1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55 
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58 
59 DEFINE_SPINLOCK(trans_inc_lock);
60 
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62 
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 			      int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 				      int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 				 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 				 int slot,
75 				 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 					    int slot_num,
79 					    struct ocfs2_dinode *la_dinode,
80 					    struct ocfs2_dinode *tl_dinode,
81 					    struct ocfs2_quota_recovery *qrec,
82 					    enum ocfs2_orphan_reco_type orphan_reco_type);
83 
ocfs2_wait_on_mount(struct ocfs2_super * osb)84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 0);
87 }
88 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 	return __ocfs2_wait_on_mount(osb, 1);
92 }
93 
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98 
99 enum ocfs2_replay_state {
100 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
101 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
102 	REPLAY_DONE 		/* Replay was already queued */
103 };
104 
105 struct ocfs2_replay_map {
106 	unsigned int rm_slots;
107 	enum ocfs2_replay_state rm_state;
108 	unsigned char rm_replay_slots[0];
109 };
110 
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 	if (!osb->replay_map)
114 		return;
115 
116 	/* If we've already queued the replay, we don't have any more to do */
117 	if (osb->replay_map->rm_state == REPLAY_DONE)
118 		return;
119 
120 	osb->replay_map->rm_state = state;
121 }
122 
ocfs2_compute_replay_slots(struct ocfs2_super * osb)123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 	struct ocfs2_replay_map *replay_map;
126 	int i, node_num;
127 
128 	/* If replay map is already set, we don't do it again */
129 	if (osb->replay_map)
130 		return 0;
131 
132 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
134 
135 	if (!replay_map) {
136 		mlog_errno(-ENOMEM);
137 		return -ENOMEM;
138 	}
139 
140 	spin_lock(&osb->osb_lock);
141 
142 	replay_map->rm_slots = osb->max_slots;
143 	replay_map->rm_state = REPLAY_UNNEEDED;
144 
145 	/* set rm_replay_slots for offline slot(s) */
146 	for (i = 0; i < replay_map->rm_slots; i++) {
147 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 			replay_map->rm_replay_slots[i] = 1;
149 	}
150 
151 	osb->replay_map = replay_map;
152 	spin_unlock(&osb->osb_lock);
153 	return 0;
154 }
155 
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 		enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 	struct ocfs2_replay_map *replay_map = osb->replay_map;
160 	int i;
161 
162 	if (!replay_map)
163 		return;
164 
165 	if (replay_map->rm_state != REPLAY_NEEDED)
166 		return;
167 
168 	for (i = 0; i < replay_map->rm_slots; i++)
169 		if (replay_map->rm_replay_slots[i])
170 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 							NULL, NULL,
172 							orphan_reco_type);
173 	replay_map->rm_state = REPLAY_DONE;
174 }
175 
ocfs2_free_replay_slots(struct ocfs2_super * osb)176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 	struct ocfs2_replay_map *replay_map = osb->replay_map;
179 
180 	if (!osb->replay_map)
181 		return;
182 
183 	kfree(replay_map);
184 	osb->replay_map = NULL;
185 }
186 
ocfs2_recovery_init(struct ocfs2_super * osb)187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 	struct ocfs2_recovery_map *rm;
190 
191 	mutex_init(&osb->recovery_lock);
192 	osb->disable_recovery = 0;
193 	osb->recovery_thread_task = NULL;
194 	init_waitqueue_head(&osb->recovery_event);
195 
196 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 		     osb->max_slots * sizeof(unsigned int),
198 		     GFP_KERNEL);
199 	if (!rm) {
200 		mlog_errno(-ENOMEM);
201 		return -ENOMEM;
202 	}
203 
204 	rm->rm_entries = (unsigned int *)((char *)rm +
205 					  sizeof(struct ocfs2_recovery_map));
206 	osb->recovery_map = rm;
207 
208 	return 0;
209 }
210 
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 	mb();
217 	return osb->recovery_thread_task != NULL;
218 }
219 
ocfs2_recovery_exit(struct ocfs2_super * osb)220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 	struct ocfs2_recovery_map *rm;
223 
224 	/* disable any new recovery threads and wait for any currently
225 	 * running ones to exit. Do this before setting the vol_state. */
226 	mutex_lock(&osb->recovery_lock);
227 	osb->disable_recovery = 1;
228 	mutex_unlock(&osb->recovery_lock);
229 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230 
231 	/* At this point, we know that no more recovery threads can be
232 	 * launched, so wait for any recovery completion work to
233 	 * complete. */
234 	flush_workqueue(osb->ocfs2_wq);
235 
236 	/*
237 	 * Now that recovery is shut down, and the osb is about to be
238 	 * freed,  the osb_lock is not taken here.
239 	 */
240 	rm = osb->recovery_map;
241 	/* XXX: Should we bug if there are dirty entries? */
242 
243 	kfree(rm);
244 }
245 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 				     unsigned int node_num)
248 {
249 	int i;
250 	struct ocfs2_recovery_map *rm = osb->recovery_map;
251 
252 	assert_spin_locked(&osb->osb_lock);
253 
254 	for (i = 0; i < rm->rm_used; i++) {
255 		if (rm->rm_entries[i] == node_num)
256 			return 1;
257 	}
258 
259 	return 0;
260 }
261 
262 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 				  unsigned int node_num)
265 {
266 	struct ocfs2_recovery_map *rm = osb->recovery_map;
267 
268 	spin_lock(&osb->osb_lock);
269 	if (__ocfs2_recovery_map_test(osb, node_num)) {
270 		spin_unlock(&osb->osb_lock);
271 		return 1;
272 	}
273 
274 	/* XXX: Can this be exploited? Not from o2dlm... */
275 	BUG_ON(rm->rm_used >= osb->max_slots);
276 
277 	rm->rm_entries[rm->rm_used] = node_num;
278 	rm->rm_used++;
279 	spin_unlock(&osb->osb_lock);
280 
281 	return 0;
282 }
283 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 				     unsigned int node_num)
286 {
287 	int i;
288 	struct ocfs2_recovery_map *rm = osb->recovery_map;
289 
290 	spin_lock(&osb->osb_lock);
291 
292 	for (i = 0; i < rm->rm_used; i++) {
293 		if (rm->rm_entries[i] == node_num)
294 			break;
295 	}
296 
297 	if (i < rm->rm_used) {
298 		/* XXX: be careful with the pointer math */
299 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 			(rm->rm_used - i - 1) * sizeof(unsigned int));
301 		rm->rm_used--;
302 	}
303 
304 	spin_unlock(&osb->osb_lock);
305 }
306 
ocfs2_commit_cache(struct ocfs2_super * osb)307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 	int status = 0;
310 	unsigned int flushed;
311 	struct ocfs2_journal *journal = NULL;
312 
313 	journal = osb->journal;
314 
315 	/* Flush all pending commits and checkpoint the journal. */
316 	down_write(&journal->j_trans_barrier);
317 
318 	flushed = atomic_read(&journal->j_num_trans);
319 	trace_ocfs2_commit_cache_begin(flushed);
320 	if (flushed == 0) {
321 		up_write(&journal->j_trans_barrier);
322 		goto finally;
323 	}
324 
325 	jbd2_journal_lock_updates(journal->j_journal);
326 	status = jbd2_journal_flush(journal->j_journal);
327 	jbd2_journal_unlock_updates(journal->j_journal);
328 	if (status < 0) {
329 		up_write(&journal->j_trans_barrier);
330 		mlog_errno(status);
331 		goto finally;
332 	}
333 
334 	ocfs2_inc_trans_id(journal);
335 
336 	flushed = atomic_read(&journal->j_num_trans);
337 	atomic_set(&journal->j_num_trans, 0);
338 	up_write(&journal->j_trans_barrier);
339 
340 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341 
342 	ocfs2_wake_downconvert_thread(osb);
343 	wake_up(&journal->j_checkpointed);
344 finally:
345 	return status;
346 }
347 
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	sb_start_intwrite(osb->sb);
366 
367 	down_read(&osb->journal->j_trans_barrier);
368 
369 	handle = jbd2_journal_start(journal, max_buffs);
370 	if (IS_ERR(handle)) {
371 		up_read(&osb->journal->j_trans_barrier);
372 		sb_end_intwrite(osb->sb);
373 
374 		mlog_errno(PTR_ERR(handle));
375 
376 		if (is_journal_aborted(journal)) {
377 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 			handle = ERR_PTR(-EROFS);
379 		}
380 	} else {
381 		if (!ocfs2_mount_local(osb))
382 			atomic_inc(&(osb->journal->j_num_trans));
383 	}
384 
385 	return handle;
386 }
387 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 		       handle_t *handle)
390 {
391 	int ret, nested;
392 	struct ocfs2_journal *journal = osb->journal;
393 
394 	BUG_ON(!handle);
395 
396 	nested = handle->h_ref > 1;
397 	ret = jbd2_journal_stop(handle);
398 	if (ret < 0)
399 		mlog_errno(ret);
400 
401 	if (!nested) {
402 		up_read(&journal->j_trans_barrier);
403 		sb_end_intwrite(osb->sb);
404 	}
405 
406 	return ret;
407 }
408 
409 /*
410  * 'nblocks' is what you want to add to the current transaction.
