path = NULL;
1713 struct ocfs2_extent_list *el = NULL;
1714 struct ocfs2_extent_rec *rec = NULL;
1715 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1716 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1717
1718 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1719 ocfs2_init_dealloc_ctxt(&dealloc);
1720
1721 trace_ocfs2_remove_inode_range(
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (unsigned long long)byte_start,
1724 (unsigned long long)byte_len);
1725
1726 if (byte_len == 0)
1727 return 0;
1728
1729 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1730 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1731 byte_start + byte_len, 0);
1732 if (ret) {
1733 mlog_errno(ret);
1734 goto out;
1735 }
1736 /*
1737 * There's no need to get fancy with the page cache
1738 * truncate of an inline-data inode. We're talking
1739 * about less than a page here, which will be cached
1740 * in the dinode buffer anyway.
1741 */
1742 unmap_mapping_range(mapping, 0, 0, 0);
1743 truncate_inode_pages(mapping, 0);
1744 goto out;
1745 }
1746
1747 /*
1748 * For reflinks, we may need to CoW 2 clusters which might be
1749 * partially zero'd later, if hole's start and end offset were
1750 * within one cluster(means is not exactly aligned to clustersize).
1751 */
1752
1753 if (ocfs2_is_refcount_inode(inode)) {
1754 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1755 if (ret) {
1756 mlog_errno(ret);
1757 goto out;
1758 }
1759
1760 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1761 if (ret) {
1762 mlog_errno(ret);
1763 goto out;
1764 }
1765 }
1766
1767 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1768 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1769 cluster_in_el = trunc_end;
1770
1771 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1772 if (ret) {
1773 mlog_errno(ret);
1774 goto out;
1775 }
1776
1777 path = ocfs2_new_path_from_et(&et);
1778 if (!path) {
1779 ret = -ENOMEM;
1780 mlog_errno(ret);
1781 goto out;
1782 }
1783
1784 while (trunc_end > trunc_start) {
1785
1786 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1787 cluster_in_el);
1788 if (ret) {
1789 mlog_errno(ret);
1790 goto out;
1791 }
1792
1793 el = path_leaf_el(path);
1794
1795 i = ocfs2_find_rec(el, trunc_end);
1796 /*
1797 * Need to go to previous extent block.
1798 */
1799 if (i < 0) {
1800 if (path->p_tree_depth == 0)
1801 break;
1802
1803 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1804 path,
1805 &cluster_in_el);
1806 if (ret) {
1807 mlog_errno(ret);
1808 goto out;
1809 }
1810
1811 /*
1812 * We've reached the leftmost extent block,
1813 * it's safe to leave.
1814 */
1815 if (cluster_in_el == 0)
1816 break;
1817
1818 /*
1819 * The 'pos' searched for previous extent block is
1820 * always one cluster less than actual trunc_end.
