1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 struct workqueue_struct *zbd_wq;
20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
21 static DEFINE_IDA(cntlid_ida);
22
23 /*
24 * This read/write semaphore is used to synchronize access to configuration
25 * information on a target system that will result in discovery log page
26 * information change for at least one host.
27 * The full list of resources to protected by this semaphore is:
28 *
29 * - subsystems list
30 * - per-subsystem allowed hosts list
31 * - allow_any_host subsystem attribute
32 * - nvmet_genctr
33 * - the nvmet_transports array
34 *
35 * When updating any of those lists/structures write lock should be obtained,
36 * while when reading (popolating discovery log page or checking host-subsystem
37 * link) read lock is obtained to allow concurrent reads.
38 */
39 DECLARE_RWSEM(nvmet_config_sem);
40
41 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
42 u64 nvmet_ana_chgcnt;
43 DECLARE_RWSEM(nvmet_ana_sem);
44
errno_to_nvme_status(struct nvmet_req * req,int errno)45 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
46 {
47 switch (errno) {
48 case 0:
49 return NVME_SC_SUCCESS;
50 case -ENOSPC:
51 req->error_loc = offsetof(struct nvme_rw_command, length);
52 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
53 case -EREMOTEIO:
54 req->error_loc = offsetof(struct nvme_rw_command, slba);
55 return NVME_SC_LBA_RANGE | NVME_SC_DNR;
56 case -EOPNOTSUPP:
57 req->error_loc = offsetof(struct nvme_common_command, opcode);
58 switch (req->cmd->common.opcode) {
59 case nvme_cmd_dsm:
60 case nvme_cmd_write_zeroes:
61 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
62 default:
63 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
64 }
65 break;
66 case -ENODATA:
67 req->error_loc = offsetof(struct nvme_rw_command, nsid);
68 return NVME_SC_ACCESS_DENIED;
69 case -EIO:
70 fallthrough;
71 default:
72 req->error_loc = offsetof(struct nvme_common_command, opcode);
73 return NVME_SC_INTERNAL | NVME_SC_DNR;
74 }
75 }
76
nvmet_report_invalid_opcode(struct nvmet_req * req)77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
78 {
79 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
80 req->sq->qid);
81
82 req->error_loc = offsetof(struct nvme_common_command, opcode);
83 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
84 }
85
86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
87 const char *subsysnqn);
88
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
90 size_t len)
91 {
92 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
93 req->error_loc = offsetof(struct nvme_common_command, dptr);
94 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
95 }
96 return 0;
97 }
98
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 {
101 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
102 req->error_loc = offsetof(struct nvme_common_command, dptr);
103 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
104 }
105 return 0;
106 }
107
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 {
110 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
111 req->error_loc = offsetof(struct nvme_common_command, dptr);
112 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
113 }
114 return 0;
115 }
116
nvmet_max_nsid(struct nvmet_subsys * subsys)117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
118 {
119 struct nvmet_ns *cur;
120 unsigned long idx;
121 u32 nsid = 0;
122
123 xa_for_each(&subsys->namespaces, idx, cur)
124 nsid = cur->nsid;
125
126 return nsid;
127 }
128
nvmet_async_event_result(struct nvmet_async_event * aen)129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
130 {
131 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
132 }
133
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
135 {
136 struct nvmet_req *req;
137
138 mutex_lock(&ctrl->lock);
139 while (ctrl->nr_async_event_cmds) {
140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 mutex_unlock(&ctrl->lock);
142 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
143 mutex_lock(&ctrl->lock);
144 }
145 mutex_unlock(&ctrl->lock);
146 }
147
nvmet_async_events_process(struct nvmet_ctrl * ctrl)148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 struct nvmet_async_event *aen;
151 struct nvmet_req *req;
152
153 mutex_lock(&ctrl->lock);
154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 aen = list_first_entry(&ctrl->async_events,
156 struct nvmet_async_event, entry);
157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 nvmet_set_result(req, nvmet_async_event_result(aen));
159
160 list_del(&aen->entry);
161 kfree(aen);
162
163 mutex_unlock(&ctrl->lock);
164 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 nvmet_req_complete(req, 0);
166 mutex_lock(&ctrl->lock);
167 }
168 mutex_unlock(&ctrl->lock);
169 }
170
nvmet_async_events_free(struct nvmet_ctrl * ctrl)171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 struct nvmet_async_event *aen, *tmp;
174
175 mutex_lock(&ctrl->lock);
176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 list_del(&aen->entry);
178 kfree(aen);
179 }
180 mutex_unlock(&ctrl->lock);
181 }
182
nvmet_async_event_work(struct work_struct * work)183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 struct nvmet_ctrl *ctrl =
186 container_of(work, struct nvmet_ctrl, async_event_work);
187
188 nvmet_async_events_process(ctrl);
189 }
190
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 u8 event_info, u8 log_page)
193 {
194 struct nvmet_async_event *aen;
195
196 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 if (!aen)
198 return;
199
200 aen->event_type = event_type;
201 aen->event_info = event_info;
202 aen->log_page = log_page;
203
204 mutex_lock(&ctrl->lock);
205 list_add_tail(&aen->entry, &ctrl->async_events);
206 mutex_unlock(&ctrl->lock);
207
208 schedule_work(&ctrl->async_event_work);
209 }
210
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 u32 i;
214
215 mutex_lock(&ctrl->lock);
216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 goto out_unlock;
218
219 for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 if (ctrl->changed_ns_list[i] == nsid)
221 goto out_unlock;
222 }
223
224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 ctrl->nr_changed_ns = U32_MAX;
227 goto out_unlock;
228 }
229
230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 mutex_unlock(&ctrl->lock);
