1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 struct workqueue_struct *zbd_wq;
20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
21 static DEFINE_IDA(cntlid_ida);
22
23 struct workqueue_struct *nvmet_wq;
24 EXPORT_SYMBOL_GPL(nvmet_wq);
25
26 /*
27 * This read/write semaphore is used to synchronize access to configuration
28 * information on a target system that will result in discovery log page
29 * information change for at least one host.
30 * The full list of resources to protected by this semaphore is:
31 *
32 * - subsystems list
33 * - per-subsystem allowed hosts list
34 * - allow_any_host subsystem attribute
35 * - nvmet_genctr
36 * - the nvmet_transports array
37 *
38 * When updating any of those lists/structures write lock should be obtained,
39 * while when reading (popolating discovery log page or checking host-subsystem
40 * link) read lock is obtained to allow concurrent reads.
41 */
42 DECLARE_RWSEM(nvmet_config_sem);
43
44 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
45 u64 nvmet_ana_chgcnt;
46 DECLARE_RWSEM(nvmet_ana_sem);
47
errno_to_nvme_status(struct nvmet_req * req,int errno)48 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
49 {
50 switch (errno) {
51 case 0:
52 return NVME_SC_SUCCESS;
53 case -ENOSPC:
54 req->error_loc = offsetof(struct nvme_rw_command, length);
55 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
56 case -EREMOTEIO:
57 req->error_loc = offsetof(struct nvme_rw_command, slba);
58 return NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 case -EOPNOTSUPP:
60 req->error_loc = offsetof(struct nvme_common_command, opcode);
61 switch (req->cmd->common.opcode) {
62 case nvme_cmd_dsm:
63 case nvme_cmd_write_zeroes:
64 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
65 default:
66 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
67 }
68 break;
69 case -ENODATA:
70 req->error_loc = offsetof(struct nvme_rw_command, nsid);
71 return NVME_SC_ACCESS_DENIED;
72 case -EIO:
73 fallthrough;
74 default:
75 req->error_loc = offsetof(struct nvme_common_command, opcode);
76 return NVME_SC_INTERNAL | NVME_SC_DNR;
77 }
78 }
79
nvmet_report_invalid_opcode(struct nvmet_req * req)80 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
81 {
82 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
83 req->sq->qid);
84
85 req->error_loc = offsetof(struct nvme_common_command, opcode);
86 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
87 }
88
89 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
90 const char *subsysnqn);
91
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)92 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
93 size_t len)
94 {
95 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
96 req->error_loc = offsetof(struct nvme_common_command, dptr);
97 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
98 }
99 return 0;
100 }
101
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)102 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
103 {
104 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
105 req->error_loc = offsetof(struct nvme_common_command, dptr);
106 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
107 }
108 return 0;
109 }
110
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)111 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
112 {
113 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
114 req->error_loc = offsetof(struct nvme_common_command, dptr);
115 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
116 }
117 return 0;
118 }
119
nvmet_max_nsid(struct nvmet_subsys * subsys)120 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
121 {
122 struct nvmet_ns *cur;
123 unsigned long idx;
124 u32 nsid = 0;
125
126 xa_for_each(&subsys->namespaces, idx, cur)
127 nsid = cur->nsid;
128
129 return nsid;
130 }
131
nvmet_async_event_result(struct nvmet_async_event * aen)132 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
133 {
134 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
135 }
136
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)137 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
138 {
139 struct nvmet_req *req;
140
141 mutex_lock(&ctrl->lock);
142 while (ctrl->nr_async_event_cmds) {
143 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
144 mutex_unlock(&ctrl->lock);
145 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
146 mutex_lock(&ctrl->lock);
147 }
148 mutex_unlock(&ctrl->lock);
149 }
150
nvmet_async_events_process(struct nvmet_ctrl * ctrl)151 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
152 {
153 struct nvmet_async_event *aen;
154 struct nvmet_req *req;
155
156 mutex_lock(&ctrl->lock);
157 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
158 aen = list_first_entry(&ctrl->async_events,
159 struct nvmet_async_event, entry);
160 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
161 nvmet_set_result(req, nvmet_async_event_result(aen));
162
163 list_del(&aen->entry);
164 kfree(aen);
165
166 mutex_unlock(&ctrl->lock);
167 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
168 nvmet_req_complete(req, 0);
169 mutex_lock(&ctrl->lock);
170 }
171 mutex_unlock(&ctrl->lock);
172 }
173
nvmet_async_events_free(struct nvmet_ctrl * ctrl)174 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
175 {
176 struct nvmet_async_event *aen, *tmp;
177
178 mutex_lock(&ctrl->lock);
179 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
180 list_del(&aen->entry);
181 kfree(aen);
182 }
183 mutex_unlock(&ctrl->lock);
184 }
185
nvmet_async_event_work(struct work_struct * work)186 static void nvmet_async_event_work(struct work_struct *work)
187 {
188 struct nvmet_ctrl *ctrl =
189 container_of(work, struct nvmet_ctrl, async_event_work);
190
191 nvmet_async_events_process(ctrl);
192 }
193
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)194 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
195 u8 event_info, u8 log_page)
196 {
197 struct nvmet_async_event *aen;
198
199 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
200 if (!aen)
201 return;
202
203 aen->event_type = event_type;
204 aen->event_info = event_info;
205 aen->log_page = log_page;
206
207 mutex_lock(&ctrl->lock);
208 list_add_tail(&aen->entry, &ctrl->async_events);
209 mutex_unlock(&ctrl->lock);
210
211 queue_work(nvmet_wq, &ctrl->async_event_work);
212 }
213
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)214 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
215 {
216 u32 i;
217
218 mutex_lock(&ctrl->lock);
219 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
220 goto out_unlock;
221
222 for (i = 0; i < ctrl->nr_changed_ns; i++) {
223 if (ctrl->changed_ns_list[i] == nsid)
224 goto out_unlock;
225 }
226
227 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
228 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
229 ctrl->nr_changed_ns = U32_MAX;
230 goto out_unlock;
231 }
232
233 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
234 out_unlock:
235 mutex_unlock(&ctrl->lock);
236 }
237
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)238 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