1821 */
1822 trunc_end = cluster_in_el + 1;
1823
1824 ocfs2_reinit_path(path, 1);
1825
1826 continue;
1827
1828 } else
1829 rec = &el->l_recs[i];
1830
1831 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1832 &trunc_len, &trunc_end, &blkno, &done);
1833 if (done)
1834 break;
1835
1836 flags = rec->e_flags;
1837 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1838
1839 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1840 phys_cpos, trunc_len, flags,
1841 &dealloc, refcount_loc, false);
1842 if (ret < 0) {
1843 mlog_errno(ret);
1844 goto out;
1845 }
1846
1847 cluster_in_el = trunc_end;
1848
1849 ocfs2_reinit_path(path, 1);
1850 }
1851
1852 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1853
1854 out:
1855 ocfs2_free_path(path);
1856 ocfs2_schedule_truncate_log_flush(osb, 1);
1857 ocfs2_run_deallocs(osb, &dealloc);
1858
1859 return ret;
1860 }
1861
1862 /*
1863 * Parts of this function taken from xfs_change_file_space()
1864 */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1865 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1866 loff_t f_pos, unsigned int cmd,
1867 struct ocfs2_space_resv *sr,
1868 int change_size)
1869 {
1870 int ret;
1871 s64 llen;
1872 loff_t size;
1873 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1874 struct buffer_head *di_bh = NULL;
1875 handle_t *handle;
1876 unsigned long long max_off = inode->i_sb->s_maxbytes;
1877
1878 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1879 return -EROFS;
1880
1881 inode_lock(inode);
1882
1883 /*
1884 * This prevents concurrent writes on other nodes
1885 */
1886 ret = ocfs2_rw_lock(inode, 1);
1887 if (ret) {
1888 mlog_errno(ret);
1889 goto out;
1890 }
1891
1892 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1893 if (ret) {
1894 mlog_errno(ret);
1895 goto out_rw_unlock;
1896 }
1897
1898 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1899 ret = -EPERM;
1900 goto out_inode_unlock;
1901 }
1902
1903 switch (sr->l_whence) {
1904 case 0: /*SEEK_SET*/
1905 break;
1906 case 1: /*SEEK_CUR*/
1907 sr->l_start += f_pos;
1908 break;
1909 case 2: /*SEEK_END*/
1910 sr->l_start += i_size_read(inode);
1911 break;
1912 default:
1913 ret = -EINVAL;
1914 goto out_inode_unlock;
1915 }
1916 sr->l_whence = 0;
1917
1918 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1919
1920 if (sr->l_start < 0
1921 || sr->l_start > max_off
1922 || (sr->l_start + llen) < 0
1923 || (sr->l_start + llen) > max_off) {
1924 ret = -EINVAL;
1925 goto out_inode_unlock;
1926 }
1927 size = sr->l_start + sr->l_len;
1928
1929 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1930 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1931 if (sr->l_len <= 0) {
1932 ret = -EINVAL;
1933 goto out_inode_unlock;
1934 }
1935 }
1936
1937 if (file && should_remove_suid(file->f_path.dentry)) {
1938 ret = __ocfs2_write_remove_suid(inode, di_bh);
1939 if (ret) {
1940 mlog_errno(ret);
1941 goto out_inode_unlock;
1942 }
1943 }
1944
1945 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1946 switch (cmd) {
1947 case OCFS2_IOC_RESVSP:
1948 case OCFS2_IOC_RESVSP64:
1949 /*
1950 * This takes unsigned offsets, but the signed ones we
1951 * pass have been checked against overflow above.
1952 */
1953 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1954 sr->l_len);
1955 break;
1956 case OCFS2_IOC_UNRESVSP:
1957 case OCFS2_IOC_UNRESVSP64:
1958 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1959 sr->l_len);
1960 break;
1961 default:
1962 ret = -EINVAL;
1963 }
1964 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1965 if (ret) {
1966 mlog_errno(ret);
1967 goto out_inode_unlock;
1968 }
1969
1970 /*
1971 * We update c/mtime for these changes
1972 */
1973 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1974 if (IS_ERR(handle)) {
1975 ret = PTR_ERR(handle);
1976 mlog_errno(ret);
1977 goto out_inode_unlock;
1978 }
1979
1980 if (change_size && i_size_read(inode) < size)
1981 i_size_write(inode, size);
1982
1983 inode->i_ctime = inode->i_mtime = current_time(inode);
1984 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1985 if (ret < 0)
1986 mlog_errno(ret);
1987
1988 if (file && (file->f_flags & O_SYNC))
1989 handle->h_sync = 1;
1990
1991 ocfs2_commit_trans(osb, handle);
1992
1993 out_inode_unlock:
1994 brelse(di_bh);
1995 ocfs2_inode_unlock(inode, 1);
1996 out_rw_unlock:
1997 ocfs2_rw_unlock(inode, 1);
1998
1999 out:
2000 inode_unlock(inode);
2001 return ret;
2002 }
2003
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)2004 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2005 struct ocfs2_space_resv *sr)
2006 {
2007 struct inode *inode = file_inode(file);
2008 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2009 int ret;
2010
2011 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2012 !ocfs2_writes_unwritten_extents(osb))
2013 return -ENOTTY;
2014 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2015 !ocfs2_sparse_alloc(osb))
2016 return -ENOTTY;
2017
2018 if (!S_ISREG(inode->i_mode))
2019 return -EINVAL;
2020
2021 if (!(file->f_mode & FMODE_WRITE))
2022 return -EBADF;
2023
2024 ret = mnt_want_write_file(file);
2025 if (ret)
2026 return ret;
2027 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2028 mnt_drop_write_file(file);
2029 return ret;
2030 }
2031
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2032 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2033 loff_t len)
2034 {
2035 struct inode *inode = file_inode(file);
2036 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2037 struct ocfs2_space_resv sr;
2038 int change_size = 1;
2039 int cmd = OCFS2_IOC_RESVSP64;
2040
2041 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2042 return -EOPNOTSUPP;
2043 if (!ocfs2_writes_unwritten_extents(osb))
2044 return -EOPNOTSUPP;
2045
2046 if (mode & FALLOC_FL_KEEP_SIZE)
2047 change_size = 0;
2048
2049 if (mode & FALLOC_FL_PUNCH_HOLE)
2050 cmd = OCFS2_IOC_UNRESVSP64;
2051
2052 sr.l_whence = 0;
2053 sr.l_start = (s64)offset;
2054 sr.l_len = (s64)len;
2055
2056 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2057 change_size);
2058 }
2059
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2060 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2061 size_t count)
2062 {
2063 int ret = 0;
2064 unsigned int extent_flags;
2065 u32 cpos, clusters, extent_len, phys_cpos;
2066 struct super_block *sb = inode->i_sb;
2067
2068 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2069 !ocfs2_is_refcount_inode(inode) ||
2070 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2071 return 0;
2072
2073 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2074 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2075
2076 while (clusters) {
2077 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2078 &extent_flags);
2079 if (ret < 0) {
2080 mlog_errno(ret);
2081 goto out;
2082 }
2083
2084 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2085 ret = 1;
2086 break;
2087 }
2088
2089 if (extent_len > clusters)
2090 extent_len = clusters;
2091
2092 clusters -= extent_len;
2093 cpos += extent_len;
2094 }
2095 out:
2096 return ret;
2097 }
2098
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2099 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2100 {
2101 int blockmask = inode->i_sb->s_blocksize - 1;
2102 loff_t final_size = pos + count;
2103
2104 if ((pos & blockmask) || (final_size & blockmask))
2105 return 1;
2106 return 0;
2107 }
2108
ocfs2_prepare_inode_for_refcount(struct inode * inode,struct file * file,loff_t pos,size_t count,int * meta_level)2109 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2110 struct file *file,
2111 loff_t pos, size_t count,
2112 int *meta_level)
2113 {
2114 int ret;
2115 struct buffer_head *di_bh = NULL;
2116 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2117 u32 clusters =
2118 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2119
2120 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2121 if (ret) {
2122 mlog_errno(ret);
2123 goto out;
2124 }
2125
2126 *meta_level = 1;
2127
2128 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2129 if (ret)
2130 mlog_errno(ret);
2131 out:
2132 brelse(di_bh);
2133 return ret;
2134 }
2135
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int wait)2136 static int ocfs2_prepare_inode_for_write(struct file *file,
2137 loff_t pos, size_t count, int wait)
2138 {
2139 int ret = 0, meta_level = 0, overwrite_io = 0;
2140 struct dentry *dentry = file->f_path.dentry;
2141 struct inode *inode = d_inode(dentry);
2142 struct buffer_head *di_bh = NULL;
2143 loff_t end;
2144
2145 /*
2146 * We start with a read level meta lock and only jump to an ex
2147 * if we need to make modifications here.