233 }
234
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 struct nvmet_ctrl *ctrl;
238
239 lockdep_assert_held(&subsys->lock);
240
241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 continue;
245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 NVME_AER_NOTICE_NS_CHANGED,
247 NVME_LOG_CHANGED_NS);
248 }
249 }
250
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 struct nvmet_port *port)
253 {
254 struct nvmet_ctrl *ctrl;
255
256 mutex_lock(&subsys->lock);
257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 if (port && ctrl->port != port)
259 continue;
260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 continue;
262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 }
265 mutex_unlock(&subsys->lock);
266 }
267
nvmet_port_send_ana_event(struct nvmet_port * port)268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 struct nvmet_subsys_link *p;
271
272 down_read(&nvmet_config_sem);
273 list_for_each_entry(p, &port->subsystems, entry)
274 nvmet_send_ana_event(p->subsys, port);
275 up_read(&nvmet_config_sem);
276 }
277
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 int ret = 0;
281
282 down_write(&nvmet_config_sem);
283 if (nvmet_transports[ops->type])
284 ret = -EINVAL;
285 else
286 nvmet_transports[ops->type] = ops;
287 up_write(&nvmet_config_sem);
288
289 return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 down_write(&nvmet_config_sem);
296 nvmet_transports[ops->type] = NULL;
297 up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 struct nvmet_ctrl *ctrl;
304
305 mutex_lock(&subsys->lock);
306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 if (ctrl->port == port)
308 ctrl->ops->delete_ctrl(ctrl);
309 }
310 mutex_unlock(&subsys->lock);
311 }
312
nvmet_enable_port(struct nvmet_port * port)313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 const struct nvmet_fabrics_ops *ops;
316 int ret;
317
318 lockdep_assert_held(&nvmet_config_sem);
319
320 ops = nvmet_transports[port->disc_addr.trtype];
321 if (!ops) {
322 up_write(&nvmet_config_sem);
323 request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 down_write(&nvmet_config_sem);
325 ops = nvmet_transports[port->disc_addr.trtype];
326 if (!ops) {
327 pr_err("transport type %d not supported\n",
328 port->disc_addr.trtype);
329 return -EINVAL;
330 }
331 }
332
333 if (!try_module_get(ops->owner))
334 return -EINVAL;
335
336 /*
337 * If the user requested PI support and the transport isn't pi capable,
338 * don't enable the port.
339 */
340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 pr_err("T10-PI is not supported by transport type %d\n",
342 port->disc_addr.trtype);
343 ret = -EINVAL;
344 goto out_put;
345 }
346
347 ret = ops->add_port(port);
348 if (ret)
349 goto out_put;
350
351 /* If the transport didn't set inline_data_size, then disable it. */
352 if (port->inline_data_size < 0)
353 port->inline_data_size = 0;
354
355 port->enabled = true;
356 port->tr_ops = ops;
357 return 0;
358
359 out_put:
360 module_put(ops->owner);
361 return ret;
362 }
363
nvmet_disable_port(struct nvmet_port * port)364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366 const struct nvmet_fabrics_ops *ops;
367
368 lockdep_assert_held(&nvmet_config_sem);
369
370 port->enabled = false;
371 port->tr_ops = NULL;
372
373 ops = nvmet_transports[port->disc_addr.trtype];
374 ops->remove_port(port);
375 module_put(ops->owner);
376 }
377
nvmet_keep_alive_timer(struct work_struct * work)378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 struct nvmet_ctrl, ka_work);
382 bool reset_tbkas = ctrl->reset_tbkas;
383
384 ctrl->reset_tbkas = false;
385 if (reset_tbkas) {
386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 ctrl->cntlid);
388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 return;
390 }
391
392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 ctrl->cntlid, ctrl->kato);
394
395 nvmet_ctrl_fatal_error(ctrl);
396 }
397
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400 if (unlikely(ctrl->kato == 0))
401 return;
402
403 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404 ctrl->cntlid, ctrl->kato);
405
406 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
407 }
408
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)409 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
410 {
411 if (unlikely(ctrl->kato == 0))
412 return;
413
414 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
415
416 cancel_delayed_work_sync(&ctrl->ka_work);
417 }
418
nvmet_req_find_ns(struct nvmet_req * req)419 u16 nvmet_req_find_ns(struct nvmet_req *req)
420 {
421 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
422
423 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
424 if (unlikely(!req->ns)) {
425 req->error_loc = offsetof(struct nvme_common_command, nsid);
426 return NVME_SC_INVALID_NS | NVME_SC_DNR;
427 }
428
429 percpu_ref_get(&req->ns->ref);
430 return NVME_SC_SUCCESS;
431 }
432
nvmet_destroy_namespace(struct percpu_ref * ref)433 static void nvmet_destroy_namespace(struct percpu_ref *ref)
434 {
435 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
436
437 complete(&ns->disable_done);
438 }
439
nvmet_put_namespace(struct nvmet_ns * ns)440 void nvmet_put_namespace(struct nvmet_ns *ns)
441 {
442 percpu_ref_put(&ns->ref);
443 }
444
nvmet_ns_dev_disable(struct nvmet_ns * ns)445 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
446 {
447 nvmet_bdev_ns_disable(ns);
448 nvmet_file_ns_disable(ns);
449 }
450
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)451 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
452 {
453 int ret;
454 struct pci_dev *p2p_dev;
455
456 if (!ns->use_p2pmem)
457 return 0;
458
459 if (!ns->bdev) {
460 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
461 return -EINVAL;
462 }
463
464 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
465 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
466 ns->device_path);
467 return -EINVAL;
468 }
469
470 if (ns->p2p_dev) {
471 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
472 if (ret < 0)
473 return -EINVAL;
474 } else {
475 /*
476 * Right now we just check that there is p2pmem available so
477 * we can report an error to the user right away if there
478 * is not. We'll find the actual device to use once we
479 * setup the controller when the port's device is available.