239 {
240 struct nvmet_ctrl *ctrl;
241
242 lockdep_assert_held(&subsys->lock);
243
244 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
245 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
246 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
247 continue;
248 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
249 NVME_AER_NOTICE_NS_CHANGED,
250 NVME_LOG_CHANGED_NS);
251 }
252 }
253
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)254 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
255 struct nvmet_port *port)
256 {
257 struct nvmet_ctrl *ctrl;
258
259 mutex_lock(&subsys->lock);
260 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
261 if (port && ctrl->port != port)
262 continue;
263 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
264 continue;
265 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
266 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
267 }
268 mutex_unlock(&subsys->lock);
269 }
270
nvmet_port_send_ana_event(struct nvmet_port * port)271 void nvmet_port_send_ana_event(struct nvmet_port *port)
272 {
273 struct nvmet_subsys_link *p;
274
275 down_read(&nvmet_config_sem);
276 list_for_each_entry(p, &port->subsystems, entry)
277 nvmet_send_ana_event(p->subsys, port);
278 up_read(&nvmet_config_sem);
279 }
280
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)281 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
282 {
283 int ret = 0;
284
285 down_write(&nvmet_config_sem);
286 if (nvmet_transports[ops->type])
287 ret = -EINVAL;
288 else
289 nvmet_transports[ops->type] = ops;
290 up_write(&nvmet_config_sem);
291
292 return ret;
293 }
294 EXPORT_SYMBOL_GPL(nvmet_register_transport);
295
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)296 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
297 {
298 down_write(&nvmet_config_sem);
299 nvmet_transports[ops->type] = NULL;
300 up_write(&nvmet_config_sem);
301 }
302 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
303
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)304 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
305 {
306 struct nvmet_ctrl *ctrl;
307
308 mutex_lock(&subsys->lock);
309 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
310 if (ctrl->port == port)
311 ctrl->ops->delete_ctrl(ctrl);
312 }
313 mutex_unlock(&subsys->lock);
314 }
315
nvmet_enable_port(struct nvmet_port * port)316 int nvmet_enable_port(struct nvmet_port *port)
317 {
318 const struct nvmet_fabrics_ops *ops;
319 int ret;
320
321 lockdep_assert_held(&nvmet_config_sem);
322
323 ops = nvmet_transports[port->disc_addr.trtype];
324 if (!ops) {
325 up_write(&nvmet_config_sem);
326 request_module("nvmet-transport-%d", port->disc_addr.trtype);
327 down_write(&nvmet_config_sem);
328 ops = nvmet_transports[port->disc_addr.trtype];
329 if (!ops) {
330 pr_err("transport type %d not supported\n",
331 port->disc_addr.trtype);
332 return -EINVAL;
333 }
334 }
335
336 if (!try_module_get(ops->owner))
337 return -EINVAL;
338
339 /*
340 * If the user requested PI support and the transport isn't pi capable,
341 * don't enable the port.
342 */
343 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
344 pr_err("T10-PI is not supported by transport type %d\n",
345 port->disc_addr.trtype);
346 ret = -EINVAL;
347 goto out_put;
348 }
349
350 ret = ops->add_port(port);
351 if (ret)
352 goto out_put;
353
354 /* If the transport didn't set inline_data_size, then disable it. */
355 if (port->inline_data_size < 0)
356 port->inline_data_size = 0;
357
358 port->enabled = true;
359 port->tr_ops = ops;
360 return 0;
361
362 out_put:
363 module_put(ops->owner);
364 return ret;
365 }
366
nvmet_disable_port(struct nvmet_port * port)367 void nvmet_disable_port(struct nvmet_port *port)
368 {
369 const struct nvmet_fabrics_ops *ops;
370
371 lockdep_assert_held(&nvmet_config_sem);
372
373 port->enabled = false;
374 port->tr_ops = NULL;
375
376 ops = nvmet_transports[port->disc_addr.trtype];
377 ops->remove_port(port);
378 module_put(ops->owner);
379 }
380
nvmet_keep_alive_timer(struct work_struct * work)381 static void nvmet_keep_alive_timer(struct work_struct *work)
382 {
383 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
384 struct nvmet_ctrl, ka_work);
385 bool reset_tbkas = ctrl->reset_tbkas;
386
387 ctrl->reset_tbkas = false;
388 if (reset_tbkas) {
389 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
390 ctrl->cntlid);
391 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
392 return;
393 }
394
395 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
396 ctrl->cntlid, ctrl->kato);
397
398 nvmet_ctrl_fatal_error(ctrl);
399 }
400
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)401 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
402 {
403 if (unlikely(ctrl->kato == 0))
404 return;
405
406 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
407 ctrl->cntlid, ctrl->kato);
408
409 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
410 }
411
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)412 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
413 {
414 if (unlikely(ctrl->kato == 0))
415 return;
416
417 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
418
419 cancel_delayed_work_sync(&ctrl->ka_work);
420 }
421
nvmet_req_find_ns(struct nvmet_req * req)422 u16 nvmet_req_find_ns(struct nvmet_req *req)
423 {
424 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
425
426 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
427 if (unlikely(!req->ns)) {
428 req->error_loc = offsetof(struct nvme_common_command, nsid);
429 return NVME_SC_INVALID_NS | NVME_SC_DNR;
430 }
431
432 percpu_ref_get(&req->ns->ref);
433 return NVME_SC_SUCCESS;
434 }
435
nvmet_destroy_namespace(struct percpu_ref * ref)436 static void nvmet_destroy_namespace(struct percpu_ref *ref)
437 {
438 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
439
440 complete(&ns->disable_done);
441 }
442
nvmet_put_namespace(struct nvmet_ns * ns)443 void nvmet_put_namespace(struct nvmet_ns *ns)
444 {
445 percpu_ref_put(&ns->ref);
446 }
447
nvmet_ns_dev_disable(struct nvmet_ns * ns)448 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
449 {
450 nvmet_bdev_ns_disable(ns);
451 nvmet_file_ns_disable(ns);
452 }
453
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)454 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
455 {
456 int ret;
457 struct pci_dev *p2p_dev;
458
459 if (!ns->use_p2pmem)
460 return 0;
461
462 if (!ns->bdev) {
463 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
464 return -EINVAL;
465 }
466
467 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
468 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
469 ns->device_path);
470 return -EINVAL;
471 }
472
473 if (ns->p2p_dev) {
474 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
475 if (ret < 0)
476 return -EINVAL;
477 } else {
478 /*
479 * Right now we just check that there is p2pmem available so
480 * we can report an error to the user right away if there
481 * is not. We'll find the actual device to use once we
482 * setup the controller when the port's device is available.