2148 */
2149 for(;;) {
2150 if (wait)
2151 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2152 else
2153 ret = ocfs2_try_inode_lock(inode,
2154 overwrite_io ? NULL : &di_bh, meta_level);
2155 if (ret < 0) {
2156 meta_level = -1;
2157 if (ret != -EAGAIN)
2158 mlog_errno(ret);
2159 goto out;
2160 }
2161
2162 /*
2163 * Check if IO will overwrite allocated blocks in case
2164 * IOCB_NOWAIT flag is set.
2165 */
2166 if (!wait && !overwrite_io) {
2167 overwrite_io = 1;
2168 if (!down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem)) {
2169 ret = -EAGAIN;
2170 goto out_unlock;
2171 }
2172
2173 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2174 brelse(di_bh);
2175 di_bh = NULL;
2176 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2177 if (ret < 0) {
2178 if (ret != -EAGAIN)
2179 mlog_errno(ret);
2180 goto out_unlock;
2181 }
2182 }
2183
2184 /* Clear suid / sgid if necessary. We do this here
2185 * instead of later in the write path because
2186 * remove_suid() calls ->setattr without any hint that
2187 * we may have already done our cluster locking. Since
2188 * ocfs2_setattr() *must* take cluster locks to
2189 * proceed, this will lead us to recursively lock the
2190 * inode. There's also the dinode i_size state which
2191 * can be lost via setattr during extending writes (we
2192 * set inode->i_size at the end of a write. */
2193 if (should_remove_suid(dentry)) {
2194 if (meta_level == 0) {
2195 ocfs2_inode_unlock(inode, meta_level);
2196 meta_level = 1;
2197 continue;
2198 }
2199
2200 ret = ocfs2_write_remove_suid(inode);
2201 if (ret < 0) {
2202 mlog_errno(ret);
2203 goto out_unlock;
2204 }
2205 }
2206
2207 end = pos + count;
2208
2209 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2210 if (ret == 1) {
2211 ocfs2_inode_unlock(inode, meta_level);
2212 meta_level = -1;
2213
2214 ret = ocfs2_prepare_inode_for_refcount(inode,
2215 file,
2216 pos,
2217 count,
2218 &meta_level);
2219 }
2220
2221 if (ret < 0) {
2222 mlog_errno(ret);
2223 goto out_unlock;
2224 }
2225
2226 break;
2227 }
2228
2229 out_unlock:
2230 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2231 pos, count, wait);
2232
2233 brelse(di_bh);
2234
2235 if (meta_level >= 0)
2236 ocfs2_inode_unlock(inode, meta_level);
2237
2238 out:
2239 return ret;
2240 }
2241
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2242 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2243 struct iov_iter *from)
2244 {
2245 int rw_level;
2246 ssize_t written = 0;
2247 ssize_t ret;
2248 size_t count = iov_iter_count(from);
2249 struct file *file = iocb->ki_filp;
2250 struct inode *inode = file_inode(file);
2251 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2252 int full_coherency = !(osb->s_mount_opt &
2253 OCFS2_MOUNT_COHERENCY_BUFFERED);
2254 void *saved_ki_complete = NULL;
2255 int append_write = ((iocb->ki_pos + count) >=
2256 i_size_read(inode) ? 1 : 0);
2257 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2258 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2259
2260 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2261 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2262 file->f_path.dentry->d_name.len,
2263 file->f_path.dentry->d_name.name,
2264 (unsigned int)from->nr_segs); /* GRRRRR */
2265
2266 if (!direct_io && nowait)
2267 return -EOPNOTSUPP;
2268
2269 if (count == 0)
2270 return 0;
2271
2272 if (nowait) {
2273 if (!inode_trylock(inode))
2274 return -EAGAIN;
2275 } else
2276 inode_lock(inode);
2277
2278 /*
2279 * Concurrent O_DIRECT writes are allowed with
2280 * mount_option "coherency=buffered".
2281 * For append write, we must take rw EX.
