1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58 {
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131 bail:
132 brelse(bh);
133
134 return err;
135 }
136
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)137 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139 {
140 int ret = 0;
141 struct ocfs2_inode_info *oi = OCFS2_I(inode);
142
143 down_read(&oi->ip_alloc_sem);
144 ret = ocfs2_get_block(inode, iblock, bh_result, create);
145 up_read(&oi->ip_alloc_sem);
146
147 return ret;
148 }
149
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)150 int ocfs2_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh_result, int create)
152 {
153 int err = 0;
154 unsigned int ext_flags;
155 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
156 u64 p_blkno, count, past_eof;
157 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
158
159 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
160 (unsigned long long)iblock, bh_result, create);
161
162 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
163 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
164 inode, inode->i_ino);
165
166 if (S_ISLNK(inode->i_mode)) {
167 /* this always does I/O for some reason. */
168 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
169 goto bail;
170 }
171
172 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
173 &ext_flags);
174 if (err) {
175 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
176 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
177 (unsigned long long)p_blkno);
178 goto bail;
179 }
180
181 if (max_blocks < count)
182 count = max_blocks;
183
184 /*
185 * ocfs2 never allocates in this function - the only time we
186 * need to use BH_New is when we're extending i_size on a file
187 * system which doesn't support holes, in which case BH_New
188 * allows __block_write_begin() to zero.
189 *
190 * If we see this on a sparse file system, then a truncate has
191 * raced us and removed the cluster. In this case, we clear
192 * the buffers dirty and uptodate bits and let the buffer code
193 * ignore it as a hole.
194 */
195 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
196 clear_buffer_dirty(bh_result);
197 clear_buffer_uptodate(bh_result);
198 goto bail;
199 }
200
201 /* Treat the unwritten extent as a hole for zeroing purposes. */
202 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
203 map_bh(bh_result, inode->i_sb, p_blkno);
204
205 bh_result->b_size = count << inode->i_blkbits;
206
207 if (!ocfs2_sparse_alloc(osb)) {
208 if (p_blkno == 0) {
209 err = -EIO;
210 mlog(ML_ERROR,
211 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
212 (unsigned long long)iblock,
213 (unsigned long long)p_blkno,
214 (unsigned long long)OCFS2_I(inode)->ip_blkno);
215 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
216 dump_stack();
217 goto bail;
218 }
219 }
220
221 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
222
223 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
224 (unsigned long long)past_eof);
225 if (create && (iblock >= past_eof))
226 set_buffer_new(bh_result);
227
228 bail:
229 if (err < 0)
230 err = -EIO;
231
232 return err;
233 }
234
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)235 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
236 struct buffer_head *di_bh)
237 {
238 void *kaddr;
239 loff_t size;
240 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
241
242 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
243 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
244 (unsigned long long)OCFS2_I(inode)->ip_blkno);
245 return -EROFS;
246 }
247
248 size = i_size_read(inode);
249
250 if (size > PAGE_SIZE ||
251 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
252 ocfs2_error(inode->i_sb,
253 "Inode %llu has with inline data has bad size: %Lu\n",
254 (unsigned long long)OCFS2_I(inode)->ip_blkno,
255 (unsigned long long)size);
256 return -EROFS;
257 }
258
259 kaddr = kmap_atomic(page);
260 if (size)
261 memcpy(kaddr, di->id2.i_data.id_data, size);
262 /* Clear the remaining part of the page */
263 memset(kaddr + size, 0, PAGE_SIZE - size);
264 flush_dcache_page(page);
265 kunmap_atomic(kaddr);
266
267 SetPageUptodate(page);
268
269 return 0;
270 }
271
ocfs2_readpage_inline(struct inode * inode,struct page * page)272 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
273 {
274 int ret;
275 struct buffer_head *di_bh = NULL;
276
277 BUG_ON(!PageLocked(page));
278 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
279
280 ret = ocfs2_read_inode_block(inode, &di_bh);
281 if (ret) {
282 mlog_errno(ret);
283 goto out;
284 }
285
286 ret = ocfs2_read_inline_data(inode, page, di_bh);
287 out:
288 unlock_page(page);
289
290 brelse(di_bh);
291 return ret;
292 }
293
ocfs2_readpage(struct file * file,struct page * page)294 static int ocfs2_readpage(struct file *file, struct page *page)
295 {
296 struct inode *inode = page->mapping->host;
297 struct ocfs2_inode_info *oi = OCFS2_I(inode);
298 loff_t start = (loff_t)page->index << PAGE_SHIFT;
299 int ret, unlock = 1;
300
301 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
302 (page ? page->index : 0));
303
304 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
305 if (ret != 0) {
306 if (ret == AOP_TRUNCATED_PAGE)
307 unlock = 0;
308 mlog_errno(ret);
309 goto out;
310 }
311
312 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
313 /*
314 * Unlock the page and cycle ip_alloc_sem so that we don't
315 * busyloop waiting for ip_alloc_sem to unlock
316 */
317 ret = AOP_TRUNCATED_PAGE;
318 unlock_page(page);
319 unlock = 0;
320 down_read(&oi->ip_alloc_sem);
321 up_read(&oi->ip_alloc_sem);
322 goto out_inode_unlock;
323 }
324
325 /*
326 * i_size might have just been updated as we grabed the meta lock. We
327 * might now be discovering a truncate that hit on another node.
328 * block_read_full_page->get_block freaks out if it is asked to read
329 * beyond the end of a file, so we check here. Callers
330 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
331 * and notice that the page they just read isn't needed.
332 *
333 * XXX sys_readahead() seems to get that wrong?
334 */
335 if (start >= i_size_read(inode)) {
336 zero_user(page, 0, PAGE_SIZE);
337 SetPageUptodate(page);
338 ret = 0;
339 goto out_alloc;
340 }
341
342 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
343 ret = ocfs2_readpage_inline(inode, page);
344 else
345 ret = block_read_full_page(page, ocfs2_get_block);
346 unlock = 0;
347
348 out_alloc:
349 up_read(&oi->ip_alloc_sem);
350 out_inode_unlock:
351 ocfs2_inode_unlock(inode, 0);
352 out:
353 if (unlock)
354 unlock_page(page);
355 return ret;
356 }
357
358 /*
359 * This is used only for read-ahead. Failures or difficult to handle
360 * situations are safe to ignore.
361 *
362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
363 * are quite large (243 extents on 4k blocks), so most inodes don't
364 * grow out to a tree. If need be, detecting boundary extents could
365 * trivially be added in a future version of ocfs2_get_block().
366 */
ocfs2_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)367 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
368 struct list_head *pages, unsigned nr_pages)
369 {
370 int ret, err = -EIO;
371 struct inode *inode = mapping->host;
372 struct ocfs2_inode_info *oi = OCFS2_I(inode);
373 loff_t start;
374 struct page *last;
375
376 /*
377 * Use the nonblocking flag for the dlm code to avoid page
378 * lock inversion, but don't bother with retrying.
379 */
380 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
381 if (ret)
382 return err;
383
384 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
385 ocfs2_inode_unlock(inode, 0);
386 return err;
387 }
388
389 /*
390 * Don't bother with inline-data. There isn't anything
391 * to read-ahead in that case anyway...
392 */
393 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
394 goto out_unlock;
395
396 /*
397 * Check whether a remote node truncated this file - we just
398 * drop out in that case as it's not worth handling here.
399 */
400 last = list_entry(pages->prev, struct page, lru);
401 start = (loff_t)last->index << PAGE_SHIFT;
402 if (start >= i_size_read(inode))
403 goto out_unlock;
404
405 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
406
407 out_unlock:
408 up_read(&oi->ip_alloc_sem);
409 ocfs2_inode_unlock(inode, 0);
410
411 return err;
412 }
413
414 /* Note: Because we don't support holes, our allocation has
415 * already happened (allocation writes zeros to the file data)
416 * so we don't have to worry about ordered writes in
417 * ocfs2_writepage.
418 *
419 * ->writepage is called during the process of invalidating the page cache
420 * during blocked lock processing. It can't block on any cluster locks
421 * to during block mapping. It's relying on the fact that the block
422 * mapping can't have disappeared under the dirty pages that it is
423 * being asked to write back.