411  *
412  * This might call jbd2_journal_restart() which will commit dirty buffers
413  * and then restart the transaction. Before calling
414  * ocfs2_extend_trans(), any changed blocks should have been
415  * dirtied. After calling it, all blocks which need to be changed must
416  * go through another set of journal_access/journal_dirty calls.
417  *
418  * WARNING: This will not release any semaphores or disk locks taken
419  * during the transaction, so make sure they were taken *before*
420  * start_trans or we'll have ordering deadlocks.
421  *
422  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423  * good because transaction ids haven't yet been recorded on the
424  * cluster locks associated with this handle.
425  */
ocfs2_extend_trans(handle_t * handle,int nblocks)426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 	int status, old_nblocks;
429 
430 	BUG_ON(!handle);
431 	BUG_ON(nblocks < 0);
432 
433 	if (!nblocks)
434 		return 0;
435 
436 	old_nblocks = handle->h_buffer_credits;
437 
438 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
439 
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 	status = 1;
442 #else
443 	status = jbd2_journal_extend(handle, nblocks);
444 	if (status < 0) {
445 		mlog_errno(status);
446 		goto bail;
447 	}
448 #endif
449 
450 	if (status > 0) {
451 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 		status = jbd2_journal_restart(handle,
453 					      old_nblocks + nblocks);
454 		if (status < 0) {
455 			mlog_errno(status);
456 			goto bail;
457 		}
458 	}
459 
460 	status = 0;
461 bail:
462 	return status;
463 }
464 
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 	int status, old_nblks;
474 
475 	BUG_ON(!handle);
476 
477 	old_nblks = handle->h_buffer_credits;
478 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479 
480 	if (old_nblks < thresh)
481 		return 0;
482 
483 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 	if (status < 0) {
485 		mlog_errno(status);
486 		goto bail;
487 	}
488 
489 	if (status > 0) {
490 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 		if (status < 0)
492 			mlog_errno(status);
493 	}
494 
495 bail:
496 	return status;
497 }
498 
499 
500 struct ocfs2_triggers {
501 	struct jbd2_buffer_trigger_type	ot_triggers;
502 	int				ot_offset;
503 };
504 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509 
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 				 struct buffer_head *bh,
512 				 void *data, size_t size)
513 {
514 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515 
516 	/*
517 	 * We aren't guaranteed to have the superblock here, so we
518 	 * must unconditionally compute the ecc data.
519 	 * __ocfs2_journal_access() will only set the triggers if
520 	 * metaecc is enabled.
521 	 */
522 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524 
525 /*
526  * Quota blocks have their own trigger because the struct ocfs2_block_check
527  * offset depends on the blocksize.
528  */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 				 struct buffer_head *bh,
531 				 void *data, size_t size)
532 {
533 	struct ocfs2_disk_dqtrailer *dqt =
534 		ocfs2_block_dqtrailer(size, data);
535 
536 	/*
537 	 * We aren't guaranteed to have the superblock here, so we
538 	 * must unconditionally compute the ecc data.
539 	 * __ocfs2_journal_access() will only set the triggers if
540 	 * metaecc is enabled.
541 	 */
542 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544 
545 /*
546  * Directory blocks also have their own trigger because the
547  * struct ocfs2_block_check offset depends on the blocksize.
548  */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 				 struct buffer_head *bh,
551 				 void *data, size_t size)
552 {
553 	struct ocfs2_dir_block_trailer *trailer =
554 		ocfs2_dir_trailer_from_size(size, data);
555 
556 	/*
557 	 * We aren't guaranteed to have the superblock here, so we
558 	 * must unconditionally compute the ecc data.
559 	 * __ocfs2_journal_access() will only set the triggers if
560 	 * metaecc is enabled.
561 	 */
562 	ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 				struct buffer_head *bh)
567 {
568 	mlog(ML_ERROR,
569 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570 	     "bh->b_blocknr = %llu\n",
571 	     (unsigned long)bh,
572 	     (unsigned long long)bh->b_blocknr);
573 
574 	ocfs2_error(bh->b_bdev->bd_super,
575 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577 
578 static struct ocfs2_triggers di_triggers = {
579 	.ot_triggers = {
580 		.t_frozen = ocfs2_frozen_trigger,
581 		.t_abort = ocfs2_abort_trigger,
582 	},
583 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
584 };
585 
586 static struct ocfs2_triggers eb_triggers = {
587 	.ot_triggers = {
588 		.t_frozen = ocfs2_frozen_trigger,
589 		.t_abort = ocfs2_abort_trigger,
590 	},
591 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
592 };
593 
594 static struct ocfs2_triggers rb_triggers = {
595 	.ot_triggers = {
596 		.t_frozen = ocfs2_frozen_trigger,
597 		.t_abort = ocfs2_abort_trigger,
598 	},
599 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601 
602 static struct ocfs2_triggers gd_triggers = {
603 	.ot_triggers = {
604 		.t_frozen = ocfs2_frozen_trigger,
605 		.t_abort = ocfs2_abort_trigger,
606 	},
607 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
608 };
609 
610 static struct ocfs2_triggers db_triggers = {
611 	.ot_triggers = {
612 		.t_frozen = ocfs2_db_frozen_trigger,
613 		.t_abort = ocfs2_abort_trigger,
614 	},
615 };
616 
617 static struct ocfs2_triggers xb_triggers = {
618 	.ot_triggers = {
619 		.t_frozen = ocfs2_frozen_trigger,
620 		.t_abort = ocfs2_abort_trigger,
621 	},
622 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624 
625 static struct ocfs2_triggers dq_triggers = {
626 	.ot_triggers = {
627 		.t_frozen = ocfs2_dq_frozen_trigger,
628 		.t_abort = ocfs2_abort_trigger,
629 	},
630 };
631 
632 static struct ocfs2_triggers dr_triggers = {
633 	.ot_triggers = {
634 		.t_frozen = ocfs2_frozen_trigger,
635 		.t_abort = ocfs2_abort_trigger,
636 	},
637 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639 
640 static struct ocfs2_triggers dl_triggers = {
641 	.ot_triggers = {
642 		.t_frozen = ocfs2_frozen_trigger,
643 		.t_abort = ocfs2_abort_trigger,
644 	},
645 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647 
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)648 static int __ocfs2_journal_access(handle_t *handle,
649 				  struct ocfs2_caching_info *ci,
650 				  struct buffer_head *bh,
651 				  struct ocfs2_triggers *triggers,
652 				  int type)
653 {
654 	int status;
655 	struct ocfs2_super *osb =
656 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657 
658 	BUG_ON(!ci || !ci->ci_ops);
659 	BUG_ON(!handle);
660 	BUG_ON(!bh);
661 
662 	trace_ocfs2_journal_access(
663 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
664 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
665 
666 	/* we can safely remove this assertion after testing. */
667 	if (!buffer_uptodate(bh)) {
668 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
670 		     (unsigned long long)bh->b_blocknr, bh->b_state);
671 
672 		lock_buffer(bh);
673 		/*
674 		 * A previous transaction with a couple of buffer heads fail
675 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
676 		 * For current transaction, the bh is just among those error
677 		 * bhs which previous transaction handle. We can't just clear
678 		 * its BH_Write_EIO and reuse directly, since other bhs are
679 		 * not written to disk yet and that will cause metadata
680 		 * inconsistency. So we should set fs read-only to avoid
681 		 * further damage.
