1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 const struct nvmem_keepout *keepout;
38 unsigned int nkeepout;
39 nvmem_reg_read_t reg_read;
40 nvmem_reg_write_t reg_write;
41 struct gpio_desc *wp_gpio;
42 struct nvmem_layout *layout;
43 void *priv;
44 };
45
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48 #define FLAG_COMPAT BIT(0)
49 struct nvmem_cell_entry {
50 const char *name;
51 int offset;
52 size_t raw_len;
53 int bytes;
54 int bit_offset;
55 int nbits;
56 nvmem_cell_post_process_t read_post_process;
57 void *priv;
58 struct device_node *np;
59 struct nvmem_device *nvmem;
60 struct list_head node;
61 };
62
63 struct nvmem_cell {
64 struct nvmem_cell_entry *entry;
65 const char *id;
66 int index;
67 };
68
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84 void *val, size_t bytes)
85 {
86 if (nvmem->reg_read)
87 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88
89 return -EINVAL;
90 }
91
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93 void *val, size_t bytes)
94 {
95 int ret;
96
97 if (nvmem->reg_write) {
98 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101 return ret;
102 }
103
104 return -EINVAL;
105 }
106
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108 unsigned int offset, void *val,
109 size_t bytes, int write)
110 {
111
112 unsigned int end = offset + bytes;
113 unsigned int kend, ksize;
114 const struct nvmem_keepout *keepout = nvmem->keepout;
115 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116 int rc;
117
118 /*
119 * Skip all keepouts before the range being accessed.
120 * Keepouts are sorted.
121 */
122 while ((keepout < keepoutend) && (keepout->end <= offset))
123 keepout++;
124
125 while ((offset < end) && (keepout < keepoutend)) {
126 /* Access the valid portion before the keepout. */
127 if (offset < keepout->start) {
128 kend = min(end, keepout->start);
129 ksize = kend - offset;
130 if (write)
131 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132 else
133 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134
135 if (rc)
136 return rc;
137
138 offset += ksize;
139 val += ksize;
140 }
141
142 /*
143 * Now we're aligned to the start of this keepout zone. Go
144 * through it.
145 */
146 kend = min(end, keepout->end);
147 ksize = kend - offset;
148 if (!write)
149 memset(val, keepout->value, ksize);
150
151 val += ksize;
152 offset += ksize;
153 keepout++;
154 }
155
156 /*
157 * If we ran out of keepouts but there's still stuff to do, send it
158 * down directly
159 */
160 if (offset < end) {
161 ksize = end - offset;
162 if (write)
163 return __nvmem_reg_write(nvmem, offset, val, ksize);
164 else
165 return __nvmem_reg_read(nvmem, offset, val, ksize);
166 }
167
168 return 0;
169 }
170
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172 void *val, size_t bytes)
173 {
174 if (!nvmem->nkeepout)
175 return __nvmem_reg_read(nvmem, offset, val, bytes);
176
177 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181 void *val, size_t bytes)
182 {
183 if (!nvmem->nkeepout)
184 return __nvmem_reg_write(nvmem, offset, val, bytes);
185
186 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191 [NVMEM_TYPE_UNKNOWN] = "Unknown",
192 [NVMEM_TYPE_EEPROM] = "EEPROM",
193 [NVMEM_TYPE_OTP] = "OTP",
194 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195 [NVMEM_TYPE_FRAM] = "FRAM",
196 };
197
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201
type_show(struct device * dev,struct device_attribute * attr,char * buf)202 static ssize_t type_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct nvmem_device *nvmem = to_nvmem_device(dev);
206
207 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209
210 static DEVICE_ATTR_RO(type);
211
212 static struct attribute *nvmem_attrs[] = {
213 &dev_attr_type.attr,
214 NULL,
215 };
216
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218 struct bin_attribute *attr, char *buf,
219 loff_t pos, size_t count)
220 {
221 struct device *dev;
222 struct nvmem_device *nvmem;
223 int rc;
224
225 if (attr->private)
226 dev = attr->private;
227 else
228 dev = kobj_to_dev(kobj);
229 nvmem = to_nvmem_device(dev);
230
231 /* Stop the user from reading */
232 if (pos >= nvmem->size)
233 return 0;
234
235 if (!IS_ALIGNED(pos, nvmem->stride))
236 return -EINVAL;
237
238 if (count < nvmem->word_size)
239 return -EINVAL;
240
241 if (pos + count > nvmem->size)
242 count = nvmem->size - pos;
243
244 count = round_down(count, nvmem->word_size);
245
246 if (!nvmem->reg_read)
247 return -EPERM;
248
249 rc = nvmem_reg_read(nvmem, pos, buf, count);
250
251 if (rc)
252 return rc;
253
254 return count;
255 }
256
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258 struct bin_attribute *attr, char *buf,
259 loff_t pos, size_t count)
260 {
261 struct device *dev;
262 struct nvmem_device *nvmem;
263 int rc;
264
265 if (attr->private)
266 dev = attr->private;
267 else
268 dev = kobj_to_dev(kobj);
269 nvmem = to_nvmem_device(dev);
270
271 /* Stop the user from writing */
272 if (pos >= nvmem->size)
273 return -EFBIG;
274
275 if (!IS_ALIGNED(pos, nvmem->stride))
276 return -EINVAL;
277
278 if (count < nvmem->word_size)
279 return -EINVAL;
280
281 if (pos + count > nvmem->size)
282 count = nvmem->size - pos;
283
284 count = round_down(count, nvmem->word_size);
285
286 if (!nvmem->reg_write)
287 return -EPERM;
288
289 rc = nvmem_reg_write(nvmem, pos, buf, count);
290
291 if (rc)
292 return rc;
293
294 return count;
295 }
296
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299 umode_t mode = 0400;
300
301 if (!nvmem->root_only)
302 mode |= 0044;
303
304 if (!nvmem->read_only)
305 mode |= 0200;
306
307 if (!nvmem->reg_write)
308 mode &= ~0200;
309
310 if (!nvmem->reg_read)
311 mode &= ~0444;
312
313 return mode;
314 }
315
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317 struct bin_attribute *attr, int i)
318 {
319 struct device *dev = kobj_to_dev(kobj);
320 struct nvmem_device *nvmem = to_nvmem_device(dev);
321
322 attr->size = nvmem->size;
323
324 return nvmem_bin_attr_get_umode(nvmem);
325 }
326
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329 .attr = {
330 .name = "nvmem",
331 .mode = 0644,
332 },
333 .read = bin_attr_nvmem_read,
334 .write = bin_attr_nvmem_write,
335 };
336
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338 &bin_attr_rw_nvmem,
339 NULL,
340 };
341
342 static const struct attribute_group nvmem_bin_group = {
343 .bin_attrs = nvmem_bin_attributes,
344 .attrs = nvmem_attrs,
345 .is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347
348 static const struct attribute_group *nvmem_dev_groups[] = {
349 &nvmem_bin_group,
350 NULL,
351 };
352
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354 .attr = {
355 .name = "eeprom",
356 },
357 .read = bin_attr_nvmem_read,
358 .write = bin_attr_nvmem_write,
359 };
360
361 /*
362 * nvmem_setup_compat() - Create an additional binary entry in
363 * drivers sys directory, to be backwards compatible with the older
364 * drivers/misc/eeprom drivers.
