1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT 256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114 };
115
116 struct nvmet_fc_port_entry {
117 struct nvmet_fc_tgtport *tgtport;
118 struct nvmet_port *port;
119 u64 node_name;
120 u64 port_name;
121 struct list_head pe_list;
122 };
123
124 struct nvmet_fc_defer_fcp_req {
125 struct list_head req_list;
126 struct nvmefc_tgt_fcp_req *fcp_req;
127 };
128
129 struct nvmet_fc_tgt_queue {
130 bool ninetypercent;
131 u16 qid;
132 u16 sqsize;
133 u16 ersp_ratio;
134 __le16 sqhd;
135 atomic_t connected;
136 atomic_t sqtail;
137 atomic_t zrspcnt;
138 atomic_t rsn;
139 spinlock_t qlock;
140 struct nvmet_cq nvme_cq;
141 struct nvmet_sq nvme_sq;
142 struct nvmet_fc_tgt_assoc *assoc;
143 struct list_head fod_list;
144 struct list_head pending_cmd_list;
145 struct list_head avail_defer_list;
146 struct workqueue_struct *work_q;
147 struct kref ref;
148 struct nvmet_fc_fcp_iod fod[]; /* array of fcp_iods */
149 } __aligned(sizeof(unsigned long long));
150
151 struct nvmet_fc_hostport {
152 struct nvmet_fc_tgtport *tgtport;
153 void *hosthandle;
154 struct list_head host_list;
155 struct kref ref;
156 u8 invalid;
157 };
158
159 struct nvmet_fc_tgt_assoc {
160 u64 association_id;
161 u32 a_id;
162 atomic_t terminating;
163 struct nvmet_fc_tgtport *tgtport;
164 struct nvmet_fc_hostport *hostport;
165 struct nvmet_fc_ls_iod *rcv_disconn;
166 struct list_head a_list;
167 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
168 struct kref ref;
169 struct work_struct del_work;
170 };
171
172
173 static inline int
nvmet_fc_iodnum(struct nvmet_fc_ls_iod * iodptr)174 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
175 {
176 return (iodptr - iodptr->tgtport->iod);
177 }
178
179 static inline int
nvmet_fc_fodnum(struct nvmet_fc_fcp_iod * fodptr)180 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
181 {
182 return (fodptr - fodptr->queue->fod);
183 }
184
185
186 /*
187 * Association and Connection IDs:
188 *
189 * Association ID will have random number in upper 6 bytes and zero
190 * in lower 2 bytes
191 *
192 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
193 *
194 * note: Association ID = Connection ID for queue 0
195 */
196 #define BYTES_FOR_QID sizeof(u16)
197 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
198 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
199
200 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)201 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
202 {
203 return (assoc->association_id | qid);
204 }
205
206 static inline u64
nvmet_fc_getassociationid(u64 connectionid)207 nvmet_fc_getassociationid(u64 connectionid)
208 {
209 return connectionid & ~NVMET_FC_QUEUEID_MASK;
210 }
211
212 static inline u16
nvmet_fc_getqueueid(u64 connectionid)213 nvmet_fc_getqueueid(u64 connectionid)
214 {
215 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
216 }
217
218 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)219 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
220 {
221 return container_of(targetport, struct nvmet_fc_tgtport,
222 fc_target_port);
223 }
224
225 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)226 nvmet_req_to_fod(struct nvmet_req *nvme_req)
227 {
228 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
229 }
230
231
232 /* *************************** Globals **************************** */
233
234
235 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
236
237 static LIST_HEAD(nvmet_fc_target_list);
238 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
239 static LIST_HEAD(nvmet_fc_portentry_list);
240
241
242 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
243 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
244 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
245 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
246 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
247 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
248 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
249 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
250 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
251 struct nvmet_fc_fcp_iod *fod);
252 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
253 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
254 struct nvmet_fc_ls_iod *iod);
255
256
257 /* *********************** FC-NVME DMA Handling **************************** */
258
259 /*
260 * The fcloop device passes in a NULL device pointer. Real LLD's will
261 * pass in a valid device pointer. If NULL is passed to the dma mapping
262 * routines, depending on the platform, it may or may not succeed, and
263 * may crash.
264 *
265 * As such:
266 * Wrapper all the dma routines and check the dev pointer.
267 *
268 * If simple mappings (return just a dma address, we'll noop them,
269 * returning a dma address of 0.
270 *
271 * On more complex mappings (dma_map_sg), a pseudo routine fills
272 * in the scatter list, setting all dma addresses to 0.
273 */
274
275 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)276 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
277 enum dma_data_direction dir)
278 {
279 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
280 }
281
282 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)283 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
284 {
285 return dev ? dma_mapping_error(dev, dma_addr) : 0;
286 }
287
288 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)289 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
290 enum dma_data_direction dir)
291 {
292 if (dev)
293 dma_unmap_single(dev, addr, size, dir);
294 }
295
296 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)297 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
298 enum dma_data_direction dir)
299 {
300 if (dev)
301 dma_sync_single_for_cpu(dev, addr, size, dir);
302 }
303
304 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)305 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
306 enum dma_data_direction dir)
307 {
308 if (dev)
309 dma_sync_single_for_device(dev, addr, size, dir);
310 }
311
312 /* pseudo dma_map_sg call */
313 static int
fc_map_sg(struct scatterlist * sg,int nents)314 fc_map_sg(struct scatterlist *sg, int nents)
315 {
316 struct scatterlist *s;
317 int i;
318
319 WARN_ON(nents == 0 || sg[0].length == 0);
320
321 for_each_sg(sg, s, nents, i) {
322 s->dma_address = 0L;
323 #ifdef CONFIG_NEED_SG_DMA_LENGTH
324 s->dma_length = s->length;
325 #endif
326 }
327 return nents;
328 }
329
330 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)331 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
332 enum dma_data_direction dir)
333 {
334 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
335 }
336
337 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)338 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
339 enum dma_data_direction dir)
340 {
341 if (dev)
342 dma_unmap_sg(dev, sg, nents, dir);
343 }
344
345
346 /* ********************** FC-NVME LS XMT Handling ************************* */
347
348
349 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)350 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
351 {
352 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
353 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
354 unsigned long flags;
355
356 spin_lock_irqsave(&tgtport->lock, flags);
357
358 if (!lsop->req_queued) {
359 spin_unlock_irqrestore(&tgtport->lock, flags);
360 return;
361 }
362
363 list_del(&lsop->lsreq_list);
364
365 lsop->req_queued = false;
366
367 spin_unlock_irqrestore(&tgtport->lock, flags);
368
369 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
370 (lsreq->rqstlen + lsreq->rsplen),
371 DMA_BIDIRECTIONAL);
372
373 nvmet_fc_tgtport_put(tgtport);
374 }
375
376 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))377 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
378 struct nvmet_fc_ls_req_op *lsop,
379 void (*done)(struct nvmefc_ls_req *req, int status))
380 {
381 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
382 unsigned long flags;
383 int ret = 0;
384
385 if (!tgtport->ops->ls_req)
386 return -EOPNOTSUPP;
387
388 if (!nvmet_fc_tgtport_get(tgtport))
389 return -ESHUTDOWN;
390
391 lsreq->done = done;
392 lsop->req_queued = false;
393 INIT_LIST_HEAD(&lsop->lsreq_list);
394
395 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
396 lsreq->rqstlen + lsreq->rsplen,
397 DMA_BIDIRECTIONAL);
398 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
399 ret = -EFAULT;
400 goto out_puttgtport;
401 }
402 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
403
404 spin_lock_irqsave(&tgtport->lock, flags);
405
406 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
407
408 lsop->req_queued = true;
409
410 spin_unlock_irqrestore(&tgtport->lock, flags);
411
412 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
413 lsreq);
414 if (ret)
415 goto out_unlink;
416
417 return 0;
418
419 out_unlink:
420 lsop->ls_error = ret;
421 spin_lock_irqsave(&tgtport->lock, flags);
422 lsop->req_queued = false;
423 list_del(&lsop->lsreq_list);
424 spin_unlock_irqrestore(&tgtport->lock, flags);
425 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
426 (lsreq->rqstlen + lsreq->rsplen),
427 DMA_BIDIRECTIONAL);
428 out_puttgtport:
429 nvmet_fc_tgtport_put(tgtport);
430
431 return ret;
432 }
433
434 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))435 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
436 struct nvmet_fc_ls_req_op *lsop,
437 void (*done)(struct nvmefc_ls_req *req, int status))
438 {
439 /* don't wait for completion */
440
441 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
442 }
443
444 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)445 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
446 {
447 struct nvmet_fc_ls_req_op *lsop =
448 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
449
450 __nvmet_fc_finish_ls_req(lsop);
451
452 /* fc-nvme target doesn't care about success or failure of cmd */
453
454 kfree(lsop);
455 }
456
457 /*
458 * This routine sends a FC-NVME LS to disconnect (aka terminate)
459 * the FC-NVME Association. Terminating the association also
460 * terminates the FC-NVME connections (per queue, both admin and io
461 * queues) that are part of the association. E.g. things are torn
462 * down, and the related FC-NVME Association ID and Connection IDs
463 * become invalid.
464 *
465 * The behavior of the fc-nvme target is such that it's
466 * understanding of the association and connections will implicitly
467 * be torn down. The action is implicit as it may be due to a loss of
468 * connectivity with the fc-nvme host, so the target may never get a
469 * response even if it tried. As such, the action of this routine
470 * is to asynchronously send the LS, ignore any results of the LS, and
471 * continue on with terminating the association. If the fc-nvme host
472 * is present and receives the LS, it too can tear down.
473 */
474 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)475 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
476 {
477 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
478 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
479 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
480 struct nvmet_fc_ls_req_op *lsop;
481 struct nvmefc_ls_req *lsreq;
482 int ret;
483
484 /*
485 * If ls_req is NULL or no hosthandle, it's an older lldd and no
486 * message is normal. Otherwise, send unless the hostport has
487 * already been invalidated by the lldd.