483 */
484
485 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
486 if (!p2p_dev) {
487 pr_err("no peer-to-peer memory is available for %s\n",
488 ns->device_path);
489 return -EINVAL;
490 }
491
492 pci_dev_put(p2p_dev);
493 }
494
495 return 0;
496 }
497
498 /*
499 * Note: ctrl->subsys->lock should be held when calling this function
500 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)501 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
502 struct nvmet_ns *ns)
503 {
504 struct device *clients[2];
505 struct pci_dev *p2p_dev;
506 int ret;
507
508 if (!ctrl->p2p_client || !ns->use_p2pmem)
509 return;
510
511 if (ns->p2p_dev) {
512 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
513 if (ret < 0)
514 return;
515
516 p2p_dev = pci_dev_get(ns->p2p_dev);
517 } else {
518 clients[0] = ctrl->p2p_client;
519 clients[1] = nvmet_ns_dev(ns);
520
521 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
522 if (!p2p_dev) {
523 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
524 dev_name(ctrl->p2p_client), ns->device_path);
525 return;
526 }
527 }
528
529 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
530 if (ret < 0)
531 pci_dev_put(p2p_dev);
532
533 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
534 ns->nsid);
535 }
536
nvmet_ns_revalidate(struct nvmet_ns * ns)537 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
538 {
539 loff_t oldsize = ns->size;
540
541 if (ns->bdev)
542 nvmet_bdev_ns_revalidate(ns);
543 else
544 nvmet_file_ns_revalidate(ns);
545
546 return oldsize != ns->size;
547 }
548
nvmet_ns_enable(struct nvmet_ns * ns)549 int nvmet_ns_enable(struct nvmet_ns *ns)
550 {
551 struct nvmet_subsys *subsys = ns->subsys;
552 struct nvmet_ctrl *ctrl;
553 int ret;
554
555 mutex_lock(&subsys->lock);
556 ret = 0;
557
558 if (nvmet_is_passthru_subsys(subsys)) {
559 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
560 goto out_unlock;
561 }
562
563 if (ns->enabled)
564 goto out_unlock;
565
566 ret = -EMFILE;
567 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
568 goto out_unlock;
569
570 ret = nvmet_bdev_ns_enable(ns);
571 if (ret == -ENOTBLK)
572 ret = nvmet_file_ns_enable(ns);
573 if (ret)
574 goto out_unlock;
575
576 ret = nvmet_p2pmem_ns_enable(ns);
577 if (ret)
578 goto out_dev_disable;
579
580 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
581 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
582
583 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
584 0, GFP_KERNEL);
585 if (ret)
586 goto out_dev_put;
587
588 if (ns->nsid > subsys->max_nsid)
589 subsys->max_nsid = ns->nsid;
590
591 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
592 if (ret)
593 goto out_restore_subsys_maxnsid;
594
595 subsys->nr_namespaces++;
596
597 nvmet_ns_changed(subsys, ns->nsid);
598 ns->enabled = true;
599 ret = 0;
600 out_unlock:
601 mutex_unlock(&subsys->lock);
602 return ret;
603
604 out_restore_subsys_maxnsid:
605 subsys->max_nsid = nvmet_max_nsid(subsys);
606 percpu_ref_exit(&ns->ref);
607 out_dev_put:
608 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
609 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
610 out_dev_disable:
611 nvmet_ns_dev_disable(ns);
612 goto out_unlock;
613 }
614
nvmet_ns_disable(struct nvmet_ns * ns)615 void nvmet_ns_disable(struct nvmet_ns *ns)
616 {
617 struct nvmet_subsys *subsys = ns->subsys;
618 struct nvmet_ctrl *ctrl;
619
620 mutex_lock(&subsys->lock);
621 if (!ns->enabled)
622 goto out_unlock;
623
624 ns->enabled = false;
625 xa_erase(&ns->subsys->namespaces, ns->nsid);
626 if (ns->nsid == subsys->max_nsid)
627 subsys->max_nsid = nvmet_max_nsid(subsys);
628
629 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
630 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
631
632 mutex_unlock(&subsys->lock);
633
634 /*
635 * Now that we removed the namespaces from the lookup list, we
636 * can kill the per_cpu ref and wait for any remaining references
637 * to be dropped, as well as a RCU grace period for anyone only
638 * using the namepace under rcu_read_lock(). Note that we can't
639 * use call_rcu here as we need to ensure the namespaces have
640 * been fully destroyed before unloading the module.