682 		 */
683 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
684 			unlock_buffer(bh);
685 			return ocfs2_error(osb->sb, "A previous attempt to "
686 					"write this buffer head failed\n");
687 		}
688 		unlock_buffer(bh);
689 	}
690 
691 	/* Set the current transaction information on the ci so
692 	 * that the locking code knows whether it can drop it's locks
693 	 * on this ci or not. We're protected from the commit
694 	 * thread updating the current transaction id until
695 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
696 	 * j_trans_barrier for us. */
697 	ocfs2_set_ci_lock_trans(osb->journal, ci);
698 
699 	ocfs2_metadata_cache_io_lock(ci);
700 	switch (type) {
701 	case OCFS2_JOURNAL_ACCESS_CREATE:
702 	case OCFS2_JOURNAL_ACCESS_WRITE:
703 		status = jbd2_journal_get_write_access(handle, bh);
704 		break;
705 
706 	case OCFS2_JOURNAL_ACCESS_UNDO:
707 		status = jbd2_journal_get_undo_access(handle, bh);
708 		break;
709 
710 	default:
711 		status = -EINVAL;
712 		mlog(ML_ERROR, "Unknown access type!\n");
713 	}
714 	if (!status && ocfs2_meta_ecc(osb) && triggers)
715 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
716 	ocfs2_metadata_cache_io_unlock(ci);
717 
718 	if (status < 0)
719 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
720 		     status, type);
721 
722 	return status;
723 }
724 
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
726 			    struct buffer_head *bh, int type)
727 {
728 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
729 }
730 
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
732 			    struct buffer_head *bh, int type)
733 {
734 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
735 }
736 
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
738 			    struct buffer_head *bh, int type)
739 {
740 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
741 				      type);
742 }
743 
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
745 			    struct buffer_head *bh, int type)
746 {
747 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
748 }
749 
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 			    struct buffer_head *bh, int type)
752 {
753 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
754 }
755 
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
757 			    struct buffer_head *bh, int type)
758 {
759 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
760 }
761 
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
763 			    struct buffer_head *bh, int type)
764 {
765 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
766 }
767 
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
769 			    struct buffer_head *bh, int type)
770 {
771 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
772 }
773 
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
775 			    struct buffer_head *bh, int type)
776 {
777 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
778 }
779 
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
781 			 struct buffer_head *bh, int type)
782 {
783 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
784 }
785 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
787 {
788 	int status;
789 
790 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
791 
792 	status = jbd2_journal_dirty_metadata(handle, bh);
793 	if (status) {
794 		mlog_errno(status);
795 		if (!is_handle_aborted(handle)) {
796 			journal_t *journal = handle->h_transaction->t_journal;
797 			struct super_block *sb = bh->b_bdev->bd_super;
798 
799 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
800 					"Aborting transaction and journal.\n");
801 			handle->h_err = status;
802 			jbd2_journal_abort_handle(handle);
803 			jbd2_journal_abort(journal, status);
804 			ocfs2_abort(sb, "Journal already aborted.\n");
805 		}
806 	}
807 }
808 
809 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
810 
ocfs2_set_journal_params(struct ocfs2_super * osb)811 void ocfs2_set_journal_params(struct ocfs2_super *osb)
812 {
813 	journal_t *journal = osb->journal->j_journal;
814 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
815 
816 	if (osb->osb_commit_interval)
817 		commit_interval = osb->osb_commit_interval;
818 
819 	write_lock(&journal->j_state_lock);
820 	journal->j_commit_interval = commit_interval;
821 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
822 		journal->j_flags |= JBD2_BARRIER;
823 	else
824 		journal->j_flags &= ~JBD2_BARRIER;
825 	write_unlock(&journal->j_state_lock);
826 }
827 
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
829 {
830 	int status = -1;
831 	struct inode *inode = NULL; /* the journal inode */
832 	journal_t *j_journal = NULL;
833 	struct ocfs2_dinode *di = NULL;
834 	struct buffer_head *bh = NULL;
835 	struct ocfs2_super *osb;
836 	int inode_lock = 0;
837 
838 	BUG_ON(!journal);
839 
840 	osb = journal->j_osb;
841 
842 	/* already have the inode for our journal */
843 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844 					    osb->slot_num);
845 	if (inode == NULL) {
846 		status = -EACCES;
847 		mlog_errno(status);
848 		goto done;
849 	}
850 	if (is_bad_inode(inode)) {
851 		mlog(ML_ERROR, "access error (bad inode)\n");
852 		iput(inode);
853 		inode = NULL;
854 		status = -EACCES;
855 		goto done;
856 	}
857 
858 	SET_INODE_JOURNAL(inode);
859 	OCFS2_I(inode)->ip_open_count++;
860 
861 	/* Skip recovery waits here - journal inode metadata never
862 	 * changes in a live cluster so it can be considered an
863 	 * exception to the rule. */
864 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865 	if (status < 0) {
866 		if (status != -ERESTARTSYS)
867 			mlog(ML_ERROR, "Could not get lock on journal!\n");
868 		goto done;
869 	}
870 
871 	inode_lock = 1;
872 	di = (struct ocfs2_dinode *)bh->b_data;
873 
874 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
875 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876 		     i_size_read(inode));
877 		status = -EINVAL;
878 		goto done;
879 	}
880 
881 	trace_ocfs2_journal_init(i_size_read(inode),
882 				 (unsigned long long)inode->i_blocks,
883 				 OCFS2_I(inode)->ip_clusters);
884 
885 	/* call the kernels journal init function now */
886 	j_journal = jbd2_journal_init_inode(inode);
887 	if (j_journal == NULL) {
888 		mlog(ML_ERROR, "Linux journal layer error\n");
889 		status = -EINVAL;
890 		goto done;
891 	}
892 
893 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
894 
895 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896 		  OCFS2_JOURNAL_DIRTY_FL);
897 
898 	journal->j_journal = j_journal;
899 	journal->j_inode = inode;
900 	journal->j_bh = bh;
901 
902 	ocfs2_set_journal_params(osb);
903 
904 	journal->j_state = OCFS2_JOURNAL_LOADED;
905 
906 	status = 0;
907 done:
908 	if (status < 0) {
909 		if (inode_lock)
910 			ocfs2_inode_unlock(inode, 1);
911 		brelse(bh);
912 		if (inode) {
913 			OCFS2_I(inode)->ip_open_count--;
914 			iput(inode);
915 		}
916 	}
917 
918 	return status;
919 }
920 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
922 {
923 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
924 }
925 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
927 {
928 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
929 }
930 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
932 				      int dirty, int replayed)
933 {
934 	int status;
935 	unsigned int flags;
936 	struct ocfs2_journal *journal = osb->journal;
937 	struct buffer_head *bh = journal->j_bh;
938 	struct ocfs2_dinode *fe;
939 
940 	fe = (struct ocfs2_dinode *)bh->b_data;
941 
942 	/* The journal bh on the osb always comes from ocfs2_journal_init()
943 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
944 	 * code bug if we mess it up. */
945 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
946 
947 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
948 	if (dirty)
949 		flags |= OCFS2_JOURNAL_DIRTY_FL;
950 	else
951 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
952 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
953 
954 	if (replayed)
955 		ocfs2_bump_recovery_generation(fe);
956 
957 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
958 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
959 	if (status < 0)
960 		mlog_errno(status);
961 
962 	return status;
963 }
964 
965 /*
966  * If the journal has been kmalloc'd it needs to be freed after this
967  * call.
968  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)969 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
970 {
971 	struct ocfs2_journal *journal = NULL;
972 	int status = 0;
973 	struct inode *inode = NULL;
974 	int num_running_trans = 0;
975 
976 	BUG_ON(!osb);
977 
978 	journal = osb->journal;
979 	if (!journal)
980 		goto done;
981 
982 	inode = journal->j_inode;
983 
984 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
985 		goto done;
986 
987 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
988 	if (!igrab(inode))
989 		BUG();
990 
991 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
992 	trace_ocfs2_journal_shutdown(num_running_trans);
993 
994 	/* Do a commit_cache here. It will flush our journal, *and*
995 	 * release any locks that are still held.
996 	 * set the SHUTDOWN flag and release the trans lock.