488 */
489 if (!tgtport->ops->ls_req || !assoc->hostport ||
490 assoc->hostport->invalid)
491 return;
492
493 lsop = kzalloc((sizeof(*lsop) +
494 sizeof(*discon_rqst) + sizeof(*discon_acc) +
495 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
496 if (!lsop) {
497 dev_info(tgtport->dev,
498 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
499 tgtport->fc_target_port.port_num, assoc->a_id);
500 return;
501 }
502
503 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
504 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
505 lsreq = &lsop->ls_req;
506 if (tgtport->ops->lsrqst_priv_sz)
507 lsreq->private = (void *)&discon_acc[1];
508 else
509 lsreq->private = NULL;
510
511 lsop->tgtport = tgtport;
512 lsop->hosthandle = assoc->hostport->hosthandle;
513
514 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
515 assoc->association_id);
516
517 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
518 nvmet_fc_disconnect_assoc_done);
519 if (ret) {
520 dev_info(tgtport->dev,
521 "{%d:%d} XMT Disconnect Association failed: %d\n",
522 tgtport->fc_target_port.port_num, assoc->a_id, ret);
523 kfree(lsop);
524 }
525 }
526
527
528 /* *********************** FC-NVME Port Management ************************ */
529
530
531 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)532 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
533 {
534 struct nvmet_fc_ls_iod *iod;
535 int i;
536
537 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
538 GFP_KERNEL);
539 if (!iod)
540 return -ENOMEM;
541
542 tgtport->iod = iod;
543
544 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
545 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
546 iod->tgtport = tgtport;
547 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
548
549 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
550 sizeof(union nvmefc_ls_responses),
551 GFP_KERNEL);
552 if (!iod->rqstbuf)
553 goto out_fail;
554
555 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
556
557 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
558 sizeof(*iod->rspbuf),
559 DMA_TO_DEVICE);
560 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
561 goto out_fail;
562 }
563
564 return 0;
565
566 out_fail:
567 kfree(iod->rqstbuf);
568 list_del(&iod->ls_rcv_list);
569 for (iod--, i--; i >= 0; iod--, i--) {
570 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
571 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
572 kfree(iod->rqstbuf);
573 list_del(&iod->ls_rcv_list);
574 }
575
576 kfree(iod);
577
578 return -EFAULT;
579 }
580
581 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)582 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
583 {
584 struct nvmet_fc_ls_iod *iod = tgtport->iod;
585 int i;
586
587 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
588 fc_dma_unmap_single(tgtport->dev,
589 iod->rspdma, sizeof(*iod->rspbuf),
590 DMA_TO_DEVICE);
591 kfree(iod->rqstbuf);
592 list_del(&iod->ls_rcv_list);
593 }
594 kfree(tgtport->iod);
595 }
596
597 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)598 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
599 {
600 struct nvmet_fc_ls_iod *iod;
601 unsigned long flags;
602
603 spin_lock_irqsave(&tgtport->lock, flags);
604 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
605 struct nvmet_fc_ls_iod, ls_rcv_list);
606 if (iod)
607 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
608 spin_unlock_irqrestore(&tgtport->lock, flags);
609 return iod;
610 }
611
612
613 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)614 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
615 struct nvmet_fc_ls_iod *iod)
616 {
617 unsigned long flags;
618
619 spin_lock_irqsave(&tgtport->lock, flags);
620 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
621 spin_unlock_irqrestore(&tgtport->lock, flags);
622 }
623
624 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)625 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
626 struct nvmet_fc_tgt_queue *queue)
627 {
628 struct nvmet_fc_fcp_iod *fod = queue->fod;
629 int i;
630
631 for (i = 0; i < queue->sqsize; fod++, i++) {
632 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
633 fod->tgtport = tgtport;
634 fod->queue = queue;
635 fod->active = false;
636 fod->abort = false;
637 fod->aborted = false;
638 fod->fcpreq = NULL;
639 list_add_tail(&fod->fcp_list, &queue->fod_list);
640 spin_lock_init(&fod->flock);
641
642 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
643 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
644 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
645 list_del(&fod->fcp_list);
646 for (fod--, i--; i >= 0; fod--, i--) {
647 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
648 sizeof(fod->rspiubuf),
649 DMA_TO_DEVICE);
650 fod->rspdma = 0L;
651 list_del(&fod->fcp_list);
652 }
653
654 return;
655 }
656 }
657 }
658
659 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)660 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
661 struct nvmet_fc_tgt_queue *queue)
662 {
663 struct nvmet_fc_fcp_iod *fod = queue->fod;
664 int i;
665
666 for (i = 0; i < queue->sqsize; fod++, i++) {
667 if (fod->rspdma)
668 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
669 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
670 }
671 }
672
673 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)674 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
675 {
676 struct nvmet_fc_fcp_iod *fod;
677
678 lockdep_assert_held(&queue->qlock);
679
680 fod = list_first_entry_or_null(&queue->fod_list,
681 struct nvmet_fc_fcp_iod, fcp_list);
682 if (fod) {
683 list_del(&fod->fcp_list);
684 fod->active = true;
685 /*
686 * no queue reference is taken, as it was taken by the
687 * queue lookup just prior to the allocation. The iod
688 * will "inherit" that reference.
689 */
690 }
691 return fod;
692 }
693
694
695 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)696 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
697 struct nvmet_fc_tgt_queue *queue,
698 struct nvmefc_tgt_fcp_req *fcpreq)
699 {
700 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
701
702 /*
703 * put all admin cmds on hw queue id 0. All io commands go to
704 * the respective hw queue based on a modulo basis
705 */
706 fcpreq->hwqid = queue->qid ?
707 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
708
709 nvmet_fc_handle_fcp_rqst(tgtport, fod);
710 }
711
712 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)713 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
714 {
715 struct nvmet_fc_fcp_iod *fod =
716 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
717
718 /* Submit deferred IO for processing */
719 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
720
721 }
722
723 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)724 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
725 struct nvmet_fc_fcp_iod *fod)
726 {
727 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
728 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
729 struct nvmet_fc_defer_fcp_req *deferfcp;
730 unsigned long flags;
731
732 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
733 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
734
735 fcpreq->nvmet_fc_private = NULL;
736
737 fod->active = false;
738 fod->abort = false;
739 fod->aborted = false;
740 fod->writedataactive = false;
741 fod->fcpreq = NULL;
742
743 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
744
745 /* release the queue lookup reference on the completed IO */
746 nvmet_fc_tgt_q_put(queue);
747
748 spin_lock_irqsave(&queue->qlock, flags);
749 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
750 struct nvmet_fc_defer_fcp_req, req_list);
751 if (!deferfcp) {
752 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
753 spin_unlock_irqrestore(&queue->qlock, flags);
754 return;
755 }
756
757 /* Re-use the fod for the next pending cmd that was deferred */
758 list_del(&deferfcp->req_list);
759
760 fcpreq = deferfcp->fcp_req;
761
762 /* deferfcp can be reused for another IO at a later date */
763 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
764
765 spin_unlock_irqrestore(&queue->qlock, flags);
766
767 /* Save NVME CMD IO in fod */
768 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
769
770 /* Setup new fcpreq to be processed */
771 fcpreq->rspaddr = NULL;
772 fcpreq->rsplen = 0;
773 fcpreq->nvmet_fc_private = fod;
774 fod->fcpreq = fcpreq;
775 fod->active = true;
776
777 /* inform LLDD IO is now being processed */
778 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
779
780 /*
781 * Leave the queue lookup get reference taken when
782 * fod was originally allocated.
783 */
784
785 queue_work(queue->work_q, &fod->defer_work);
786 }
787
788 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)789 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
790 u16 qid, u16 sqsize)
791 {
792 struct nvmet_fc_tgt_queue *queue;
793 unsigned long flags;
794 int ret;
795
796 if (qid > NVMET_NR_QUEUES)
797 return NULL;
798
799 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
800 if (!queue)
801 return NULL;
802
803 if (!nvmet_fc_tgt_a_get(assoc))
804 goto out_free_queue;
805
806 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
807 assoc->tgtport->fc_target_port.port_num,
808 assoc->a_id, qid);
809 if (!queue->work_q)
810 goto out_a_put;
811
812 queue->qid = qid;
813 queue->sqsize = sqsize;
814 queue->assoc = assoc;
815 INIT_LIST_HEAD(&queue->fod_list);
816 INIT_LIST_HEAD(&queue->avail_defer_list);
817 INIT_LIST_HEAD(&queue->pending_cmd_list);
818 atomic_set(&queue->connected, 0);
819 atomic_set(&queue->sqtail, 0);
820 atomic_set(&queue->rsn, 1);
821 atomic_set(&queue->zrspcnt, 0);
822 spin_lock_init(&queue->qlock);
823 kref_init(&queue->ref);
824
825 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
826
827 ret = nvmet_sq_init(&queue->nvme_sq);
828 if (ret)
829 goto out_fail_iodlist;
830
831 WARN_ON(assoc->queues[qid]);
832 spin_lock_irqsave(&assoc->tgtport->lock, flags);
833 assoc->queues[qid] = queue;
834 spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
835
836 return queue;
837
838 out_fail_iodlist:
839 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
840 destroy_workqueue(queue->work_q);
841 out_a_put:
842 nvmet_fc_tgt_a_put(assoc);
843 out_free_queue:
844 kfree(queue);
845 return NULL;
846 }
847
848
849 static void
nvmet_fc_tgt_queue_free(struct kref * ref)850 nvmet_fc_tgt_queue_free(struct kref *ref)
851 {
852 struct nvmet_fc_tgt_queue *queue =
853 container_of(ref, struct nvmet_fc_tgt_queue, ref);
854 unsigned long flags;
855
856 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
857 queue->assoc->queues[queue->qid] = NULL;
858 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
859
860 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
861
862 nvmet_fc_tgt_a_put(queue->assoc);
863
864 destroy_workqueue(queue->work_q);
865
866 kfree(queue);
867 }
868
869 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)870 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
871 {
872 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
873 }
874
875 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)876 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
877 {
878 return kref_get_unless_zero(&queue->ref);
879 }
880
881
882 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)883 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
884 {
885 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
886 struct nvmet_fc_fcp_iod *fod = queue->fod;
887 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
888 unsigned long flags;
889 int i;
890 bool disconnect;
891
892 disconnect = atomic_xchg(&queue->connected, 0);
893
894 /* if not connected, nothing to do */
895 if (!disconnect)
896 return;
897
898 spin_lock_irqsave(&queue->qlock, flags);
899 /* abort outstanding io's */
900 for (i = 0; i < queue->sqsize; fod++, i++) {
901 if (fod->active) {
902 spin_lock(&fod->flock);
903 fod->abort = true;
904 /*
905 * only call lldd abort routine if waiting for
906 * writedata. other outstanding ops should finish
907 * on their own.