641 */
642 percpu_ref_kill(&ns->ref);
643 synchronize_rcu();
644 wait_for_completion(&ns->disable_done);
645 percpu_ref_exit(&ns->ref);
646
647 mutex_lock(&subsys->lock);
648
649 subsys->nr_namespaces--;
650 nvmet_ns_changed(subsys, ns->nsid);
651 nvmet_ns_dev_disable(ns);
652 out_unlock:
653 mutex_unlock(&subsys->lock);
654 }
655
nvmet_ns_free(struct nvmet_ns * ns)656 void nvmet_ns_free(struct nvmet_ns *ns)
657 {
658 nvmet_ns_disable(ns);
659
660 down_write(&nvmet_ana_sem);
661 nvmet_ana_group_enabled[ns->anagrpid]--;
662 up_write(&nvmet_ana_sem);
663
664 kfree(ns->device_path);
665 kfree(ns);
666 }
667
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)668 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
669 {
670 struct nvmet_ns *ns;
671
672 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
673 if (!ns)
674 return NULL;
675
676 init_completion(&ns->disable_done);
677
678 ns->nsid = nsid;
679 ns->subsys = subsys;
680
681 down_write(&nvmet_ana_sem);
682 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
683 nvmet_ana_group_enabled[ns->anagrpid]++;
684 up_write(&nvmet_ana_sem);
685
686 uuid_gen(&ns->uuid);
687 ns->buffered_io = false;
688 ns->csi = NVME_CSI_NVM;
689
690 return ns;
691 }
692
nvmet_update_sq_head(struct nvmet_req * req)693 static void nvmet_update_sq_head(struct nvmet_req *req)
694 {
695 if (req->sq->size) {
696 u32 old_sqhd, new_sqhd;
697
698 do {
699 old_sqhd = req->sq->sqhd;
700 new_sqhd = (old_sqhd + 1) % req->sq->size;
701 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
702 old_sqhd);
703 }
704 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
705 }
706
nvmet_set_error(struct nvmet_req * req,u16 status)707 static void nvmet_set_error(struct nvmet_req *req, u16 status)
708 {
709 struct nvmet_ctrl *ctrl = req->sq->ctrl;
710 struct nvme_error_slot *new_error_slot;
711 unsigned long flags;
712
713 req->cqe->status = cpu_to_le16(status << 1);
714
715 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
716 return;
717
718 spin_lock_irqsave(&ctrl->error_lock, flags);
719 ctrl->err_counter++;
720 new_error_slot =
721 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
722
723 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
724 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
725 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
726 new_error_slot->status_field = cpu_to_le16(status << 1);
727 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
728 new_error_slot->lba = cpu_to_le64(req->error_slba);
729 new_error_slot->nsid = req->cmd->common.nsid;
730 spin_unlock_irqrestore(&ctrl->error_lock, flags);
731
732 /* set the more bit for this request */
733 req->cqe->status |= cpu_to_le16(1 << 14);
734 }
735
__nvmet_req_complete(struct nvmet_req * req,u16 status)736 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
737 {
738 struct nvmet_ns *ns = req->ns;
739
740 if (!req->sq->sqhd_disabled)
741 nvmet_update_sq_head(req);
742 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
743 req->cqe->command_id = req->cmd->common.command_id;
744
745 if (unlikely(status))
746 nvmet_set_error(req, status);
747
748 trace_nvmet_req_complete(req);
749
750 req->ops->queue_response(req);
751 if (ns)
752 nvmet_put_namespace(ns);
753 }
754
nvmet_req_complete(struct nvmet_req * req,u16 status)755 void nvmet_req_complete(struct nvmet_req *req, u16 status)
756 {
757 __nvmet_req_complete(req, status);
758 percpu_ref_put(&req->sq->ref);
759 }
760 EXPORT_SYMBOL_GPL(nvmet_req_complete);
761
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)762 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
763 u16 qid, u16 size)
764 {
765 cq->qid = qid;
766 cq->size = size;
767 }
768
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)769 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
770 u16 qid, u16 size)
771 {
772 sq->sqhd = 0;
773 sq->qid = qid;
774 sq->size = size;
775
776 ctrl->sqs[qid] = sq;
777 }
778
nvmet_confirm_sq(struct percpu_ref * ref)779 static void nvmet_confirm_sq(struct percpu_ref *ref)
780 {
781 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
782
783 complete(&sq->confirm_done);
784 }
785
nvmet_sq_destroy(struct nvmet_sq * sq)786 void nvmet_sq_destroy(struct nvmet_sq *sq)
787 {
788 struct nvmet_ctrl *ctrl = sq->ctrl;
789
790 /*
791 * If this is the admin queue, complete all AERs so that our
792 * queue doesn't have outstanding requests on it.
793 */
794 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
795 nvmet_async_events_failall(ctrl);
796 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
797 wait_for_completion(&sq->confirm_done);
798 wait_for_completion(&sq->free_done);
799 percpu_ref_exit(&sq->ref);
800 nvmet_auth_sq_free(sq);
801
802 if (ctrl) {
803 /*
804 * The teardown flow may take some time, and the host may not
805 * send us keep-alive during this period, hence reset the
806 * traffic based keep-alive timer so we don't trigger a
807 * controller teardown as a result of a keep-alive expiration.