424 */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)425 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
426 {
427 trace_ocfs2_writepage(
428 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
429 page->index);
430
431 return block_write_full_page(page, ocfs2_get_block, wbc);
432 }
433
434 /* Taken from ext3. We don't necessarily need the full blown
435 * functionality yet, but IMHO it's better to cut and paste the whole
436 * thing so we can avoid introducing our own bugs (and easily pick up
437 * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))438 int walk_page_buffers( handle_t *handle,
439 struct buffer_head *head,
440 unsigned from,
441 unsigned to,
442 int *partial,
443 int (*fn)( handle_t *handle,
444 struct buffer_head *bh))
445 {
446 struct buffer_head *bh;
447 unsigned block_start, block_end;
448 unsigned blocksize = head->b_size;
449 int err, ret = 0;
450 struct buffer_head *next;
451
452 for ( bh = head, block_start = 0;
453 ret == 0 && (bh != head || !block_start);
454 block_start = block_end, bh = next)
455 {
456 next = bh->b_this_page;
457 block_end = block_start + blocksize;
458 if (block_end <= from || block_start >= to) {
459 if (partial && !buffer_uptodate(bh))
460 *partial = 1;
461 continue;
462 }
463 err = (*fn)(handle, bh);
464 if (!ret)
465 ret = err;
466 }
467 return ret;
468 }
469
ocfs2_bmap(struct address_space * mapping,sector_t block)470 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
471 {
472 sector_t status;
473 u64 p_blkno = 0;
474 int err = 0;
475 struct inode *inode = mapping->host;
476
477 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)block);
479
480 /*
481 * The swap code (ab-)uses ->bmap to get a block mapping and then
482 * bypasseѕ the file system for actual I/O. We really can't allow
483 * that on refcounted inodes, so we have to skip out here. And yes,
484 * 0 is the magic code for a bmap error..
485 */
486 if (ocfs2_is_refcount_inode(inode))
487 return 0;
488
489 /* We don't need to lock journal system files, since they aren't
490 * accessed concurrently from multiple nodes.
491 */
492 if (!INODE_JOURNAL(inode)) {
493 err = ocfs2_inode_lock(inode, NULL, 0);
494 if (err) {
495 if (err != -ENOENT)
496 mlog_errno(err);
497 goto bail;
498 }
499 down_read(&OCFS2_I(inode)->ip_alloc_sem);
500 }
501
502 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
503 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
504 NULL);
505
506 if (!INODE_JOURNAL(inode)) {
507 up_read(&OCFS2_I(inode)->ip_alloc_sem);
508 ocfs2_inode_unlock(inode, 0);
509 }
510
511 if (err) {
512 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
513 (unsigned long long)block);
514 mlog_errno(err);
515 goto bail;
516 }
517
518 bail:
519 status = err ? 0 : p_blkno;
520
521 return status;
522 }
523
ocfs2_releasepage(struct page * page,gfp_t wait)524 static int ocfs2_releasepage(struct page *page, gfp_t wait)
525 {
526 if (!page_has_buffers(page))
527 return 0;
528 return try_to_free_buffers(page);
529 }
530
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)531 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
532 u32 cpos,
533 unsigned int *start,
534 unsigned int *end)
535 {
536 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
537
538 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
539 unsigned int cpp;
540
541 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
542
543 cluster_start = cpos % cpp;
544 cluster_start = cluster_start << osb->s_clustersize_bits;
545
546 cluster_end = cluster_start + osb->s_clustersize;
547 }
548
549 BUG_ON(cluster_start > PAGE_SIZE);
550 BUG_ON(cluster_end > PAGE_SIZE);
551
552 if (start)
553 *start = cluster_start;
554 if (end)
555 *end = cluster_end;
556 }
557
558 /*
559 * 'from' and 'to' are the region in the page to avoid zeroing.
560 *
561 * If pagesize > clustersize, this function will avoid zeroing outside
562 * of the cluster boundary.
563 *
564 * from == to == 0 is code for "zero the entire cluster region"
565 */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)566 static void ocfs2_clear_page_regions(struct page *page,
567 struct ocfs2_super *osb, u32 cpos,
568 unsigned from, unsigned to)
569 {
570 void *kaddr;
571 unsigned int cluster_start, cluster_end;
572
573 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
574
575 kaddr = kmap_atomic(page);
576
577 if (from || to) {
578 if (from > cluster_start)
579 memset(kaddr + cluster_start, 0, from - cluster_start);
580 if (to < cluster_end)
581 memset(kaddr + to, 0, cluster_end - to);
582 } else {
583 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
584 }
585
586 kunmap_atomic(kaddr);
587 }
588
589 /*
590 * Nonsparse file systems fully allocate before we get to the write
591 * code. This prevents ocfs2_write() from tagging the write as an
592 * allocating one, which means ocfs2_map_page_blocks() might try to
593 * read-in the blocks at the tail of our file. Avoid reading them by
594 * testing i_size against each block offset.
595 */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)596 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
597 unsigned int block_start)
598 {
599 u64 offset = page_offset(page) + block_start;
600
601 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
602 return 1;
603
604 if (i_size_read(inode) > offset)
605 return 1;
606
607 return 0;
608 }
609
610 /*
611 * Some of this taken from __block_write_begin(). We already have our
612 * mapping by now though, and the entire write will be allocating or
613 * it won't, so not much need to use BH_New.
614 *
615 * This will also skip zeroing, which is handled externally.
616 */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)617 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
618 struct inode *inode, unsigned int from,
619 unsigned int to, int new)
620 {
621 int ret = 0;
622 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
623 unsigned int block_end, block_start;
624 unsigned int bsize = i_blocksize(inode);
625
626 if (!page_has_buffers(page))
627 create_empty_buffers(page, bsize, 0);
628
629 head = page_buffers(page);
630 for (bh = head, block_start = 0; bh != head || !block_start;
631 bh = bh->b_this_page, block_start += bsize) {
632 block_end = block_start + bsize;
633
634 clear_buffer_new(bh);
635
636 /*
637 * Ignore blocks outside of our i/o range -
638 * they may belong to unallocated clusters.
639 */
640 if (block_start >= to || block_end <= from) {
641 if (PageUptodate(page))
642 set_buffer_uptodate(bh);
643 continue;
644 }
645
646 /*
647 * For an allocating write with cluster size >= page
648 * size, we always write the entire page.
649 */
650 if (new)
651 set_buffer_new(bh);
652
653 if (!buffer_mapped(bh)) {
654 map_bh(bh, inode->i_sb, *p_blkno);
655 clean_bdev_bh_alias(bh);
656 }
657
658 if (PageUptodate(page)) {
659 if (!buffer_uptodate(bh))
660 set_buffer_uptodate(bh);
661 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
662 !buffer_new(bh) &&
663 ocfs2_should_read_blk(inode, page, block_start) &&
664 (block_start < from || block_end > to)) {
665 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
666 *wait_bh++=bh;
667 }
668
669 *p_blkno = *p_blkno + 1;
670 }
671
672 /*
673 * If we issued read requests - let them complete.
674 */
675 while(wait_bh > wait) {
676 wait_on_buffer(*--wait_bh);
677 if (!buffer_uptodate(*wait_bh))
678 ret = -EIO;
679 }
680
681 if (ret == 0 || !new)
682 return ret;
683
684 /*
685 * If we get -EIO above, zero out any newly allocated blocks
686 * to avoid exposing stale data.
687 */
688 bh = head;
689 block_start = 0;
690 do {
691 block_end = block_start + bsize;
692 if (block_end <= from)
693 goto next_bh;
694 if (block_start >= to)
695 break;
696
697 zero_user(page, block_start, bh->b_size);
698 set_buffer_uptodate(bh);
699 mark_buffer_dirty(bh);
700
701 next_bh:
702 block_start = block_end;
703 bh = bh->b_this_page;
704 } while (bh != head);
705
706 return ret;
707 }
708
709 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
710 #define OCFS2_MAX_CTXT_PAGES 1
711 #else
712 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
713 #endif
714
715 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
716
717 struct ocfs2_unwritten_extent {
718 struct list_head ue_node;
719 struct list_head ue_ip_node;
720 u32 ue_cpos;
721 u32 ue_phys;
722 };
723
724 /*
725 * Describe the state of a single cluster to be written to.
726 */
727 struct ocfs2_write_cluster_desc {
728 u32 c_cpos;
729 u32 c_phys;
730 /*
731 * Give this a unique field because c_phys eventually gets
732 * filled.