480 */
481
482 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
483 if (!p2p_dev) {
484 pr_err("no peer-to-peer memory is available for %s\n",
485 ns->device_path);
486 return -EINVAL;
487 }
488
489 pci_dev_put(p2p_dev);
490 }
491
492 return 0;
493 }
494
495 /*
496 * Note: ctrl->subsys->lock should be held when calling this function
497 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)498 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
499 struct nvmet_ns *ns)
500 {
501 struct device *clients[2];
502 struct pci_dev *p2p_dev;
503 int ret;
504
505 if (!ctrl->p2p_client || !ns->use_p2pmem)
506 return;
507
508 if (ns->p2p_dev) {
509 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
510 if (ret < 0)
511 return;
512
513 p2p_dev = pci_dev_get(ns->p2p_dev);
514 } else {
515 clients[0] = ctrl->p2p_client;
516 clients[1] = nvmet_ns_dev(ns);
517
518 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
519 if (!p2p_dev) {
520 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
521 dev_name(ctrl->p2p_client), ns->device_path);
522 return;
523 }
524 }
525
526 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
527 if (ret < 0)
528 pci_dev_put(p2p_dev);
529
530 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
531 ns->nsid);
532 }
533
nvmet_ns_revalidate(struct nvmet_ns * ns)534 void nvmet_ns_revalidate(struct nvmet_ns *ns)
535 {
536 loff_t oldsize = ns->size;
537
538 if (ns->bdev)
539 nvmet_bdev_ns_revalidate(ns);
540 else
541 nvmet_file_ns_revalidate(ns);
542
543 if (oldsize != ns->size)
544 nvmet_ns_changed(ns->subsys, ns->nsid);
545 }
546
nvmet_ns_enable(struct nvmet_ns * ns)547 int nvmet_ns_enable(struct nvmet_ns *ns)
548 {
549 struct nvmet_subsys *subsys = ns->subsys;
550 struct nvmet_ctrl *ctrl;
551 int ret;
552
553 mutex_lock(&subsys->lock);
554 ret = 0;
555
556 if (nvmet_is_passthru_subsys(subsys)) {
557 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
558 goto out_unlock;
559 }
560
561 if (ns->enabled)
562 goto out_unlock;
563
564 ret = -EMFILE;
565 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
566 goto out_unlock;
567
568 ret = nvmet_bdev_ns_enable(ns);
569 if (ret == -ENOTBLK)
570 ret = nvmet_file_ns_enable(ns);
571 if (ret)
572 goto out_unlock;
573
574 ret = nvmet_p2pmem_ns_enable(ns);
575 if (ret)
576 goto out_dev_disable;
577
578 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
579 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
580
581 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
582 0, GFP_KERNEL);
583 if (ret)
584 goto out_dev_put;
585
586 if (ns->nsid > subsys->max_nsid)
587 subsys->max_nsid = ns->nsid;
588
589 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
590 if (ret)
591 goto out_restore_subsys_maxnsid;
592
593 subsys->nr_namespaces++;
594
595 nvmet_ns_changed(subsys, ns->nsid);
596 ns->enabled = true;
597 ret = 0;
598 out_unlock:
599 mutex_unlock(&subsys->lock);
600 return ret;
601
602 out_restore_subsys_maxnsid:
603 subsys->max_nsid = nvmet_max_nsid(subsys);
604 percpu_ref_exit(&ns->ref);
605 out_dev_put:
606 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
607 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
608 out_dev_disable:
609 nvmet_ns_dev_disable(ns);
610 goto out_unlock;
611 }
612
nvmet_ns_disable(struct nvmet_ns * ns)613 void nvmet_ns_disable(struct nvmet_ns *ns)
614 {
615 struct nvmet_subsys *subsys = ns->subsys;
616 struct nvmet_ctrl *ctrl;
617
618 mutex_lock(&subsys->lock);
619 if (!ns->enabled)
620 goto out_unlock;
621
622 ns->enabled = false;
623 xa_erase(&ns->subsys->namespaces, ns->nsid);
624 if (ns->nsid == subsys->max_nsid)
625 subsys->max_nsid = nvmet_max_nsid(subsys);
626
627 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
628 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
629
630 mutex_unlock(&subsys->lock);
631
632 /*
633 * Now that we removed the namespaces from the lookup list, we
634 * can kill the per_cpu ref and wait for any remaining references
635 * to be dropped, as well as a RCU grace period for anyone only
636 * using the namepace under rcu_read_lock(). Note that we can't
637 * use call_rcu here as we need to ensure the namespaces have
638 * been fully destroyed before unloading the module.