2282 */
2283 rw_level = (!direct_io || full_coherency || append_write);
2284
2285 if (nowait)
2286 ret = ocfs2_try_rw_lock(inode, rw_level);
2287 else
2288 ret = ocfs2_rw_lock(inode, rw_level);
2289 if (ret < 0) {
2290 if (ret != -EAGAIN)
2291 mlog_errno(ret);
2292 goto out_mutex;
2293 }
2294
2295 /*
2296 * O_DIRECT writes with "coherency=full" need to take EX cluster
2297 * inode_lock to guarantee coherency.
2298 */
2299 if (direct_io && full_coherency) {
2300 /*
2301 * We need to take and drop the inode lock to force
2302 * other nodes to drop their caches. Buffered I/O
2303 * already does this in write_begin().
2304 */
2305 if (nowait)
2306 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2307 else
2308 ret = ocfs2_inode_lock(inode, NULL, 1);
2309 if (ret < 0) {
2310 if (ret != -EAGAIN)
2311 mlog_errno(ret);
2312 goto out;
2313 }
2314
2315 ocfs2_inode_unlock(inode, 1);
2316 }
2317
2318 ret = generic_write_checks(iocb, from);
2319 if (ret <= 0) {
2320 if (ret)
2321 mlog_errno(ret);
2322 goto out;
2323 }
2324 count = ret;
2325
2326 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2327 if (ret < 0) {
2328 if (ret != -EAGAIN)
2329 mlog_errno(ret);
2330 goto out;
2331 }
2332
2333 if (direct_io && !is_sync_kiocb(iocb) &&
2334 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2335 /*
2336 * Make it a sync io if it's an unaligned aio.
2337 */
2338 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2339 }
2340
2341 /* communicate with ocfs2_dio_end_io */
2342 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2343
2344 written = __generic_file_write_iter(iocb, from);
2345 /* buffered aio wouldn't have proper lock coverage today */
2346 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2347
2348 /*
2349 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2350 * function pointer which is called when o_direct io completes so that
2351 * it can unlock our rw lock.
2352 * Unfortunately there are error cases which call end_io and others
2353 * that don't. so we don't have to unlock the rw_lock if either an
2354 * async dio is going to do it in the future or an end_io after an
2355 * error has already done it.
2356 */
2357 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2358 rw_level = -1;
2359 }
2360
2361 if (unlikely(written <= 0))
2362 goto out;
2363
2364 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2365 IS_SYNC(inode)) {
2366 ret = filemap_fdatawrite_range(file->f_mapping,
2367 iocb->ki_pos - written,
2368 iocb->ki_pos - 1);
2369 if (ret < 0)
2370 written = ret;
2371
2372 if (!ret) {
2373 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2374 if (ret < 0)
2375 written = ret;
2376 }
2377
2378 if (!ret)
2379 ret = filemap_fdatawait_range(file->f_mapping,
2380 iocb->ki_pos - written,
2381 iocb->ki_pos - 1);
2382 }
2383
2384 out:
2385 if (saved_ki_complete)
2386 xchg(&iocb->ki_complete, saved_ki_complete);
2387
2388 if (rw_level != -1)
2389 ocfs2_rw_unlock(inode, rw_level);
2390
2391 out_mutex:
2392 inode_unlock(inode);
2393
2394 if (written)
2395 ret = written;
2396 return ret;
2397 }
2398
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2399 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2400 struct iov_iter *to)
2401 {
2402 int ret = 0, rw_level = -1, lock_level = 0;
2403 struct file *filp = iocb->ki_filp;
2404 struct inode *inode = file_inode(filp);
2405 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2406 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2407
2408 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2409 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2410 filp->f_path.dentry->d_name.len,
2411 filp->f_path.dentry->d_name.name,
2412 to->nr_segs); /* GRRRRR */
2413
2414
2415 if (!inode) {
2416 ret = -EINVAL;
2417 mlog_errno(ret);
2418 goto bail;
2419 }
2420
2421 if (!direct_io && nowait)
2422 return -EOPNOTSUPP;
2423
2424 /*
2425 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2426 * need locks to protect pending reads from racing with truncate.