733 */
734 unsigned c_new;
735 unsigned c_clear_unwritten;
736 unsigned c_needs_zero;
737 };
738
739 struct ocfs2_write_ctxt {
740 /* Logical cluster position / len of write */
741 u32 w_cpos;
742 u32 w_clen;
743
744 /* First cluster allocated in a nonsparse extend */
745 u32 w_first_new_cpos;
746
747 /* Type of caller. Must be one of buffer, mmap, direct. */
748 ocfs2_write_type_t w_type;
749
750 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
751
752 /*
753 * This is true if page_size > cluster_size.
754 *
755 * It triggers a set of special cases during write which might
756 * have to deal with allocating writes to partial pages.
757 */
758 unsigned int w_large_pages;
759
760 /*
761 * Pages involved in this write.
762 *
763 * w_target_page is the page being written to by the user.
764 *
765 * w_pages is an array of pages which always contains
766 * w_target_page, and in the case of an allocating write with
767 * page_size < cluster size, it will contain zero'd and mapped
768 * pages adjacent to w_target_page which need to be written
769 * out in so that future reads from that region will get
770 * zero's.
771 */
772 unsigned int w_num_pages;
773 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
774 struct page *w_target_page;
775
776 /*
777 * w_target_locked is used for page_mkwrite path indicating no unlocking
778 * against w_target_page in ocfs2_write_end_nolock.
779 */
780 unsigned int w_target_locked:1;
781
782 /*
783 * ocfs2_write_end() uses this to know what the real range to
784 * write in the target should be.
785 */
786 unsigned int w_target_from;
787 unsigned int w_target_to;
788
789 /*
790 * We could use journal_current_handle() but this is cleaner,
791 * IMHO -Mark
792 */
793 handle_t *w_handle;
794
795 struct buffer_head *w_di_bh;
796
797 struct ocfs2_cached_dealloc_ctxt w_dealloc;
798
799 struct list_head w_unwritten_list;
800 unsigned int w_unwritten_count;
801 };
802
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)803 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
804 {
805 int i;
806
807 for(i = 0; i < num_pages; i++) {
808 if (pages[i]) {
809 unlock_page(pages[i]);
810 mark_page_accessed(pages[i]);
811 put_page(pages[i]);
812 }
813 }
814 }
815
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)816 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
817 {
818 int i;
819
820 /*
821 * w_target_locked is only set to true in the page_mkwrite() case.
822 * The intent is to allow us to lock the target page from write_begin()
823 * to write_end(). The caller must hold a ref on w_target_page.
824 */
825 if (wc->w_target_locked) {
826 BUG_ON(!wc->w_target_page);
827 for (i = 0; i < wc->w_num_pages; i++) {
828 if (wc->w_target_page == wc->w_pages[i]) {
829 wc->w_pages[i] = NULL;
830 break;
831 }
832 }
833 mark_page_accessed(wc->w_target_page);
834 put_page(wc->w_target_page);
835 }
836 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
837 }
838
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)839 static void ocfs2_free_unwritten_list(struct inode *inode,
840 struct list_head *head)
841 {
842 struct ocfs2_inode_info *oi = OCFS2_I(inode);
843 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
844
845 list_for_each_entry_safe(ue, tmp, head, ue_node) {
846 list_del(&ue->ue_node);
847 spin_lock(&oi->ip_lock);
848 list_del(&ue->ue_ip_node);
849 spin_unlock(&oi->ip_lock);
850 kfree(ue);
851 }
852 }
853
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)854 static void ocfs2_free_write_ctxt(struct inode *inode,
855 struct ocfs2_write_ctxt *wc)
856 {
857 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
858 ocfs2_unlock_pages(wc);
859 brelse(wc->w_di_bh);
860 kfree(wc);
861 }
862
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)863 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
864 struct ocfs2_super *osb, loff_t pos,
865 unsigned len, ocfs2_write_type_t type,
866 struct buffer_head *di_bh)
867 {
868 u32 cend;
869 struct ocfs2_write_ctxt *wc;
870
871 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
872 if (!wc)
873 return -ENOMEM;
874
875 wc->w_cpos = pos >> osb->s_clustersize_bits;
876 wc->w_first_new_cpos = UINT_MAX;
877 cend = (pos + len - 1) >> osb->s_clustersize_bits;
878 wc->w_clen = cend - wc->w_cpos + 1;
879 get_bh(di_bh);
880 wc->w_di_bh = di_bh;
881 wc->w_type = type;
882
883 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
884 wc->w_large_pages = 1;
885 else
886 wc->w_large_pages = 0;
887
888 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
889 INIT_LIST_HEAD(&wc->w_unwritten_list);
890
891 *wcp = wc;
892
893 return 0;
894 }
895
896 /*
897 * If a page has any new buffers, zero them out here, and mark them uptodate
898 * and dirty so they'll be written out (in order to prevent uninitialised
899 * block data from leaking). And clear the new bit.
900 */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)901 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
902 {
903 unsigned int block_start, block_end;
904 struct buffer_head *head, *bh;
905
906 BUG_ON(!PageLocked(page));
907 if (!page_has_buffers(page))
908 return;
909
910 bh = head = page_buffers(page);
911 block_start = 0;
912 do {
913 block_end = block_start + bh->b_size;
914
915 if (buffer_new(bh)) {
916 if (block_end > from && block_start < to) {
917 if (!PageUptodate(page)) {
918 unsigned start, end;
919
920 start = max(from, block_start);
921 end = min(to, block_end);
922
923 zero_user_segment(page, start, end);
924 set_buffer_uptodate(bh);
925 }
926
927 clear_buffer_new(bh);
928 mark_buffer_dirty(bh);
929 }
930 }
931
932 block_start = block_end;
933 bh = bh->b_this_page;
934 } while (bh != head);
935 }
936
937 /*
938 * Only called when we have a failure during allocating write to write
939 * zero's to the newly allocated region.
940 */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)941 static void ocfs2_write_failure(struct inode *inode,
942 struct ocfs2_write_ctxt *wc,
943 loff_t user_pos, unsigned user_len)
944 {
945 int i;
946 unsigned from = user_pos & (PAGE_SIZE - 1),
947 to = user_pos + user_len;
948 struct page *tmppage;
949
950 if (wc->w_target_page)
951 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
952
953 for(i = 0; i < wc->w_num_pages; i++) {
954 tmppage = wc->w_pages[i];
955
956 if (tmppage && page_has_buffers(tmppage)) {
957 if (ocfs2_should_order_data(inode))
958 ocfs2_jbd2_file_inode(wc->w_handle, inode);
959
960 block_commit_write(tmppage, from, to);
961 }
962 }
963 }
964
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)965 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
966 struct ocfs2_write_ctxt *wc,
967 struct page *page, u32 cpos,
968 loff_t user_pos, unsigned user_len,
969 int new)
970 {
971 int ret;
972 unsigned int map_from = 0, map_to = 0;
973 unsigned int cluster_start, cluster_end;
974 unsigned int user_data_from = 0, user_data_to = 0;
975
976 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
977 &cluster_start, &cluster_end);
978
979 /* treat the write as new if the a hole/lseek spanned across
980 * the page boundary.
981 */
982 new = new | ((i_size_read(inode) <= page_offset(page)) &&
983 (page_offset(page) <= user_pos));
984
985 if (page == wc->w_target_page) {
986 map_from = user_pos & (PAGE_SIZE - 1);
987 map_to = map_from + user_len;
988
989 if (new)
990 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
991 cluster_start, cluster_end,
992 new);
993 else
994 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
995 map_from, map_to, new);
996 if (ret) {
997 mlog_errno(ret);
998 goto out;
999 }
1000
1001 user_data_from = map_from;
1002 user_data_to = map_to;
1003 if (new) {
1004 map_from = cluster_start;
1005 map_to = cluster_end;
1006 }
1007 } else {
1008 /*
1009 * If we haven't allocated the new page yet, we
1010 * shouldn't be writing it out without copying user
1011 * data. This is likely a math error from the caller.
1012 */
1013 BUG_ON(!new);
1014
1015 map_from = cluster_start;
1016 map_to = cluster_end;
1017
1018 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1019 cluster_start, cluster_end, new);
1020 if (ret) {
1021 mlog_errno(ret);
1022 goto out;
1023 }
1024 }
1025
1026 /*
1027 * Parts of newly allocated pages need to be zero'd.