639 */
640 percpu_ref_kill(&ns->ref);
641 synchronize_rcu();
642 wait_for_completion(&ns->disable_done);
643 percpu_ref_exit(&ns->ref);
644
645 mutex_lock(&subsys->lock);
646
647 subsys->nr_namespaces--;
648 nvmet_ns_changed(subsys, ns->nsid);
649 nvmet_ns_dev_disable(ns);
650 out_unlock:
651 mutex_unlock(&subsys->lock);
652 }
653
nvmet_ns_free(struct nvmet_ns * ns)654 void nvmet_ns_free(struct nvmet_ns *ns)
655 {
656 nvmet_ns_disable(ns);
657
658 down_write(&nvmet_ana_sem);
659 nvmet_ana_group_enabled[ns->anagrpid]--;
660 up_write(&nvmet_ana_sem);
661
662 kfree(ns->device_path);
663 kfree(ns);
664 }
665
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)666 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
667 {
668 struct nvmet_ns *ns;
669
670 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
671 if (!ns)
672 return NULL;
673
674 init_completion(&ns->disable_done);
675
676 ns->nsid = nsid;
677 ns->subsys = subsys;
678
679 down_write(&nvmet_ana_sem);
680 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
681 nvmet_ana_group_enabled[ns->anagrpid]++;
682 up_write(&nvmet_ana_sem);
683
684 uuid_gen(&ns->uuid);
685 ns->buffered_io = false;
686 ns->csi = NVME_CSI_NVM;
687
688 return ns;
689 }
690
nvmet_update_sq_head(struct nvmet_req * req)691 static void nvmet_update_sq_head(struct nvmet_req *req)
692 {
693 if (req->sq->size) {
694 u32 old_sqhd, new_sqhd;
695
696 do {
697 old_sqhd = req->sq->sqhd;
698 new_sqhd = (old_sqhd + 1) % req->sq->size;
699 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
700 old_sqhd);
701 }
702 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
703 }
704
nvmet_set_error(struct nvmet_req * req,u16 status)705 static void nvmet_set_error(struct nvmet_req *req, u16 status)
706 {
707 struct nvmet_ctrl *ctrl = req->sq->ctrl;
708 struct nvme_error_slot *new_error_slot;
709 unsigned long flags;
710
711 req->cqe->status = cpu_to_le16(status << 1);
712
713 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
714 return;
715
716 spin_lock_irqsave(&ctrl->error_lock, flags);
717 ctrl->err_counter++;
718 new_error_slot =
719 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
720
721 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
722 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
723 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
724 new_error_slot->status_field = cpu_to_le16(status << 1);
725 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
726 new_error_slot->lba = cpu_to_le64(req->error_slba);
727 new_error_slot->nsid = req->cmd->common.nsid;
728 spin_unlock_irqrestore(&ctrl->error_lock, flags);
729
730 /* set the more bit for this request */
731 req->cqe->status |= cpu_to_le16(1 << 14);
732 }
733
__nvmet_req_complete(struct nvmet_req * req,u16 status)734 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
735 {
736 if (!req->sq->sqhd_disabled)
737 nvmet_update_sq_head(req);
738 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
739 req->cqe->command_id = req->cmd->common.command_id;
740
741 if (unlikely(status))
742 nvmet_set_error(req, status);
743
744 trace_nvmet_req_complete(req);
745
746 if (req->ns)
747 nvmet_put_namespace(req->ns);
748 req->ops->queue_response(req);
749 }
750
nvmet_req_complete(struct nvmet_req * req,u16 status)751 void nvmet_req_complete(struct nvmet_req *req, u16 status)
752 {
753 __nvmet_req_complete(req, status);
754 percpu_ref_put(&req->sq->ref);
755 }
756 EXPORT_SYMBOL_GPL(nvmet_req_complete);
757
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)758 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
759 u16 qid, u16 size)
760 {
761 cq->qid = qid;
762 cq->size = size;
763 }
764
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)765 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
766 u16 qid, u16 size)
767 {
768 sq->sqhd = 0;
769 sq->qid = qid;
770 sq->size = size;
771
772 ctrl->sqs[qid] = sq;
773 }
774
nvmet_confirm_sq(struct percpu_ref * ref)775 static void nvmet_confirm_sq(struct percpu_ref *ref)
776 {
777 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
778
779 complete(&sq->confirm_done);
780 }
781
nvmet_sq_destroy(struct nvmet_sq * sq)782 void nvmet_sq_destroy(struct nvmet_sq *sq)
783 {
784 struct nvmet_ctrl *ctrl = sq->ctrl;
785
786 /*
787 * If this is the admin queue, complete all AERs so that our
788 * queue doesn't have outstanding requests on it.
789 */
790 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
791 nvmet_async_events_failall(ctrl);
792 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
793 wait_for_completion(&sq->confirm_done);
794 wait_for_completion(&sq->free_done);
795 percpu_ref_exit(&sq->ref);
796
797 if (ctrl) {
798 /*
799 * The teardown flow may take some time, and the host may not
800 * send us keep-alive during this period, hence reset the
801 * traffic based keep-alive timer so we don't trigger a
802 * controller teardown as a result of a keep-alive expiration.