908 */
909 if (fod->writedataactive) {
910 fod->aborted = true;
911 spin_unlock(&fod->flock);
912 tgtport->ops->fcp_abort(
913 &tgtport->fc_target_port, fod->fcpreq);
914 } else
915 spin_unlock(&fod->flock);
916 }
917 }
918
919 /* Cleanup defer'ed IOs in queue */
920 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
921 req_list) {
922 list_del(&deferfcp->req_list);
923 kfree(deferfcp);
924 }
925
926 for (;;) {
927 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
928 struct nvmet_fc_defer_fcp_req, req_list);
929 if (!deferfcp)
930 break;
931
932 list_del(&deferfcp->req_list);
933 spin_unlock_irqrestore(&queue->qlock, flags);
934
935 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
936 deferfcp->fcp_req);
937
938 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
939 deferfcp->fcp_req);
940
941 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
942 deferfcp->fcp_req);
943
944 /* release the queue lookup reference */
945 nvmet_fc_tgt_q_put(queue);
946
947 kfree(deferfcp);
948
949 spin_lock_irqsave(&queue->qlock, flags);
950 }
951 spin_unlock_irqrestore(&queue->qlock, flags);
952
953 flush_workqueue(queue->work_q);
954
955 nvmet_sq_destroy(&queue->nvme_sq);
956
957 nvmet_fc_tgt_q_put(queue);
958 }
959
960 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)961 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
962 u64 connection_id)
963 {
964 struct nvmet_fc_tgt_assoc *assoc;
965 struct nvmet_fc_tgt_queue *queue;
966 u64 association_id = nvmet_fc_getassociationid(connection_id);
967 u16 qid = nvmet_fc_getqueueid(connection_id);
968 unsigned long flags;
969
970 if (qid > NVMET_NR_QUEUES)
971 return NULL;
972
973 spin_lock_irqsave(&tgtport->lock, flags);
974 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
975 if (association_id == assoc->association_id) {
976 queue = assoc->queues[qid];
977 if (queue &&
978 (!atomic_read(&queue->connected) ||
979 !nvmet_fc_tgt_q_get(queue)))
980 queue = NULL;
981 spin_unlock_irqrestore(&tgtport->lock, flags);
982 return queue;
983 }
984 }
985 spin_unlock_irqrestore(&tgtport->lock, flags);
986 return NULL;
987 }
988
989 static void
nvmet_fc_hostport_free(struct kref * ref)990 nvmet_fc_hostport_free(struct kref *ref)
991 {
992 struct nvmet_fc_hostport *hostport =
993 container_of(ref, struct nvmet_fc_hostport, ref);
994 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
995 unsigned long flags;
996
997 spin_lock_irqsave(&tgtport->lock, flags);
998 list_del(&hostport->host_list);
999 spin_unlock_irqrestore(&tgtport->lock, flags);
1000 if (tgtport->ops->host_release && hostport->invalid)
1001 tgtport->ops->host_release(hostport->hosthandle);
1002 kfree(hostport);
1003 nvmet_fc_tgtport_put(tgtport);
1004 }
1005
1006 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)1007 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1008 {
1009 kref_put(&hostport->ref, nvmet_fc_hostport_free);
1010 }
1011
1012 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)1013 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1014 {
1015 return kref_get_unless_zero(&hostport->ref);
1016 }
1017
1018 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)1019 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1020 {
1021 /* if LLDD not implemented, leave as NULL */
1022 if (!hostport || !hostport->hosthandle)
1023 return;
1024
1025 nvmet_fc_hostport_put(hostport);
1026 }
1027
1028 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1029 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1030 {
1031 struct nvmet_fc_hostport *newhost, *host, *match = NULL;
1032 unsigned long flags;
1033
1034 /* if LLDD not implemented, leave as NULL */
1035 if (!hosthandle)
1036 return NULL;
1037
1038 /* take reference for what will be the newly allocated hostport */
1039 if (!nvmet_fc_tgtport_get(tgtport))
1040 return ERR_PTR(-EINVAL);
1041
1042 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1043 if (!newhost) {
1044 spin_lock_irqsave(&tgtport->lock, flags);
1045 list_for_each_entry(host, &tgtport->host_list, host_list) {
1046 if (host->hosthandle == hosthandle && !host->invalid) {
1047 if (nvmet_fc_hostport_get(host)) {
1048 match = host;
1049 break;
1050 }
1051 }
1052 }
1053 spin_unlock_irqrestore(&tgtport->lock, flags);
1054 /* no allocation - release reference */
1055 nvmet_fc_tgtport_put(tgtport);
1056 return (match) ? match : ERR_PTR(-ENOMEM);
1057 }
1058
1059 newhost->tgtport = tgtport;
1060 newhost->hosthandle = hosthandle;
1061 INIT_LIST_HEAD(&newhost->host_list);
1062 kref_init(&newhost->ref);
1063
1064 spin_lock_irqsave(&tgtport->lock, flags);
1065 list_for_each_entry(host, &tgtport->host_list, host_list) {
1066 if (host->hosthandle == hosthandle && !host->invalid) {
1067 if (nvmet_fc_hostport_get(host)) {
1068 match = host;
1069 break;
1070 }
1071 }
1072 }
1073 if (match) {
1074 kfree(newhost);
1075 newhost = NULL;
1076 /* releasing allocation - release reference */
1077 nvmet_fc_tgtport_put(tgtport);
1078 } else
1079 list_add_tail(&newhost->host_list, &tgtport->host_list);
1080 spin_unlock_irqrestore(&tgtport->lock, flags);
1081
1082 return (match) ? match : newhost;
1083 }
1084
1085 static void
nvmet_fc_delete_assoc(struct work_struct * work)1086 nvmet_fc_delete_assoc(struct work_struct *work)
1087 {
1088 struct nvmet_fc_tgt_assoc *assoc =
1089 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1090
1091 nvmet_fc_delete_target_assoc(assoc);
1092 nvmet_fc_tgt_a_put(assoc);
1093 }
1094
1095 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1096 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1097 {
1098 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1099 unsigned long flags;
1100 u64 ran;
1101 int idx;
1102 bool needrandom = true;
1103
1104 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1105 if (!assoc)
1106 return NULL;
1107
1108 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1109 if (idx < 0)
1110 goto out_free_assoc;
1111
1112 if (!nvmet_fc_tgtport_get(tgtport))
1113 goto out_ida;
1114
1115 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1116 if (IS_ERR(assoc->hostport))
1117 goto out_put;
1118
1119 assoc->tgtport = tgtport;
1120 assoc->a_id = idx;
1121 INIT_LIST_HEAD(&assoc->a_list);
1122 kref_init(&assoc->ref);
1123 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1124 atomic_set(&assoc->terminating, 0);
1125
1126 while (needrandom) {
1127 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1128 ran = ran << BYTES_FOR_QID_SHIFT;
1129
1130 spin_lock_irqsave(&tgtport->lock, flags);
1131 needrandom = false;
1132 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1133 if (ran == tmpassoc->association_id) {
1134 needrandom = true;
1135 break;
1136 }
1137 }
1138 if (!needrandom) {
1139 assoc->association_id = ran;
1140 list_add_tail(&assoc->a_list, &tgtport->assoc_list);
1141 }
1142 spin_unlock_irqrestore(&tgtport->lock, flags);
1143 }
1144
1145 return assoc;
1146
1147 out_put:
1148 nvmet_fc_tgtport_put(tgtport);
1149 out_ida:
1150 ida_simple_remove(&tgtport->assoc_cnt, idx);
1151 out_free_assoc:
1152 kfree(assoc);
1153 return NULL;
1154 }
1155
1156 static void
nvmet_fc_target_assoc_free(struct kref * ref)1157 nvmet_fc_target_assoc_free(struct kref *ref)
1158 {
1159 struct nvmet_fc_tgt_assoc *assoc =
1160 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1161 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1162 struct nvmet_fc_ls_iod *oldls;
1163 unsigned long flags;
1164
1165 /* Send Disconnect now that all i/o has completed */
1166 nvmet_fc_xmt_disconnect_assoc(assoc);
1167
1168 nvmet_fc_free_hostport(assoc->hostport);
1169 spin_lock_irqsave(&tgtport->lock, flags);
1170 list_del(&assoc->a_list);
1171 oldls = assoc->rcv_disconn;
1172 spin_unlock_irqrestore(&tgtport->lock, flags);
1173 /* if pending Rcv Disconnect Association LS, send rsp now */
1174 if (oldls)
1175 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1176 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1177 dev_info(tgtport->dev,
1178 "{%d:%d} Association freed\n",
1179 tgtport->fc_target_port.port_num, assoc->a_id);
1180 kfree(assoc);
1181 nvmet_fc_tgtport_put(tgtport);
1182 }
1183
1184 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1185 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1186 {
1187 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1188 }
1189
1190 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1191 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1192 {
1193 return kref_get_unless_zero(&assoc->ref);
1194 }
1195
1196 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1197 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1198 {
1199 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1200 struct nvmet_fc_tgt_queue *queue;
1201 unsigned long flags;
1202 int i, terminating;
1203
1204 terminating = atomic_xchg(&assoc->terminating, 1);
1205
1206 /* if already terminating, do nothing */
1207 if (terminating)
1208 return;
1209
1210 spin_lock_irqsave(&tgtport->lock, flags);
1211 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1212 queue = assoc->queues[i];
1213 if (queue) {
1214 if (!nvmet_fc_tgt_q_get(queue))
1215 continue;
1216 spin_unlock_irqrestore(&tgtport->lock, flags);
1217 nvmet_fc_delete_target_queue(queue);
1218 nvmet_fc_tgt_q_put(queue);
1219 spin_lock_irqsave(&tgtport->lock, flags);
1220 }
1221 }
1222 spin_unlock_irqrestore(&tgtport->lock, flags);
1223
1224 dev_info(tgtport->dev,
1225 "{%d:%d} Association deleted\n",
1226 tgtport->fc_target_port.port_num, assoc->a_id);
1227
1228 nvmet_fc_tgt_a_put(assoc);
1229 }
1230
1231 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1232 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1233 u64 association_id)
1234 {
1235 struct nvmet_fc_tgt_assoc *assoc;
1236 struct nvmet_fc_tgt_assoc *ret = NULL;
1237 unsigned long flags;
1238
1239 spin_lock_irqsave(&tgtport->lock, flags);
1240 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1241 if (association_id == assoc->association_id) {
1242 ret = assoc;
1243 if (!nvmet_fc_tgt_a_get(assoc))
1244 ret = NULL;
1245 break;
1246 }
1247 }
1248 spin_unlock_irqrestore(&tgtport->lock, flags);
1249
1250 return ret;
1251 }
1252
1253 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1254 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1255 struct nvmet_fc_port_entry *pe,
1256 struct nvmet_port *port)
1257 {
1258 lockdep_assert_held(&nvmet_fc_tgtlock);
1259
1260 pe->tgtport = tgtport;
1261 tgtport->pe = pe;
1262
1263 pe->port = port;
1264 port->priv = pe;
1265
1266 pe->node_name = tgtport->fc_target_port.node_name;
1267 pe->port_name = tgtport->fc_target_port.port_name;
1268 INIT_LIST_HEAD(&pe->pe_list);
1269
1270 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1271 }
1272
1273 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1274 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1275 {
1276 unsigned long flags;
1277
1278 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1279 if (pe->tgtport)
1280 pe->tgtport->pe = NULL;
1281 list_del(&pe->pe_list);
1282 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1283 }
1284
1285 /*
1286 * called when a targetport deregisters. Breaks the relationship
1287 * with the nvmet port, but leaves the port_entry in place so that
1288 * re-registration can resume operation.