1028 *
1029 * Above, we have also rewritten 'to' and 'from' - as far as
1030 * the rest of the function is concerned, the entire cluster
1031 * range inside of a page needs to be written.
1032 *
1033 * We can skip this if the page is up to date - it's already
1034 * been zero'd from being read in as a hole.
1035 */
1036 if (new && !PageUptodate(page))
1037 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1038 cpos, user_data_from, user_data_to);
1039
1040 flush_dcache_page(page);
1041
1042 out:
1043 return ret;
1044 }
1045
1046 /*
1047 * This function will only grab one clusters worth of pages.
1048 */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1049 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1050 struct ocfs2_write_ctxt *wc,
1051 u32 cpos, loff_t user_pos,
1052 unsigned user_len, int new,
1053 struct page *mmap_page)
1054 {
1055 int ret = 0, i;
1056 unsigned long start, target_index, end_index, index;
1057 struct inode *inode = mapping->host;
1058 loff_t last_byte;
1059
1060 target_index = user_pos >> PAGE_SHIFT;
1061
1062 /*
1063 * Figure out how many pages we'll be manipulating here. For
1064 * non allocating write, we just change the one
1065 * page. Otherwise, we'll need a whole clusters worth. If we're
1066 * writing past i_size, we only need enough pages to cover the
1067 * last page of the write.
1068 */
1069 if (new) {
1070 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1071 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1072 /*
1073 * We need the index *past* the last page we could possibly
1074 * touch. This is the page past the end of the write or
1075 * i_size, whichever is greater.
1076 */
1077 last_byte = max(user_pos + user_len, i_size_read(inode));
1078 BUG_ON(last_byte < 1);
1079 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1080 if ((start + wc->w_num_pages) > end_index)
1081 wc->w_num_pages = end_index - start;
1082 } else {
1083 wc->w_num_pages = 1;
1084 start = target_index;
1085 }
1086 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1087
1088 for(i = 0; i < wc->w_num_pages; i++) {
1089 index = start + i;
1090
1091 if (index >= target_index && index <= end_index &&
1092 wc->w_type == OCFS2_WRITE_MMAP) {
1093 /*
1094 * ocfs2_pagemkwrite() is a little different
1095 * and wants us to directly use the page
1096 * passed in.
1097 */
1098 lock_page(mmap_page);
1099
1100 /* Exit and let the caller retry */
1101 if (mmap_page->mapping != mapping) {
1102 WARN_ON(mmap_page->mapping);
1103 unlock_page(mmap_page);
1104 ret = -EAGAIN;
1105 goto out;
1106 }
1107
1108 get_page(mmap_page);
1109 wc->w_pages[i] = mmap_page;
1110 wc->w_target_locked = true;
1111 } else if (index >= target_index && index <= end_index &&
1112 wc->w_type == OCFS2_WRITE_DIRECT) {
1113 /* Direct write has no mapping page. */
1114 wc->w_pages[i] = NULL;
1115 continue;
1116 } else {
1117 wc->w_pages[i] = find_or_create_page(mapping, index,
1118 GFP_NOFS);
1119 if (!wc->w_pages[i]) {
1120 ret = -ENOMEM;
1121 mlog_errno(ret);
1122 goto out;
1123 }
1124 }
1125 wait_for_stable_page(wc->w_pages[i]);
1126
1127 if (index == target_index)
1128 wc->w_target_page = wc->w_pages[i];
1129 }
1130 out:
1131 if (ret)
1132 wc->w_target_locked = false;
1133 return ret;
1134 }
1135
1136 /*
1137 * Prepare a single cluster for write one cluster into the file.
1138 */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1139 static int ocfs2_write_cluster(struct address_space *mapping,
1140 u32 *phys, unsigned int new,
1141 unsigned int clear_unwritten,
1142 unsigned int should_zero,
1143 struct ocfs2_alloc_context *data_ac,
1144 struct ocfs2_alloc_context *meta_ac,
1145 struct ocfs2_write_ctxt *wc, u32 cpos,
1146 loff_t user_pos, unsigned user_len)
1147 {
1148 int ret, i;
1149 u64 p_blkno;
1150 struct inode *inode = mapping->host;
1151 struct ocfs2_extent_tree et;
1152 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1153
1154 if (new) {
1155 u32 tmp_pos;
1156
1157 /*
1158 * This is safe to call with the page locks - it won't take
1159 * any additional semaphores or cluster locks.
1160 */
1161 tmp_pos = cpos;
1162 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1163 &tmp_pos, 1, !clear_unwritten,
1164 wc->w_di_bh, wc->w_handle,
1165 data_ac, meta_ac, NULL);
1166 /*
1167 * This shouldn't happen because we must have already
1168 * calculated the correct meta data allocation required. The
1169 * internal tree allocation code should know how to increase
1170 * transaction credits itself.
1171 *
1172 * If need be, we could handle -EAGAIN for a
1173 * RESTART_TRANS here.
1174 */
1175 mlog_bug_on_msg(ret == -EAGAIN,
1176 "Inode %llu: EAGAIN return during allocation.\n",
1177 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1178 if (ret < 0) {
1179 mlog_errno(ret);
1180 goto out;
1181 }
1182 } else if (clear_unwritten) {
1183 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1184 wc->w_di_bh);
1185 ret = ocfs2_mark_extent_written(inode, &et,
1186 wc->w_handle, cpos, 1, *phys,
1187 meta_ac, &wc->w_dealloc);
1188 if (ret < 0) {
1189 mlog_errno(ret);
1190 goto out;
1191 }
1192 }
1193
1194 /*
1195 * The only reason this should fail is due to an inability to
1196 * find the extent added.
1197 */
1198 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1199 if (ret < 0) {
1200 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1201 "at logical cluster %u",
1202 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1203 goto out;
1204 }
1205
1206 BUG_ON(*phys == 0);
1207
1208 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1209 if (!should_zero)
1210 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1211
1212 for(i = 0; i < wc->w_num_pages; i++) {
1213 int tmpret;
1214
1215 /* This is the direct io target page. */
1216 if (wc->w_pages[i] == NULL) {
1217 p_blkno++;
1218 continue;
1219 }
1220
1221 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1222 wc->w_pages[i], cpos,
1223 user_pos, user_len,
1224 should_zero);
1225 if (tmpret) {
1226 mlog_errno(tmpret);
1227 if (ret == 0)
1228 ret = tmpret;
1229 }
1230 }
1231
1232 /*
1233 * We only have cleanup to do in case of allocating write.
1234 */
1235 if (ret && new)
1236 ocfs2_write_failure(inode, wc, user_pos, user_len);
1237
1238 out:
1239
1240 return ret;
1241 }
1242
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1243 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1244 struct ocfs2_alloc_context *data_ac,
1245 struct ocfs2_alloc_context *meta_ac,
1246 struct ocfs2_write_ctxt *wc,
1247 loff_t pos, unsigned len)
1248 {
1249 int ret, i;
1250 loff_t cluster_off;
1251 unsigned int local_len = len;
1252 struct ocfs2_write_cluster_desc *desc;
1253 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1254
1255 for (i = 0; i < wc->w_clen; i++) {
1256 desc = &wc->w_desc[i];
1257
1258 /*
1259 * We have to make sure that the total write passed in
1260 * doesn't extend past a single cluster.
1261 */
1262 local_len = len;
1263 cluster_off = pos & (osb->s_clustersize - 1);
1264 if ((cluster_off + local_len) > osb->s_clustersize)
1265 local_len = osb->s_clustersize - cluster_off;
1266
1267 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1268 desc->c_new,
1269 desc->c_clear_unwritten,
1270 desc->c_needs_zero,
1271 data_ac, meta_ac,
1272 wc, desc->c_cpos, pos, local_len);
1273 if (ret) {
1274 mlog_errno(ret);
1275 goto out;
1276 }
1277
1278 len -= local_len;
1279 pos += local_len;
1280 }
1281
1282 ret = 0;
1283 out:
1284 return ret;
1285 }
1286
1287 /*
1288 * ocfs2_write_end() wants to know which parts of the target page it
1289 * should complete the write on. It's easiest to compute them ahead of
1290 * time when a more complete view of the write is available.