808 */
809 ctrl->reset_tbkas = true;
810 sq->ctrl->sqs[sq->qid] = NULL;
811 nvmet_ctrl_put(ctrl);
812 sq->ctrl = NULL; /* allows reusing the queue later */
813 }
814 }
815 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
816
nvmet_sq_free(struct percpu_ref * ref)817 static void nvmet_sq_free(struct percpu_ref *ref)
818 {
819 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
820
821 complete(&sq->free_done);
822 }
823
nvmet_sq_init(struct nvmet_sq * sq)824 int nvmet_sq_init(struct nvmet_sq *sq)
825 {
826 int ret;
827
828 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
829 if (ret) {
830 pr_err("percpu_ref init failed!\n");
831 return ret;
832 }
833 init_completion(&sq->free_done);
834 init_completion(&sq->confirm_done);
835 nvmet_auth_sq_init(sq);
836
837 return 0;
838 }
839 EXPORT_SYMBOL_GPL(nvmet_sq_init);
840
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)841 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
842 struct nvmet_ns *ns)
843 {
844 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
845
846 if (unlikely(state == NVME_ANA_INACCESSIBLE))
847 return NVME_SC_ANA_INACCESSIBLE;
848 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
849 return NVME_SC_ANA_PERSISTENT_LOSS;
850 if (unlikely(state == NVME_ANA_CHANGE))
851 return NVME_SC_ANA_TRANSITION;
852 return 0;
853 }
854
nvmet_io_cmd_check_access(struct nvmet_req * req)855 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
856 {
857 if (unlikely(req->ns->readonly)) {
858 switch (req->cmd->common.opcode) {
859 case nvme_cmd_read:
860 case nvme_cmd_flush:
861 break;
862 default:
863 return NVME_SC_NS_WRITE_PROTECTED;
864 }
865 }
866
867 return 0;
868 }
869
nvmet_parse_io_cmd(struct nvmet_req * req)870 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
871 {
872 struct nvme_command *cmd = req->cmd;
873 u16 ret;
874
875 if (nvme_is_fabrics(cmd))
876 return nvmet_parse_fabrics_io_cmd(req);
877
878 if (unlikely(!nvmet_check_auth_status(req)))
879 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
880
881 ret = nvmet_check_ctrl_status(req);
882 if (unlikely(ret))
883 return ret;
884
885 if (nvmet_is_passthru_req(req))
886 return nvmet_parse_passthru_io_cmd(req);
887
888 ret = nvmet_req_find_ns(req);
889 if (unlikely(ret))
890 return ret;
891
892 ret = nvmet_check_ana_state(req->port, req->ns);
893 if (unlikely(ret)) {
894 req->error_loc = offsetof(struct nvme_common_command, nsid);
895 return ret;
896 }
897 ret = nvmet_io_cmd_check_access(req);
898 if (unlikely(ret)) {
899 req->error_loc = offsetof(struct nvme_common_command, nsid);
900 return ret;
901 }
902
903 switch (req->ns->csi) {
904 case NVME_CSI_NVM:
905 if (req->ns->file)
906 return nvmet_file_parse_io_cmd(req);
907 return nvmet_bdev_parse_io_cmd(req);
908 case NVME_CSI_ZNS:
909 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
910 return nvmet_bdev_zns_parse_io_cmd(req);
911 return NVME_SC_INVALID_IO_CMD_SET;
912 default:
913 return NVME_SC_INVALID_IO_CMD_SET;
914 }
915 }
916
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)917 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
918 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
919 {
920 u8 flags = req->cmd->common.flags;
921 u16 status;
922
923 req->cq = cq;
924 req->sq = sq;
925 req->ops = ops;
926 req->sg = NULL;
927 req->metadata_sg = NULL;
928 req->sg_cnt = 0;
929 req->metadata_sg_cnt = 0;
930 req->transfer_len = 0;
931 req->metadata_len = 0;
932 req->cqe->status = 0;
933 req->cqe->sq_head = 0;
934 req->ns = NULL;
935 req->error_loc = NVMET_NO_ERROR_LOC;
936 req->error_slba = 0;
937
938 /* no support for fused commands yet */
939 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
940 req->error_loc = offsetof(struct nvme_common_command, flags);
941 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
942 goto fail;
943 }
944
945 /*
946 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
947 * contains an address of a single contiguous physical buffer that is
948 * byte aligned.
949 */
950 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
951 req->error_loc = offsetof(struct nvme_common_command, flags);
952 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
953 goto fail;
954 }
955
956 if (unlikely(!req->sq->ctrl))
957 /* will return an error for any non-connect command: */
958 status = nvmet_parse_connect_cmd(req);
959 else if (likely(req->sq->qid != 0))
960 status = nvmet_parse_io_cmd(req);
961 else
962 status = nvmet_parse_admin_cmd(req);
963
964 if (status)
965 goto fail;
966
967 trace_nvmet_req_init(req, req->cmd);
968
969 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
970 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
971 goto fail;
972 }
973
974 if (sq->ctrl)
975 sq->ctrl->reset_tbkas = true;
976
977 return true;
978
979 fail:
980 __nvmet_req_complete(req, status);
981 return false;
982 }
983 EXPORT_SYMBOL_GPL(nvmet_req_init);
984
nvmet_req_uninit(struct nvmet_req * req)985 void nvmet_req_uninit(struct nvmet_req *req)
986 {
987 percpu_ref_put(&req->sq->ref);
988 if (req->ns)
989 nvmet_put_namespace(req->ns);
990 }
991 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
992
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)993 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
994 {
995 if (unlikely(len != req->transfer_len)) {
996 req->error_loc = offsetof(struct nvme_common_command, dptr);
997 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
998 return false;
999 }
1000
1001 return true;
1002 }
1003 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1004
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1005 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1006 {
1007 if (unlikely(data_len > req->transfer_len)) {
1008 req->error_loc = offsetof(struct nvme_common_command, dptr);
1009 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1010 return false;
1011 }
1012
1013 return true;
1014 }
1015
nvmet_data_transfer_len(struct nvmet_req * req)1016 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1017 {
1018 return req->transfer_len - req->metadata_len;
1019 }
1020
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1021 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1022 struct nvmet_req *req)
1023 {
1024 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1025 nvmet_data_transfer_len(req));
1026 if (!req->sg)
1027 goto out_err;
1028
1029 if (req->metadata_len) {
1030 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1031 &req->metadata_sg_cnt, req->metadata_len);
1032 if (!req->metadata_sg)
1033 goto out_free_sg;