803 */
804 ctrl->reset_tbkas = true;
805 sq->ctrl->sqs[sq->qid] = NULL;
806 nvmet_ctrl_put(ctrl);
807 sq->ctrl = NULL; /* allows reusing the queue later */
808 }
809 }
810 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
811
nvmet_sq_free(struct percpu_ref * ref)812 static void nvmet_sq_free(struct percpu_ref *ref)
813 {
814 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
815
816 complete(&sq->free_done);
817 }
818
nvmet_sq_init(struct nvmet_sq * sq)819 int nvmet_sq_init(struct nvmet_sq *sq)
820 {
821 int ret;
822
823 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
824 if (ret) {
825 pr_err("percpu_ref init failed!\n");
826 return ret;
827 }
828 init_completion(&sq->free_done);
829 init_completion(&sq->confirm_done);
830
831 return 0;
832 }
833 EXPORT_SYMBOL_GPL(nvmet_sq_init);
834
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)835 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
836 struct nvmet_ns *ns)
837 {
838 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
839
840 if (unlikely(state == NVME_ANA_INACCESSIBLE))
841 return NVME_SC_ANA_INACCESSIBLE;
842 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
843 return NVME_SC_ANA_PERSISTENT_LOSS;
844 if (unlikely(state == NVME_ANA_CHANGE))
845 return NVME_SC_ANA_TRANSITION;
846 return 0;
847 }
848
nvmet_io_cmd_check_access(struct nvmet_req * req)849 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
850 {
851 if (unlikely(req->ns->readonly)) {
852 switch (req->cmd->common.opcode) {
853 case nvme_cmd_read:
854 case nvme_cmd_flush:
855 break;
856 default:
857 return NVME_SC_NS_WRITE_PROTECTED;
858 }
859 }
860
861 return 0;
862 }
863
nvmet_parse_io_cmd(struct nvmet_req * req)864 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
865 {
866 u16 ret;
867
868 ret = nvmet_check_ctrl_status(req);
869 if (unlikely(ret))
870 return ret;
871
872 if (nvmet_is_passthru_req(req))
873 return nvmet_parse_passthru_io_cmd(req);
874
875 ret = nvmet_req_find_ns(req);
876 if (unlikely(ret))
877 return ret;
878
879 ret = nvmet_check_ana_state(req->port, req->ns);
880 if (unlikely(ret)) {
881 req->error_loc = offsetof(struct nvme_common_command, nsid);
882 return ret;
883 }
884 ret = nvmet_io_cmd_check_access(req);
885 if (unlikely(ret)) {
886 req->error_loc = offsetof(struct nvme_common_command, nsid);
887 return ret;
888 }
889
890 switch (req->ns->csi) {
891 case NVME_CSI_NVM:
892 if (req->ns->file)
893 return nvmet_file_parse_io_cmd(req);
894 return nvmet_bdev_parse_io_cmd(req);
895 case NVME_CSI_ZNS:
896 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
897 return nvmet_bdev_zns_parse_io_cmd(req);
898 return NVME_SC_INVALID_IO_CMD_SET;
899 default:
900 return NVME_SC_INVALID_IO_CMD_SET;
901 }
902 }
903
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)904 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
905 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
906 {
907 u8 flags = req->cmd->common.flags;
908 u16 status;
909
910 req->cq = cq;
911 req->sq = sq;
912 req->ops = ops;
913 req->sg = NULL;
914 req->metadata_sg = NULL;
915 req->sg_cnt = 0;
916 req->metadata_sg_cnt = 0;
917 req->transfer_len = 0;
918 req->metadata_len = 0;
919 req->cqe->status = 0;
920 req->cqe->sq_head = 0;
921 req->ns = NULL;
922 req->error_loc = NVMET_NO_ERROR_LOC;
923 req->error_slba = 0;
924
925 /* no support for fused commands yet */
926 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
927 req->error_loc = offsetof(struct nvme_common_command, flags);
928 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
929 goto fail;
930 }
931
932 /*
933 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
934 * contains an address of a single contiguous physical buffer that is
935 * byte aligned.
936 */
937 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
938 req->error_loc = offsetof(struct nvme_common_command, flags);
939 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
940 goto fail;
941 }
942
943 if (unlikely(!req->sq->ctrl))
944 /* will return an error for any non-connect command: */
945 status = nvmet_parse_connect_cmd(req);
946 else if (likely(req->sq->qid != 0))
947 status = nvmet_parse_io_cmd(req);
948 else
949 status = nvmet_parse_admin_cmd(req);
950
951 if (status)
952 goto fail;
953
954 trace_nvmet_req_init(req, req->cmd);
955
956 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
957 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
958 goto fail;
959 }
960
961 if (sq->ctrl)
962 sq->ctrl->reset_tbkas = true;
963
964 return true;
965
966 fail:
967 __nvmet_req_complete(req, status);
968 return false;
969 }
970 EXPORT_SYMBOL_GPL(nvmet_req_init);
971
nvmet_req_uninit(struct nvmet_req * req)972 void nvmet_req_uninit(struct nvmet_req *req)
973 {
974 percpu_ref_put(&req->sq->ref);
975 if (req->ns)
976 nvmet_put_namespace(req->ns);
977 }
978 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
979
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)980 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
981 {
982 if (unlikely(len != req->transfer_len)) {
983 req->error_loc = offsetof(struct nvme_common_command, dptr);
984 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
985 return false;
986 }
987
988 return true;
989 }
990 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
991
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)992 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
993 {
994 if (unlikely(data_len > req->transfer_len)) {
995 req->error_loc = offsetof(struct nvme_common_command, dptr);
996 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
997 return false;
998 }
999
1000 return true;
1001 }
1002
nvmet_data_transfer_len(struct nvmet_req * req)1003 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1004 {
1005 return req->transfer_len - req->metadata_len;
1006 }
1007
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1008 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1009 struct nvmet_req *req)
1010 {
1011 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1012 nvmet_data_transfer_len(req));
1013 if (!req->sg)
1014 goto out_err;
1015
1016 if (req->metadata_len) {
1017 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1018 &req->metadata_sg_cnt, req->metadata_len);
1019 if (!req->metadata_sg)