365 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367 const struct nvmem_config *config)
368 {
369 int rval;
370
371 if (!config->compat)
372 return 0;
373
374 if (!config->base_dev)
375 return -EINVAL;
376
377 if (config->type == NVMEM_TYPE_FRAM)
378 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
379
380 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
381 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
382 nvmem->eeprom.size = nvmem->size;
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384 nvmem->eeprom.attr.key = &eeprom_lock_key;
385 #endif
386 nvmem->eeprom.private = &nvmem->dev;
387 nvmem->base_dev = config->base_dev;
388
389 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
390 if (rval) {
391 dev_err(&nvmem->dev,
392 "Failed to create eeprom binary file %d\n", rval);
393 return rval;
394 }
395
396 nvmem->flags |= FLAG_COMPAT;
397
398 return 0;
399 }
400
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 const struct nvmem_config *config)
403 {
404 if (config->compat)
405 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
406 }
407
408 #else /* CONFIG_NVMEM_SYSFS */
409
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)410 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
411 const struct nvmem_config *config)
412 {
413 return -ENOSYS;
414 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)415 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
416 const struct nvmem_config *config)
417 {
418 }
419
420 #endif /* CONFIG_NVMEM_SYSFS */
421
nvmem_release(struct device * dev)422 static void nvmem_release(struct device *dev)
423 {
424 struct nvmem_device *nvmem = to_nvmem_device(dev);
425
426 ida_free(&nvmem_ida, nvmem->id);
427 gpiod_put(nvmem->wp_gpio);
428 kfree(nvmem);
429 }
430
431 static const struct device_type nvmem_provider_type = {
432 .release = nvmem_release,
433 };
434
435 static struct bus_type nvmem_bus_type = {
436 .name = "nvmem",
437 };
438
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)439 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
440 {
441 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
442 mutex_lock(&nvmem_mutex);
443 list_del(&cell->node);
444 mutex_unlock(&nvmem_mutex);
445 of_node_put(cell->np);
446 kfree_const(cell->name);
447 kfree(cell);
448 }
449
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)450 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
451 {
452 struct nvmem_cell_entry *cell, *p;
453
454 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
455 nvmem_cell_entry_drop(cell);
456 }
457
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)458 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
459 {
460 mutex_lock(&nvmem_mutex);
461 list_add_tail(&cell->node, &cell->nvmem->cells);
462 mutex_unlock(&nvmem_mutex);
463 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
464 }
465
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)466 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
467 const struct nvmem_cell_info *info,
468 struct nvmem_cell_entry *cell)
469 {
470 cell->nvmem = nvmem;
471 cell->offset = info->offset;
472 cell->raw_len = info->raw_len ?: info->bytes;
473 cell->bytes = info->bytes;
474 cell->name = info->name;
475 cell->read_post_process = info->read_post_process;
476 cell->priv = info->priv;
477
478 cell->bit_offset = info->bit_offset;
479 cell->nbits = info->nbits;
480 cell->np = info->np;
481
482 if (cell->nbits)
483 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
484 BITS_PER_BYTE);
485
486 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
487 dev_err(&nvmem->dev,
488 "cell %s unaligned to nvmem stride %d\n",
489 cell->name ?: "<unknown>", nvmem->stride);
490 return -EINVAL;
491 }
492
493 return 0;
494 }
495
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)496 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
497 const struct nvmem_cell_info *info,
498 struct nvmem_cell_entry *cell)
499 {
500 int err;
501
502 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
503 if (err)
504 return err;
505
506 cell->name = kstrdup_const(info->name, GFP_KERNEL);
507 if (!cell->name)
508 return -ENOMEM;
509
510 return 0;
511 }
512
513 /**
514 * nvmem_add_one_cell() - Add one cell information to an nvmem device
515 *
516 * @nvmem: nvmem device to add cells to.
517 * @info: nvmem cell info to add to the device
518 *
519 * Return: 0 or negative error code on failure.
520 */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)521 int nvmem_add_one_cell(struct nvmem_device *nvmem,
522 const struct nvmem_cell_info *info)
523 {
524 struct nvmem_cell_entry *cell;
525 int rval;
526
527 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
528 if (!cell)
529 return -ENOMEM;
530
531 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
532 if (rval) {
533 kfree(cell);
534 return rval;
535 }
536
537 nvmem_cell_entry_add(cell);
538
539 return 0;
540 }
541 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
542
543 /**
544 * nvmem_add_cells() - Add cell information to an nvmem device
545 *
546 * @nvmem: nvmem device to add cells to.
547 * @info: nvmem cell info to add to the device
548 * @ncells: number of cells in info
549 *
550 * Return: 0 or negative error code on failure.
551 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)552 static int nvmem_add_cells(struct nvmem_device *nvmem,
553 const struct nvmem_cell_info *info,
554 int ncells)
555 {
556 int i, rval;
557
558 for (i = 0; i < ncells; i++) {
559 rval = nvmem_add_one_cell(nvmem, &info[i]);
560 if (rval)
561 return rval;
562 }
563
564 return 0;
565 }
566
567 /**
568 * nvmem_register_notifier() - Register a notifier block for nvmem events.
569 *
570 * @nb: notifier block to be called on nvmem events.
571 *
572 * Return: 0 on success, negative error number on failure.
573 */
nvmem_register_notifier(struct notifier_block * nb)574 int nvmem_register_notifier(struct notifier_block *nb)
575 {
576 return blocking_notifier_chain_register(&nvmem_notifier, nb);
577 }
578 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
579
580 /**
581 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
582 *
583 * @nb: notifier block to be unregistered.
584 *
585 * Return: 0 on success, negative error number on failure.
586 */
nvmem_unregister_notifier(struct notifier_block * nb)587 int nvmem_unregister_notifier(struct notifier_block *nb)
588 {
589 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
590 }
591 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
592
nvmem_add_cells_from_table(struct nvmem_device * nvmem)593 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
594 {
595 const struct nvmem_cell_info *info;
596 struct nvmem_cell_table *table;
597 struct nvmem_cell_entry *cell;
598 int rval = 0, i;
599
600 mutex_lock(&nvmem_cell_mutex);
601 list_for_each_entry(table, &nvmem_cell_tables, node) {
602 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
603 for (i = 0; i < table->ncells; i++) {
604 info = &table->cells[i];
605
606 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
607 if (!cell) {
608 rval = -ENOMEM;
609 goto out;
610 }
611
612 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
613 if (rval) {
614 kfree(cell);
615 goto out;
616 }
617
618 nvmem_cell_entry_add(cell);
619 }
620 }
621 }
622
623 out:
624 mutex_unlock(&nvmem_cell_mutex);
625 return rval;
626 }
627
628 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)629 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
630 {
631 struct nvmem_cell_entry *iter, *cell = NULL;
632
633 mutex_lock(&nvmem_mutex);
634 list_for_each_entry(iter, &nvmem->cells, node) {
635 if (strcmp(cell_id, iter->name) == 0) {
636 cell = iter;
637 break;
638 }
639 }
640 mutex_unlock(&nvmem_mutex);
641
642 return cell;
643 }
644
nvmem_validate_keepouts(struct nvmem_device * nvmem)645 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
646 {
647 unsigned int cur = 0;
648 const struct nvmem_keepout *keepout = nvmem->keepout;
649 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
650
651 while (keepout < keepoutend) {
652 /* Ensure keepouts are sorted and don't overlap. */
653 if (keepout->start < cur) {
654 dev_err(&nvmem->dev,
655 "Keepout regions aren't sorted or overlap.\n");
656
657 return -ERANGE;
658 }
659
660 if (keepout->end < keepout->start) {
661 dev_err(&nvmem->dev,
662 "Invalid keepout region.\n");
663
664 return -EINVAL;
665 }
666
667 /*
668 * Validate keepouts (and holes between) don't violate
669 * word_size constraints.