997 	 * the commit thread will take the trans lock for us below. */
998 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
999 
1000 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1001 	 * drop the trans_lock (which we want to hold until we
1002 	 * completely destroy the journal. */
1003 	if (osb->commit_task) {
1004 		/* Wait for the commit thread */
1005 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1006 		kthread_stop(osb->commit_task);
1007 		osb->commit_task = NULL;
1008 	}
1009 
1010 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1011 
1012 	if (ocfs2_mount_local(osb)) {
1013 		jbd2_journal_lock_updates(journal->j_journal);
1014 		status = jbd2_journal_flush(journal->j_journal);
1015 		jbd2_journal_unlock_updates(journal->j_journal);
1016 		if (status < 0)
1017 			mlog_errno(status);
1018 	}
1019 
1020 	if (status == 0) {
1021 		/*
1022 		 * Do not toggle if flush was unsuccessful otherwise
1023 		 * will leave dirty metadata in a "clean" journal
1024 		 */
1025 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1026 		if (status < 0)
1027 			mlog_errno(status);
1028 	}
1029 
1030 	/* Shutdown the kernel journal system */
1031 	jbd2_journal_destroy(journal->j_journal);
1032 	journal->j_journal = NULL;
1033 
1034 	OCFS2_I(inode)->ip_open_count--;
1035 
1036 	/* unlock our journal */
1037 	ocfs2_inode_unlock(inode, 1);
1038 
1039 	brelse(journal->j_bh);
1040 	journal->j_bh = NULL;
1041 
1042 	journal->j_state = OCFS2_JOURNAL_FREE;
1043 
1044 //	up_write(&journal->j_trans_barrier);
1045 done:
1046 	iput(inode);
1047 }
1048 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1049 static void ocfs2_clear_journal_error(struct super_block *sb,
1050 				      journal_t *journal,
1051 				      int slot)
1052 {
1053 	int olderr;
1054 
1055 	olderr = jbd2_journal_errno(journal);
1056 	if (olderr) {
1057 		mlog(ML_ERROR, "File system error %d recorded in "
1058 		     "journal %u.\n", olderr, slot);
1059 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1060 		     sb->s_id);
1061 
1062 		jbd2_journal_ack_err(journal);
1063 		jbd2_journal_clear_err(journal);
1064 	}
1065 }
1066 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1067 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1068 {
1069 	int status = 0;
1070 	struct ocfs2_super *osb;
1071 
1072 	BUG_ON(!journal);
1073 
1074 	osb = journal->j_osb;
1075 
1076 	status = jbd2_journal_load(journal->j_journal);
1077 	if (status < 0) {
1078 		mlog(ML_ERROR, "Failed to load journal!\n");
1079 		goto done;
1080 	}
1081 
1082 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1083 
1084 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1085 	if (status < 0) {
1086 		mlog_errno(status);
1087 		goto done;
1088 	}
1089 
1090 	/* Launch the commit thread */
1091 	if (!local) {
1092 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1093 				"ocfs2cmt-%s", osb->uuid_str);
1094 		if (IS_ERR(osb->commit_task)) {
1095 			status = PTR_ERR(osb->commit_task);
1096 			osb->commit_task = NULL;
1097 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1098 			     "error=%d", status);
1099 			goto done;
1100 		}
1101 	} else
1102 		osb->commit_task = NULL;
1103 
1104 done:
1105 	return status;
1106 }
1107 
1108 
1109 /* 'full' flag tells us whether we clear out all blocks or if we just
1110  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1111 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1112 {
1113 	int status;
1114 
1115 	BUG_ON(!journal);
1116 
1117 	status = jbd2_journal_wipe(journal->j_journal, full);
1118 	if (status < 0) {
1119 		mlog_errno(status);
1120 		goto bail;
1121 	}
1122 
1123 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1124 	if (status < 0)
1125 		mlog_errno(status);
1126 
1127 bail:
1128 	return status;
1129 }
1130 
ocfs2_recovery_completed(struct ocfs2_super * osb)1131 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1132 {
1133 	int empty;
1134 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1135 
1136 	spin_lock(&osb->osb_lock);
1137 	empty = (rm->rm_used == 0);
1138 	spin_unlock(&osb->osb_lock);
1139 
1140 	return empty;
1141 }
1142 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1143 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1144 {
1145 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1146 }
1147 
1148 /*
1149  * JBD Might read a cached version of another nodes journal file. We
1150  * don't want this as this file changes often and we get no
1151  * notification on those changes. The only way to be sure that we've
1152  * got the most up to date version of those blocks then is to force
1153  * read them off disk. Just searching through the buffer cache won't
1154  * work as there may be pages backing this file which are still marked
1155  * up to date. We know things can't change on this file underneath us
1156  * as we have the lock by now :)
1157  */
ocfs2_force_read_journal(struct inode * inode)1158 static int ocfs2_force_read_journal(struct inode *inode)
1159 {
1160 	int status = 0;
1161 	int i;
1162 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1163 	struct buffer_head *bh = NULL;
1164 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1165 
1166 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1167 	v_blkno = 0;
1168 	while (v_blkno < num_blocks) {
1169 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1170 						     &p_blkno, &p_blocks, NULL);
1171 		if (status < 0) {
1172 			mlog_errno(status);
1173 			goto bail;
1174 		}
1175 
1176 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1177 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1178 					osb->sb->s_blocksize);
1179 			/* block not cached. */
1180 			if (!bh)
1181 				continue;
1182 
1183 			brelse(bh);
1184 			bh = NULL;
1185 			/* We are reading journal data which should not
1186 			 * be put in the uptodate cache.
1187 			 */
1188 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1189 			if (status < 0) {
1190 				mlog_errno(status);
1191 				goto bail;
1192 			}
1193 
1194 			brelse(bh);
1195 			bh = NULL;
1196 		}
1197 
1198 		v_blkno += p_blocks;
1199 	}
1200 
1201 bail:
1202 	return status;
1203 }
1204 
1205 struct ocfs2_la_recovery_item {
1206 	struct list_head	lri_list;
1207 	int			lri_slot;
1208 	struct ocfs2_dinode	*lri_la_dinode;
1209 	struct ocfs2_dinode	*lri_tl_dinode;
1210 	struct ocfs2_quota_recovery *lri_qrec;
1211 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1212 };
1213 
1214 /* Does the second half of the recovery process. By this point, the
1215  * node is marked clean and can actually be considered recovered,
1216  * hence it's no longer in the recovery map, but there's still some
1217  * cleanup we can do which shouldn't happen within the recovery thread
1218  * as locking in that context becomes very difficult if we are to take
1219  * recovering nodes into account.
1220  *
1221  * NOTE: This function can and will sleep on recovery of other nodes
1222  * during cluster locking, just like any other ocfs2 process.