1289 */
1290 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1291 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1292 {
1293 struct nvmet_fc_port_entry *pe;
1294 unsigned long flags;
1295
1296 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1297 pe = tgtport->pe;
1298 if (pe)
1299 pe->tgtport = NULL;
1300 tgtport->pe = NULL;
1301 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1302 }
1303
1304 /*
1305 * called when a new targetport is registered. Looks in the
1306 * existing nvmet port_entries to see if the nvmet layer is
1307 * configured for the targetport's wwn's. (the targetport existed,
1308 * nvmet configured, the lldd unregistered the tgtport, and is now
1309 * reregistering the same targetport). If so, set the nvmet port
1310 * port entry on the targetport.
1311 */
1312 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1313 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1314 {
1315 struct nvmet_fc_port_entry *pe;
1316 unsigned long flags;
1317
1318 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1319 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1320 if (tgtport->fc_target_port.node_name == pe->node_name &&
1321 tgtport->fc_target_port.port_name == pe->port_name) {
1322 WARN_ON(pe->tgtport);
1323 tgtport->pe = pe;
1324 pe->tgtport = tgtport;
1325 break;
1326 }
1327 }
1328 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1329 }
1330
1331 /**
1332 * nvme_fc_register_targetport - transport entry point called by an
1333 * LLDD to register the existence of a local
1334 * NVME subystem FC port.
1335 * @pinfo: pointer to information about the port to be registered
1336 * @template: LLDD entrypoints and operational parameters for the port
1337 * @dev: physical hardware device node port corresponds to. Will be
1338 * used for DMA mappings
1339 * @portptr: pointer to a local port pointer. Upon success, the routine
1340 * will allocate a nvme_fc_local_port structure and place its
1341 * address in the local port pointer. Upon failure, local port
1342 * pointer will be set to NULL.
1343 *
1344 * Returns:
1345 * a completion status. Must be 0 upon success; a negative errno
1346 * (ex: -ENXIO) upon failure.
1347 */
1348 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1349 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1350 struct nvmet_fc_target_template *template,
1351 struct device *dev,
1352 struct nvmet_fc_target_port **portptr)
1353 {
1354 struct nvmet_fc_tgtport *newrec;
1355 unsigned long flags;
1356 int ret, idx;
1357
1358 if (!template->xmt_ls_rsp || !template->fcp_op ||
1359 !template->fcp_abort ||
1360 !template->fcp_req_release || !template->targetport_delete ||
1361 !template->max_hw_queues || !template->max_sgl_segments ||
1362 !template->max_dif_sgl_segments || !template->dma_boundary) {
1363 ret = -EINVAL;
1364 goto out_regtgt_failed;
1365 }
1366
1367 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1368 GFP_KERNEL);
1369 if (!newrec) {
1370 ret = -ENOMEM;
1371 goto out_regtgt_failed;
1372 }
1373
1374 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1375 if (idx < 0) {
1376 ret = -ENOSPC;
1377 goto out_fail_kfree;
1378 }
1379
1380 if (!get_device(dev) && dev) {
1381 ret = -ENODEV;
1382 goto out_ida_put;
1383 }
1384
1385 newrec->fc_target_port.node_name = pinfo->node_name;
1386 newrec->fc_target_port.port_name = pinfo->port_name;
1387 if (template->target_priv_sz)
1388 newrec->fc_target_port.private = &newrec[1];
1389 else
1390 newrec->fc_target_port.private = NULL;
1391 newrec->fc_target_port.port_id = pinfo->port_id;
1392 newrec->fc_target_port.port_num = idx;
1393 INIT_LIST_HEAD(&newrec->tgt_list);
1394 newrec->dev = dev;
1395 newrec->ops = template;
1396 spin_lock_init(&newrec->lock);
1397 INIT_LIST_HEAD(&newrec->ls_rcv_list);
1398 INIT_LIST_HEAD(&newrec->ls_req_list);
1399 INIT_LIST_HEAD(&newrec->ls_busylist);
1400 INIT_LIST_HEAD(&newrec->assoc_list);
1401 INIT_LIST_HEAD(&newrec->host_list);
1402 kref_init(&newrec->ref);
1403 ida_init(&newrec->assoc_cnt);
1404 newrec->max_sg_cnt = template->max_sgl_segments;
1405
1406 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1407 if (ret) {
1408 ret = -ENOMEM;
1409 goto out_free_newrec;
1410 }
1411
1412 nvmet_fc_portentry_rebind_tgt(newrec);
1413
1414 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1415 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1416 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1417
1418 *portptr = &newrec->fc_target_port;
1419 return 0;
1420
1421 out_free_newrec:
1422 put_device(dev);
1423 out_ida_put:
1424 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1425 out_fail_kfree:
1426 kfree(newrec);
1427 out_regtgt_failed:
1428 *portptr = NULL;
1429 return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1432
1433
1434 static void
nvmet_fc_free_tgtport(struct kref * ref)1435 nvmet_fc_free_tgtport(struct kref *ref)
1436 {
1437 struct nvmet_fc_tgtport *tgtport =
1438 container_of(ref, struct nvmet_fc_tgtport, ref);
1439 struct device *dev = tgtport->dev;
1440 unsigned long flags;
1441
1442 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1443 list_del(&tgtport->tgt_list);
1444 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1445
1446 nvmet_fc_free_ls_iodlist(tgtport);
1447
1448 /* let the LLDD know we've finished tearing it down */
1449 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1450
1451 ida_simple_remove(&nvmet_fc_tgtport_cnt,
1452 tgtport->fc_target_port.port_num);
1453
1454 ida_destroy(&tgtport->assoc_cnt);
1455
1456 kfree(tgtport);
1457
1458 put_device(dev);
1459 }
1460
1461 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1462 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1463 {
1464 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1465 }
1466
1467 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1468 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1469 {
1470 return kref_get_unless_zero(&tgtport->ref);
1471 }
1472
1473 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1474 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1475 {
1476 struct nvmet_fc_tgt_assoc *assoc, *next;
1477 unsigned long flags;
1478
1479 spin_lock_irqsave(&tgtport->lock, flags);
1480 list_for_each_entry_safe(assoc, next,
1481 &tgtport->assoc_list, a_list) {
1482 if (!nvmet_fc_tgt_a_get(assoc))
1483 continue;
1484 if (!schedule_work(&assoc->del_work))
1485 /* already deleting - release local reference */
1486 nvmet_fc_tgt_a_put(assoc);
1487 }
1488 spin_unlock_irqrestore(&tgtport->lock, flags);
1489 }
1490
1491 /**
1492 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1493 * to remove references to a hosthandle for LS's.
1494 *
1495 * The nvmet-fc layer ensures that any references to the hosthandle
1496 * on the targetport are forgotten (set to NULL). The LLDD will
1497 * typically call this when a login with a remote host port has been
1498 * lost, thus LS's for the remote host port are no longer possible.
1499 *
1500 * If an LS request is outstanding to the targetport/hosthandle (or
1501 * issued concurrently with the call to invalidate the host), the
1502 * LLDD is responsible for terminating/aborting the LS and completing
1503 * the LS request. It is recommended that these terminations/aborts
1504 * occur after calling to invalidate the host handle to avoid additional
1505 * retries by the nvmet-fc transport. The nvmet-fc transport may
1506 * continue to reference host handle while it cleans up outstanding
1507 * NVME associations. The nvmet-fc transport will call the
1508 * ops->host_release() callback to notify the LLDD that all references
1509 * are complete and the related host handle can be recovered.
1510 * Note: if there are no references, the callback may be called before
1511 * the invalidate host call returns.
1512 *
1513 * @target_port: pointer to the (registered) target port that a prior
1514 * LS was received on and which supplied the transport the
1515 * hosthandle.
1516 * @hosthandle: the handle (pointer) that represents the host port
1517 * that no longer has connectivity and that LS's should
1518 * no longer be directed to.
1519 */
1520 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1521 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1522 void *hosthandle)
1523 {
1524 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1525 struct nvmet_fc_tgt_assoc *assoc, *next;
1526 unsigned long flags;
1527 bool noassoc = true;
1528
1529 spin_lock_irqsave(&tgtport->lock, flags);
1530 list_for_each_entry_safe(assoc, next,
1531 &tgtport->assoc_list, a_list) {
1532 if (!assoc->hostport ||
1533 assoc->hostport->hosthandle != hosthandle)
1534 continue;
1535 if (!nvmet_fc_tgt_a_get(assoc))
1536 continue;
1537 assoc->hostport->invalid = 1;
1538 noassoc = false;
1539 if (!schedule_work(&assoc->del_work))
1540 /* already deleting - release local reference */
1541 nvmet_fc_tgt_a_put(assoc);
1542 }
1543 spin_unlock_irqrestore(&tgtport->lock, flags);
1544
1545 /* if there's nothing to wait for - call the callback */
1546 if (noassoc && tgtport->ops->host_release)
1547 tgtport->ops->host_release(hosthandle);
1548 }
1549 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1550
1551 /*
1552 * nvmet layer has called to terminate an association
1553 */
1554 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1555 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1556 {
1557 struct nvmet_fc_tgtport *tgtport, *next;
1558 struct nvmet_fc_tgt_assoc *assoc;
1559 struct nvmet_fc_tgt_queue *queue;
1560 unsigned long flags;
1561 bool found_ctrl = false;
1562
1563 /* this is a bit ugly, but don't want to make locks layered */
1564 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1565 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1566 tgt_list) {
1567 if (!nvmet_fc_tgtport_get(tgtport))
1568 continue;
1569 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1570
1571 spin_lock_irqsave(&tgtport->lock, flags);
1572 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1573 queue = assoc->queues[0];
1574 if (queue && queue->nvme_sq.ctrl == ctrl) {
1575 if (nvmet_fc_tgt_a_get(assoc))
1576 found_ctrl = true;
1577 break;
1578 }
1579 }
1580 spin_unlock_irqrestore(&tgtport->lock, flags);
1581
1582 nvmet_fc_tgtport_put(tgtport);
1583
1584 if (found_ctrl) {
1585 if (!schedule_work(&assoc->del_work))
1586 /* already deleting - release local reference */
1587 nvmet_fc_tgt_a_put(assoc);
1588 return;
1589 }
1590
1591 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1592 }
1593 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1594 }
1595
1596 /**
1597 * nvme_fc_unregister_targetport - transport entry point called by an
1598 * LLDD to deregister/remove a previously
1599 * registered a local NVME subsystem FC port.