1034 }
1035
1036 req->p2p_dev = p2p_dev;
1037
1038 return 0;
1039 out_free_sg:
1040 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1041 out_err:
1042 return -ENOMEM;
1043 }
1044
nvmet_req_find_p2p_dev(struct nvmet_req * req)1045 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1046 {
1047 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1048 !req->sq->ctrl || !req->sq->qid || !req->ns)
1049 return NULL;
1050 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1051 }
1052
nvmet_req_alloc_sgls(struct nvmet_req * req)1053 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1054 {
1055 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1056
1057 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1058 return 0;
1059
1060 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1061 &req->sg_cnt);
1062 if (unlikely(!req->sg))
1063 goto out;
1064
1065 if (req->metadata_len) {
1066 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1067 &req->metadata_sg_cnt);
1068 if (unlikely(!req->metadata_sg))
1069 goto out_free;
1070 }
1071
1072 return 0;
1073 out_free:
1074 sgl_free(req->sg);
1075 out:
1076 return -ENOMEM;
1077 }
1078 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1079
nvmet_req_free_sgls(struct nvmet_req * req)1080 void nvmet_req_free_sgls(struct nvmet_req *req)
1081 {
1082 if (req->p2p_dev) {
1083 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1084 if (req->metadata_sg)
1085 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1086 req->p2p_dev = NULL;
1087 } else {
1088 sgl_free(req->sg);
1089 if (req->metadata_sg)
1090 sgl_free(req->metadata_sg);
1091 }
1092
1093 req->sg = NULL;
1094 req->metadata_sg = NULL;
1095 req->sg_cnt = 0;
1096 req->metadata_sg_cnt = 0;
1097 }
1098 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1099
nvmet_cc_en(u32 cc)1100 static inline bool nvmet_cc_en(u32 cc)
1101 {
1102 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1103 }
1104
nvmet_cc_css(u32 cc)1105 static inline u8 nvmet_cc_css(u32 cc)
1106 {
1107 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1108 }
1109
nvmet_cc_mps(u32 cc)1110 static inline u8 nvmet_cc_mps(u32 cc)
1111 {
1112 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1113 }
1114
nvmet_cc_ams(u32 cc)1115 static inline u8 nvmet_cc_ams(u32 cc)
1116 {
1117 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1118 }
1119
nvmet_cc_shn(u32 cc)1120 static inline u8 nvmet_cc_shn(u32 cc)
1121 {
1122 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1123 }
1124
nvmet_cc_iosqes(u32 cc)1125 static inline u8 nvmet_cc_iosqes(u32 cc)
1126 {
1127 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1128 }
1129
nvmet_cc_iocqes(u32 cc)1130 static inline u8 nvmet_cc_iocqes(u32 cc)
1131 {
1132 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1133 }
1134
nvmet_css_supported(u8 cc_css)1135 static inline bool nvmet_css_supported(u8 cc_css)
1136 {
1137 switch (cc_css << NVME_CC_CSS_SHIFT) {
1138 case NVME_CC_CSS_NVM:
1139 case NVME_CC_CSS_CSI:
1140 return true;
1141 default:
1142 return false;
1143 }
1144 }
1145
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1146 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1147 {
1148 lockdep_assert_held(&ctrl->lock);
1149
1150 /*
1151 * Only I/O controllers should verify iosqes,iocqes.
1152 * Strictly speaking, the spec says a discovery controller
1153 * should verify iosqes,iocqes are zeroed, however that
1154 * would break backwards compatibility, so don't enforce it.
1155 */
1156 if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1157 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1158 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1159 ctrl->csts = NVME_CSTS_CFS;
1160 return;
1161 }
1162
1163 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1164 nvmet_cc_ams(ctrl->cc) != 0 ||
1165 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1166 ctrl->csts = NVME_CSTS_CFS;
1167 return;
1168 }
1169
1170 ctrl->csts = NVME_CSTS_RDY;
1171
1172 /*
1173 * Controllers that are not yet enabled should not really enforce the
1174 * keep alive timeout, but we still want to track a timeout and cleanup
1175 * in case a host died before it enabled the controller. Hence, simply
1176 * reset the keep alive timer when the controller is enabled.
1177 */
1178 if (ctrl->kato)
1179 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1180 }
1181
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1182 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1183 {
1184 lockdep_assert_held(&ctrl->lock);
1185
1186 /* XXX: tear down queues? */
1187 ctrl->csts &= ~NVME_CSTS_RDY;
1188 ctrl->cc = 0;
1189 }
1190
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1191 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1192 {
1193 u32 old;
1194
1195 mutex_lock(&ctrl->lock);
1196 old = ctrl->cc;
1197 ctrl->cc = new;
1198
1199 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1200 nvmet_start_ctrl(ctrl);
1201 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1202 nvmet_clear_ctrl(ctrl);
1203 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1204 nvmet_clear_ctrl(ctrl);
1205 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1206 }
1207 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1208 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1209 mutex_unlock(&ctrl->lock);
1210 }
1211
nvmet_init_cap(struct nvmet_ctrl * ctrl)1212 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1213 {
1214 /* command sets supported: NVMe command set: */
1215 ctrl->cap = (1ULL << 37);
1216 /* Controller supports one or more I/O Command Sets */
1217 ctrl->cap |= (1ULL << 43);
1218 /* CC.EN timeout in 500msec units: */
1219 ctrl->cap |= (15ULL << 24);
1220 /* maximum queue entries supported: */
1221 if (ctrl->ops->get_max_queue_size)
1222 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1223 else
1224 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1225
1226 if (nvmet_is_passthru_subsys(ctrl->subsys))
1227 nvmet_passthrough_override_cap(ctrl);
1228 }
1229
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1230 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1231 const char *hostnqn, u16 cntlid,
1232 struct nvmet_req *req)
1233 {
1234 struct nvmet_ctrl *ctrl = NULL;
1235 struct nvmet_subsys *subsys;
1236
1237 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1238 if (!subsys) {
1239 pr_warn("connect request for invalid subsystem %s!\n",
1240 subsysnqn);
1241 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1242 goto out;
1243 }
1244
1245 mutex_lock(&subsys->lock);