1223  */
ocfs2_complete_recovery(struct work_struct * work)1224 void ocfs2_complete_recovery(struct work_struct *work)
1225 {
1226 	int ret = 0;
1227 	struct ocfs2_journal *journal =
1228 		container_of(work, struct ocfs2_journal, j_recovery_work);
1229 	struct ocfs2_super *osb = journal->j_osb;
1230 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1231 	struct ocfs2_la_recovery_item *item, *n;
1232 	struct ocfs2_quota_recovery *qrec;
1233 	enum ocfs2_orphan_reco_type orphan_reco_type;
1234 	LIST_HEAD(tmp_la_list);
1235 
1236 	trace_ocfs2_complete_recovery(
1237 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1238 
1239 	spin_lock(&journal->j_lock);
1240 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1241 	spin_unlock(&journal->j_lock);
1242 
1243 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1244 		list_del_init(&item->lri_list);
1245 
1246 		ocfs2_wait_on_quotas(osb);
1247 
1248 		la_dinode = item->lri_la_dinode;
1249 		tl_dinode = item->lri_tl_dinode;
1250 		qrec = item->lri_qrec;
1251 		orphan_reco_type = item->lri_orphan_reco_type;
1252 
1253 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1254 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1255 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1256 			qrec);
1257 
1258 		if (la_dinode) {
1259 			ret = ocfs2_complete_local_alloc_recovery(osb,
1260 								  la_dinode);
1261 			if (ret < 0)
1262 				mlog_errno(ret);
1263 
1264 			kfree(la_dinode);
1265 		}
1266 
1267 		if (tl_dinode) {
1268 			ret = ocfs2_complete_truncate_log_recovery(osb,
1269 								   tl_dinode);
1270 			if (ret < 0)
1271 				mlog_errno(ret);
1272 
1273 			kfree(tl_dinode);
1274 		}
1275 
1276 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1277 				orphan_reco_type);
1278 		if (ret < 0)
1279 			mlog_errno(ret);
1280 
1281 		if (qrec) {
1282 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1283 							  item->lri_slot);
1284 			if (ret < 0)
1285 				mlog_errno(ret);
1286 			/* Recovery info is already freed now */
1287 		}
1288 
1289 		kfree(item);
1290 	}
1291 
1292 	trace_ocfs2_complete_recovery_end(ret);
1293 }
1294 
1295 /* NOTE: This function always eats your references to la_dinode and
1296  * tl_dinode, either manually on error, or by passing them to
1297  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1298 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1299 					    int slot_num,
1300 					    struct ocfs2_dinode *la_dinode,
1301 					    struct ocfs2_dinode *tl_dinode,
1302 					    struct ocfs2_quota_recovery *qrec,
1303 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1304 {
1305 	struct ocfs2_la_recovery_item *item;
1306 
1307 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1308 	if (!item) {
1309 		/* Though we wish to avoid it, we are in fact safe in
1310 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1311 		 * than capable of reclaiming unused space. */
1312 		kfree(la_dinode);
1313 		kfree(tl_dinode);
1314 
1315 		if (qrec)
1316 			ocfs2_free_quota_recovery(qrec);
1317 
1318 		mlog_errno(-ENOMEM);
1319 		return;
1320 	}
1321 
1322 	INIT_LIST_HEAD(&item->lri_list);
1323 	item->lri_la_dinode = la_dinode;
1324 	item->lri_slot = slot_num;
1325 	item->lri_tl_dinode = tl_dinode;
1326 	item->lri_qrec = qrec;
1327 	item->lri_orphan_reco_type = orphan_reco_type;
1328 
1329 	spin_lock(&journal->j_lock);
1330 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1331 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1332 	spin_unlock(&journal->j_lock);
1333 }
1334 
1335 /* Called by the mount code to queue recovery the last part of
1336  * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1337 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1338 {
1339 	struct ocfs2_journal *journal = osb->journal;
1340 
1341 	if (ocfs2_is_hard_readonly(osb))
1342 		return;
1343 
1344 	/* No need to queue up our truncate_log as regular cleanup will catch
1345 	 * that */
1346 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1347 					osb->local_alloc_copy, NULL, NULL,
1348 					ORPHAN_NEED_TRUNCATE);
1349 	ocfs2_schedule_truncate_log_flush(osb, 0);
1350 
1351 	osb->local_alloc_copy = NULL;
1352 
1353 	/* queue to recover orphan slots for all offline slots */
1354 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1355 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1356 	ocfs2_free_replay_slots(osb);
1357 }
1358 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1359 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1360 {
1361 	if (osb->quota_rec) {
1362 		ocfs2_queue_recovery_completion(osb->journal,
1363 						osb->slot_num,
1364 						NULL,
1365 						NULL,
1366 						osb->quota_rec,
1367 						ORPHAN_NEED_TRUNCATE);
1368 		osb->quota_rec = NULL;
1369 	}
1370 }
1371 
__ocfs2_recovery_thread(void * arg)1372 static int __ocfs2_recovery_thread(void *arg)
1373 {
1374 	int status, node_num, slot_num;
1375 	struct ocfs2_super *osb = arg;
1376 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1377 	int *rm_quota = NULL;
1378 	int rm_quota_used = 0, i;
1379 	struct ocfs2_quota_recovery *qrec;
1380 
1381 	status = ocfs2_wait_on_mount(osb);
1382 	if (status < 0) {
1383 		goto bail;
1384 	}
1385 
1386 	rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1387 	if (!rm_quota) {
1388 		status = -ENOMEM;
1389 		goto bail;
1390 	}
1391 restart:
1392 	status = ocfs2_super_lock(osb, 1);
1393 	if (status < 0) {
1394 		mlog_errno(status);
1395 		goto bail;
1396 	}
1397 
1398 	status = ocfs2_compute_replay_slots(osb);
1399 	if (status < 0)
1400 		mlog_errno(status);
1401 
1402 	/* queue recovery for our own slot */
1403 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1404 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1405 
1406 	spin_lock(&osb->osb_lock);
1407 	while (rm->rm_used) {
1408 		/* It's always safe to remove entry zero, as we won't
1409 		 * clear it until ocfs2_recover_node() has succeeded. */
1410 		node_num = rm->rm_entries[0];
1411 		spin_unlock(&osb->osb_lock);
1412 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1413 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1414 		if (slot_num == -ENOENT) {
1415 			status = 0;
1416 			goto skip_recovery;
1417 		}
1418 
1419 		/* It is a bit subtle with quota recovery. We cannot do it
1420 		 * immediately because we have to obtain cluster locks from
1421 		 * quota files and we also don't want to just skip it because
1422 		 * then quota usage would be out of sync until some node takes
1423 		 * the slot. So we remember which nodes need quota recovery
1424 		 * and when everything else is done, we recover quotas. */
1425 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1426 		if (i == rm_quota_used)
1427 			rm_quota[rm_quota_used++] = slot_num;
1428 
1429 		status = ocfs2_recover_node(osb, node_num, slot_num);
1430 skip_recovery:
1431 		if (!status) {
1432 			ocfs2_recovery_map_clear(osb, node_num);
1433 		} else {
1434 			mlog(ML_ERROR,
1435 			     "Error %d recovering node %d on device (%u,%u)!\n",
1436 			     status, node_num,
1437 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1438 			mlog(ML_ERROR, "Volume requires unmount.\n");
1439 		}
1440 
1441 		spin_lock(&osb->osb_lock);
1442 	}
1443 	spin_unlock(&osb->osb_lock);
1444 	trace_ocfs2_recovery_thread_end(status);
1445 
1446 	/* Refresh all journal recovery generations from disk */
1447 	status = ocfs2_check_journals_nolocks(osb);
1448 	status = (status == -EROFS) ? 0 : status;
1449 	if (status < 0)
1450 		mlog_errno(status);
1451 
1452 	/* Now it is right time to recover quotas... We have to do this under
1453 	 * superblock lock so that no one can start using the slot (and crash)
1454 	 * before we recover it */
1455 	for (i = 0; i < rm_quota_used; i++) {
1456 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1457 		if (IS_ERR(qrec)) {
1458 			status = PTR_ERR(qrec);
1459 			mlog_errno(status);
1460 			continue;
1461 		}
1462 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1463 						NULL, NULL, qrec,
1464 						ORPHAN_NEED_TRUNCATE);
1465 	}
1466 
1467 	ocfs2_super_unlock(osb, 1);
1468 
1469 	/* queue recovery for offline slots */
1470 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1471 
1472 bail:
1473 	mutex_lock(&osb->recovery_lock);
1474 	if (!status && !ocfs2_recovery_completed(osb)) {
1475 		mutex_unlock(&osb->recovery_lock);
1476 		goto restart;
1477 	}
1478 
1479 	ocfs2_free_replay_slots(osb);
1480 	osb->recovery_thread_task = NULL;
1481 	mb(); /* sync with ocfs2_recovery_thread_running */
1482 	wake_up(&osb->recovery_event);
1483 
1484 	mutex_unlock(&osb->recovery_lock);
1485 
1486 	kfree(rm_quota);
1487 
1488 	/* no one is callint kthread_stop() for us so the kthread() api
1489 	 * requires that we call do_exit().  And it isn't exported, but
1490 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1491 	complete_and_exit(NULL, status);
1492 }
1493 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1494 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1495 {
1496 	mutex_lock(&osb->recovery_lock);
1497 
1498 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1499 		osb->disable_recovery, osb->recovery_thread_task,
1500 		osb->disable_recovery ?