670 */
671 if ((keepout->end - keepout->start < nvmem->word_size) ||
672 ((keepout->start != cur) &&
673 (keepout->start - cur < nvmem->word_size))) {
674
675 dev_err(&nvmem->dev,
676 "Keepout regions violate word_size constraints.\n");
677
678 return -ERANGE;
679 }
680
681 /* Validate keepouts don't violate stride (alignment). */
682 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
683 !IS_ALIGNED(keepout->end, nvmem->stride)) {
684
685 dev_err(&nvmem->dev,
686 "Keepout regions violate stride.\n");
687
688 return -EINVAL;
689 }
690
691 cur = keepout->end;
692 keepout++;
693 }
694
695 return 0;
696 }
697
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)698 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
699 {
700 struct nvmem_layout *layout = nvmem->layout;
701 struct device *dev = &nvmem->dev;
702 struct device_node *child;
703 const __be32 *addr;
704 int len, ret;
705
706 for_each_child_of_node(np, child) {
707 struct nvmem_cell_info info = {0};
708
709 addr = of_get_property(child, "reg", &len);
710 if (!addr)
711 continue;
712 if (len < 2 * sizeof(u32)) {
713 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
714 of_node_put(child);
715 return -EINVAL;
716 }
717
718 info.offset = be32_to_cpup(addr++);
719 info.bytes = be32_to_cpup(addr);
720 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
721
722 addr = of_get_property(child, "bits", &len);
723 if (addr && len == (2 * sizeof(u32))) {
724 info.bit_offset = be32_to_cpup(addr++);
725 info.nbits = be32_to_cpup(addr);
726 }
727
728 info.np = of_node_get(child);
729
730 if (layout && layout->fixup_cell_info)
731 layout->fixup_cell_info(nvmem, layout, &info);
732
733 ret = nvmem_add_one_cell(nvmem, &info);
734 kfree(info.name);
735 if (ret) {
736 of_node_put(child);
737 return ret;
738 }
739 }
740
741 return 0;
742 }
743
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)744 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
745 {
746 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
747 }
748
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)749 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
750 {
751 struct device_node *layout_np;
752 int err = 0;
753
754 layout_np = of_nvmem_layout_get_container(nvmem);
755 if (!layout_np)
756 return 0;
757
758 if (of_device_is_compatible(layout_np, "fixed-layout"))
759 err = nvmem_add_cells_from_dt(nvmem, layout_np);
760
761 of_node_put(layout_np);
762
763 return err;
764 }
765
__nvmem_layout_register(struct nvmem_layout * layout,struct module * owner)766 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
767 {
768 layout->owner = owner;
769
770 spin_lock(&nvmem_layout_lock);
771 list_add(&layout->node, &nvmem_layouts);
772 spin_unlock(&nvmem_layout_lock);
773
774 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
775
776 return 0;
777 }
778 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
779
nvmem_layout_unregister(struct nvmem_layout * layout)780 void nvmem_layout_unregister(struct nvmem_layout *layout)
781 {
782 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
783
784 spin_lock(&nvmem_layout_lock);
785 list_del(&layout->node);
786 spin_unlock(&nvmem_layout_lock);
787 }
788 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
789
nvmem_layout_get(struct nvmem_device * nvmem)790 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
791 {
792 struct device_node *layout_np;
793 struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
794
795 layout_np = of_nvmem_layout_get_container(nvmem);
796 if (!layout_np)
797 return NULL;
798
799 /*
800 * In case the nvmem device was built-in while the layout was built as a
801 * module, we shall manually request the layout driver loading otherwise
802 * we'll never have any match.
803 */
804 of_request_module(layout_np);
805
806 spin_lock(&nvmem_layout_lock);
807
808 list_for_each_entry(l, &nvmem_layouts, node) {
809 if (of_match_node(l->of_match_table, layout_np)) {
810 if (try_module_get(l->owner))
811 layout = l;
812
813 break;
814 }
815 }
816
817 spin_unlock(&nvmem_layout_lock);
818 of_node_put(layout_np);
819
820 return layout;
821 }
822
nvmem_layout_put(struct nvmem_layout * layout)823 static void nvmem_layout_put(struct nvmem_layout *layout)
824 {
825 if (layout)
826 module_put(layout->owner);
827 }
828
nvmem_add_cells_from_layout(struct nvmem_device * nvmem)829 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
830 {
831 struct nvmem_layout *layout = nvmem->layout;
832 int ret;
833
834 if (layout && layout->add_cells) {
835 ret = layout->add_cells(&nvmem->dev, nvmem, layout);
836 if (ret)
837 return ret;
838 }
839
840 return 0;
841 }
842
843 #if IS_ENABLED(CONFIG_OF)
844 /**
845 * of_nvmem_layout_get_container() - Get OF node to layout container.
846 *
847 * @nvmem: nvmem device.
848 *
849 * Return: a node pointer with refcount incremented or NULL if no
850 * container exists. Use of_node_put() on it when done.
851 */
of_nvmem_layout_get_container(struct nvmem_device * nvmem)852 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
853 {
854 return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
855 }
856 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
857 #endif
858
nvmem_layout_get_match_data(struct nvmem_device * nvmem,struct nvmem_layout * layout)859 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
860 struct nvmem_layout *layout)
861 {
862 struct device_node __maybe_unused *layout_np;
863 const struct of_device_id *match;
864
865 layout_np = of_nvmem_layout_get_container(nvmem);
866 match = of_match_node(layout->of_match_table, layout_np);
867
868 return match ? match->data : NULL;
869 }
870 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
871
872 /**
873 * nvmem_register() - Register a nvmem device for given nvmem_config.
874 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
875 *
876 * @config: nvmem device configuration with which nvmem device is created.
877 *
878 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
879 * on success.