1600 * @target_port: pointer to the (registered) target port that is to be
1601 * deregistered.
1602 *
1603 * Returns:
1604 * a completion status. Must be 0 upon success; a negative errno
1605 * (ex: -ENXIO) upon failure.
1606 */
1607 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1608 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1609 {
1610 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1611
1612 nvmet_fc_portentry_unbind_tgt(tgtport);
1613
1614 /* terminate any outstanding associations */
1615 __nvmet_fc_free_assocs(tgtport);
1616
1617 /*
1618 * should terminate LS's as well. However, LS's will be generated
1619 * at the tail end of association termination, so they likely don't
1620 * exist yet. And even if they did, it's worthwhile to just let
1621 * them finish and targetport ref counting will clean things up.
1622 */
1623
1624 nvmet_fc_tgtport_put(tgtport);
1625
1626 return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1629
1630
1631 /* ********************** FC-NVME LS RCV Handling ************************* */
1632
1633
1634 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1635 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1636 struct nvmet_fc_ls_iod *iod)
1637 {
1638 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1639 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1640 struct nvmet_fc_tgt_queue *queue;
1641 int ret = 0;
1642
1643 memset(acc, 0, sizeof(*acc));
1644
1645 /*
1646 * FC-NVME spec changes. There are initiators sending different
1647 * lengths as padding sizes for Create Association Cmd descriptor
1648 * was incorrect.
1649 * Accept anything of "minimum" length. Assume format per 1.15
1650 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1651 * trailing pad length is.
1652 */
1653 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1654 ret = VERR_CR_ASSOC_LEN;
1655 else if (be32_to_cpu(rqst->desc_list_len) <
1656 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1657 ret = VERR_CR_ASSOC_RQST_LEN;
1658 else if (rqst->assoc_cmd.desc_tag !=
1659 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1660 ret = VERR_CR_ASSOC_CMD;
1661 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1662 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1663 ret = VERR_CR_ASSOC_CMD_LEN;
1664 else if (!rqst->assoc_cmd.ersp_ratio ||
1665 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1666 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1667 ret = VERR_ERSP_RATIO;
1668
1669 else {
1670 /* new association w/ admin queue */
1671 iod->assoc = nvmet_fc_alloc_target_assoc(
1672 tgtport, iod->hosthandle);
1673 if (!iod->assoc)
1674 ret = VERR_ASSOC_ALLOC_FAIL;
1675 else {
1676 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1677 be16_to_cpu(rqst->assoc_cmd.sqsize));
1678 if (!queue)
1679 ret = VERR_QUEUE_ALLOC_FAIL;
1680 }
1681 }
1682
1683 if (ret) {
1684 dev_err(tgtport->dev,
1685 "Create Association LS failed: %s\n",
1686 validation_errors[ret]);
1687 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1688 sizeof(*acc), rqst->w0.ls_cmd,
1689 FCNVME_RJT_RC_LOGIC,
1690 FCNVME_RJT_EXP_NONE, 0);
1691 return;
1692 }
1693
1694 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1695 atomic_set(&queue->connected, 1);
1696 queue->sqhd = 0; /* best place to init value */
1697
1698 dev_info(tgtport->dev,
1699 "{%d:%d} Association created\n",
1700 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1701
1702 /* format a response */
1703
1704 iod->lsrsp->rsplen = sizeof(*acc);
1705
1706 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1707 fcnvme_lsdesc_len(
1708 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1709 FCNVME_LS_CREATE_ASSOCIATION);
1710 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1711 acc->associd.desc_len =
1712 fcnvme_lsdesc_len(
1713 sizeof(struct fcnvme_lsdesc_assoc_id));
1714 acc->associd.association_id =
1715 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1716 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1717 acc->connectid.desc_len =
1718 fcnvme_lsdesc_len(
1719 sizeof(struct fcnvme_lsdesc_conn_id));
1720 acc->connectid.connection_id = acc->associd.association_id;
1721 }
1722
1723 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1724 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1725 struct nvmet_fc_ls_iod *iod)
1726 {
1727 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1728 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1729 struct nvmet_fc_tgt_queue *queue;
1730 int ret = 0;
1731
1732 memset(acc, 0, sizeof(*acc));
1733
1734 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1735 ret = VERR_CR_CONN_LEN;
1736 else if (rqst->desc_list_len !=
1737 fcnvme_lsdesc_len(
1738 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1739 ret = VERR_CR_CONN_RQST_LEN;
1740 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1741 ret = VERR_ASSOC_ID;
1742 else if (rqst->associd.desc_len !=
1743 fcnvme_lsdesc_len(
1744 sizeof(struct fcnvme_lsdesc_assoc_id)))
1745 ret = VERR_ASSOC_ID_LEN;
1746 else if (rqst->connect_cmd.desc_tag !=
1747 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1748 ret = VERR_CR_CONN_CMD;
1749 else if (rqst->connect_cmd.desc_len !=
1750 fcnvme_lsdesc_len(
1751 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1752 ret = VERR_CR_CONN_CMD_LEN;
1753 else if (!rqst->connect_cmd.ersp_ratio ||
1754 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1755 be16_to_cpu(rqst->connect_cmd.sqsize)))
1756 ret = VERR_ERSP_RATIO;
1757
1758 else {
1759 /* new io queue */
1760 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1761 be64_to_cpu(rqst->associd.association_id));
1762 if (!iod->assoc)
1763 ret = VERR_NO_ASSOC;
1764 else {
1765 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1766 be16_to_cpu(rqst->connect_cmd.qid),
1767 be16_to_cpu(rqst->connect_cmd.sqsize));
1768 if (!queue)
1769 ret = VERR_QUEUE_ALLOC_FAIL;
1770
1771 /* release get taken in nvmet_fc_find_target_assoc */
1772 nvmet_fc_tgt_a_put(iod->assoc);
1773 }
1774 }
1775
1776 if (ret) {
1777 dev_err(tgtport->dev,
1778 "Create Connection LS failed: %s\n",
1779 validation_errors[ret]);
1780 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1781 sizeof(*acc), rqst->w0.ls_cmd,
1782 (ret == VERR_NO_ASSOC) ?
1783 FCNVME_RJT_RC_INV_ASSOC :
1784 FCNVME_RJT_RC_LOGIC,
1785 FCNVME_RJT_EXP_NONE, 0);
1786 return;
1787 }
1788
1789 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1790 atomic_set(&queue->connected, 1);
1791 queue->sqhd = 0; /* best place to init value */
1792
1793 /* format a response */
1794
1795 iod->lsrsp->rsplen = sizeof(*acc);
1796
1797 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1798 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1799 FCNVME_LS_CREATE_CONNECTION);
1800 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1801 acc->connectid.desc_len =
1802 fcnvme_lsdesc_len(
1803 sizeof(struct fcnvme_lsdesc_conn_id));
1804 acc->connectid.connection_id =
1805 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1806 be16_to_cpu(rqst->connect_cmd.qid)));
1807 }
1808
1809 /*
1810 * Returns true if the LS response is to be transmit
1811 * Returns false if the LS response is to be delayed
1812 */
1813 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1814 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1815 struct nvmet_fc_ls_iod *iod)
1816 {
1817 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1818 &iod->rqstbuf->rq_dis_assoc;
1819 struct fcnvme_ls_disconnect_assoc_acc *acc =
1820 &iod->rspbuf->rsp_dis_assoc;
1821 struct nvmet_fc_tgt_assoc *assoc = NULL;
1822 struct nvmet_fc_ls_iod *oldls = NULL;
1823 unsigned long flags;
1824 int ret = 0;
1825
1826 memset(acc, 0, sizeof(*acc));
1827
1828 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1829 if (!ret) {
1830 /* match an active association - takes an assoc ref if !NULL */
1831 assoc = nvmet_fc_find_target_assoc(tgtport,
1832 be64_to_cpu(rqst->associd.association_id));
1833 iod->assoc = assoc;
1834 if (!assoc)
1835 ret = VERR_NO_ASSOC;
1836 }
1837
1838 if (ret || !assoc) {
1839 dev_err(tgtport->dev,
1840 "Disconnect LS failed: %s\n",
1841 validation_errors[ret]);
1842 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1843 sizeof(*acc), rqst->w0.ls_cmd,
1844 (ret == VERR_NO_ASSOC) ?
1845 FCNVME_RJT_RC_INV_ASSOC :
1846 FCNVME_RJT_RC_LOGIC,
1847 FCNVME_RJT_EXP_NONE, 0);
1848 return true;
1849 }
1850
1851 /* format a response */
1852
1853 iod->lsrsp->rsplen = sizeof(*acc);
1854
1855 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1856 fcnvme_lsdesc_len(
1857 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1858 FCNVME_LS_DISCONNECT_ASSOC);
1859
1860 /* release get taken in nvmet_fc_find_target_assoc */
1861 nvmet_fc_tgt_a_put(assoc);
1862
1863 /*
1864 * The rules for LS response says the response cannot
1865 * go back until ABTS's have been sent for all outstanding
1866 * I/O and a Disconnect Association LS has been sent.
1867 * So... save off the Disconnect LS to send the response
1868 * later. If there was a prior LS already saved, replace
1869 * it with the newer one and send a can't perform reject
1870 * on the older one.