2427 */
2428 if (direct_io) {
2429 if (nowait)
2430 ret = ocfs2_try_rw_lock(inode, 0);
2431 else
2432 ret = ocfs2_rw_lock(inode, 0);
2433
2434 if (ret < 0) {
2435 if (ret != -EAGAIN)
2436 mlog_errno(ret);
2437 goto bail;
2438 }
2439 rw_level = 0;
2440 /* communicate with ocfs2_dio_end_io */
2441 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2442 }
2443
2444 /*
2445 * We're fine letting folks race truncates and extending
2446 * writes with read across the cluster, just like they can
2447 * locally. Hence no rw_lock during read.
2448 *
2449 * Take and drop the meta data lock to update inode fields
2450 * like i_size. This allows the checks down below
2451 * generic_file_read_iter() a chance of actually working.
2452 */
2453 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2454 !nowait);
2455 if (ret < 0) {
2456 if (ret != -EAGAIN)
2457 mlog_errno(ret);
2458 goto bail;
2459 }
2460 ocfs2_inode_unlock(inode, lock_level);
2461
2462 ret = generic_file_read_iter(iocb, to);
2463 trace_generic_file_read_iter_ret(ret);
2464
2465 /* buffered aio wouldn't have proper lock coverage today */
2466 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2467
2468 /* see ocfs2_file_write_iter */
2469 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2470 rw_level = -1;
2471 }
2472
2473 bail:
2474 if (rw_level != -1)
2475 ocfs2_rw_unlock(inode, rw_level);
2476
2477 return ret;
2478 }
2479
2480 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2481 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2482 {
2483 struct inode *inode = file->f_mapping->host;
2484 int ret = 0;
2485
2486 inode_lock(inode);
2487
2488 switch (whence) {
2489 case SEEK_SET:
2490 break;
2491 case SEEK_END:
2492 /* SEEK_END requires the OCFS2 inode lock for the file
2493 * because it references the file's size.
2494 */
2495 ret = ocfs2_inode_lock(inode, NULL, 0);
2496 if (ret < 0) {
2497 mlog_errno(ret);
2498 goto out;
2499 }
2500 offset += i_size_read(inode);
2501 ocfs2_inode_unlock(inode, 0);
2502 break;
2503 case SEEK_CUR:
2504 if (offset == 0) {
2505 offset = file->f_pos;
2506 goto out;
2507 }
2508 offset += file->f_pos;
2509 break;
2510 case SEEK_DATA:
2511 case SEEK_HOLE:
2512 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2513 if (ret)
2514 goto out;
2515 break;
2516 default:
2517 ret = -EINVAL;
2518 goto out;
2519 }
2520
2521 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2522
2523 out:
2524 inode_unlock(inode);
2525 if (ret)
2526 return ret;
2527 return offset;
2528 }
2529
ocfs2_file_clone_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)2530 static int ocfs2_file_clone_range(struct file *file_in,
2531 loff_t pos_in,
2532 struct file *file_out,
2533 loff_t pos_out,
2534 u64 len)
2535 {
2536 return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2537 len, false);
2538 }
2539
ocfs2_file_dedupe_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)2540 static int ocfs2_file_dedupe_range(struct file *file_in,
2541 loff_t pos_in,
2542 struct file *file_out,
2543 loff_t pos_out,
2544 u64 len)
2545 {
2546 return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2547 len, true);
2548 }
2549
2550 const struct inode_operations ocfs2_file_iops = {
2551 .setattr = ocfs2_setattr,
2552 .getattr = ocfs2_getattr,