1291 */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1292 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1293 struct ocfs2_write_ctxt *wc,
1294 loff_t pos, unsigned len, int alloc)
1295 {
1296 struct ocfs2_write_cluster_desc *desc;
1297
1298 wc->w_target_from = pos & (PAGE_SIZE - 1);
1299 wc->w_target_to = wc->w_target_from + len;
1300
1301 if (alloc == 0)
1302 return;
1303
1304 /*
1305 * Allocating write - we may have different boundaries based
1306 * on page size and cluster size.
1307 *
1308 * NOTE: We can no longer compute one value from the other as
1309 * the actual write length and user provided length may be
1310 * different.
1311 */
1312
1313 if (wc->w_large_pages) {
1314 /*
1315 * We only care about the 1st and last cluster within
1316 * our range and whether they should be zero'd or not. Either
1317 * value may be extended out to the start/end of a
1318 * newly allocated cluster.
1319 */
1320 desc = &wc->w_desc[0];
1321 if (desc->c_needs_zero)
1322 ocfs2_figure_cluster_boundaries(osb,
1323 desc->c_cpos,
1324 &wc->w_target_from,
1325 NULL);
1326
1327 desc = &wc->w_desc[wc->w_clen - 1];
1328 if (desc->c_needs_zero)
1329 ocfs2_figure_cluster_boundaries(osb,
1330 desc->c_cpos,
1331 NULL,
1332 &wc->w_target_to);
1333 } else {
1334 wc->w_target_from = 0;
1335 wc->w_target_to = PAGE_SIZE;
1336 }
1337 }
1338
1339 /*
1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1342 * by the direct io procedure.
1343 * If this is a new extent that allocated by direct io, we should mark it in
1344 * the ip_unwritten_list.
1345 */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1346 static int ocfs2_unwritten_check(struct inode *inode,
1347 struct ocfs2_write_ctxt *wc,
1348 struct ocfs2_write_cluster_desc *desc)
1349 {
1350 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1351 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1352 int ret = 0;
1353
1354 if (!desc->c_needs_zero)
1355 return 0;
1356
1357 retry:
1358 spin_lock(&oi->ip_lock);
1359 /* Needs not to zero no metter buffer or direct. The one who is zero
1360 * the cluster is doing zero. And he will clear unwritten after all
1361 * cluster io finished. */
1362 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1363 if (desc->c_cpos == ue->ue_cpos) {
1364 BUG_ON(desc->c_new);
1365 desc->c_needs_zero = 0;
1366 desc->c_clear_unwritten = 0;
1367 goto unlock;
1368 }
1369 }
1370
1371 if (wc->w_type != OCFS2_WRITE_DIRECT)
1372 goto unlock;
1373
1374 if (new == NULL) {
1375 spin_unlock(&oi->ip_lock);
1376 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1377 GFP_NOFS);
1378 if (new == NULL) {
1379 ret = -ENOMEM;
1380 goto out;
1381 }
1382 goto retry;
1383 }
1384 /* This direct write will doing zero. */
1385 new->ue_cpos = desc->c_cpos;
1386 new->ue_phys = desc->c_phys;
1387 desc->c_clear_unwritten = 0;
1388 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1389 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1390 wc->w_unwritten_count++;
1391 new = NULL;
1392 unlock:
1393 spin_unlock(&oi->ip_lock);
1394 out:
1395 if (new)
1396 kfree(new);
1397 return ret;
1398 }
1399
1400 /*
1401 * Populate each single-cluster write descriptor in the write context
1402 * with information about the i/o to be done.
1403 *
1404 * Returns the number of clusters that will have to be allocated, as
1405 * well as a worst case estimate of the number of extent records that
1406 * would have to be created during a write to an unwritten region.
1407 */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1408 static int ocfs2_populate_write_desc(struct inode *inode,
1409 struct ocfs2_write_ctxt *wc,
1410 unsigned int *clusters_to_alloc,
1411 unsigned int *extents_to_split)
1412 {
1413 int ret;
1414 struct ocfs2_write_cluster_desc *desc;
1415 unsigned int num_clusters = 0;
1416 unsigned int ext_flags = 0;
1417 u32 phys = 0;
1418 int i;
1419
1420 *clusters_to_alloc = 0;
1421 *extents_to_split = 0;
1422
1423 for (i = 0; i < wc->w_clen; i++) {
1424 desc = &wc->w_desc[i];
1425 desc->c_cpos = wc->w_cpos + i;
1426
1427 if (num_clusters == 0) {
1428 /*
1429 * Need to look up the next extent record.
1430 */
1431 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1432 &num_clusters, &ext_flags);
1433 if (ret) {
1434 mlog_errno(ret);
1435 goto out;
1436 }
1437
1438 /* We should already CoW the refcountd extent. */
1439 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1440
1441 /*
1442 * Assume worst case - that we're writing in
1443 * the middle of the extent.
1444 *
1445 * We can assume that the write proceeds from
1446 * left to right, in which case the extent
1447 * insert code is smart enough to coalesce the
1448 * next splits into the previous records created.
1449 */
1450 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1451 *extents_to_split = *extents_to_split + 2;
1452 } else if (phys) {
1453 /*
1454 * Only increment phys if it doesn't describe
1455 * a hole.
1456 */
1457 phys++;
1458 }
1459
1460 /*
1461 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1462 * file that got extended. w_first_new_cpos tells us
1463 * where the newly allocated clusters are so we can
1464 * zero them.
1465 */
1466 if (desc->c_cpos >= wc->w_first_new_cpos) {
1467 BUG_ON(phys == 0);
1468 desc->c_needs_zero = 1;
1469 }
1470
1471 desc->c_phys = phys;
1472 if (phys == 0) {
1473 desc->c_new = 1;
1474 desc->c_needs_zero = 1;
1475 desc->c_clear_unwritten = 1;
1476 *clusters_to_alloc = *clusters_to_alloc + 1;
1477 }
1478
1479 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480 desc->c_clear_unwritten = 1;
1481 desc->c_needs_zero = 1;
1482 }
1483
1484 ret = ocfs2_unwritten_check(inode, wc, desc);
1485 if (ret) {
1486 mlog_errno(ret);
1487 goto out;
1488 }
1489
1490 num_clusters--;
1491 }
1492
1493 ret = 0;
1494 out:
1495 return ret;
1496 }
1497
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1498 static int ocfs2_write_begin_inline(struct address_space *mapping,
1499 struct inode *inode,
1500 struct ocfs2_write_ctxt *wc)
1501 {
1502 int ret;
1503 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504 struct page *page;
1505 handle_t *handle;
1506 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
1508 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509 if (IS_ERR(handle)) {
1510 ret = PTR_ERR(handle);
1511 mlog_errno(ret);
1512 goto out;
1513 }
1514
1515 page = find_or_create_page(mapping, 0, GFP_NOFS);
1516 if (!page) {
1517 ocfs2_commit_trans(osb, handle);
1518 ret = -ENOMEM;
1519 mlog_errno(ret);
1520 goto out;
1521 }
1522 /*
1523 * If we don't set w_num_pages then this page won't get unlocked
1524 * and freed on cleanup of the write context.
1525 */
1526 wc->w_pages[0] = wc->w_target_page = page;
1527 wc->w_num_pages = 1;
1528
1529 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1530 OCFS2_JOURNAL_ACCESS_WRITE);
1531 if (ret) {
1532 ocfs2_commit_trans(osb, handle);
1533
1534 mlog_errno(ret);
1535 goto out;
1536 }
1537
1538 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1539 ocfs2_set_inode_data_inline(inode, di);
1540
1541 if (!PageUptodate(page)) {
1542 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1543 if (ret) {
1544 ocfs2_commit_trans(osb, handle);
1545
1546 goto out;
1547 }
1548 }
1549
1550 wc->w_handle = handle;
1551 out:
1552 return ret;
1553 }
1554
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1555 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1556 {
1557 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1558
1559 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1560 return 1;
1561 return 0;
1562 }
1563
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1564 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1565 struct inode *inode, loff_t pos,
1566 unsigned len, struct page *mmap_page,
1567 struct ocfs2_write_ctxt *wc)
1568 {
1569 int ret, written = 0;
1570 loff_t end = pos + len;
1571 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1572 struct ocfs2_dinode *di = NULL;
1573
1574 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1575 len, (unsigned long long)pos,
1576 oi->ip_dyn_features);
1577
1578 /*
1579 * Handle inodes which already have inline data 1st.
1580 */
1581 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1582 if (mmap_page == NULL &&
1583 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1584 goto do_inline_write;
1585
1586 /*
1587 * The write won't fit - we have to give this inode an
1588 * inline extent list now.