1501 		-1 : ocfs2_recovery_map_set(osb, node_num));
1502 
1503 	if (osb->disable_recovery)
1504 		goto out;
1505 
1506 	if (osb->recovery_thread_task)
1507 		goto out;
1508 
1509 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1510 			"ocfs2rec-%s", osb->uuid_str);
1511 	if (IS_ERR(osb->recovery_thread_task)) {
1512 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1513 		osb->recovery_thread_task = NULL;
1514 	}
1515 
1516 out:
1517 	mutex_unlock(&osb->recovery_lock);
1518 	wake_up(&osb->recovery_event);
1519 }
1520 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1521 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1522 				    int slot_num,
1523 				    struct buffer_head **bh,
1524 				    struct inode **ret_inode)
1525 {
1526 	int status = -EACCES;
1527 	struct inode *inode = NULL;
1528 
1529 	BUG_ON(slot_num >= osb->max_slots);
1530 
1531 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1532 					    slot_num);
1533 	if (!inode || is_bad_inode(inode)) {
1534 		mlog_errno(status);
1535 		goto bail;
1536 	}
1537 	SET_INODE_JOURNAL(inode);
1538 
1539 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1540 	if (status < 0) {
1541 		mlog_errno(status);
1542 		goto bail;
1543 	}
1544 
1545 	status = 0;
1546 
1547 bail:
1548 	if (inode) {
1549 		if (status || !ret_inode)
1550 			iput(inode);
1551 		else
1552 			*ret_inode = inode;
1553 	}
1554 	return status;
1555 }
1556 
1557 /* Does the actual journal replay and marks the journal inode as
1558  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1559 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1560 				int node_num,
1561 				int slot_num)
1562 {
1563 	int status;
1564 	int got_lock = 0;
1565 	unsigned int flags;
1566 	struct inode *inode = NULL;
1567 	struct ocfs2_dinode *fe;
1568 	journal_t *journal = NULL;
1569 	struct buffer_head *bh = NULL;
1570 	u32 slot_reco_gen;
1571 
1572 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1573 	if (status) {
1574 		mlog_errno(status);
1575 		goto done;
1576 	}
1577 
1578 	fe = (struct ocfs2_dinode *)bh->b_data;
1579 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1580 	brelse(bh);
1581 	bh = NULL;
1582 
1583 	/*
1584 	 * As the fs recovery is asynchronous, there is a small chance that
1585 	 * another node mounted (and recovered) the slot before the recovery
1586 	 * thread could get the lock. To handle that, we dirty read the journal
1587 	 * inode for that slot to get the recovery generation. If it is
1588 	 * different than what we expected, the slot has been recovered.
1589 	 * If not, it needs recovery.
1590 	 */
1591 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1592 		trace_ocfs2_replay_journal_recovered(slot_num,
1593 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1594 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1595 		status = -EBUSY;
1596 		goto done;
1597 	}
1598 
1599 	/* Continue with recovery as the journal has not yet been recovered */
1600 
1601 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1602 	if (status < 0) {
1603 		trace_ocfs2_replay_journal_lock_err(status);
1604 		if (status != -ERESTARTSYS)
1605 			mlog(ML_ERROR, "Could not lock journal!\n");
1606 		goto done;
1607 	}
1608 	got_lock = 1;
1609 
1610 	fe = (struct ocfs2_dinode *) bh->b_data;
1611 
1612 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1613 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1614 
1615 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1616 		trace_ocfs2_replay_journal_skip(node_num);
1617 		/* Refresh recovery generation for the slot */
1618 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619 		goto done;
1620 	}
1621 
1622 	/* we need to run complete recovery for offline orphan slots */
1623 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1624 
1625 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1626 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1627 	       MINOR(osb->sb->s_dev));
1628 
1629 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1630 
1631 	status = ocfs2_force_read_journal(inode);
1632 	if (status < 0) {
1633 		mlog_errno(status);
1634 		goto done;
1635 	}
1636 
1637 	journal = jbd2_journal_init_inode(inode);
1638 	if (journal == NULL) {
1639 		mlog(ML_ERROR, "Linux journal layer error\n");
1640 		status = -EIO;
1641 		goto done;
1642 	}
1643 
1644 	status = jbd2_journal_load(journal);
1645 	if (status < 0) {
1646 		mlog_errno(status);
1647 		if (!igrab(inode))
1648 			BUG();
1649 		jbd2_journal_destroy(journal);
1650 		goto done;
1651 	}
1652 
1653 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1654 
1655 	/* wipe the journal */
1656 	jbd2_journal_lock_updates(journal);
1657 	status = jbd2_journal_flush(journal);
1658 	jbd2_journal_unlock_updates(journal);
1659 	if (status < 0)
1660 		mlog_errno(status);
1661 
1662 	/* This will mark the node clean */
1663 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1664 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1665 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1666 
1667 	/* Increment recovery generation to indicate successful recovery */
1668 	ocfs2_bump_recovery_generation(fe);
1669 	osb->slot_recovery_generations[slot_num] =
1670 					ocfs2_get_recovery_generation(fe);
1671 
1672 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1673 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1674 	if (status < 0)
1675 		mlog_errno(status);
1676 
1677 	if (!igrab(inode))
1678 		BUG();
1679 
1680 	jbd2_journal_destroy(journal);
1681 
1682 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1683 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1684 	       MINOR(osb->sb->s_dev));
1685 done:
1686 	/* drop the lock on this nodes journal */
1687 	if (got_lock)
1688 		ocfs2_inode_unlock(inode, 1);
1689 
1690 	iput(inode);
1691 	brelse(bh);
1692 
1693 	return status;
1694 }
1695 
1696 /*
1697  * Do the most important parts of node recovery:
1698  *  - Replay it's journal
1699  *  - Stamp a clean local allocator file
1700  *  - Stamp a clean truncate log
1701  *  - Mark the node clean
1702  *
1703  * If this function completes without error, a node in OCFS2 can be
1704  * said to have been safely recovered. As a result, failure during the
1705  * second part of a nodes recovery process (local alloc recovery) is
1706  * far less concerning.
1707  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1708 static int ocfs2_recover_node(struct ocfs2_super *osb,
1709 			      int node_num, int slot_num)
1710 {
1711 	int status = 0;
1712 	struct ocfs2_dinode *la_copy = NULL;
1713 	struct ocfs2_dinode *tl_copy = NULL;
1714 
1715 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1716 
1717 	/* Should not ever be called to recover ourselves -- in that
1718 	 * case we should've called ocfs2_journal_load instead. */
1719 	BUG_ON(osb->node_num == node_num);
1720 
1721 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1722 	if (status < 0) {
1723 		if (status == -EBUSY) {
1724 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1725 			status = 0;
1726 			goto done;
1727 		}
1728 		mlog_errno(status);
1729 		goto done;
1730 	}
1731 
1732 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1733 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1734 	if (status < 0) {
1735 		mlog_errno(status);
1736 		goto done;
1737 	}
1738 
1739 	/* An error from begin_truncate_log_recovery is not
1740 	 * serious enough to warrant halting the rest of
1741 	 * recovery. */
1742 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1743 	if (status < 0)
1744 		mlog_errno(status);
1745 
1746 	/* Likewise, this would be a strange but ultimately not so
1747 	 * harmful place to get an error... */
1748 	status = ocfs2_clear_slot(osb, slot_num);
1749 	if (status < 0)
1750 		mlog_errno(status);
1751 
1752 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1753 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1754 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1755 
1756 	status = 0;
1757 done:
1758 
1759 	return status;
1760 }
1761 
1762 /* Test node liveness by trylocking his journal. If we get the lock,
1763  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1764  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1765 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1766 				 int slot_num)
1767 {
1768 	int status, flags;
1769 	struct inode *inode = NULL;
1770 
1771 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1772 					    slot_num);
1773 	if (inode == NULL) {
1774 		mlog(ML_ERROR, "access error\n");
1775 		status = -EACCES;
1776 		goto bail;
1777 	}
1778 	if (is_bad_inode(inode)) {
1779 		mlog(ML_ERROR, "access error (bad inode)\n");
1780 		iput(inode);
1781 		inode = NULL;
1782 		status = -EACCES;
1783 		goto bail;
1784 	}
1785 	SET_INODE_JOURNAL(inode);
1786 
1787 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1788 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1789 	if (status < 0) {
1790 		if (status != -EAGAIN)
1791 			mlog_errno(status);
1792 		goto bail;
1793 	}
1794 
1795 	ocfs2_inode_unlock(inode, 1);
1796 bail:
1797 	iput(inode);
1798 
1799 	return status;
1800 }
1801 
1802 /* Call this underneath ocfs2_super_lock. It also assumes that the
1803  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1804 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1805 {
1806 	unsigned int node_num;
1807 	int status, i;
1808 	u32 gen;
1809 	struct buffer_head *bh = NULL;
1810 	struct ocfs2_dinode *di;
1811 
1812 	/* This is called with the super block cluster lock, so we
1813 	 * know that the slot map can't change underneath us. */
1814 
1815 	for (i = 0; i < osb->max_slots; i++) {
1816 		/* Read journal inode to get the recovery generation */
1817 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1818 		if (status) {
1819 			mlog_errno(status);
1820 			goto bail;
1821 		}
1822 		di = (struct ocfs2_dinode *)bh->b_data;
1823 		gen = ocfs2_get_recovery_generation(di);
1824 		brelse(bh);
1825 		bh = NULL;
1826 
1827 		spin_lock(&osb->osb_lock);
1828 		osb->slot_recovery_generations[i] = gen;
1829 
1830 		trace_ocfs2_mark_dead_nodes(i,
1831 					    osb->slot_recovery_generations[i]);
1832 
1833 		if (i == osb->slot_num) {
1834 			spin_unlock(&osb->osb_lock);
1835 			continue;
1836 		}
1837 
1838 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1839 		if (status == -ENOENT) {
1840 			spin_unlock(&osb->osb_lock);
1841 			continue;
1842 		}
1843 
1844 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1845 			spin_unlock(&osb->osb_lock);
1846 			continue;
1847 		}
1848 		spin_unlock(&osb->osb_lock);
1849 
1850 		/* Ok, we have a slot occupied by another node which
1851 		 * is not in the recovery map. We trylock his journal
1852 		 * file here to test if he's alive. */
1853 		status = ocfs2_trylock_journal(osb, i);
1854 		if (!status) {
1855 			/* Since we're called from mount, we know that
1856 			 * the recovery thread can't race us on
1857 			 * setting / checking the recovery bits. */
1858 			ocfs2_recovery_thread(osb, node_num);
1859 		} else if ((status < 0) && (status != -EAGAIN)) {
1860 			mlog_errno(status);
1861 			goto bail;
1862 		}
1863 	}
1864 
1865 	status = 0;
1866 bail:
1867 	return status;
1868 }
1869 
1870 /*
1871  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1872  * randomness to the timeout to minimize multple nodes firing the timer at the
1873  * same time.