880 */
881
nvmem_register(const struct nvmem_config * config)882 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
883 {
884 struct nvmem_device *nvmem;
885 int rval;
886
887 if (!config->dev)
888 return ERR_PTR(-EINVAL);
889
890 if (!config->reg_read && !config->reg_write)
891 return ERR_PTR(-EINVAL);
892
893 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
894 if (!nvmem)
895 return ERR_PTR(-ENOMEM);
896
897 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
898 if (rval < 0) {
899 kfree(nvmem);
900 return ERR_PTR(rval);
901 }
902
903 nvmem->id = rval;
904
905 nvmem->dev.type = &nvmem_provider_type;
906 nvmem->dev.bus = &nvmem_bus_type;
907 nvmem->dev.parent = config->dev;
908
909 device_initialize(&nvmem->dev);
910
911 if (!config->ignore_wp)
912 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
913 GPIOD_OUT_HIGH);
914 if (IS_ERR(nvmem->wp_gpio)) {
915 rval = PTR_ERR(nvmem->wp_gpio);
916 nvmem->wp_gpio = NULL;
917 goto err_put_device;
918 }
919
920 kref_init(&nvmem->refcnt);
921 INIT_LIST_HEAD(&nvmem->cells);
922
923 nvmem->owner = config->owner;
924 if (!nvmem->owner && config->dev->driver)
925 nvmem->owner = config->dev->driver->owner;
926 nvmem->stride = config->stride ?: 1;
927 nvmem->word_size = config->word_size ?: 1;
928 nvmem->size = config->size;
929 nvmem->root_only = config->root_only;
930 nvmem->priv = config->priv;
931 nvmem->type = config->type;
932 nvmem->reg_read = config->reg_read;
933 nvmem->reg_write = config->reg_write;
934 nvmem->keepout = config->keepout;
935 nvmem->nkeepout = config->nkeepout;
936 if (config->of_node)
937 nvmem->dev.of_node = config->of_node;
938 else if (!config->no_of_node)
939 nvmem->dev.of_node = config->dev->of_node;
940
941 switch (config->id) {
942 case NVMEM_DEVID_NONE:
943 rval = dev_set_name(&nvmem->dev, "%s", config->name);
944 break;
945 case NVMEM_DEVID_AUTO:
946 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
947 break;
948 default:
949 rval = dev_set_name(&nvmem->dev, "%s%d",
950 config->name ? : "nvmem",
951 config->name ? config->id : nvmem->id);
952 break;
953 }
954
955 if (rval)
956 goto err_put_device;
957
958 nvmem->read_only = device_property_present(config->dev, "read-only") ||
959 config->read_only || !nvmem->reg_write;
960
961 #ifdef CONFIG_NVMEM_SYSFS
962 nvmem->dev.groups = nvmem_dev_groups;
963 #endif
964
965 if (nvmem->nkeepout) {
966 rval = nvmem_validate_keepouts(nvmem);
967 if (rval)
968 goto err_put_device;
969 }
970
971 if (config->compat) {
972 rval = nvmem_sysfs_setup_compat(nvmem, config);
973 if (rval)
974 goto err_put_device;
975 }
976
977 /*
978 * If the driver supplied a layout by config->layout, the module
979 * pointer will be NULL and nvmem_layout_put() will be a noop.
980 */
981 nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
982 if (IS_ERR(nvmem->layout)) {
983 rval = PTR_ERR(nvmem->layout);
984 nvmem->layout = NULL;
985
986 if (rval == -EPROBE_DEFER)
987 goto err_teardown_compat;
988 }
989
990 if (config->cells) {
991 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
992 if (rval)
993 goto err_remove_cells;
994 }
995
996 rval = nvmem_add_cells_from_table(nvmem);
997 if (rval)
998 goto err_remove_cells;
999
1000 rval = nvmem_add_cells_from_legacy_of(nvmem);
1001 if (rval)
1002 goto err_remove_cells;
1003
1004 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1005 if (rval)
1006 goto err_remove_cells;
1007
1008 rval = nvmem_add_cells_from_layout(nvmem);
1009 if (rval)
1010 goto err_remove_cells;
1011
1012 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1013
1014 rval = device_add(&nvmem->dev);
1015 if (rval)
1016 goto err_remove_cells;
1017
1018 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1019
1020 return nvmem;
1021
1022 err_remove_cells:
1023 nvmem_device_remove_all_cells(nvmem);
1024 nvmem_layout_put(nvmem->layout);
1025 err_teardown_compat:
1026 if (config->compat)
1027 nvmem_sysfs_remove_compat(nvmem, config);
1028 err_put_device:
1029 put_device(&nvmem->dev);
1030
1031 return ERR_PTR(rval);
1032 }
1033 EXPORT_SYMBOL_GPL(nvmem_register);
1034
nvmem_device_release(struct kref * kref)1035 static void nvmem_device_release(struct kref *kref)
1036 {
1037 struct nvmem_device *nvmem;
1038
1039 nvmem = container_of(kref, struct nvmem_device, refcnt);
1040
1041 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1042
1043 if (nvmem->flags & FLAG_COMPAT)
1044 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1045
1046 nvmem_device_remove_all_cells(nvmem);
1047 nvmem_layout_put(nvmem->layout);
1048 device_unregister(&nvmem->dev);
1049 }
1050
1051 /**
1052 * nvmem_unregister() - Unregister previously registered nvmem device
1053 *
1054 * @nvmem: Pointer to previously registered nvmem device.
1055 */
nvmem_unregister(struct nvmem_device * nvmem)1056 void nvmem_unregister(struct nvmem_device *nvmem)
1057 {
1058 if (nvmem)
1059 kref_put(&nvmem->refcnt, nvmem_device_release);
1060 }
1061 EXPORT_SYMBOL_GPL(nvmem_unregister);
1062
devm_nvmem_unregister(void * nvmem)1063 static void devm_nvmem_unregister(void *nvmem)
1064 {
1065 nvmem_unregister(nvmem);
1066 }
1067
1068 /**
1069 * devm_nvmem_register() - Register a managed nvmem device for given
1070 * nvmem_config.
1071 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1072 *
1073 * @dev: Device that uses the nvmem device.
1074 * @config: nvmem device configuration with which nvmem device is created.
1075 *
1076 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1077 * on success.
1078 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1079 struct nvmem_device *devm_nvmem_register(struct device *dev,
1080 const struct nvmem_config *config)
1081 {
1082 struct nvmem_device *nvmem;
1083 int ret;
1084
1085 nvmem = nvmem_register(config);
1086 if (IS_ERR(nvmem))
1087 return nvmem;
1088
1089 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1090 if (ret)
1091 return ERR_PTR(ret);
1092
1093 return nvmem;
1094 }
1095 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1096
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1097 static struct nvmem_device *__nvmem_device_get(void *data,
1098 int (*match)(struct device *dev, const void *data))
1099 {
1100 struct nvmem_device *nvmem = NULL;
1101 struct device *dev;
1102
1103 mutex_lock(&nvmem_mutex);
1104 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1105 if (dev)
1106 nvmem = to_nvmem_device(dev);
1107 mutex_unlock(&nvmem_mutex);
1108 if (!nvmem)
1109 return ERR_PTR(-EPROBE_DEFER);
1110
1111 if (!try_module_get(nvmem->owner)) {
1112 dev_err(&nvmem->dev,
1113 "could not increase module refcount for cell %s\n",
1114 nvmem_dev_name(nvmem));
1115
1116 put_device(&nvmem->dev);
1117 return ERR_PTR(-EINVAL);
1118 }
1119
1120 kref_get(&nvmem->refcnt);
1121
1122 return nvmem;
1123 }
1124
__nvmem_device_put(struct nvmem_device * nvmem)1125 static void __nvmem_device_put(struct nvmem_device *nvmem)
1126 {
1127 put_device(&nvmem->dev);
1128 module_put(nvmem->owner);
1129 kref_put(&nvmem->refcnt, nvmem_device_release);
1130 }
1131
1132 #if IS_ENABLED(CONFIG_OF)
1133 /**
1134 * of_nvmem_device_get() - Get nvmem device from a given id
1135 *
1136 * @np: Device tree node that uses the nvmem device.