1589 */
1590 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1591 if (ret)
1592 mlog_errno(ret);
1593 goto out;
1594 }
1595
1596 /*
1597 * Check whether the inode can accept inline data.
1598 */
1599 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1600 return 0;
1601
1602 /*
1603 * Check whether the write can fit.
1604 */
1605 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1606 if (mmap_page ||
1607 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1608 return 0;
1609
1610 do_inline_write:
1611 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612 if (ret) {
1613 mlog_errno(ret);
1614 goto out;
1615 }
1616
1617 /*
1618 * This signals to the caller that the data can be written
1619 * inline.
1620 */
1621 written = 1;
1622 out:
1623 return written ? written : ret;
1624 }
1625
1626 /*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1635 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1636 struct buffer_head *di_bh,
1637 loff_t pos, unsigned len,
1638 struct ocfs2_write_ctxt *wc)
1639 {
1640 int ret;
1641 loff_t newsize = pos + len;
1642
1643 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644
1645 if (newsize <= i_size_read(inode))
1646 return 0;
1647
1648 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1649 if (ret)
1650 mlog_errno(ret);
1651
1652 /* There is no wc if this is call from direct. */
1653 if (wc)
1654 wc->w_first_new_cpos =
1655 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1656
1657 return ret;
1658 }
1659
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1660 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1661 loff_t pos)
1662 {
1663 int ret = 0;
1664
1665 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1666 if (pos > i_size_read(inode))
1667 ret = ocfs2_zero_extend(inode, di_bh, pos);
1668
1669 return ret;
1670 }
1671
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1672 int ocfs2_write_begin_nolock(struct address_space *mapping,
1673 loff_t pos, unsigned len, ocfs2_write_type_t type,
1674 struct page **pagep, void **fsdata,
1675 struct buffer_head *di_bh, struct page *mmap_page)
1676 {
1677 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1679 struct ocfs2_write_ctxt *wc;
1680 struct inode *inode = mapping->host;
1681 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682 struct ocfs2_dinode *di;
1683 struct ocfs2_alloc_context *data_ac = NULL;
1684 struct ocfs2_alloc_context *meta_ac = NULL;
1685 handle_t *handle;
1686 struct ocfs2_extent_tree et;
1687 int try_free = 1, ret1;
1688
1689 try_again:
1690 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1691 if (ret) {
1692 mlog_errno(ret);
1693 return ret;
1694 }
1695
1696 if (ocfs2_supports_inline_data(osb)) {
1697 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1698 mmap_page, wc);
1699 if (ret == 1) {
1700 ret = 0;
1701 goto success;
1702 }
1703 if (ret < 0) {
1704 mlog_errno(ret);
1705 goto out;
1706 }
1707 }
1708
1709 /* Direct io change i_size late, should not zero tail here. */
1710 if (type != OCFS2_WRITE_DIRECT) {
1711 if (ocfs2_sparse_alloc(osb))
1712 ret = ocfs2_zero_tail(inode, di_bh, pos);
1713 else
1714 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1715 len, wc);
1716 if (ret) {
1717 mlog_errno(ret);
1718 goto out;
1719 }
1720 }
1721
1722 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1723 if (ret < 0) {
1724 mlog_errno(ret);
1725 goto out;
1726 } else if (ret == 1) {
1727 clusters_need = wc->w_clen;
1728 ret = ocfs2_refcount_cow(inode, di_bh,
1729 wc->w_cpos, wc->w_clen, UINT_MAX);
1730 if (ret) {
1731 mlog_errno(ret);
1732 goto out;
1733 }
1734 }
1735
1736 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1737 &extents_to_split);
1738 if (ret) {
1739 mlog_errno(ret);
1740 goto out;
1741 }
1742 clusters_need += clusters_to_alloc;
1743
1744 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1745
1746 trace_ocfs2_write_begin_nolock(
1747 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1748 (long long)i_size_read(inode),
1749 le32_to_cpu(di->i_clusters),
1750 pos, len, type, mmap_page,
1751 clusters_to_alloc, extents_to_split);
1752
1753 /*
1754 * We set w_target_from, w_target_to here so that
1755 * ocfs2_write_end() knows which range in the target page to
1756 * write out. An allocation requires that we write the entire
1757 * cluster range.
1758 */
1759 if (clusters_to_alloc || extents_to_split) {
1760 /*
1761 * XXX: We are stretching the limits of
1762 * ocfs2_lock_allocators(). It greatly over-estimates
1763 * the work to be done.
1764 */
1765 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1766 wc->w_di_bh);
1767 ret = ocfs2_lock_allocators(inode, &et,
1768 clusters_to_alloc, extents_to_split,
1769 &data_ac, &meta_ac);
1770 if (ret) {
1771 mlog_errno(ret);
1772 goto out;
1773 }
1774
1775 if (data_ac)
1776 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1777
1778 credits = ocfs2_calc_extend_credits(inode->i_sb,
1779 &di->id2.i_list);
1780 } else if (type == OCFS2_WRITE_DIRECT)
1781 /* direct write needs not to start trans if no extents alloc. */
1782 goto success;
1783
1784 /*
1785 * We have to zero sparse allocated clusters, unwritten extent clusters,
1786 * and non-sparse clusters we just extended. For non-sparse writes,
1787 * we know zeros will only be needed in the first and/or last cluster.
1788 */
1789 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1790 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1791 cluster_of_pages = 1;
1792 else
1793 cluster_of_pages = 0;
1794
1795 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1796
1797 handle = ocfs2_start_trans(osb, credits);
1798 if (IS_ERR(handle)) {
1799 ret = PTR_ERR(handle);
1800 mlog_errno(ret);
1801 goto out;
1802 }
1803
1804 wc->w_handle = handle;
1805
1806 if (clusters_to_alloc) {
1807 ret = dquot_alloc_space_nodirty(inode,
1808 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1809 if (ret)
1810 goto out_commit;
1811 }
1812
1813 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1814 OCFS2_JOURNAL_ACCESS_WRITE);
1815 if (ret) {
1816 mlog_errno(ret);
1817 goto out_quota;
1818 }
1819
1820 /*
1821 * Fill our page array first. That way we've grabbed enough so
1822 * that we can zero and flush if we error after adding the
1823 * extent.
1824 */
1825 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1826 cluster_of_pages, mmap_page);
1827 if (ret && ret != -EAGAIN) {
1828 mlog_errno(ret);
1829 goto out_quota;
1830 }
1831
1832 /*
1833 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1834 * the target page. In this case, we exit with no error and no target
1835 * page. This will trigger the caller, page_mkwrite(), to re-try
1836 * the operation.
1837 */
1838 if (ret == -EAGAIN) {
1839 BUG_ON(wc->w_target_page);
1840 ret = 0;
1841 goto out_quota;
1842 }
1843
1844 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1845 len);
1846 if (ret) {
1847 mlog_errno(ret);
1848 goto out_quota;
1849 }
1850
1851 if (data_ac)
1852 ocfs2_free_alloc_context(data_ac);
1853 if (meta_ac)
1854 ocfs2_free_alloc_context(meta_ac);
1855
1856 success:
1857 if (pagep)
1858 *pagep = wc->w_target_page;
1859 *fsdata = wc;
1860 return 0;
1861 out_quota:
1862 if (clusters_to_alloc)
1863 dquot_free_space(inode,
1864 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1865 out_commit:
1866 ocfs2_commit_trans(osb, handle);
1867
1868 out:
1869 /*
1870 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1871 * even in case of error here like ENOSPC and ENOMEM. So, we need
1872 * to unlock the target page manually to prevent deadlocks when
1873 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1874 * to VM code.
1875 */
1876 if (wc->w_target_locked)
1877 unlock_page(mmap_page);
1878
1879 ocfs2_free_write_ctxt(inode, wc);
1880
1881 if (data_ac) {
1882 ocfs2_free_alloc_context(data_ac);
1883 data_ac = NULL;
1884 }
1885 if (meta_ac) {
1886 ocfs2_free_alloc_context(meta_ac);
1887 meta_ac = NULL;
1888 }
1889
1890 if (ret == -ENOSPC && try_free) {
1891 /*
1892 * Try to free some truncate log so that we can have enough
1893 * clusters to allocate.