1874  */
ocfs2_orphan_scan_timeout(void)1875 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1876 {
1877 	unsigned long time;
1878 
1879 	get_random_bytes(&time, sizeof(time));
1880 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1881 	return msecs_to_jiffies(time);
1882 }
1883 
1884 /*
1885  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1886  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1887  * is done to catch any orphans that are left over in orphan directories.
1888  *
1889  * It scans all slots, even ones that are in use. It does so to handle the
1890  * case described below:
1891  *
1892  *   Node 1 has an inode it was using. The dentry went away due to memory
1893  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1894  *   has the open lock.
1895  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1896  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1897  *   open lock, sees that another node has a PR, and does nothing.
1898  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1899  *   open lock, sees the PR still, and does nothing.
1900  *   Basically, we have to trigger an orphan iput on node 1. The only way
1901  *   for this to happen is if node 1 runs node 2's orphan dir.
1902  *
1903  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1904  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1905  * stored in LVB. If the sequence number has changed, it means some other
1906  * node has done the scan.  This node skips the scan and tracks the
1907  * sequence number.  If the sequence number didn't change, it means a scan
1908  * hasn't happened.  The node queues a scan and increments the
1909  * sequence number in the LVB.
1910  */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1911 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1912 {
1913 	struct ocfs2_orphan_scan *os;
1914 	int status, i;
1915 	u32 seqno = 0;
1916 
1917 	os = &osb->osb_orphan_scan;
1918 
1919 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1920 		goto out;
1921 
1922 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1923 					    atomic_read(&os->os_state));
1924 
1925 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1926 	if (status < 0) {
1927 		if (status != -EAGAIN)
1928 			mlog_errno(status);
1929 		goto out;
1930 	}
1931 
1932 	/* Do no queue the tasks if the volume is being umounted */
1933 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934 		goto unlock;
1935 
1936 	if (os->os_seqno != seqno) {
1937 		os->os_seqno = seqno;
1938 		goto unlock;
1939 	}
1940 
1941 	for (i = 0; i < osb->max_slots; i++)
1942 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1943 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1944 	/*
1945 	 * We queued a recovery on orphan slots, increment the sequence
1946 	 * number and update LVB so other node will skip the scan for a while
1947 	 */
1948 	seqno++;
1949 	os->os_count++;
1950 	os->os_scantime = ktime_get_seconds();
1951 unlock:
1952 	ocfs2_orphan_scan_unlock(osb, seqno);
1953 out:
1954 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1955 					  atomic_read(&os->os_state));
1956 	return;
1957 }
1958 
1959 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1960 static void ocfs2_orphan_scan_work(struct work_struct *work)
1961 {
1962 	struct ocfs2_orphan_scan *os;
1963 	struct ocfs2_super *osb;
1964 
1965 	os = container_of(work, struct ocfs2_orphan_scan,
1966 			  os_orphan_scan_work.work);
1967 	osb = os->os_osb;
1968 
1969 	mutex_lock(&os->os_lock);
1970 	ocfs2_queue_orphan_scan(osb);
1971 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1972 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1973 				      ocfs2_orphan_scan_timeout());
1974 	mutex_unlock(&os->os_lock);
1975 }
1976 
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)1977 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1978 {
1979 	struct ocfs2_orphan_scan *os;
1980 
1981 	os = &osb->osb_orphan_scan;
1982 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1983 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1984 		mutex_lock(&os->os_lock);
1985 		cancel_delayed_work(&os->os_orphan_scan_work);
1986 		mutex_unlock(&os->os_lock);
1987 	}
1988 }
1989 
ocfs2_orphan_scan_init(struct ocfs2_super * osb)1990 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1991 {
1992 	struct ocfs2_orphan_scan *os;
1993 
1994 	os = &osb->osb_orphan_scan;
1995 	os->os_osb = osb;
1996 	os->os_count = 0;
1997 	os->os_seqno = 0;
1998 	mutex_init(&os->os_lock);
1999 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2000 }
2001 
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2002 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2003 {
2004 	struct ocfs2_orphan_scan *os;
2005 
2006 	os = &osb->osb_orphan_scan;
2007 	os->os_scantime = ktime_get_seconds();
2008 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2009 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2010 	else {
2011 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2012 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2013 				   ocfs2_orphan_scan_timeout());
2014 	}
2015 }
2016 
2017 struct ocfs2_orphan_filldir_priv {
2018 	struct dir_context	ctx;
2019 	struct inode		*head;
2020 	struct ocfs2_super	*osb;
2021 	enum ocfs2_orphan_reco_type orphan_reco_type;
2022 };
2023 
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2024 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2025 				int name_len, loff_t pos, u64 ino,
2026 				unsigned type)
2027 {
2028 	struct ocfs2_orphan_filldir_priv *p =
2029 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2030 	struct inode *iter;
2031 
2032 	if (name_len == 1 && !strncmp(".", name, 1))
2033 		return 0;
2034 	if (name_len == 2 && !strncmp("..", name, 2))
2035 		return 0;
2036 
2037 	/* do not include dio entry in case of orphan scan */
2038 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2039 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2040 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2041 		return 0;
2042 
2043 	/* Skip bad inodes so that recovery can continue */
2044 	iter = ocfs2_iget(p->osb, ino,
2045 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2046 	if (IS_ERR(iter))
2047 		return 0;
2048 
2049 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2051 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2052 
2053 	/* Skip inodes which are already added to recover list, since dio may
2054 	 * happen concurrently with unlink/rename */
2055 	if (OCFS2_I(iter)->ip_next_orphan) {
2056 		iput(iter);
2057 		return 0;
2058 	}
2059 
2060 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2061 	/* No locking is required for the next_orphan queue as there
2062 	 * is only ever a single process doing orphan recovery. */
2063 	OCFS2_I(iter)->ip_next_orphan = p->head;
2064 	p->head = iter;
2065 
2066 	return 0;
2067 }
2068 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2069 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2070 			       int slot,
2071 			       struct inode **head,
2072 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2073 {
2074 	int status;
2075 	struct inode *orphan_dir_inode = NULL;
2076 	struct ocfs2_orphan_filldir_priv priv = {
2077 		.ctx.actor = ocfs2_orphan_filldir,
2078 		.osb = osb,
2079 		.head = *head,
2080 		.orphan_reco_type = orphan_reco_type
2081 	};
2082 
2083 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2084 						       ORPHAN_DIR_SYSTEM_INODE,
2085 						       slot);
2086 	if  (!orphan_dir_inode) {
2087 		status = -ENOENT;
2088 		mlog_errno(status);
2089 		return status;
2090 	}
2091 
2092 	inode_lock(orphan_dir_inode);
2093 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2094 	if (status < 0) {
2095 		mlog_errno(status);
2096 		goto out;
2097 	}
2098 
2099 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2100 	if (status) {
2101 		mlog_errno(status);
2102 		goto out_cluster;
2103 	}
2104 
2105 	*head = priv.head;
2106 
2107 out_cluster:
2108 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2109 out:
2110 	inode_unlock(orphan_dir_inode);
2111 	iput(orphan_dir_inode);
2112 	return status;
2113 }
2114 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2115 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2116 					      int slot)
2117 {
2118 	int ret;
2119 
2120 	spin_lock(&osb->osb_lock);
2121 	ret = !osb->osb_orphan_wipes[slot];
2122 	spin_unlock(&osb->osb_lock);
2123 	return ret;
2124 }
2125 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2126 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2127 					     int slot)
2128 {
2129 	spin_lock(&osb->osb_lock);
2130 	/* Mark ourselves such that new processes in delete_inode()
2131 	 * know to quit early. */
2132 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2133 	while (osb->osb_orphan_wipes[slot]) {
2134 		/* If any processes are already in the middle of an
2135 		 * orphan wipe on this dir, then we need to wait for
2136 		 * them. */
2137 		spin_unlock(&osb->osb_lock);
2138 		wait_event_interruptible(osb->osb_wipe_event,
2139 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2140 		spin_lock(&osb->osb_lock);
2141 	}
2142 	spin_unlock(&osb->osb_lock);
2143 }
2144 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2145 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2146 					      int slot)
2147 {
2148 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2149 }
2150 
2151 /*
2152  * Orphan recovery. Each mounted node has it's own orphan dir which we
2153  * must run during recovery. Our strategy here is to build a list of
2154  * the inodes in the orphan dir and iget/iput them. The VFS does
2155  * (most) of the rest of the work.