1137 * @id: nvmem name from nvmem-names property.
1138 *
1139 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1140 * on success.
1141 */
of_nvmem_device_get(struct device_node * np,const char * id)1142 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1143 {
1144
1145 struct device_node *nvmem_np;
1146 struct nvmem_device *nvmem;
1147 int index = 0;
1148
1149 if (id)
1150 index = of_property_match_string(np, "nvmem-names", id);
1151
1152 nvmem_np = of_parse_phandle(np, "nvmem", index);
1153 if (!nvmem_np)
1154 return ERR_PTR(-ENOENT);
1155
1156 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1157 of_node_put(nvmem_np);
1158 return nvmem;
1159 }
1160 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1161 #endif
1162
1163 /**
1164 * nvmem_device_get() - Get nvmem device from a given id
1165 *
1166 * @dev: Device that uses the nvmem device.
1167 * @dev_name: name of the requested nvmem device.
1168 *
1169 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1170 * on success.
1171 */
nvmem_device_get(struct device * dev,const char * dev_name)1172 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1173 {
1174 if (dev->of_node) { /* try dt first */
1175 struct nvmem_device *nvmem;
1176
1177 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1178
1179 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1180 return nvmem;
1181
1182 }
1183
1184 return __nvmem_device_get((void *)dev_name, device_match_name);
1185 }
1186 EXPORT_SYMBOL_GPL(nvmem_device_get);
1187
1188 /**
1189 * nvmem_device_find() - Find nvmem device with matching function
1190 *
1191 * @data: Data to pass to match function
1192 * @match: Callback function to check device
1193 *
1194 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1195 * on success.
1196 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1197 struct nvmem_device *nvmem_device_find(void *data,
1198 int (*match)(struct device *dev, const void *data))
1199 {
1200 return __nvmem_device_get(data, match);
1201 }
1202 EXPORT_SYMBOL_GPL(nvmem_device_find);
1203
devm_nvmem_device_match(struct device * dev,void * res,void * data)1204 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1205 {
1206 struct nvmem_device **nvmem = res;
1207
1208 if (WARN_ON(!nvmem || !*nvmem))
1209 return 0;
1210
1211 return *nvmem == data;
1212 }
1213
devm_nvmem_device_release(struct device * dev,void * res)1214 static void devm_nvmem_device_release(struct device *dev, void *res)
1215 {
1216 nvmem_device_put(*(struct nvmem_device **)res);
1217 }
1218
1219 /**
1220 * devm_nvmem_device_put() - put alredy got nvmem device
1221 *
1222 * @dev: Device that uses the nvmem device.
1223 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1224 * that needs to be released.
1225 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1226 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1227 {
1228 int ret;
1229
1230 ret = devres_release(dev, devm_nvmem_device_release,
1231 devm_nvmem_device_match, nvmem);
1232
1233 WARN_ON(ret);
1234 }
1235 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1236
1237 /**
1238 * nvmem_device_put() - put alredy got nvmem device
1239 *
1240 * @nvmem: pointer to nvmem device that needs to be released.
1241 */
nvmem_device_put(struct nvmem_device * nvmem)1242 void nvmem_device_put(struct nvmem_device *nvmem)
1243 {
1244 __nvmem_device_put(nvmem);
1245 }
1246 EXPORT_SYMBOL_GPL(nvmem_device_put);
1247
1248 /**
1249 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1250 *
1251 * @dev: Device that requests the nvmem device.
1252 * @id: name id for the requested nvmem device.
1253 *
1254 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1255 * on success. The nvmem_cell will be freed by the automatically once the
1256 * device is freed.
1257 */
devm_nvmem_device_get(struct device * dev,const char * id)1258 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1259 {
1260 struct nvmem_device **ptr, *nvmem;
1261
1262 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1263 if (!ptr)
1264 return ERR_PTR(-ENOMEM);
1265
1266 nvmem = nvmem_device_get(dev, id);
1267 if (!IS_ERR(nvmem)) {
1268 *ptr = nvmem;
1269 devres_add(dev, ptr);
1270 } else {
1271 devres_free(ptr);
1272 }
1273
1274 return nvmem;
1275 }
1276 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1277
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1278 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1279 const char *id, int index)
1280 {
1281 struct nvmem_cell *cell;
1282 const char *name = NULL;
1283
1284 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1285 if (!cell)
1286 return ERR_PTR(-ENOMEM);
1287
1288 if (id) {
1289 name = kstrdup_const(id, GFP_KERNEL);
1290 if (!name) {
1291 kfree(cell);
1292 return ERR_PTR(-ENOMEM);
1293 }
1294 }
1295
1296 cell->id = name;
1297 cell->entry = entry;
1298 cell->index = index;
1299
1300 return cell;
1301 }
1302
1303 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1304 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1305 {
1306 struct nvmem_cell_entry *cell_entry;
1307 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1308 struct nvmem_cell_lookup *lookup;
1309 struct nvmem_device *nvmem;
1310 const char *dev_id;
1311
1312 if (!dev)
1313 return ERR_PTR(-EINVAL);
1314
1315 dev_id = dev_name(dev);
1316
1317 mutex_lock(&nvmem_lookup_mutex);
1318
1319 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1320 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1321 (strcmp(lookup->con_id, con_id) == 0)) {
1322 /* This is the right entry. */
1323 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1324 device_match_name);
1325 if (IS_ERR(nvmem)) {
1326 /* Provider may not be registered yet. */
1327 cell = ERR_CAST(nvmem);
1328 break;
1329 }
1330
1331 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1332 lookup->cell_name);
1333 if (!cell_entry) {
1334 __nvmem_device_put(nvmem);
1335 cell = ERR_PTR(-ENOENT);
1336 } else {
1337 cell = nvmem_create_cell(cell_entry, con_id, 0);
1338 if (IS_ERR(cell))
1339 __nvmem_device_put(nvmem);
1340 }
1341 break;
1342 }
1343 }
1344
1345 mutex_unlock(&nvmem_lookup_mutex);
1346 return cell;
1347 }
1348
1349 #if IS_ENABLED(CONFIG_OF)
1350 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1351 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1352 {
1353 struct nvmem_cell_entry *iter, *cell = NULL;
1354
1355 mutex_lock(&nvmem_mutex);
1356 list_for_each_entry(iter, &nvmem->cells, node) {
1357 if (np == iter->np) {
1358 cell = iter;
1359 break;
1360 }
1361 }
1362 mutex_unlock(&nvmem_mutex);
1363
1364 return cell;
1365 }
1366
1367 /**
1368 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1369 *
1370 * @np: Device tree node that uses the nvmem cell.