1894 */
1895 try_free = 0;
1896
1897 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898 if (ret1 == 1)
1899 goto try_again;
1900
1901 if (ret1 < 0)
1902 mlog_errno(ret1);
1903 }
1904
1905 return ret;
1906 }
1907
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1908 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909 loff_t pos, unsigned len, unsigned flags,
1910 struct page **pagep, void **fsdata)
1911 {
1912 int ret;
1913 struct buffer_head *di_bh = NULL;
1914 struct inode *inode = mapping->host;
1915
1916 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917 if (ret) {
1918 mlog_errno(ret);
1919 return ret;
1920 }
1921
1922 /*
1923 * Take alloc sem here to prevent concurrent lookups. That way
1924 * the mapping, zeroing and tree manipulation within
1925 * ocfs2_write() will be safe against ->readpage(). This
1926 * should also serve to lock out allocation from a shared
1927 * writeable region.
1928 */
1929 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
1931 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1932 pagep, fsdata, di_bh, NULL);
1933 if (ret) {
1934 mlog_errno(ret);
1935 goto out_fail;
1936 }
1937
1938 brelse(di_bh);
1939
1940 return 0;
1941
1942 out_fail:
1943 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945 brelse(di_bh);
1946 ocfs2_inode_unlock(inode, 1);
1947
1948 return ret;
1949 }
1950
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1951 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952 unsigned len, unsigned *copied,
1953 struct ocfs2_dinode *di,
1954 struct ocfs2_write_ctxt *wc)
1955 {
1956 void *kaddr;
1957
1958 if (unlikely(*copied < len)) {
1959 if (!PageUptodate(wc->w_target_page)) {
1960 *copied = 0;
1961 return;
1962 }
1963 }
1964
1965 kaddr = kmap_atomic(wc->w_target_page);
1966 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967 kunmap_atomic(kaddr);
1968
1969 trace_ocfs2_write_end_inline(
1970 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971 (unsigned long long)pos, *copied,
1972 le16_to_cpu(di->id2.i_data.id_count),
1973 le16_to_cpu(di->i_dyn_features));
1974 }
1975
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1976 int ocfs2_write_end_nolock(struct address_space *mapping,
1977 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1978 {
1979 int i, ret;
1980 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1981 struct inode *inode = mapping->host;
1982 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1983 struct ocfs2_write_ctxt *wc = fsdata;
1984 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1985 handle_t *handle = wc->w_handle;
1986 struct page *tmppage;
1987
1988 BUG_ON(!list_empty(&wc->w_unwritten_list));
1989
1990 if (handle) {
1991 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1992 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1993 if (ret) {
1994 copied = ret;
1995 mlog_errno(ret);
1996 goto out;
1997 }
1998 }
1999
2000 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2001 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2002 goto out_write_size;
2003 }
2004
2005 if (unlikely(copied < len) && wc->w_target_page) {
2006 if (!PageUptodate(wc->w_target_page))
2007 copied = 0;
2008
2009 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2010 start+len);
2011 }
2012 if (wc->w_target_page)
2013 flush_dcache_page(wc->w_target_page);
2014
2015 for(i = 0; i < wc->w_num_pages; i++) {
2016 tmppage = wc->w_pages[i];
2017
2018 /* This is the direct io target page. */
2019 if (tmppage == NULL)
2020 continue;
2021
2022 if (tmppage == wc->w_target_page) {
2023 from = wc->w_target_from;
2024 to = wc->w_target_to;
2025
2026 BUG_ON(from > PAGE_SIZE ||
2027 to > PAGE_SIZE ||
2028 to < from);
2029 } else {
2030 /*
2031 * Pages adjacent to the target (if any) imply
2032 * a hole-filling write in which case we want
2033 * to flush their entire range.
2034 */
2035 from = 0;
2036 to = PAGE_SIZE;
2037 }
2038
2039 if (page_has_buffers(tmppage)) {
2040 if (handle && ocfs2_should_order_data(inode))
2041 ocfs2_jbd2_file_inode(handle, inode);
2042 block_commit_write(tmppage, from, to);
2043 }
2044 }
2045
2046 out_write_size:
2047 /* Direct io do not update i_size here. */
2048 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2049 pos += copied;
2050 if (pos > i_size_read(inode)) {
2051 i_size_write(inode, pos);
2052 mark_inode_dirty(inode);
2053 }
2054 inode->i_blocks = ocfs2_inode_sector_count(inode);
2055 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2056 inode->i_mtime = inode->i_ctime = current_time(inode);
2057 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2058 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2059 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2060 }
2061 if (handle)
2062 ocfs2_journal_dirty(handle, wc->w_di_bh);
2063
2064 out:
2065 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2066 * lock, or it will cause a deadlock since journal commit threads holds
2067 * this lock and will ask for the page lock when flushing the data.
2068 * put it here to preserve the unlock order.
2069 */
2070 ocfs2_unlock_pages(wc);
2071
2072 if (handle)
2073 ocfs2_commit_trans(osb, handle);
2074
2075 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2076
2077 brelse(wc->w_di_bh);
2078 kfree(wc);
2079
2080 return copied;
2081 }
2082
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2083 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2084 loff_t pos, unsigned len, unsigned copied,
2085 struct page *page, void *fsdata)
2086 {
2087 int ret;
2088 struct inode *inode = mapping->host;
2089
2090 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2091
2092 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2093 ocfs2_inode_unlock(inode, 1);
2094
2095 return ret;
2096 }
2097
2098 struct ocfs2_dio_write_ctxt {
2099 struct list_head dw_zero_list;
2100 unsigned dw_zero_count;
2101 int dw_orphaned;
2102 pid_t dw_writer_pid;
2103 };
2104
2105 static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2106 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2107 {
2108 struct ocfs2_dio_write_ctxt *dwc = NULL;
2109
2110 if (bh->b_private)
2111 return bh->b_private;
2112
2113 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2114 if (dwc == NULL)
2115 return NULL;
2116 INIT_LIST_HEAD(&dwc->dw_zero_list);
2117 dwc->dw_zero_count = 0;
2118 dwc->dw_orphaned = 0;
2119 dwc->dw_writer_pid = task_pid_nr(current);
2120 bh->b_private = dwc;
2121 *alloc = 1;
2122
2123 return dwc;
2124 }
2125
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2126 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2127 struct ocfs2_dio_write_ctxt *dwc)
2128 {
2129 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2130 kfree(dwc);
2131 }
2132
2133 /*
2134 * TODO: Make this into a generic get_blocks function.
2135 *
2136 * From do_direct_io in direct-io.c:
2137 * "So what we do is to permit the ->get_blocks function to populate
2138 * bh.b_size with the size of IO which is permitted at this offset and
2139 * this i_blkbits."
2140 *
2141 * This function is called directly from get_more_blocks in direct-io.c.
2142 *
2143 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2144 * fs_count, map_bh, dio->rw == WRITE);
2145 */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2146 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2147 struct buffer_head *bh_result, int create)
2148 {
2149 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2150 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2151 struct ocfs2_write_ctxt *wc;
2152 struct ocfs2_write_cluster_desc *desc = NULL;
2153 struct ocfs2_dio_write_ctxt *dwc = NULL;
2154 struct buffer_head *di_bh = NULL;
2155 u64 p_blkno;
2156 loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2157 unsigned len, total_len = bh_result->b_size;
2158 int ret = 0, first_get_block = 0;
2159
2160 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2161 len = min(total_len, len);
2162
2163 mlog(0, "get block of %lu at %llu:%u req %u\n",
2164 inode->i_ino, pos, len, total_len);
2165
2166 /*
2167 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168 * we may need to add it to orphan dir. So can not fall to fast path
2169 * while file size will be changed.
2170 */
2171 if (pos + total_len <= i_size_read(inode)) {
2172
2173 /* This is the fast path for re-write. */
2174 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175 if (buffer_mapped(bh_result) &&
2176 !buffer_new(bh_result) &&
2177 ret == 0)
2178 goto out;
2179
2180 /* Clear state set by ocfs2_get_block. */
2181 bh_result->b_state = 0;
2182 }
2183
2184 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185 if (unlikely(dwc == NULL)) {
2186 ret = -ENOMEM;
2187 mlog_errno(ret);
2188 goto out;
2189 }
2190
2191 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193 !dwc->dw_orphaned) {
2194 /*
2195 * when we are going to alloc extents beyond file size, add the
2196 * inode to orphan dir, so we can recall those spaces when
2197 * system crashed during write.