2156  *
2157  * Orphan recovery can happen at any time, not just mount so we have a
2158  * couple of extra considerations.
2159  *
2160  * - We grab as many inodes as we can under the orphan dir lock -
2161  *   doing iget() outside the orphan dir risks getting a reference on
2162  *   an invalid inode.
2163  * - We must be sure not to deadlock with other processes on the
2164  *   system wanting to run delete_inode(). This can happen when they go
2165  *   to lock the orphan dir and the orphan recovery process attempts to
2166  *   iget() inside the orphan dir lock. This can be avoided by
2167  *   advertising our state to ocfs2_delete_inode().
2168  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2169 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2170 				 int slot,
2171 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2172 {
2173 	int ret = 0;
2174 	struct inode *inode = NULL;
2175 	struct inode *iter;
2176 	struct ocfs2_inode_info *oi;
2177 	struct buffer_head *di_bh = NULL;
2178 	struct ocfs2_dinode *di = NULL;
2179 
2180 	trace_ocfs2_recover_orphans(slot);
2181 
2182 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2183 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2184 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2185 
2186 	/* Error here should be noted, but we want to continue with as
2187 	 * many queued inodes as we've got. */
2188 	if (ret)
2189 		mlog_errno(ret);
2190 
2191 	while (inode) {
2192 		oi = OCFS2_I(inode);
2193 		trace_ocfs2_recover_orphans_iput(
2194 					(unsigned long long)oi->ip_blkno);
2195 
2196 		iter = oi->ip_next_orphan;
2197 		oi->ip_next_orphan = NULL;
2198 
2199 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2200 			inode_lock(inode);
2201 			ret = ocfs2_rw_lock(inode, 1);
2202 			if (ret < 0) {
2203 				mlog_errno(ret);
2204 				goto unlock_mutex;
2205 			}
2206 			/*
2207 			 * We need to take and drop the inode lock to
2208 			 * force read inode from disk.
2209 			 */
2210 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2211 			if (ret) {
2212 				mlog_errno(ret);
2213 				goto unlock_rw;
2214 			}
2215 
2216 			di = (struct ocfs2_dinode *)di_bh->b_data;
2217 
2218 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2219 				ret = ocfs2_truncate_file(inode, di_bh,
2220 						i_size_read(inode));
2221 				if (ret < 0) {
2222 					if (ret != -ENOSPC)
2223 						mlog_errno(ret);
2224 					goto unlock_inode;
2225 				}
2226 
2227 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2228 						di_bh, 0, 0);
2229 				if (ret)
2230 					mlog_errno(ret);
2231 			}
2232 unlock_inode:
2233 			ocfs2_inode_unlock(inode, 1);
2234 			brelse(di_bh);
2235 			di_bh = NULL;
2236 unlock_rw:
2237 			ocfs2_rw_unlock(inode, 1);
2238 unlock_mutex:
2239 			inode_unlock(inode);
2240 
2241 			/* clear dio flag in ocfs2_inode_info */
2242 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2243 		} else {
2244 			spin_lock(&oi->ip_lock);
2245 			/* Set the proper information to get us going into
2246 			 * ocfs2_delete_inode. */
2247 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2248 			spin_unlock(&oi->ip_lock);
2249 		}
2250 
2251 		iput(inode);
2252 		inode = iter;
2253 	}
2254 
2255 	return ret;
2256 }
2257 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2258 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2259 {
2260 	/* This check is good because ocfs2 will wait on our recovery
2261 	 * thread before changing it to something other than MOUNTED
2262 	 * or DISABLED. */
2263 	wait_event(osb->osb_mount_event,
2264 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2265 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2266 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2267 
2268 	/* If there's an error on mount, then we may never get to the
2269 	 * MOUNTED flag, but this is set right before
2270 	 * dismount_volume() so we can trust it. */
2271 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2272 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2273 		mlog(0, "mount error, exiting!\n");
2274 		return -EBUSY;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
ocfs2_commit_thread(void * arg)2280 static int ocfs2_commit_thread(void *arg)
2281 {
2282 	int status;
2283 	struct ocfs2_super *osb = arg;
2284 	struct ocfs2_journal *journal = osb->journal;
2285 
2286 	/* we can trust j_num_trans here because _should_stop() is only set in
2287 	 * shutdown and nobody other than ourselves should be able to start
2288 	 * transactions.  committing on shutdown might take a few iterations
2289 	 * as final transactions put deleted inodes on the list */
2290 	while (!(kthread_should_stop() &&
2291 		 atomic_read(&journal->j_num_trans) == 0)) {
2292 
2293 		wait_event_interruptible(osb->checkpoint_event,
2294 					 atomic_read(&journal->j_num_trans)
2295 					 || kthread_should_stop());
2296 
2297 		status = ocfs2_commit_cache(osb);
2298 		if (status < 0) {
2299 			static unsigned long abort_warn_time;
2300 
2301 			/* Warn about this once per minute */
2302 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2303 				mlog(ML_ERROR, "status = %d, journal is "
2304 						"already aborted.\n", status);
2305 			/*
2306 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2307 			 * non-zero value.  Sleep here to avoid a busy-wait
2308 			 * loop.
2309 			 */
2310 			msleep_interruptible(1000);
2311 		}
2312 
2313 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2314 			mlog(ML_KTHREAD,
2315 			     "commit_thread: %u transactions pending on "
2316 			     "shutdown\n",
2317 			     atomic_read(&journal->j_num_trans));
2318 		}
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 /* Reads all the journal inodes without taking any cluster locks. Used
2325  * for hard readonly access to determine whether any journal requires
2326  * recovery. Also used to refresh the recovery generation numbers after
2327  * a journal has been recovered by another node.
2328  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2329 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2330 {
2331 	int ret = 0;
2332 	unsigned int slot;
2333 	struct buffer_head *di_bh = NULL;
2334 	struct ocfs2_dinode *di;
2335 	int journal_dirty = 0;
2336 
2337 	for(slot = 0; slot < osb->max_slots; slot++) {
2338 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2339 		if (ret) {
2340 			mlog_errno(ret);
2341 			goto out;
2342 		}
2343 
2344 		di = (struct ocfs2_dinode *) di_bh->b_data;
2345 
2346 		osb->slot_recovery_generations[slot] =
2347 					ocfs2_get_recovery_generation(di);
2348 
2349 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2350 		    OCFS2_JOURNAL_DIRTY_FL)
2351 			journal_dirty = 1;
2352 
2353 		brelse(di_bh);
2354 		di_bh = NULL;
2355 	}
2356 
2357 out:
2358 	if (journal_dirty)
2359 		ret = -EROFS;
2360 	return ret;
2361 }
2362