2553 .permission = ocfs2_permission,
2554 .listxattr = ocfs2_listxattr,
2555 .fiemap = ocfs2_fiemap,
2556 .get_acl = ocfs2_iop_get_acl,
2557 .set_acl = ocfs2_iop_set_acl,
2558 };
2559
2560 const struct inode_operations ocfs2_special_file_iops = {
2561 .setattr = ocfs2_setattr,
2562 .getattr = ocfs2_getattr,
2563 .permission = ocfs2_permission,
2564 .get_acl = ocfs2_iop_get_acl,
2565 .set_acl = ocfs2_iop_set_acl,
2566 };
2567
2568 /*
2569 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2570 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2571 */
2572 const struct file_operations ocfs2_fops = {
2573 .llseek = ocfs2_file_llseek,
2574 .mmap = ocfs2_mmap,
2575 .fsync = ocfs2_sync_file,
2576 .release = ocfs2_file_release,
2577 .open = ocfs2_file_open,
2578 .read_iter = ocfs2_file_read_iter,
2579 .write_iter = ocfs2_file_write_iter,
2580 .unlocked_ioctl = ocfs2_ioctl,
2581 #ifdef CONFIG_COMPAT
2582 .compat_ioctl = ocfs2_compat_ioctl,
2583 #endif
2584 .lock = ocfs2_lock,
2585 .flock = ocfs2_flock,
2586 .splice_read = generic_file_splice_read,
2587 .splice_write = iter_file_splice_write,
2588 .fallocate = ocfs2_fallocate,
2589 .clone_file_range = ocfs2_file_clone_range,
2590 .dedupe_file_range = ocfs2_file_dedupe_range,
2591 };
2592
2593 const struct file_operations ocfs2_dops = {
2594 .llseek = generic_file_llseek,
2595 .read = generic_read_dir,
2596 .iterate = ocfs2_readdir,
2597 .fsync = ocfs2_sync_file,
2598 .release = ocfs2_dir_release,
2599 .open = ocfs2_dir_open,
2600 .unlocked_ioctl = ocfs2_ioctl,
2601 #ifdef CONFIG_COMPAT
2602 .compat_ioctl = ocfs2_compat_ioctl,
2603 #endif
2604 .lock = ocfs2_lock,
2605 .flock = ocfs2_flock,
2606 };
2607
2608 /*
2609 * POSIX-lockless variants of our file_operations.
2610 *
2611 * These will be used if the underlying cluster stack does not support
2612 * posix file locking, if the user passes the "localflocks" mount
2613 * option, or if we have a local-only fs.
2614 *
2615 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2616 * so we still want it in the case of no stack support for
2617 * plocks. Internally, it will do the right thing when asked to ignore
2618 * the cluster.
2619 */
2620 const struct file_operations ocfs2_fops_no_plocks = {
2621 .llseek = ocfs2_file_llseek,
2622 .mmap = ocfs2_mmap,
2623 .fsync = ocfs2_sync_file,
2624 .release = ocfs2_file_release,
2625 .open = ocfs2_file_open,
2626 .read_iter = ocfs2_file_read_iter,
2627 .write_iter = ocfs2_file_write_iter,
2628 .unlocked_ioctl = ocfs2_ioctl,
2629 #ifdef CONFIG_COMPAT
2630 .compat_ioctl = ocfs2_compat_ioctl,
2631 #endif
2632 .flock = ocfs2_flock,
2633 .splice_read = generic_file_splice_read,
2634 .splice_write = iter_file_splice_write,
2635 .fallocate = ocfs2_fallocate,
2636 .clone_file_range = ocfs2_file_clone_range,
2637 .dedupe_file_range = ocfs2_file_dedupe_range,
2638 };
2639
2640 const struct file_operations ocfs2_dops_no_plocks = {
2641 .llseek = generic_file_llseek,
2642 .read = generic_read_dir,
2643 .iterate = ocfs2_readdir,
2644 .fsync = ocfs2_sync_file,
2645 .release = ocfs2_dir_release,
2646 .open = ocfs2_dir_open,
2647 .unlocked_ioctl = ocfs2_ioctl,
2648 #ifdef CONFIG_COMPAT
2649 .compat_ioctl = ocfs2_compat_ioctl,
2650 #endif
2651 .flock = ocfs2_flock,
2652 };
2653