1246 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1247 if (ctrl->cntlid == cntlid) {
1248 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1249 pr_warn("hostnqn mismatch.\n");
1250 continue;
1251 }
1252 if (!kref_get_unless_zero(&ctrl->ref))
1253 continue;
1254
1255 /* ctrl found */
1256 goto found;
1257 }
1258 }
1259
1260 ctrl = NULL; /* ctrl not found */
1261 pr_warn("could not find controller %d for subsys %s / host %s\n",
1262 cntlid, subsysnqn, hostnqn);
1263 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1264
1265 found:
1266 mutex_unlock(&subsys->lock);
1267 nvmet_subsys_put(subsys);
1268 out:
1269 return ctrl;
1270 }
1271
nvmet_check_ctrl_status(struct nvmet_req * req)1272 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1273 {
1274 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1275 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1276 req->cmd->common.opcode, req->sq->qid);
1277 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1278 }
1279
1280 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1281 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1282 req->cmd->common.opcode, req->sq->qid);
1283 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1284 }
1285
1286 if (unlikely(!nvmet_check_auth_status(req))) {
1287 pr_warn("qid %d not authenticated\n", req->sq->qid);
1288 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
1289 }
1290 return 0;
1291 }
1292
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1293 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1294 {
1295 struct nvmet_host_link *p;
1296
1297 lockdep_assert_held(&nvmet_config_sem);
1298
1299 if (subsys->allow_any_host)
1300 return true;
1301
1302 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1303 return true;
1304
1305 list_for_each_entry(p, &subsys->hosts, entry) {
1306 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1307 return true;
1308 }
1309
1310 return false;
1311 }
1312
1313 /*
1314 * Note: ctrl->subsys->lock should be held when calling this function
1315 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1316 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1317 struct nvmet_req *req)
1318 {
1319 struct nvmet_ns *ns;
1320 unsigned long idx;
1321
1322 if (!req->p2p_client)
1323 return;
1324
1325 ctrl->p2p_client = get_device(req->p2p_client);
1326
1327 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1328 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1329 }
1330
1331 /*
1332 * Note: ctrl->subsys->lock should be held when calling this function
1333 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1334 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1335 {
1336 struct radix_tree_iter iter;
1337 void __rcu **slot;
1338
1339 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1340 pci_dev_put(radix_tree_deref_slot(slot));
1341
1342 put_device(ctrl->p2p_client);
1343 }
1344
nvmet_fatal_error_handler(struct work_struct * work)1345 static void nvmet_fatal_error_handler(struct work_struct *work)
1346 {
1347 struct nvmet_ctrl *ctrl =
1348 container_of(work, struct nvmet_ctrl, fatal_err_work);
1349
1350 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1351 ctrl->ops->delete_ctrl(ctrl);
1352 }
1353
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1354 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1355 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1356 {
1357 struct nvmet_subsys *subsys;
1358 struct nvmet_ctrl *ctrl;
1359 int ret;
1360 u16 status;
1361
1362 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1363 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1364 if (!subsys) {
1365 pr_warn("connect request for invalid subsystem %s!\n",
1366 subsysnqn);
1367 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1368 req->error_loc = offsetof(struct nvme_common_command, dptr);
1369 goto out;
1370 }
1371
1372 down_read(&nvmet_config_sem);
1373 if (!nvmet_host_allowed(subsys, hostnqn)) {
1374 pr_info("connect by host %s for subsystem %s not allowed\n",
1375 hostnqn, subsysnqn);
1376 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1377 up_read(&nvmet_config_sem);
1378 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1379 req->error_loc = offsetof(struct nvme_common_command, dptr);
1380 goto out_put_subsystem;
1381 }
1382 up_read(&nvmet_config_sem);
1383
1384 status = NVME_SC_INTERNAL;
1385 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1386 if (!ctrl)
1387 goto out_put_subsystem;
1388 mutex_init(&ctrl->lock);
1389
1390 ctrl->port = req->port;
1391 ctrl->ops = req->ops;
1392
1393 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1394 /* By default, set loop targets to clear IDS by default */
1395 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1396 subsys->clear_ids = 1;
1397 #endif
1398
1399 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1400 INIT_LIST_HEAD(&ctrl->async_events);
1401 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1402 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1403 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1404
1405 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1406 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1407
1408 kref_init(&ctrl->ref);
1409 ctrl->subsys = subsys;
1410 nvmet_init_cap(ctrl);
1411 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1412
1413 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1414 sizeof(__le32), GFP_KERNEL);
1415 if (!ctrl->changed_ns_list)
1416 goto out_free_ctrl;
1417
1418 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1419 sizeof(struct nvmet_sq *),
1420 GFP_KERNEL);
1421 if (!ctrl->sqs)
1422 goto out_free_changed_ns_list;
1423
1424 if (subsys->cntlid_min > subsys->cntlid_max)
1425 goto out_free_sqs;
1426
1427 ret = ida_alloc_range(&cntlid_ida,
1428 subsys->cntlid_min, subsys->cntlid_max,
1429 GFP_KERNEL);
1430 if (ret < 0) {
1431 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1432 goto out_free_sqs;
1433 }
1434 ctrl->cntlid = ret;
1435
1436 /*
1437 * Discovery controllers may use some arbitrary high value
1438 * in order to cleanup stale discovery sessions
1439 */
1440 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1441 kato = NVMET_DISC_KATO_MS;
1442
1443 /* keep-alive timeout in seconds */
1444 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1445
1446 ctrl->err_counter = 0;
1447 spin_lock_init(&ctrl->error_lock);
1448
1449 nvmet_start_keep_alive_timer(ctrl);
1450
1451 mutex_lock(&subsys->lock);
1452 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1453 nvmet_setup_p2p_ns_map(ctrl, req);