1371 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1372 * for the cell at index 0 (the lone cell with no accompanying
1373 * nvmem-cell-names property).
1374 *
1375 * Return: Will be an ERR_PTR() on error or a valid pointer
1376 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1377 * nvmem_cell_put().
1378 */
of_nvmem_cell_get(struct device_node * np,const char * id)1379 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1380 {
1381 struct device_node *cell_np, *nvmem_np;
1382 struct nvmem_device *nvmem;
1383 struct nvmem_cell_entry *cell_entry;
1384 struct nvmem_cell *cell;
1385 struct of_phandle_args cell_spec;
1386 int index = 0;
1387 int cell_index = 0;
1388 int ret;
1389
1390 /* if cell name exists, find index to the name */
1391 if (id)
1392 index = of_property_match_string(np, "nvmem-cell-names", id);
1393
1394 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1395 "#nvmem-cell-cells",
1396 index, &cell_spec);
1397 if (ret)
1398 return ERR_PTR(-ENOENT);
1399
1400 if (cell_spec.args_count > 1)
1401 return ERR_PTR(-EINVAL);
1402
1403 cell_np = cell_spec.np;
1404 if (cell_spec.args_count)
1405 cell_index = cell_spec.args[0];
1406
1407 nvmem_np = of_get_parent(cell_np);
1408 if (!nvmem_np) {
1409 of_node_put(cell_np);
1410 return ERR_PTR(-EINVAL);
1411 }
1412
1413 /* nvmem layouts produce cells within the nvmem-layout container */
1414 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1415 nvmem_np = of_get_next_parent(nvmem_np);
1416 if (!nvmem_np) {
1417 of_node_put(cell_np);
1418 return ERR_PTR(-EINVAL);
1419 }
1420 }
1421
1422 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1423 of_node_put(nvmem_np);
1424 if (IS_ERR(nvmem)) {
1425 of_node_put(cell_np);
1426 return ERR_CAST(nvmem);
1427 }
1428
1429 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1430 of_node_put(cell_np);
1431 if (!cell_entry) {
1432 __nvmem_device_put(nvmem);
1433 return ERR_PTR(-ENOENT);
1434 }
1435
1436 cell = nvmem_create_cell(cell_entry, id, cell_index);
1437 if (IS_ERR(cell))
1438 __nvmem_device_put(nvmem);
1439
1440 return cell;
1441 }
1442 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1443 #endif
1444
1445 /**
1446 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1447 *
1448 * @dev: Device that requests the nvmem cell.
1449 * @id: nvmem cell name to get (this corresponds with the name from the
1450 * nvmem-cell-names property for DT systems and with the con_id from
1451 * the lookup entry for non-DT systems).
1452 *
1453 * Return: Will be an ERR_PTR() on error or a valid pointer
1454 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1455 * nvmem_cell_put().
1456 */
nvmem_cell_get(struct device * dev,const char * id)1457 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1458 {
1459 struct nvmem_cell *cell;
1460
1461 if (dev->of_node) { /* try dt first */
1462 cell = of_nvmem_cell_get(dev->of_node, id);
1463 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1464 return cell;
1465 }
1466
1467 /* NULL cell id only allowed for device tree; invalid otherwise */
1468 if (!id)
1469 return ERR_PTR(-EINVAL);
1470
1471 return nvmem_cell_get_from_lookup(dev, id);
1472 }
1473 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1474
devm_nvmem_cell_release(struct device * dev,void * res)1475 static void devm_nvmem_cell_release(struct device *dev, void *res)
1476 {
1477 nvmem_cell_put(*(struct nvmem_cell **)res);
1478 }
1479
1480 /**
1481 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1482 *
1483 * @dev: Device that requests the nvmem cell.
1484 * @id: nvmem cell name id to get.
1485 *
1486 * Return: Will be an ERR_PTR() on error or a valid pointer
1487 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1488 * automatically once the device is freed.
1489 */
devm_nvmem_cell_get(struct device * dev,const char * id)1490 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1491 {
1492 struct nvmem_cell **ptr, *cell;
1493
1494 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1495 if (!ptr)
1496 return ERR_PTR(-ENOMEM);
1497
1498 cell = nvmem_cell_get(dev, id);
1499 if (!IS_ERR(cell)) {
1500 *ptr = cell;
1501 devres_add(dev, ptr);
1502 } else {
1503 devres_free(ptr);
1504 }
1505
1506 return cell;
1507 }
1508 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1509
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1510 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1511 {
1512 struct nvmem_cell **c = res;
1513
1514 if (WARN_ON(!c || !*c))
1515 return 0;
1516
1517 return *c == data;
1518 }
1519
1520 /**
1521 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1522 * from devm_nvmem_cell_get.
1523 *
1524 * @dev: Device that requests the nvmem cell.
1525 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1526 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1527 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1528 {
1529 int ret;
1530
1531 ret = devres_release(dev, devm_nvmem_cell_release,
1532 devm_nvmem_cell_match, cell);
1533
1534 WARN_ON(ret);
1535 }
1536 EXPORT_SYMBOL(devm_nvmem_cell_put);
1537
1538 /**
1539 * nvmem_cell_put() - Release previously allocated nvmem cell.
1540 *
1541 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1542 */
nvmem_cell_put(struct nvmem_cell * cell)1543 void nvmem_cell_put(struct nvmem_cell *cell)
1544 {
1545 struct nvmem_device *nvmem = cell->entry->nvmem;
1546
1547 if (cell->id)
1548 kfree_const(cell->id);
1549
1550 kfree(cell);
1551 __nvmem_device_put(nvmem);
1552 }
1553 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1554
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1555 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1556 {
1557 u8 *p, *b;
1558 int i, extra, bit_offset = cell->bit_offset;
1559
1560 p = b = buf;
1561 if (bit_offset) {
1562 /* First shift */
1563 *b++ >>= bit_offset;
1564
1565 /* setup rest of the bytes if any */
1566 for (i = 1; i < cell->bytes; i++) {
1567 /* Get bits from next byte and shift them towards msb */
1568 *p |= *b << (BITS_PER_BYTE - bit_offset);
1569
1570 p = b;
1571 *b++ >>= bit_offset;
1572 }
1573 } else {
1574 /* point to the msb */
1575 p += cell->bytes - 1;
1576 }
1577
1578 /* result fits in less bytes */
1579 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1580 while (--extra >= 0)
1581 *p-- = 0;
1582
1583 /* clear msb bits if any leftover in the last byte */
1584 if (cell->nbits % BITS_PER_BYTE)
1585 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1586 }
1587
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1588 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1589 struct nvmem_cell_entry *cell,
1590 void *buf, size_t *len, const char *id, int index)
1591 {
1592 int rc;
1593
1594 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1595
1596 if (rc)
1597 return rc;
1598
1599 /* shift bits in-place */
1600 if (cell->bit_offset || cell->nbits)
1601 nvmem_shift_read_buffer_in_place(cell, buf);
1602
1603 if (cell->read_post_process) {
1604 rc = cell->read_post_process(cell->priv, id, index,
1605 cell->offset, buf, cell->raw_len);
1606 if (rc)
1607 return rc;
1608 }
1609
1610 if (len)
1611 *len = cell->bytes;
1612
1613 return 0;
1614 }
1615
1616 /**
1617 * nvmem_cell_read() - Read a given nvmem cell
1618 *
1619 * @cell: nvmem cell to be read.