1020 goto out_free_sg;
1021 }
1022
1023 req->p2p_dev = p2p_dev;
1024
1025 return 0;
1026 out_free_sg:
1027 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1028 out_err:
1029 return -ENOMEM;
1030 }
1031
nvmet_req_find_p2p_dev(struct nvmet_req * req)1032 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1033 {
1034 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1035 !req->sq->ctrl || !req->sq->qid || !req->ns)
1036 return NULL;
1037 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1038 }
1039
nvmet_req_alloc_sgls(struct nvmet_req * req)1040 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1041 {
1042 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1043
1044 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1045 return 0;
1046
1047 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1048 &req->sg_cnt);
1049 if (unlikely(!req->sg))
1050 goto out;
1051
1052 if (req->metadata_len) {
1053 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1054 &req->metadata_sg_cnt);
1055 if (unlikely(!req->metadata_sg))
1056 goto out_free;
1057 }
1058
1059 return 0;
1060 out_free:
1061 sgl_free(req->sg);
1062 out:
1063 return -ENOMEM;
1064 }
1065 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1066
nvmet_req_free_sgls(struct nvmet_req * req)1067 void nvmet_req_free_sgls(struct nvmet_req *req)
1068 {
1069 if (req->p2p_dev) {
1070 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1071 if (req->metadata_sg)
1072 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1073 req->p2p_dev = NULL;
1074 } else {
1075 sgl_free(req->sg);
1076 if (req->metadata_sg)
1077 sgl_free(req->metadata_sg);
1078 }
1079
1080 req->sg = NULL;
1081 req->metadata_sg = NULL;
1082 req->sg_cnt = 0;
1083 req->metadata_sg_cnt = 0;
1084 }
1085 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1086
nvmet_cc_en(u32 cc)1087 static inline bool nvmet_cc_en(u32 cc)
1088 {
1089 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1090 }
1091
nvmet_cc_css(u32 cc)1092 static inline u8 nvmet_cc_css(u32 cc)
1093 {
1094 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1095 }
1096
nvmet_cc_mps(u32 cc)1097 static inline u8 nvmet_cc_mps(u32 cc)
1098 {
1099 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1100 }
1101
nvmet_cc_ams(u32 cc)1102 static inline u8 nvmet_cc_ams(u32 cc)
1103 {
1104 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1105 }
1106
nvmet_cc_shn(u32 cc)1107 static inline u8 nvmet_cc_shn(u32 cc)
1108 {
1109 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1110 }
1111
nvmet_cc_iosqes(u32 cc)1112 static inline u8 nvmet_cc_iosqes(u32 cc)
1113 {
1114 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1115 }
1116
nvmet_cc_iocqes(u32 cc)1117 static inline u8 nvmet_cc_iocqes(u32 cc)
1118 {
1119 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1120 }
1121
nvmet_css_supported(u8 cc_css)1122 static inline bool nvmet_css_supported(u8 cc_css)
1123 {
1124 switch (cc_css <<= NVME_CC_CSS_SHIFT) {
1125 case NVME_CC_CSS_NVM:
1126 case NVME_CC_CSS_CSI:
1127 return true;
1128 default:
1129 return false;
1130 }
1131 }
1132
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1133 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1134 {
1135 lockdep_assert_held(&ctrl->lock);
1136
1137 /*
1138 * Only I/O controllers should verify iosqes,iocqes.
1139 * Strictly speaking, the spec says a discovery controller
1140 * should verify iosqes,iocqes are zeroed, however that
1141 * would break backwards compatibility, so don't enforce it.
1142 */
1143 if (ctrl->subsys->type != NVME_NQN_DISC &&
1144 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1145 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1146 ctrl->csts = NVME_CSTS_CFS;
1147 return;
1148 }
1149
1150 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1151 nvmet_cc_ams(ctrl->cc) != 0 ||
1152 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1153 ctrl->csts = NVME_CSTS_CFS;
1154 return;
1155 }
1156
1157 ctrl->csts = NVME_CSTS_RDY;
1158
1159 /*
1160 * Controllers that are not yet enabled should not really enforce the
1161 * keep alive timeout, but we still want to track a timeout and cleanup
1162 * in case a host died before it enabled the controller. Hence, simply
1163 * reset the keep alive timer when the controller is enabled.
1164 */
1165 if (ctrl->kato)
1166 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1167 }
1168
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1169 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1170 {
1171 lockdep_assert_held(&ctrl->lock);
1172
1173 /* XXX: tear down queues? */
1174 ctrl->csts &= ~NVME_CSTS_RDY;
1175 ctrl->cc = 0;
1176 }
1177
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1178 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1179 {
1180 u32 old;
1181
1182 mutex_lock(&ctrl->lock);
1183 old = ctrl->cc;
1184 ctrl->cc = new;
1185
1186 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1187 nvmet_start_ctrl(ctrl);
1188 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1189 nvmet_clear_ctrl(ctrl);
1190 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1191 nvmet_clear_ctrl(ctrl);
1192 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1193 }
1194 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1195 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1196 mutex_unlock(&ctrl->lock);
1197 }
1198
nvmet_init_cap(struct nvmet_ctrl * ctrl)1199 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1200 {
1201 /* command sets supported: NVMe command set: */
1202 ctrl->cap = (1ULL << 37);
1203 /* Controller supports one or more I/O Command Sets */
1204 ctrl->cap |= (1ULL << 43);
1205 /* CC.EN timeout in 500msec units: */
1206 ctrl->cap |= (15ULL << 24);
1207 /* maximum queue entries supported: */
1208 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1209
1210 if (nvmet_is_passthru_subsys(ctrl->subsys))
1211 nvmet_passthrough_override_cap(ctrl);
1212 }
1213
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1214 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1215 const char *hostnqn, u16 cntlid,
1216 struct nvmet_req *req)
1217 {
1218 struct nvmet_ctrl *ctrl = NULL;
1219 struct nvmet_subsys *subsys;
1220
1221 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1222 if (!subsys) {