1454 mutex_unlock(&subsys->lock);
1455
1456 *ctrlp = ctrl;
1457 return 0;
1458
1459 out_free_sqs:
1460 kfree(ctrl->sqs);
1461 out_free_changed_ns_list:
1462 kfree(ctrl->changed_ns_list);
1463 out_free_ctrl:
1464 kfree(ctrl);
1465 out_put_subsystem:
1466 nvmet_subsys_put(subsys);
1467 out:
1468 return status;
1469 }
1470
nvmet_ctrl_free(struct kref * ref)1471 static void nvmet_ctrl_free(struct kref *ref)
1472 {
1473 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1474 struct nvmet_subsys *subsys = ctrl->subsys;
1475
1476 mutex_lock(&subsys->lock);
1477 nvmet_release_p2p_ns_map(ctrl);
1478 list_del(&ctrl->subsys_entry);
1479 mutex_unlock(&subsys->lock);
1480
1481 nvmet_stop_keep_alive_timer(ctrl);
1482
1483 flush_work(&ctrl->async_event_work);
1484 cancel_work_sync(&ctrl->fatal_err_work);
1485
1486 nvmet_destroy_auth(ctrl);
1487
1488 ida_free(&cntlid_ida, ctrl->cntlid);
1489
1490 nvmet_async_events_free(ctrl);
1491 kfree(ctrl->sqs);
1492 kfree(ctrl->changed_ns_list);
1493 kfree(ctrl);
1494
1495 nvmet_subsys_put(subsys);
1496 }
1497
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1498 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1499 {
1500 kref_put(&ctrl->ref, nvmet_ctrl_free);
1501 }
1502
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1503 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1504 {
1505 mutex_lock(&ctrl->lock);
1506 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1507 ctrl->csts |= NVME_CSTS_CFS;
1508 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1509 }
1510 mutex_unlock(&ctrl->lock);
1511 }
1512 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1513
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1514 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1515 const char *subsysnqn)
1516 {
1517 struct nvmet_subsys_link *p;
1518
1519 if (!port)
1520 return NULL;
1521
1522 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1523 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1524 return NULL;
1525 return nvmet_disc_subsys;
1526 }
1527
1528 down_read(&nvmet_config_sem);
1529 list_for_each_entry(p, &port->subsystems, entry) {
1530 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1531 NVMF_NQN_SIZE)) {
1532 if (!kref_get_unless_zero(&p->subsys->ref))
1533 break;
1534 up_read(&nvmet_config_sem);
1535 return p->subsys;
1536 }
1537 }
1538 up_read(&nvmet_config_sem);
1539 return NULL;
1540 }
1541
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1542 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1543 enum nvme_subsys_type type)
1544 {
1545 struct nvmet_subsys *subsys;
1546 char serial[NVMET_SN_MAX_SIZE / 2];
1547 int ret;
1548
1549 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1550 if (!subsys)
1551 return ERR_PTR(-ENOMEM);
1552
1553 subsys->ver = NVMET_DEFAULT_VS;
1554 /* generate a random serial number as our controllers are ephemeral: */
1555 get_random_bytes(&serial, sizeof(serial));
1556 bin2hex(subsys->serial, &serial, sizeof(serial));
1557
1558 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1559 if (!subsys->model_number) {
1560 ret = -ENOMEM;
1561 goto free_subsys;
1562 }
1563
1564 switch (type) {
1565 case NVME_NQN_NVME:
1566 subsys->max_qid = NVMET_NR_QUEUES;
1567 break;
1568 case NVME_NQN_DISC:
1569 case NVME_NQN_CURR:
1570 subsys->max_qid = 0;
1571 break;
1572 default:
1573 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1574 ret = -EINVAL;
1575 goto free_mn;
1576 }
1577 subsys->type = type;
1578 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1579 GFP_KERNEL);
1580 if (!subsys->subsysnqn) {
1581 ret = -ENOMEM;
1582 goto free_mn;
1583 }
1584 subsys->cntlid_min = NVME_CNTLID_MIN;
1585 subsys->cntlid_max = NVME_CNTLID_MAX;
1586 kref_init(&subsys->ref);
1587
1588 mutex_init(&subsys->lock);
1589 xa_init(&subsys->namespaces);
1590 INIT_LIST_HEAD(&subsys->ctrls);
1591 INIT_LIST_HEAD(&subsys->hosts);
1592
1593 return subsys;
1594
1595 free_mn:
1596 kfree(subsys->model_number);
1597 free_subsys:
1598 kfree(subsys);
1599 return ERR_PTR(ret);
1600 }
1601
nvmet_subsys_free(struct kref * ref)1602 static void nvmet_subsys_free(struct kref *ref)
1603 {
1604 struct nvmet_subsys *subsys =
1605 container_of(ref, struct nvmet_subsys, ref);
1606
1607 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1608
1609 xa_destroy(&subsys->namespaces);
1610 nvmet_passthru_subsys_free(subsys);
1611
1612 kfree(subsys->subsysnqn);
1613 kfree(subsys->model_number);
1614 kfree(subsys);
1615 }
1616
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1617 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1618 {
1619 struct nvmet_ctrl *ctrl;
1620
1621 mutex_lock(&subsys->lock);
1622 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1623 ctrl->ops->delete_ctrl(ctrl);
1624 mutex_unlock(&subsys->lock);
1625 }
1626
nvmet_subsys_put(struct nvmet_subsys * subsys)1627 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1628 {
1629 kref_put(&subsys->ref, nvmet_subsys_free);
1630 }
1631
nvmet_init(void)1632 static int __init nvmet_init(void)
1633 {
1634 int error;
1635
1636 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1637
1638 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1639 if (!zbd_wq)
1640 return -ENOMEM;
1641
1642 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1643 WQ_MEM_RECLAIM, 0);
1644 if (!buffered_io_wq) {
1645 error = -ENOMEM;
1646 goto out_free_zbd_work_queue;
1647 }
1648
1649 nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0);
1650 if (!nvmet_wq) {
1651 error = -ENOMEM;
1652 goto out_free_buffered_work_queue;
1653 }
1654
1655 error = nvmet_init_discovery();
1656 if (error)
1657 goto out_free_nvmet_work_queue;
1658
1659 error = nvmet_init_configfs();
1660 if (error)
1661 goto out_exit_discovery;
1662 return 0;
1663
1664 out_exit_discovery:
1665 nvmet_exit_discovery();
1666 out_free_nvmet_work_queue:
1667 destroy_workqueue(nvmet_wq);
1668 out_free_buffered_work_queue:
1669 destroy_workqueue(buffered_io_wq);
1670 out_free_zbd_work_queue:
1671 destroy_workqueue(zbd_wq);
1672 return error;
1673 }
1674
nvmet_exit(void)1675 static void __exit nvmet_exit(void)
1676 {
1677 nvmet_exit_configfs();
1678 nvmet_exit_discovery();
1679 ida_destroy(&cntlid_ida);
1680 destroy_workqueue(nvmet_wq);
1681 destroy_workqueue(buffered_io_wq);
1682 destroy_workqueue(zbd_wq);
1683
1684 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1685 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1686 }
1687
1688 module_init(nvmet_init);
1689 module_exit(nvmet_exit);
1690
1691 MODULE_LICENSE("GPL v2");
1692