1620 * @len: pointer to length of cell which will be populated on successful read;
1621 * can be NULL.
1622 *
1623 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1624 * buffer should be freed by the consumer with a kfree().
1625 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1626 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1627 {
1628 struct nvmem_cell_entry *entry = cell->entry;
1629 struct nvmem_device *nvmem = entry->nvmem;
1630 u8 *buf;
1631 int rc;
1632
1633 if (!nvmem)
1634 return ERR_PTR(-EINVAL);
1635
1636 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1637 if (!buf)
1638 return ERR_PTR(-ENOMEM);
1639
1640 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1641 if (rc) {
1642 kfree(buf);
1643 return ERR_PTR(rc);
1644 }
1645
1646 return buf;
1647 }
1648 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1649
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1650 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1651 u8 *_buf, int len)
1652 {
1653 struct nvmem_device *nvmem = cell->nvmem;
1654 int i, rc, nbits, bit_offset = cell->bit_offset;
1655 u8 v, *p, *buf, *b, pbyte, pbits;
1656
1657 nbits = cell->nbits;
1658 buf = kzalloc(cell->bytes, GFP_KERNEL);
1659 if (!buf)
1660 return ERR_PTR(-ENOMEM);
1661
1662 memcpy(buf, _buf, len);
1663 p = b = buf;
1664
1665 if (bit_offset) {
1666 pbyte = *b;
1667 *b <<= bit_offset;
1668
1669 /* setup the first byte with lsb bits from nvmem */
1670 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1671 if (rc)
1672 goto err;
1673 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1674
1675 /* setup rest of the byte if any */
1676 for (i = 1; i < cell->bytes; i++) {
1677 /* Get last byte bits and shift them towards lsb */
1678 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1679 pbyte = *b;
1680 p = b;
1681 *b <<= bit_offset;
1682 *b++ |= pbits;
1683 }
1684 }
1685
1686 /* if it's not end on byte boundary */
1687 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1688 /* setup the last byte with msb bits from nvmem */
1689 rc = nvmem_reg_read(nvmem,
1690 cell->offset + cell->bytes - 1, &v, 1);
1691 if (rc)
1692 goto err;
1693 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1694
1695 }
1696
1697 return buf;
1698 err:
1699 kfree(buf);
1700 return ERR_PTR(rc);
1701 }
1702
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1703 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1704 {
1705 struct nvmem_device *nvmem = cell->nvmem;
1706 int rc;
1707
1708 if (!nvmem || nvmem->read_only ||
1709 (cell->bit_offset == 0 && len != cell->bytes))
1710 return -EINVAL;
1711
1712 /*
1713 * Any cells which have a read_post_process hook are read-only because
1714 * we cannot reverse the operation and it might affect other cells,
1715 * too.
1716 */
1717 if (cell->read_post_process)
1718 return -EINVAL;
1719
1720 if (cell->bit_offset || cell->nbits) {
1721 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1722 if (IS_ERR(buf))
1723 return PTR_ERR(buf);
1724 }
1725
1726 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1727
1728 /* free the tmp buffer */
1729 if (cell->bit_offset || cell->nbits)
1730 kfree(buf);
1731
1732 if (rc)
1733 return rc;
1734
1735 return len;
1736 }
1737
1738 /**
1739 * nvmem_cell_write() - Write to a given nvmem cell
1740 *
1741 * @cell: nvmem cell to be written.
1742 * @buf: Buffer to be written.
1743 * @len: length of buffer to be written to nvmem cell.
1744 *
1745 * Return: length of bytes written or negative on failure.
1746 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1747 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1748 {
1749 return __nvmem_cell_entry_write(cell->entry, buf, len);
1750 }
1751
1752 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1753
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1754 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1755 void *val, size_t count)
1756 {
1757 struct nvmem_cell *cell;
1758 void *buf;
1759 size_t len;
1760
1761 cell = nvmem_cell_get(dev, cell_id);
1762 if (IS_ERR(cell))
1763 return PTR_ERR(cell);
1764
1765 buf = nvmem_cell_read(cell, &len);
1766 if (IS_ERR(buf)) {
1767 nvmem_cell_put(cell);
1768 return PTR_ERR(buf);
1769 }
1770 if (len != count) {
1771 kfree(buf);
1772 nvmem_cell_put(cell);
1773 return -EINVAL;
1774 }
1775 memcpy(val, buf, count);
1776 kfree(buf);
1777 nvmem_cell_put(cell);
1778
1779 return 0;
1780 }
1781
1782 /**
1783 * nvmem_cell_read_u8() - Read a cell value as a u8
1784 *
1785 * @dev: Device that requests the nvmem cell.
1786 * @cell_id: Name of nvmem cell to read.
1787 * @val: pointer to output value.
1788 *
1789 * Return: 0 on success or negative errno.
1790 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1791 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1792 {
1793 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1794 }
1795 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1796
1797 /**
1798 * nvmem_cell_read_u16() - Read a cell value as a u16
1799 *
1800 * @dev: Device that requests the nvmem cell.
1801 * @cell_id: Name of nvmem cell to read.
1802 * @val: pointer to output value.
1803 *
1804 * Return: 0 on success or negative errno.
1805 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1806 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1807 {
1808 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1809 }
1810 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1811
1812 /**
1813 * nvmem_cell_read_u32() - Read a cell value as a u32
1814 *
1815 * @dev: Device that requests the nvmem cell.
1816 * @cell_id: Name of nvmem cell to read.
1817 * @val: pointer to output value.
1818 *
1819 * Return: 0 on success or negative errno.
1820 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1821 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1822 {
1823 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1824 }
1825 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1826
1827 /**
1828 * nvmem_cell_read_u64() - Read a cell value as a u64
1829 *
1830 * @dev: Device that requests the nvmem cell.
1831 * @cell_id: Name of nvmem cell to read.
1832 * @val: pointer to output value.
1833 *
1834 * Return: 0 on success or negative errno.
1835 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1836 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1837 {
1838 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1839 }
1840 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1841
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1842 static const void *nvmem_cell_read_variable_common(struct device *dev,
1843 const char *cell_id,
1844 size_t max_len, size_t *len)
1845 {
1846 struct nvmem_cell *cell;
1847 int nbits;
1848 void *buf;
1849
1850 cell = nvmem_cell_get(dev, cell_id);
1851 if (IS_ERR(cell))
1852 return cell;
1853
1854 nbits = cell->entry->nbits;
1855 buf = nvmem_cell_read(cell, len);
1856 nvmem_cell_put(cell);
1857 if (IS_ERR(buf))
1858 return buf;
1859
1860 /*
1861 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1862 * the length of the real data. Throw away the extra junk.
1863 */
1864 if (nbits)
1865 *len = DIV_ROUND_UP(nbits, 8);
1866
1867 if (*len > max_len) {
1868 kfree(buf);
1869 return ERR_PTR(-ERANGE);
1870 }
1871
1872 return buf;
1873 }
1874
1875 /**
1876 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1877 *
1878 * @dev: Device that requests the nvmem cell.