1223 pr_warn("connect request for invalid subsystem %s!\n",
1224 subsysnqn);
1225 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1226 goto out;
1227 }
1228
1229 mutex_lock(&subsys->lock);
1230 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1231 if (ctrl->cntlid == cntlid) {
1232 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1233 pr_warn("hostnqn mismatch.\n");
1234 continue;
1235 }
1236 if (!kref_get_unless_zero(&ctrl->ref))
1237 continue;
1238
1239 /* ctrl found */
1240 goto found;
1241 }
1242 }
1243
1244 ctrl = NULL; /* ctrl not found */
1245 pr_warn("could not find controller %d for subsys %s / host %s\n",
1246 cntlid, subsysnqn, hostnqn);
1247 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1248
1249 found:
1250 mutex_unlock(&subsys->lock);
1251 nvmet_subsys_put(subsys);
1252 out:
1253 return ctrl;
1254 }
1255
nvmet_check_ctrl_status(struct nvmet_req * req)1256 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1257 {
1258 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1259 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1260 req->cmd->common.opcode, req->sq->qid);
1261 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1262 }
1263
1264 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1265 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1266 req->cmd->common.opcode, req->sq->qid);
1267 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1268 }
1269 return 0;
1270 }
1271
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1272 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1273 {
1274 struct nvmet_host_link *p;
1275
1276 lockdep_assert_held(&nvmet_config_sem);
1277
1278 if (subsys->allow_any_host)
1279 return true;
1280
1281 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1282 return true;
1283
1284 list_for_each_entry(p, &subsys->hosts, entry) {
1285 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1286 return true;
1287 }
1288
1289 return false;
1290 }
1291
1292 /*
1293 * Note: ctrl->subsys->lock should be held when calling this function
1294 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1295 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1296 struct nvmet_req *req)
1297 {
1298 struct nvmet_ns *ns;
1299 unsigned long idx;
1300
1301 if (!req->p2p_client)
1302 return;
1303
1304 ctrl->p2p_client = get_device(req->p2p_client);
1305
1306 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1307 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1308 }
1309
1310 /*
1311 * Note: ctrl->subsys->lock should be held when calling this function
1312 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1313 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1314 {
1315 struct radix_tree_iter iter;
1316 void __rcu **slot;
1317
1318 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1319 pci_dev_put(radix_tree_deref_slot(slot));
1320
1321 put_device(ctrl->p2p_client);
1322 }
1323
nvmet_fatal_error_handler(struct work_struct * work)1324 static void nvmet_fatal_error_handler(struct work_struct *work)
1325 {
1326 struct nvmet_ctrl *ctrl =
1327 container_of(work, struct nvmet_ctrl, fatal_err_work);
1328
1329 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1330 ctrl->ops->delete_ctrl(ctrl);
1331 }
1332
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1333 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1334 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1335 {
1336 struct nvmet_subsys *subsys;
1337 struct nvmet_ctrl *ctrl;
1338 int ret;
1339 u16 status;
1340
1341 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1342 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1343 if (!subsys) {
1344 pr_warn("connect request for invalid subsystem %s!\n",
1345 subsysnqn);
1346 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1347 req->error_loc = offsetof(struct nvme_common_command, dptr);
1348 goto out;
1349 }
1350
1351 down_read(&nvmet_config_sem);
1352 if (!nvmet_host_allowed(subsys, hostnqn)) {
1353 pr_info("connect by host %s for subsystem %s not allowed\n",
1354 hostnqn, subsysnqn);
1355 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1356 up_read(&nvmet_config_sem);
1357 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1358 req->error_loc = offsetof(struct nvme_common_command, dptr);
1359 goto out_put_subsystem;
1360 }
1361 up_read(&nvmet_config_sem);
1362
1363 status = NVME_SC_INTERNAL;
1364 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1365 if (!ctrl)
1366 goto out_put_subsystem;
1367 mutex_init(&ctrl->lock);
1368
1369 ctrl->port = req->port;
1370
1371 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1372 INIT_LIST_HEAD(&ctrl->async_events);
1373 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1374 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1375 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1376
1377 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1378 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1379
1380 kref_init(&ctrl->ref);
1381 ctrl->subsys = subsys;
1382 nvmet_init_cap(ctrl);
1383 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1384
1385 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1386 sizeof(__le32), GFP_KERNEL);
1387 if (!ctrl->changed_ns_list)
1388 goto out_free_ctrl;
1389
1390 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1391 sizeof(struct nvmet_sq *),
1392 GFP_KERNEL);
1393 if (!ctrl->sqs)
1394 goto out_free_changed_ns_list;
1395
1396 if (subsys->cntlid_min > subsys->cntlid_max)
1397 goto out_free_sqs;
1398
1399 ret = ida_simple_get(&cntlid_ida,
1400 subsys->cntlid_min, subsys->cntlid_max,
1401 GFP_KERNEL);
1402 if (ret < 0) {
1403 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1404 goto out_free_sqs;
1405 }
1406 ctrl->cntlid = ret;
1407
1408 ctrl->ops = req->ops;
1409
1410 /*
1411 * Discovery controllers may use some arbitrary high value
1412 * in order to cleanup stale discovery sessions
1413 */
1414 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1415 kato = NVMET_DISC_KATO_MS;
1416
1417 /* keep-alive timeout in seconds */
1418 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1419
1420 ctrl->err_counter = 0;
1421 spin_lock_init(&ctrl->error_lock);
1422
1423 nvmet_start_keep_alive_timer(ctrl);
1424
1425 mutex_lock(&subsys->lock);