1871 */
1872 spin_lock_irqsave(&tgtport->lock, flags);
1873 oldls = assoc->rcv_disconn;
1874 assoc->rcv_disconn = iod;
1875 spin_unlock_irqrestore(&tgtport->lock, flags);
1876
1877 nvmet_fc_delete_target_assoc(assoc);
1878
1879 if (oldls) {
1880 dev_info(tgtport->dev,
1881 "{%d:%d} Multiple Disconnect Association LS's "
1882 "received\n",
1883 tgtport->fc_target_port.port_num, assoc->a_id);
1884 /* overwrite good response with bogus failure */
1885 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1886 sizeof(*iod->rspbuf),
1887 /* ok to use rqst, LS is same */
1888 rqst->w0.ls_cmd,
1889 FCNVME_RJT_RC_UNAB,
1890 FCNVME_RJT_EXP_NONE, 0);
1891 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1892 }
1893
1894 return false;
1895 }
1896
1897
1898 /* *********************** NVME Ctrl Routines **************************** */
1899
1900
1901 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1902
1903 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1904
1905 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1906 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1907 {
1908 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1909 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1910
1911 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1912 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1913 nvmet_fc_free_ls_iod(tgtport, iod);
1914 nvmet_fc_tgtport_put(tgtport);
1915 }
1916
1917 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1918 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1919 struct nvmet_fc_ls_iod *iod)
1920 {
1921 int ret;
1922
1923 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1924 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1925
1926 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1927 if (ret)
1928 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1929 }
1930
1931 /*
1932 * Actual processing routine for received FC-NVME LS Requests from the LLD
1933 */
1934 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1935 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1936 struct nvmet_fc_ls_iod *iod)
1937 {
1938 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1939 bool sendrsp = true;
1940
1941 iod->lsrsp->nvme_fc_private = iod;
1942 iod->lsrsp->rspbuf = iod->rspbuf;
1943 iod->lsrsp->rspdma = iod->rspdma;
1944 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1945 /* Be preventative. handlers will later set to valid length */
1946 iod->lsrsp->rsplen = 0;
1947
1948 iod->assoc = NULL;
1949
1950 /*
1951 * handlers:
1952 * parse request input, execute the request, and format the
1953 * LS response
1954 */
1955 switch (w0->ls_cmd) {
1956 case FCNVME_LS_CREATE_ASSOCIATION:
1957 /* Creates Association and initial Admin Queue/Connection */
1958 nvmet_fc_ls_create_association(tgtport, iod);
1959 break;
1960 case FCNVME_LS_CREATE_CONNECTION:
1961 /* Creates an IO Queue/Connection */
1962 nvmet_fc_ls_create_connection(tgtport, iod);
1963 break;
1964 case FCNVME_LS_DISCONNECT_ASSOC:
1965 /* Terminate a Queue/Connection or the Association */
1966 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1967 break;
1968 default:
1969 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1970 sizeof(*iod->rspbuf), w0->ls_cmd,
1971 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1972 }
1973
1974 if (sendrsp)
1975 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1976 }
1977
1978 /*
1979 * Actual processing routine for received FC-NVME LS Requests from the LLD
1980 */
1981 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1982 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1983 {
1984 struct nvmet_fc_ls_iod *iod =
1985 container_of(work, struct nvmet_fc_ls_iod, work);
1986 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1987
1988 nvmet_fc_handle_ls_rqst(tgtport, iod);
1989 }
1990
1991
1992 /**
1993 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1994 * upon the reception of a NVME LS request.
1995 *
1996 * The nvmet-fc layer will copy payload to an internal structure for
1997 * processing. As such, upon completion of the routine, the LLDD may
1998 * immediately free/reuse the LS request buffer passed in the call.
1999 *
2000 * If this routine returns error, the LLDD should abort the exchange.
2001 *
2002 * @target_port: pointer to the (registered) target port the LS was
2003 * received on.
2004 * @lsrsp: pointer to a lsrsp structure to be used to reference
2005 * the exchange corresponding to the LS.
2006 * @lsreqbuf: pointer to the buffer containing the LS Request
2007 * @lsreqbuf_len: length, in bytes, of the received LS request
2008 */
2009 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2010 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2011 void *hosthandle,
2012 struct nvmefc_ls_rsp *lsrsp,
2013 void *lsreqbuf, u32 lsreqbuf_len)
2014 {
2015 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2016 struct nvmet_fc_ls_iod *iod;
2017 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2018
2019 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2020 dev_info(tgtport->dev,
2021 "RCV %s LS failed: payload too large (%d)\n",
2022 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2023 nvmefc_ls_names[w0->ls_cmd] : "",
2024 lsreqbuf_len);
2025 return -E2BIG;
2026 }
2027
2028 if (!nvmet_fc_tgtport_get(tgtport)) {
2029 dev_info(tgtport->dev,
2030 "RCV %s LS failed: target deleting\n",
2031 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2032 nvmefc_ls_names[w0->ls_cmd] : "");
2033 return -ESHUTDOWN;
2034 }
2035
2036 iod = nvmet_fc_alloc_ls_iod(tgtport);
2037 if (!iod) {
2038 dev_info(tgtport->dev,
2039 "RCV %s LS failed: context allocation failed\n",
2040 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2041 nvmefc_ls_names[w0->ls_cmd] : "");
2042 nvmet_fc_tgtport_put(tgtport);
2043 return -ENOENT;
2044 }
2045
2046 iod->lsrsp = lsrsp;
2047 iod->fcpreq = NULL;
2048 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2049 iod->rqstdatalen = lsreqbuf_len;
2050 iod->hosthandle = hosthandle;
2051
2052 schedule_work(&iod->work);
2053
2054 return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2057
2058
2059 /*
2060 * **********************
2061 * Start of FCP handling
2062 * **********************
2063 */
2064
2065 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2066 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2067 {
2068 struct scatterlist *sg;
2069 unsigned int nent;
2070
2071 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2072 if (!sg)
2073 goto out;
2074
2075 fod->data_sg = sg;
2076 fod->data_sg_cnt = nent;
2077 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2078 ((fod->io_dir == NVMET_FCP_WRITE) ?
2079 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2080 /* note: write from initiator perspective */
2081 fod->next_sg = fod->data_sg;
2082
2083 return 0;
2084
2085 out:
2086 return NVME_SC_INTERNAL;
2087 }
2088
2089 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2090 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2091 {
2092 if (!fod->data_sg || !fod->data_sg_cnt)
2093 return;
2094
2095 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2096 ((fod->io_dir == NVMET_FCP_WRITE) ?
2097 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2098 sgl_free(fod->data_sg);
2099 fod->data_sg = NULL;
2100 fod->data_sg_cnt = 0;
2101 }
2102
2103
2104 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2105 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2106 {
2107 u32 sqtail, used;
2108
2109 /* egad, this is ugly. And sqtail is just a best guess */
2110 sqtail = atomic_read(&q->sqtail) % q->sqsize;
2111
2112 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2113 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2114 }
2115
2116 /*
2117 * Prep RSP payload.
2118 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2119 */
2120 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2121 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2122 struct nvmet_fc_fcp_iod *fod)
2123 {
2124 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2125 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2126 struct nvme_completion *cqe = &ersp->cqe;
2127 u32 *cqewd = (u32 *)cqe;
2128 bool send_ersp = false;
2129 u32 rsn, rspcnt, xfr_length;
2130
2131 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2132 xfr_length = fod->req.transfer_len;
2133 else
2134 xfr_length = fod->offset;
2135
2136 /*
2137 * check to see if we can send a 0's rsp.
2138 * Note: to send a 0's response, the NVME-FC host transport will
2139 * recreate the CQE. The host transport knows: sq id, SQHD (last
2140 * seen in an ersp), and command_id. Thus it will create a
2141 * zero-filled CQE with those known fields filled in. Transport
2142 * must send an ersp for any condition where the cqe won't match
2143 * this.
2144 *
2145 * Here are the FC-NVME mandated cases where we must send an ersp:
2146 * every N responses, where N=ersp_ratio
2147 * force fabric commands to send ersp's (not in FC-NVME but good
2148 * practice)
2149 * normal cmds: any time status is non-zero, or status is zero
2150 * but words 0 or 1 are non-zero.
2151 * the SQ is 90% or more full
2152 * the cmd is a fused command
2153 * transferred data length not equal to cmd iu length
2154 */
2155 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2156 if (!(rspcnt % fod->queue->ersp_ratio) ||
2157 nvme_is_fabrics((struct nvme_command *) sqe) ||
2158 xfr_length != fod->req.transfer_len ||
2159 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2160 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2161 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2162 send_ersp = true;
2163
2164 /* re-set the fields */
2165 fod->fcpreq->rspaddr = ersp;
2166 fod->fcpreq->rspdma = fod->rspdma;
2167
2168 if (!send_ersp) {
2169 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2170 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2171 } else {
2172 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2173 rsn = atomic_inc_return(&fod->queue->rsn);
2174 ersp->rsn = cpu_to_be32(rsn);
2175 ersp->xfrd_len = cpu_to_be32(xfr_length);
2176 fod->fcpreq->rsplen = sizeof(*ersp);
2177 }
2178
2179 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2180 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2181 }
2182
2183 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2184
2185 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2186 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2187 struct nvmet_fc_fcp_iod *fod)
2188 {
2189 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2190
2191 /* data no longer needed */
2192 nvmet_fc_free_tgt_pgs(fod);
2193
2194 /*
2195 * if an ABTS was received or we issued the fcp_abort early
2196 * don't call abort routine again.
2197 */
2198 /* no need to take lock - lock was taken earlier to get here */
2199 if (!fod->aborted)
2200 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2201
2202 nvmet_fc_free_fcp_iod(fod->queue, fod);
2203 }
2204
2205 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2206 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2207 struct nvmet_fc_fcp_iod *fod)
2208 {
2209 int ret;
2210
2211 fod->fcpreq->op = NVMET_FCOP_RSP;
2212 fod->fcpreq->timeout = 0;
2213
2214 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2215
2216 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2217 if (ret)
2218 nvmet_fc_abort_op(tgtport, fod);
2219 }
2220
2221 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2222 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2223 struct nvmet_fc_fcp_iod *fod, u8 op)
2224 {
2225 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2226 struct scatterlist *sg = fod->next_sg;
2227 unsigned long flags;
2228 u32 remaininglen = fod->req.transfer_len - fod->offset;
2229 u32 tlen = 0;
2230 int ret;
2231
2232 fcpreq->op = op;
2233 fcpreq->offset = fod->offset;
2234 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2235
2236 /*
2237 * for next sequence:
2238 * break at a sg element boundary
2239 * attempt to keep sequence length capped at
2240 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2241 * be longer if a single sg element is larger
2242 * than that amount. This is done to avoid creating
2243 * a new sg list to use for the tgtport api.