2198 */
2199 ret = ocfs2_add_inode_to_orphan(osb, inode);
2200 if (ret < 0) {
2201 mlog_errno(ret);
2202 goto out;
2203 }
2204 dwc->dw_orphaned = 1;
2205 }
2206
2207 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208 if (ret) {
2209 mlog_errno(ret);
2210 goto out;
2211 }
2212
2213 down_write(&oi->ip_alloc_sem);
2214
2215 if (first_get_block) {
2216 if (ocfs2_sparse_alloc(osb))
2217 ret = ocfs2_zero_tail(inode, di_bh, pos);
2218 else
2219 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220 total_len, NULL);
2221 if (ret < 0) {
2222 mlog_errno(ret);
2223 goto unlock;
2224 }
2225 }
2226
2227 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228 OCFS2_WRITE_DIRECT, NULL,
2229 (void **)&wc, di_bh, NULL);
2230 if (ret) {
2231 mlog_errno(ret);
2232 goto unlock;
2233 }
2234
2235 desc = &wc->w_desc[0];
2236
2237 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238 BUG_ON(p_blkno == 0);
2239 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241 map_bh(bh_result, inode->i_sb, p_blkno);
2242 bh_result->b_size = len;
2243 if (desc->c_needs_zero)
2244 set_buffer_new(bh_result);
2245
2246 /* May sleep in end_io. It should not happen in a irq context. So defer
2247 * it to dio work queue. */
2248 set_buffer_defer_completion(bh_result);
2249
2250 if (!list_empty(&wc->w_unwritten_list)) {
2251 struct ocfs2_unwritten_extent *ue = NULL;
2252
2253 ue = list_first_entry(&wc->w_unwritten_list,
2254 struct ocfs2_unwritten_extent,
2255 ue_node);
2256 BUG_ON(ue->ue_cpos != desc->c_cpos);
2257 /* The physical address may be 0, fill it. */
2258 ue->ue_phys = desc->c_phys;
2259
2260 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2261 dwc->dw_zero_count += wc->w_unwritten_count;
2262 }
2263
2264 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2265 BUG_ON(ret != len);
2266 ret = 0;
2267 unlock:
2268 up_write(&oi->ip_alloc_sem);
2269 ocfs2_inode_unlock(inode, 1);
2270 brelse(di_bh);
2271 out:
2272 if (ret < 0)
2273 ret = -EIO;
2274 return ret;
2275 }
2276
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2277 static int ocfs2_dio_end_io_write(struct inode *inode,
2278 struct ocfs2_dio_write_ctxt *dwc,
2279 loff_t offset,
2280 ssize_t bytes)
2281 {
2282 struct ocfs2_cached_dealloc_ctxt dealloc;
2283 struct ocfs2_extent_tree et;
2284 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2286 struct ocfs2_unwritten_extent *ue = NULL;
2287 struct buffer_head *di_bh = NULL;
2288 struct ocfs2_dinode *di;
2289 struct ocfs2_alloc_context *data_ac = NULL;
2290 struct ocfs2_alloc_context *meta_ac = NULL;
2291 handle_t *handle = NULL;
2292 loff_t end = offset + bytes;
2293 int ret = 0, credits = 0, locked = 0;
2294
2295 ocfs2_init_dealloc_ctxt(&dealloc);
2296
2297 /* We do clear unwritten, delete orphan, change i_size here. If neither
2298 * of these happen, we can skip all this. */
2299 if (list_empty(&dwc->dw_zero_list) &&
2300 end <= i_size_read(inode) &&
2301 !dwc->dw_orphaned)
2302 goto out;
2303
2304 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2305 * are in that context. */
2306 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2307 inode_lock(inode);
2308 locked = 1;
2309 }
2310
2311 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312 if (ret < 0) {
2313 mlog_errno(ret);
2314 goto out;
2315 }
2316
2317 down_write(&oi->ip_alloc_sem);
2318
2319 /* Delete orphan before acquire i_mutex. */
2320 if (dwc->dw_orphaned) {
2321 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2322
2323 end = end > i_size_read(inode) ? end : 0;
2324
2325 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2326 !!end, end);
2327 if (ret < 0)
2328 mlog_errno(ret);
2329 }
2330
2331 di = (struct ocfs2_dinode *)di_bh->b_data;
2332
2333 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2334
2335 /* Attach dealloc with extent tree in case that we may reuse extents
2336 * which are already unlinked from current extent tree due to extent
2337 * rotation and merging.
2338 */
2339 et.et_dealloc = &dealloc;
2340
2341 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2342 &data_ac, &meta_ac);
2343 if (ret) {
2344 mlog_errno(ret);
2345 goto unlock;
2346 }
2347
2348 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2349
2350 handle = ocfs2_start_trans(osb, credits);
2351 if (IS_ERR(handle)) {
2352 ret = PTR_ERR(handle);
2353 mlog_errno(ret);
2354 goto unlock;
2355 }
2356 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2357 OCFS2_JOURNAL_ACCESS_WRITE);
2358 if (ret) {
2359 mlog_errno(ret);
2360 goto commit;
2361 }
2362
2363 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2364 ret = ocfs2_mark_extent_written(inode, &et, handle,
2365 ue->ue_cpos, 1,
2366 ue->ue_phys,
2367 meta_ac, &dealloc);
2368 if (ret < 0) {
2369 mlog_errno(ret);
2370 break;
2371 }
2372 }
2373
2374 if (end > i_size_read(inode)) {
2375 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2376 if (ret < 0)
2377 mlog_errno(ret);
2378 }
2379 commit:
2380 ocfs2_commit_trans(osb, handle);
2381 unlock:
2382 up_write(&oi->ip_alloc_sem);
2383 ocfs2_inode_unlock(inode, 1);
2384 brelse(di_bh);
2385 out:
2386 if (data_ac)
2387 ocfs2_free_alloc_context(data_ac);
2388 if (meta_ac)
2389 ocfs2_free_alloc_context(meta_ac);
2390 ocfs2_run_deallocs(osb, &dealloc);
2391 if (locked)
2392 inode_unlock(inode);
2393 ocfs2_dio_free_write_ctx(inode, dwc);
2394
2395 return ret;
2396 }
2397
2398 /*
2399 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2400 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2401 * to protect io on one node from truncation on another.
2402 */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2403 static int ocfs2_dio_end_io(struct kiocb *iocb,
2404 loff_t offset,
2405 ssize_t bytes,
2406 void *private)
2407 {
2408 struct inode *inode = file_inode(iocb->ki_filp);
2409 int level;
2410 int ret = 0;
2411
2412 /* this io's submitter should not have unlocked this before we could */
2413 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2414
2415 if (bytes > 0 && private)
2416 ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2417
2418 ocfs2_iocb_clear_rw_locked(iocb);
2419
2420 level = ocfs2_iocb_rw_locked_level(iocb);
2421 ocfs2_rw_unlock(inode, level);
2422 return ret;
2423 }
2424
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2425 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426 {
2427 struct file *file = iocb->ki_filp;
2428 struct inode *inode = file->f_mapping->host;
2429 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430 get_block_t *get_block;
2431
2432 /*
2433 * Fallback to buffered I/O if we see an inode without
2434 * extents.
2435 */
2436 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437 return 0;
2438
2439 /* Fallback to buffered I/O if we do not support append dio. */
2440 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441 !ocfs2_supports_append_dio(osb))
2442 return 0;
2443
2444 if (iov_iter_rw(iter) == READ)
2445 get_block = ocfs2_lock_get_block;
2446 else
2447 get_block = ocfs2_dio_wr_get_block;
2448
2449 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450 iter, get_block,
2451 ocfs2_dio_end_io, NULL, 0);
2452 }
2453
2454 const struct address_space_operations ocfs2_aops = {
2455 .readpage = ocfs2_readpage,
2456 .readpages = ocfs2_readpages,
2457 .writepage = ocfs2_writepage,
2458 .write_begin = ocfs2_write_begin,
2459 .write_end = ocfs2_write_end,
2460 .bmap = ocfs2_bmap,
2461 .direct_IO = ocfs2_direct_IO,
2462 .invalidatepage = block_invalidatepage,
2463 .releasepage = ocfs2_releasepage,
2464 .migratepage = buffer_migrate_page,
2465 .is_partially_uptodate = block_is_partially_uptodate,
2466 .error_remove_page = generic_error_remove_page,
2467 };
2468