1426 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1427 nvmet_setup_p2p_ns_map(ctrl, req);
1428 mutex_unlock(&subsys->lock);
1429
1430 *ctrlp = ctrl;
1431 return 0;
1432
1433 out_free_sqs:
1434 kfree(ctrl->sqs);
1435 out_free_changed_ns_list:
1436 kfree(ctrl->changed_ns_list);
1437 out_free_ctrl:
1438 kfree(ctrl);
1439 out_put_subsystem:
1440 nvmet_subsys_put(subsys);
1441 out:
1442 return status;
1443 }
1444
nvmet_ctrl_free(struct kref * ref)1445 static void nvmet_ctrl_free(struct kref *ref)
1446 {
1447 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1448 struct nvmet_subsys *subsys = ctrl->subsys;
1449
1450 mutex_lock(&subsys->lock);
1451 nvmet_release_p2p_ns_map(ctrl);
1452 list_del(&ctrl->subsys_entry);
1453 mutex_unlock(&subsys->lock);
1454
1455 nvmet_stop_keep_alive_timer(ctrl);
1456
1457 flush_work(&ctrl->async_event_work);
1458 cancel_work_sync(&ctrl->fatal_err_work);
1459
1460 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1461
1462 nvmet_async_events_free(ctrl);
1463 kfree(ctrl->sqs);
1464 kfree(ctrl->changed_ns_list);
1465 kfree(ctrl);
1466
1467 nvmet_subsys_put(subsys);
1468 }
1469
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1470 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1471 {
1472 kref_put(&ctrl->ref, nvmet_ctrl_free);
1473 }
1474
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1475 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1476 {
1477 mutex_lock(&ctrl->lock);
1478 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1479 ctrl->csts |= NVME_CSTS_CFS;
1480 schedule_work(&ctrl->fatal_err_work);
1481 }
1482 mutex_unlock(&ctrl->lock);
1483 }
1484 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1485
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1486 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1487 const char *subsysnqn)
1488 {
1489 struct nvmet_subsys_link *p;
1490
1491 if (!port)
1492 return NULL;
1493
1494 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1495 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1496 return NULL;
1497 return nvmet_disc_subsys;
1498 }
1499
1500 down_read(&nvmet_config_sem);
1501 list_for_each_entry(p, &port->subsystems, entry) {
1502 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1503 NVMF_NQN_SIZE)) {
1504 if (!kref_get_unless_zero(&p->subsys->ref))
1505 break;
1506 up_read(&nvmet_config_sem);
1507 return p->subsys;
1508 }
1509 }
1510 up_read(&nvmet_config_sem);
1511 return NULL;
1512 }
1513
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1514 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1515 enum nvme_subsys_type type)
1516 {
1517 struct nvmet_subsys *subsys;
1518 char serial[NVMET_SN_MAX_SIZE / 2];
1519 int ret;
1520
1521 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1522 if (!subsys)
1523 return ERR_PTR(-ENOMEM);
1524
1525 subsys->ver = NVMET_DEFAULT_VS;
1526 /* generate a random serial number as our controllers are ephemeral: */
1527 get_random_bytes(&serial, sizeof(serial));
1528 bin2hex(subsys->serial, &serial, sizeof(serial));
1529
1530 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1531 if (!subsys->model_number) {
1532 ret = -ENOMEM;
1533 goto free_subsys;
1534 }
1535
1536 switch (type) {
1537 case NVME_NQN_NVME:
1538 subsys->max_qid = NVMET_NR_QUEUES;
1539 break;
1540 case NVME_NQN_DISC:
1541 subsys->max_qid = 0;
1542 break;
1543 default:
1544 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1545 ret = -EINVAL;
1546 goto free_mn;
1547 }
1548 subsys->type = type;
1549 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1550 GFP_KERNEL);
1551 if (!subsys->subsysnqn) {
1552 ret = -ENOMEM;
1553 goto free_mn;
1554 }
1555 subsys->cntlid_min = NVME_CNTLID_MIN;
1556 subsys->cntlid_max = NVME_CNTLID_MAX;
1557 kref_init(&subsys->ref);
1558
1559 mutex_init(&subsys->lock);
1560 xa_init(&subsys->namespaces);
1561 INIT_LIST_HEAD(&subsys->ctrls);
1562 INIT_LIST_HEAD(&subsys->hosts);
1563
1564 return subsys;
1565
1566 free_mn:
1567 kfree(subsys->model_number);
1568 free_subsys:
1569 kfree(subsys);
1570 return ERR_PTR(ret);
1571 }
1572
nvmet_subsys_free(struct kref * ref)1573 static void nvmet_subsys_free(struct kref *ref)
1574 {
1575 struct nvmet_subsys *subsys =
1576 container_of(ref, struct nvmet_subsys, ref);
1577
1578 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1579
1580 xa_destroy(&subsys->namespaces);
1581 nvmet_passthru_subsys_free(subsys);
1582
1583 kfree(subsys->subsysnqn);
1584 kfree(subsys->model_number);
1585 kfree(subsys);
1586 }
1587
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1588 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1589 {
1590 struct nvmet_ctrl *ctrl;
1591
1592 mutex_lock(&subsys->lock);
1593 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1594 ctrl->ops->delete_ctrl(ctrl);
1595 mutex_unlock(&subsys->lock);
1596 }
1597
nvmet_subsys_put(struct nvmet_subsys * subsys)1598 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1599 {
1600 kref_put(&subsys->ref, nvmet_subsys_free);
1601 }
1602
nvmet_init(void)1603 static int __init nvmet_init(void)
1604 {
1605 int error;
1606
1607 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1608
1609 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1610 if (!zbd_wq)
1611 return -ENOMEM;
1612
1613 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1614 WQ_MEM_RECLAIM, 0);
1615 if (!buffered_io_wq) {
1616 error = -ENOMEM;
1617 goto out_free_zbd_work_queue;
1618 }
1619
1620 error = nvmet_init_discovery();
1621 if (error)
1622 goto out_free_work_queue;
1623
1624 error = nvmet_init_configfs();
1625 if (error)
1626 goto out_exit_discovery;
1627 return 0;
1628
1629 out_exit_discovery:
1630 nvmet_exit_discovery();
1631 out_free_work_queue:
1632 destroy_workqueue(buffered_io_wq);
1633 out_free_zbd_work_queue:
1634 destroy_workqueue(zbd_wq);
1635 return error;
1636 }
1637
nvmet_exit(void)1638 static void __exit nvmet_exit(void)
1639 {
1640 nvmet_exit_configfs();
1641 nvmet_exit_discovery();
1642 ida_destroy(&cntlid_ida);
1643 destroy_workqueue(buffered_io_wq);
1644 destroy_workqueue(zbd_wq);
1645
1646 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1647 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1648 }
1649
1650 module_init(nvmet_init);
1651 module_exit(nvmet_exit);
1652
1653 MODULE_LICENSE("GPL v2");
1654