2244 */
2245 fcpreq->sg = sg;
2246 fcpreq->sg_cnt = 0;
2247 while (tlen < remaininglen &&
2248 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2249 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2250 fcpreq->sg_cnt++;
2251 tlen += sg_dma_len(sg);
2252 sg = sg_next(sg);
2253 }
2254 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2255 fcpreq->sg_cnt++;
2256 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2257 sg = sg_next(sg);
2258 }
2259 if (tlen < remaininglen)
2260 fod->next_sg = sg;
2261 else
2262 fod->next_sg = NULL;
2263
2264 fcpreq->transfer_length = tlen;
2265 fcpreq->transferred_length = 0;
2266 fcpreq->fcp_error = 0;
2267 fcpreq->rsplen = 0;
2268
2269 /*
2270 * If the last READDATA request: check if LLDD supports
2271 * combined xfr with response.
2272 */
2273 if ((op == NVMET_FCOP_READDATA) &&
2274 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2275 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2276 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2277 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2278 }
2279
2280 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2281 if (ret) {
2282 /*
2283 * should be ok to set w/o lock as its in the thread of
2284 * execution (not an async timer routine) and doesn't
2285 * contend with any clearing action
2286 */
2287 fod->abort = true;
2288
2289 if (op == NVMET_FCOP_WRITEDATA) {
2290 spin_lock_irqsave(&fod->flock, flags);
2291 fod->writedataactive = false;
2292 spin_unlock_irqrestore(&fod->flock, flags);
2293 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2294 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2295 fcpreq->fcp_error = ret;
2296 fcpreq->transferred_length = 0;
2297 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2298 }
2299 }
2300 }
2301
2302 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2303 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2304 {
2305 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2306 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2307
2308 /* if in the middle of an io and we need to tear down */
2309 if (abort) {
2310 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2311 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2312 return true;
2313 }
2314
2315 nvmet_fc_abort_op(tgtport, fod);
2316 return true;
2317 }
2318
2319 return false;
2320 }
2321
2322 /*
2323 * actual done handler for FCP operations when completed by the lldd
2324 */
2325 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2326 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2327 {
2328 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2329 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2330 unsigned long flags;
2331 bool abort;
2332
2333 spin_lock_irqsave(&fod->flock, flags);
2334 abort = fod->abort;
2335 fod->writedataactive = false;
2336 spin_unlock_irqrestore(&fod->flock, flags);
2337
2338 switch (fcpreq->op) {
2339
2340 case NVMET_FCOP_WRITEDATA:
2341 if (__nvmet_fc_fod_op_abort(fod, abort))
2342 return;
2343 if (fcpreq->fcp_error ||
2344 fcpreq->transferred_length != fcpreq->transfer_length) {
2345 spin_lock_irqsave(&fod->flock, flags);
2346 fod->abort = true;
2347 spin_unlock_irqrestore(&fod->flock, flags);
2348
2349 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2350 return;
2351 }
2352
2353 fod->offset += fcpreq->transferred_length;
2354 if (fod->offset != fod->req.transfer_len) {
2355 spin_lock_irqsave(&fod->flock, flags);
2356 fod->writedataactive = true;
2357 spin_unlock_irqrestore(&fod->flock, flags);
2358
2359 /* transfer the next chunk */
2360 nvmet_fc_transfer_fcp_data(tgtport, fod,
2361 NVMET_FCOP_WRITEDATA);
2362 return;
2363 }
2364
2365 /* data transfer complete, resume with nvmet layer */
2366 fod->req.execute(&fod->req);
2367 break;
2368
2369 case NVMET_FCOP_READDATA:
2370 case NVMET_FCOP_READDATA_RSP:
2371 if (__nvmet_fc_fod_op_abort(fod, abort))
2372 return;
2373 if (fcpreq->fcp_error ||
2374 fcpreq->transferred_length != fcpreq->transfer_length) {
2375 nvmet_fc_abort_op(tgtport, fod);
2376 return;
2377 }
2378
2379 /* success */
2380
2381 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2382 /* data no longer needed */
2383 nvmet_fc_free_tgt_pgs(fod);
2384 nvmet_fc_free_fcp_iod(fod->queue, fod);
2385 return;
2386 }
2387
2388 fod->offset += fcpreq->transferred_length;
2389 if (fod->offset != fod->req.transfer_len) {
2390 /* transfer the next chunk */
2391 nvmet_fc_transfer_fcp_data(tgtport, fod,
2392 NVMET_FCOP_READDATA);
2393 return;
2394 }
2395
2396 /* data transfer complete, send response */
2397
2398 /* data no longer needed */
2399 nvmet_fc_free_tgt_pgs(fod);
2400
2401 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2402
2403 break;
2404
2405 case NVMET_FCOP_RSP:
2406 if (__nvmet_fc_fod_op_abort(fod, abort))
2407 return;
2408 nvmet_fc_free_fcp_iod(fod->queue, fod);
2409 break;
2410
2411 default:
2412 break;
2413 }
2414 }
2415
2416 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2417 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2418 {
2419 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2420
2421 nvmet_fc_fod_op_done(fod);
2422 }
2423
2424 /*
2425 * actual completion handler after execution by the nvmet layer
2426 */
2427 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2428 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2429 struct nvmet_fc_fcp_iod *fod, int status)
2430 {
2431 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2432 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2433 unsigned long flags;
2434 bool abort;
2435
2436 spin_lock_irqsave(&fod->flock, flags);
2437 abort = fod->abort;
2438 spin_unlock_irqrestore(&fod->flock, flags);
2439
2440 /* if we have a CQE, snoop the last sq_head value */
2441 if (!status)
2442 fod->queue->sqhd = cqe->sq_head;
2443
2444 if (abort) {
2445 nvmet_fc_abort_op(tgtport, fod);
2446 return;
2447 }
2448
2449 /* if an error handling the cmd post initial parsing */
2450 if (status) {
2451 /* fudge up a failed CQE status for our transport error */
2452 memset(cqe, 0, sizeof(*cqe));
2453 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2454 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2455 cqe->command_id = sqe->command_id;
2456 cqe->status = cpu_to_le16(status);
2457 } else {
2458
2459 /*
2460 * try to push the data even if the SQE status is non-zero.
2461 * There may be a status where data still was intended to
2462 * be moved
2463 */
2464 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2465 /* push the data over before sending rsp */
2466 nvmet_fc_transfer_fcp_data(tgtport, fod,
2467 NVMET_FCOP_READDATA);
2468 return;
2469 }
2470
2471 /* writes & no data - fall thru */
2472 }
2473
2474 /* data no longer needed */
2475 nvmet_fc_free_tgt_pgs(fod);
2476
2477 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2478 }
2479
2480
2481 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2482 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2483 {
2484 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2485 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2486
2487 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2488 }
2489
2490
2491 /*
2492 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2493 */
2494 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2495 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2496 struct nvmet_fc_fcp_iod *fod)
2497 {
2498 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2499 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2500 int ret;
2501
2502 /*
2503 * if there is no nvmet mapping to the targetport there
2504 * shouldn't be requests. just terminate them.
2505 */
2506 if (!tgtport->pe)
2507 goto transport_error;
2508
2509 /*
2510 * Fused commands are currently not supported in the linux
2511 * implementation.
2512 *
2513 * As such, the implementation of the FC transport does not
2514 * look at the fused commands and order delivery to the upper
2515 * layer until we have both based on csn.
2516 */
2517
2518 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2519
2520 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2521 fod->io_dir = NVMET_FCP_WRITE;
2522 if (!nvme_is_write(&cmdiu->sqe))
2523 goto transport_error;
2524 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2525 fod->io_dir = NVMET_FCP_READ;
2526 if (nvme_is_write(&cmdiu->sqe))
2527 goto transport_error;
2528 } else {
2529 fod->io_dir = NVMET_FCP_NODATA;
2530 if (xfrlen)
2531 goto transport_error;
2532 }
2533
2534 fod->req.cmd = &fod->cmdiubuf.sqe;
2535 fod->req.cqe = &fod->rspiubuf.cqe;
2536 fod->req.port = tgtport->pe->port;
2537
2538 /* clear any response payload */
2539 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2540
2541 fod->data_sg = NULL;
2542 fod->data_sg_cnt = 0;
2543
2544 ret = nvmet_req_init(&fod->req,
2545 &fod->queue->nvme_cq,
2546 &fod->queue->nvme_sq,
2547 &nvmet_fc_tgt_fcp_ops);
2548 if (!ret) {
2549 /* bad SQE content or invalid ctrl state */
2550 /* nvmet layer has already called op done to send rsp. */
2551 return;
2552 }
2553
2554 fod->req.transfer_len = xfrlen;
2555
2556 /* keep a running counter of tail position */
2557 atomic_inc(&fod->queue->sqtail);
2558
2559 if (fod->req.transfer_len) {
2560 ret = nvmet_fc_alloc_tgt_pgs(fod);
2561 if (ret) {
2562 nvmet_req_complete(&fod->req, ret);
2563 return;
2564 }
2565 }
2566 fod->req.sg = fod->data_sg;
2567 fod->req.sg_cnt = fod->data_sg_cnt;
2568 fod->offset = 0;
2569
2570 if (fod->io_dir == NVMET_FCP_WRITE) {
2571 /* pull the data over before invoking nvmet layer */
2572 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2573 return;
2574 }
2575
2576 /*
2577 * Reads or no data:
2578 *
2579 * can invoke the nvmet_layer now. If read data, cmd completion will
2580 * push the data
2581 */
2582 fod->req.execute(&fod->req);
2583 return;
2584
2585 transport_error:
2586 nvmet_fc_abort_op(tgtport, fod);
2587 }
2588
2589 /**
2590 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2591 * upon the reception of a NVME FCP CMD IU.
2592 *
2593 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2594 * layer for processing.
2595 *
2596 * The nvmet_fc layer allocates a local job structure (struct
2597 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2598 * CMD IU buffer to the job structure. As such, on a successful
2599 * completion (returns 0), the LLDD may immediately free/reuse
2600 * the CMD IU buffer passed in the call.