1879 * @cell_id: Name of nvmem cell to read.
1880 * @val: pointer to output value.
1881 *
1882 * Return: 0 on success or negative errno.
1883 */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1884 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1885 u32 *val)
1886 {
1887 size_t len;
1888 const u8 *buf;
1889 int i;
1890
1891 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1892 if (IS_ERR(buf))
1893 return PTR_ERR(buf);
1894
1895 /* Copy w/ implicit endian conversion */
1896 *val = 0;
1897 for (i = 0; i < len; i++)
1898 *val |= buf[i] << (8 * i);
1899
1900 kfree(buf);
1901
1902 return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1905
1906 /**
1907 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1908 *
1909 * @dev: Device that requests the nvmem cell.
1910 * @cell_id: Name of nvmem cell to read.
1911 * @val: pointer to output value.
1912 *
1913 * Return: 0 on success or negative errno.
1914 */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1915 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1916 u64 *val)
1917 {
1918 size_t len;
1919 const u8 *buf;
1920 int i;
1921
1922 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1923 if (IS_ERR(buf))
1924 return PTR_ERR(buf);
1925
1926 /* Copy w/ implicit endian conversion */
1927 *val = 0;
1928 for (i = 0; i < len; i++)
1929 *val |= (uint64_t)buf[i] << (8 * i);
1930
1931 kfree(buf);
1932
1933 return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1936
1937 /**
1938 * nvmem_device_cell_read() - Read a given nvmem device and cell
1939 *
1940 * @nvmem: nvmem device to read from.
1941 * @info: nvmem cell info to be read.
1942 * @buf: buffer pointer which will be populated on successful read.
1943 *
1944 * Return: length of successful bytes read on success and negative
1945 * error code on error.
1946 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1947 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1948 struct nvmem_cell_info *info, void *buf)
1949 {
1950 struct nvmem_cell_entry cell;
1951 int rc;
1952 ssize_t len;
1953
1954 if (!nvmem)
1955 return -EINVAL;
1956
1957 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1958 if (rc)
1959 return rc;
1960
1961 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1962 if (rc)
1963 return rc;
1964
1965 return len;
1966 }
1967 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1968
1969 /**
1970 * nvmem_device_cell_write() - Write cell to a given nvmem device
1971 *
1972 * @nvmem: nvmem device to be written to.
1973 * @info: nvmem cell info to be written.
1974 * @buf: buffer to be written to cell.
1975 *
1976 * Return: length of bytes written or negative error code on failure.
1977 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1978 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1979 struct nvmem_cell_info *info, void *buf)
1980 {
1981 struct nvmem_cell_entry cell;
1982 int rc;
1983
1984 if (!nvmem)
1985 return -EINVAL;
1986
1987 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1988 if (rc)
1989 return rc;
1990
1991 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1992 }
1993 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1994
1995 /**
1996 * nvmem_device_read() - Read from a given nvmem device
1997 *
1998 * @nvmem: nvmem device to read from.
1999 * @offset: offset in nvmem device.
2000 * @bytes: number of bytes to read.
2001 * @buf: buffer pointer which will be populated on successful read.
2002 *
2003 * Return: length of successful bytes read on success and negative
2004 * error code on error.
2005 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2006 int nvmem_device_read(struct nvmem_device *nvmem,
2007 unsigned int offset,
2008 size_t bytes, void *buf)
2009 {
2010 int rc;
2011
2012 if (!nvmem)
2013 return -EINVAL;
2014
2015 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2016
2017 if (rc)
2018 return rc;
2019
2020 return bytes;
2021 }
2022 EXPORT_SYMBOL_GPL(nvmem_device_read);
2023
2024 /**
2025 * nvmem_device_write() - Write cell to a given nvmem device
2026 *
2027 * @nvmem: nvmem device to be written to.
2028 * @offset: offset in nvmem device.
2029 * @bytes: number of bytes to write.
2030 * @buf: buffer to be written.
2031 *
2032 * Return: length of bytes written or negative error code on failure.
2033 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2034 int nvmem_device_write(struct nvmem_device *nvmem,
2035 unsigned int offset,
2036 size_t bytes, void *buf)
2037 {
2038 int rc;
2039
2040 if (!nvmem)
2041 return -EINVAL;
2042
2043 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2044
2045 if (rc)
2046 return rc;
2047
2048
2049 return bytes;
2050 }
2051 EXPORT_SYMBOL_GPL(nvmem_device_write);
2052
2053 /**
2054 * nvmem_add_cell_table() - register a table of cell info entries
2055 *
2056 * @table: table of cell info entries
2057 */
nvmem_add_cell_table(struct nvmem_cell_table * table)2058 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2059 {
2060 mutex_lock(&nvmem_cell_mutex);
2061 list_add_tail(&table->node, &nvmem_cell_tables);
2062 mutex_unlock(&nvmem_cell_mutex);
2063 }
2064 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2065
2066 /**
2067 * nvmem_del_cell_table() - remove a previously registered cell info table
2068 *
2069 * @table: table of cell info entries
2070 */
nvmem_del_cell_table(struct nvmem_cell_table * table)2071 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2072 {
2073 mutex_lock(&nvmem_cell_mutex);
2074 list_del(&table->node);
2075 mutex_unlock(&nvmem_cell_mutex);
2076 }
2077 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2078
2079 /**
2080 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2081 *
2082 * @entries: array of cell lookup entries
2083 * @nentries: number of cell lookup entries in the array
2084 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2085 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2086 {
2087 int i;
2088
2089 mutex_lock(&nvmem_lookup_mutex);
2090 for (i = 0; i < nentries; i++)
2091 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2092 mutex_unlock(&nvmem_lookup_mutex);
2093 }
2094 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2095
2096 /**
2097 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2098 * entries
2099 *
2100 * @entries: array of cell lookup entries
2101 * @nentries: number of cell lookup entries in the array
2102 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2103 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2104 {
2105 int i;
2106
2107 mutex_lock(&nvmem_lookup_mutex);
2108 for (i = 0; i < nentries; i++)
2109 list_del(&entries[i].node);
2110 mutex_unlock(&nvmem_lookup_mutex);
2111 }
2112 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2113
2114 /**
2115 * nvmem_dev_name() - Get the name of a given nvmem device.
2116 *
2117 * @nvmem: nvmem device.
2118 *
2119 * Return: name of the nvmem device.
2120 */
nvmem_dev_name(struct nvmem_device * nvmem)2121 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2122 {
2123 return dev_name(&nvmem->dev);
2124 }
2125 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2126
nvmem_init(void)2127 static int __init nvmem_init(void)
2128 {
2129 return bus_register(&nvmem_bus_type);
2130 }
2131
nvmem_exit(void)2132 static void __exit nvmem_exit(void)
2133 {
2134 bus_unregister(&nvmem_bus_type);
2135 }
2136
2137 subsys_initcall(nvmem_init);
2138 module_exit(nvmem_exit);
2139
2140 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2141 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2142 MODULE_DESCRIPTION("nvmem Driver Core");
2143