2601 *
2602 * However, in some circumstances, due to the packetized nature of FC
2603 * and the api of the FC LLDD which may issue a hw command to send the
2604 * response, but the LLDD may not get the hw completion for that command
2605 * and upcall the nvmet_fc layer before a new command may be
2606 * asynchronously received - its possible for a command to be received
2607 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2608 * the appearance of more commands received than fits in the sq.
2609 * To alleviate this scenario, a temporary queue is maintained in the
2610 * transport for pending LLDD requests waiting for a queue job structure.
2611 * In these "overrun" cases, a temporary queue element is allocated
2612 * the LLDD request and CMD iu buffer information remembered, and the
2613 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2614 * structure is freed, it is immediately reallocated for anything on the
2615 * pending request list. The LLDDs defer_rcv() callback is called,
2616 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2617 * is then started normally with the transport.
2618 *
2619 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2620 * the completion as successful but must not reuse the CMD IU buffer
2621 * until the LLDD's defer_rcv() callback has been called for the
2622 * corresponding struct nvmefc_tgt_fcp_req pointer.
2623 *
2624 * If there is any other condition in which an error occurs, the
2625 * transport will return a non-zero status indicating the error.
2626 * In all cases other than -EOVERFLOW, the transport has not accepted the
2627 * request and the LLDD should abort the exchange.
2628 *
2629 * @target_port: pointer to the (registered) target port the FCP CMD IU
2630 * was received on.
2631 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2632 * the exchange corresponding to the FCP Exchange.
2633 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2634 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2635 */
2636 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2637 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2638 struct nvmefc_tgt_fcp_req *fcpreq,
2639 void *cmdiubuf, u32 cmdiubuf_len)
2640 {
2641 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2642 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2643 struct nvmet_fc_tgt_queue *queue;
2644 struct nvmet_fc_fcp_iod *fod;
2645 struct nvmet_fc_defer_fcp_req *deferfcp;
2646 unsigned long flags;
2647
2648 /* validate iu, so the connection id can be used to find the queue */
2649 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2650 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2651 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2652 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2653 return -EIO;
2654
2655 queue = nvmet_fc_find_target_queue(tgtport,
2656 be64_to_cpu(cmdiu->connection_id));
2657 if (!queue)
2658 return -ENOTCONN;
2659
2660 /*
2661 * note: reference taken by find_target_queue
2662 * After successful fod allocation, the fod will inherit the
2663 * ownership of that reference and will remove the reference
2664 * when the fod is freed.
2665 */
2666
2667 spin_lock_irqsave(&queue->qlock, flags);
2668
2669 fod = nvmet_fc_alloc_fcp_iod(queue);
2670 if (fod) {
2671 spin_unlock_irqrestore(&queue->qlock, flags);
2672
2673 fcpreq->nvmet_fc_private = fod;
2674 fod->fcpreq = fcpreq;
2675
2676 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2677
2678 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2679
2680 return 0;
2681 }
2682
2683 if (!tgtport->ops->defer_rcv) {
2684 spin_unlock_irqrestore(&queue->qlock, flags);
2685 /* release the queue lookup reference */
2686 nvmet_fc_tgt_q_put(queue);
2687 return -ENOENT;
2688 }
2689
2690 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2691 struct nvmet_fc_defer_fcp_req, req_list);
2692 if (deferfcp) {
2693 /* Just re-use one that was previously allocated */
2694 list_del(&deferfcp->req_list);
2695 } else {
2696 spin_unlock_irqrestore(&queue->qlock, flags);
2697
2698 /* Now we need to dynamically allocate one */
2699 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2700 if (!deferfcp) {
2701 /* release the queue lookup reference */
2702 nvmet_fc_tgt_q_put(queue);
2703 return -ENOMEM;
2704 }
2705 spin_lock_irqsave(&queue->qlock, flags);
2706 }
2707
2708 /* For now, use rspaddr / rsplen to save payload information */
2709 fcpreq->rspaddr = cmdiubuf;
2710 fcpreq->rsplen = cmdiubuf_len;
2711 deferfcp->fcp_req = fcpreq;
2712
2713 /* defer processing till a fod becomes available */
2714 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2715
2716 /* NOTE: the queue lookup reference is still valid */
2717
2718 spin_unlock_irqrestore(&queue->qlock, flags);
2719
2720 return -EOVERFLOW;
2721 }
2722 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2723
2724 /**
2725 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2726 * upon the reception of an ABTS for a FCP command
2727 *
2728 * Notify the transport that an ABTS has been received for a FCP command
2729 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2730 * LLDD believes the command is still being worked on
2731 * (template_ops->fcp_req_release() has not been called).
2732 *
2733 * The transport will wait for any outstanding work (an op to the LLDD,
2734 * which the lldd should complete with error due to the ABTS; or the
2735 * completion from the nvmet layer of the nvme command), then will
2736 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2737 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2738 * to the ABTS either after return from this function (assuming any
2739 * outstanding op work has been terminated) or upon the callback being
2740 * called.
2741 *
2742 * @target_port: pointer to the (registered) target port the FCP CMD IU
2743 * was received on.
2744 * @fcpreq: pointer to the fcpreq request structure that corresponds
2745 * to the exchange that received the ABTS.
2746 */
2747 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2748 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2749 struct nvmefc_tgt_fcp_req *fcpreq)
2750 {
2751 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2752 struct nvmet_fc_tgt_queue *queue;
2753 unsigned long flags;
2754
2755 if (!fod || fod->fcpreq != fcpreq)
2756 /* job appears to have already completed, ignore abort */
2757 return;
2758
2759 queue = fod->queue;
2760
2761 spin_lock_irqsave(&queue->qlock, flags);
2762 if (fod->active) {
2763 /*
2764 * mark as abort. The abort handler, invoked upon completion
2765 * of any work, will detect the aborted status and do the
2766 * callback.
2767 */
2768 spin_lock(&fod->flock);
2769 fod->abort = true;
2770 fod->aborted = true;
2771 spin_unlock(&fod->flock);
2772 }
2773 spin_unlock_irqrestore(&queue->qlock, flags);
2774 }
2775 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2776
2777
2778 struct nvmet_fc_traddr {
2779 u64 nn;
2780 u64 pn;
2781 };
2782
2783 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2784 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2785 {
2786 u64 token64;
2787
2788 if (match_u64(sstr, &token64))
2789 return -EINVAL;
2790 *val = token64;
2791
2792 return 0;
2793 }
2794
2795 /*
2796 * This routine validates and extracts the WWN's from the TRADDR string.
2797 * As kernel parsers need the 0x to determine number base, universally
2798 * build string to parse with 0x prefix before parsing name strings.
2799 */
2800 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2801 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2802 {
2803 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2804 substring_t wwn = { name, &name[sizeof(name)-1] };
2805 int nnoffset, pnoffset;
2806
2807 /* validate if string is one of the 2 allowed formats */
2808 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2809 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2810 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2811 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2812 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2813 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2814 NVME_FC_TRADDR_OXNNLEN;
2815 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2816 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2817 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2818 "pn-", NVME_FC_TRADDR_NNLEN))) {
2819 nnoffset = NVME_FC_TRADDR_NNLEN;
2820 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2821 } else
2822 goto out_einval;
2823
2824 name[0] = '0';
2825 name[1] = 'x';
2826 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2827
2828 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2829 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2830 goto out_einval;
2831
2832 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2833 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2834 goto out_einval;
2835
2836 return 0;
2837
2838 out_einval:
2839 pr_warn("%s: bad traddr string\n", __func__);
2840 return -EINVAL;
2841 }
2842
2843 static int
nvmet_fc_add_port(struct nvmet_port * port)2844 nvmet_fc_add_port(struct nvmet_port *port)
2845 {
2846 struct nvmet_fc_tgtport *tgtport;
2847 struct nvmet_fc_port_entry *pe;
2848 struct nvmet_fc_traddr traddr = { 0L, 0L };
2849 unsigned long flags;
2850 int ret;
2851
2852 /* validate the address info */
2853 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2854 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2855 return -EINVAL;
2856
2857 /* map the traddr address info to a target port */
2858
2859 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2860 sizeof(port->disc_addr.traddr));
2861 if (ret)
2862 return ret;
2863
2864 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2865 if (!pe)
2866 return -ENOMEM;
2867
2868 ret = -ENXIO;
2869 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2870 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2871 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2872 (tgtport->fc_target_port.port_name == traddr.pn)) {
2873 /* a FC port can only be 1 nvmet port id */
2874 if (!tgtport->pe) {
2875 nvmet_fc_portentry_bind(tgtport, pe, port);
2876 ret = 0;
2877 } else
2878 ret = -EALREADY;
2879 break;
2880 }
2881 }
2882 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2883
2884 if (ret)
2885 kfree(pe);
2886
2887 return ret;
2888 }
2889
2890 static void
nvmet_fc_remove_port(struct nvmet_port * port)2891 nvmet_fc_remove_port(struct nvmet_port *port)
2892 {
2893 struct nvmet_fc_port_entry *pe = port->priv;
2894
2895 nvmet_fc_portentry_unbind(pe);
2896
2897 kfree(pe);
2898 }
2899
2900 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2901 nvmet_fc_discovery_chg(struct nvmet_port *port)
2902 {
2903 struct nvmet_fc_port_entry *pe = port->priv;
2904 struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2905
2906 if (tgtport && tgtport->ops->discovery_event)
2907 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2908 }
2909
2910 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2911 .owner = THIS_MODULE,
2912 .type = NVMF_TRTYPE_FC,
2913 .msdbd = 1,
2914 .add_port = nvmet_fc_add_port,
2915 .remove_port = nvmet_fc_remove_port,
2916 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2917 .delete_ctrl = nvmet_fc_delete_ctrl,
2918 .discovery_chg = nvmet_fc_discovery_chg,
2919 };
2920
nvmet_fc_init_module(void)2921 static int __init nvmet_fc_init_module(void)
2922 {
2923 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2924 }
2925
nvmet_fc_exit_module(void)2926 static void __exit nvmet_fc_exit_module(void)
2927 {
2928 /* sanity check - all lports should be removed */
2929 if (!list_empty(&nvmet_fc_target_list))
2930 pr_warn("%s: targetport list not empty\n", __func__);
2931
2932 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2933
2934 ida_destroy(&nvmet_fc_tgtport_cnt);
2935 }
2936
2937 module_init(nvmet_fc_init_module);
2938 module_exit(nvmet_fc_exit_module);
2939
2940 MODULE_LICENSE("GPL v2");
2941