1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38 #define NVME_MINORS (1U << MINORBITS)
39
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 /*
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
75 *
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
81 */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
104 unsigned nsid);
105
nvme_set_queue_dying(struct nvme_ns * ns)106 static void nvme_set_queue_dying(struct nvme_ns *ns)
107 {
108 /*
109 * Revalidating a dead namespace sets capacity to 0. This will end
110 * buffered writers dirtying pages that can't be synced.
111 */
112 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 return;
114 revalidate_disk(ns->disk);
115 blk_set_queue_dying(ns->queue);
116 /* Forcibly unquiesce queues to avoid blocking dispatch */
117 blk_mq_unquiesce_queue(ns->queue);
118 }
119
nvme_queue_scan(struct nvme_ctrl * ctrl)120 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
121 {
122 /*
123 * Only new queue scan work when admin and IO queues are both alive
124 */
125 if (ctrl->state == NVME_CTRL_LIVE)
126 queue_work(nvme_wq, &ctrl->scan_work);
127 }
128
nvme_reset_ctrl(struct nvme_ctrl * ctrl)129 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
130 {
131 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
132 return -EBUSY;
133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 return -EBUSY;
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
138
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)139 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
140 {
141 int ret;
142
143 ret = nvme_reset_ctrl(ctrl);
144 if (!ret) {
145 flush_work(&ctrl->reset_work);
146 if (ctrl->state != NVME_CTRL_LIVE &&
147 ctrl->state != NVME_CTRL_ADMIN_ONLY)
148 ret = -ENETRESET;
149 }
150
151 return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154
nvme_delete_ctrl_work(struct work_struct * work)155 static void nvme_delete_ctrl_work(struct work_struct *work)
156 {
157 struct nvme_ctrl *ctrl =
158 container_of(work, struct nvme_ctrl, delete_work);
159
160 dev_info(ctrl->device,
161 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
162
163 flush_work(&ctrl->reset_work);
164 nvme_stop_ctrl(ctrl);
165 nvme_remove_namespaces(ctrl);
166 ctrl->ops->delete_ctrl(ctrl);
167 nvme_uninit_ctrl(ctrl);
168 nvme_put_ctrl(ctrl);
169 }
170
nvme_delete_ctrl(struct nvme_ctrl * ctrl)171 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
172 {
173 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
174 return -EBUSY;
175 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
176 return -EBUSY;
177 return 0;
178 }
179 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
180
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)181 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
182 {
183 int ret = 0;
184
185 /*
186 * Keep a reference until the work is flushed since ->delete_ctrl
187 * can free the controller.
188 */
189 nvme_get_ctrl(ctrl);
190 ret = nvme_delete_ctrl(ctrl);
191 if (!ret)
192 flush_work(&ctrl->delete_work);
193 nvme_put_ctrl(ctrl);
194 return ret;
195 }
196 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
197
nvme_ns_has_pi(struct nvme_ns * ns)198 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
199 {
200 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
201 }
202
nvme_error_status(struct request * req)203 static blk_status_t nvme_error_status(struct request *req)
204 {
205 switch (nvme_req(req)->status & 0x7ff) {
206 case NVME_SC_SUCCESS:
207 return BLK_STS_OK;
208 case NVME_SC_CAP_EXCEEDED:
209 return BLK_STS_NOSPC;
210 case NVME_SC_LBA_RANGE:
211 return BLK_STS_TARGET;
212 case NVME_SC_BAD_ATTRIBUTES:
213 case NVME_SC_ONCS_NOT_SUPPORTED:
214 case NVME_SC_INVALID_OPCODE:
215 case NVME_SC_INVALID_FIELD:
216 case NVME_SC_INVALID_NS:
217 return BLK_STS_NOTSUPP;
218 case NVME_SC_WRITE_FAULT:
219 case NVME_SC_READ_ERROR:
220 case NVME_SC_UNWRITTEN_BLOCK:
221 case NVME_SC_ACCESS_DENIED:
222 case NVME_SC_READ_ONLY:
223 case NVME_SC_COMPARE_FAILED:
224 return BLK_STS_MEDIUM;
225 case NVME_SC_GUARD_CHECK:
226 case NVME_SC_APPTAG_CHECK:
227 case NVME_SC_REFTAG_CHECK:
228 case NVME_SC_INVALID_PI:
229 return BLK_STS_PROTECTION;
230 case NVME_SC_RESERVATION_CONFLICT:
231 return BLK_STS_NEXUS;
232 default:
233 return BLK_STS_IOERR;
234 }
235 }
236
nvme_req_needs_retry(struct request * req)237 static inline bool nvme_req_needs_retry(struct request *req)
238 {
239 if (blk_noretry_request(req))
240 return false;
241 if (nvme_req(req)->status & NVME_SC_DNR)
242 return false;
243 if (nvme_req(req)->retries >= nvme_max_retries)
244 return false;
245 return true;
246 }
247
nvme_complete_rq(struct request * req)248 void nvme_complete_rq(struct request *req)
249 {
250 blk_status_t status = nvme_error_status(req);
251
252 trace_nvme_complete_rq(req);
253
254 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
255 if ((req->cmd_flags & REQ_NVME_MPATH) &&
256 blk_path_error(status)) {
257 nvme_failover_req(req);
258 return;
259 }
260
261 if (!blk_queue_dying(req->q)) {
262 nvme_req(req)->retries++;
263 blk_mq_requeue_request(req, true);
264 return;
265 }
266 }
267 blk_mq_end_request(req, status);
268 }
269 EXPORT_SYMBOL_GPL(nvme_complete_rq);
270
nvme_cancel_request(struct request * req,void * data,bool reserved)271 void nvme_cancel_request(struct request *req, void *data, bool reserved)
272 {
273 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
274 "Cancelling I/O %d", req->tag);
275
276 nvme_req(req)->status = NVME_SC_ABORT_REQ;
277 blk_mq_complete_request(req);
278
279 }
280 EXPORT_SYMBOL_GPL(nvme_cancel_request);
281
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)282 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
283 enum nvme_ctrl_state new_state)
284 {
285 enum nvme_ctrl_state old_state;
286 unsigned long flags;
287 bool changed = false;
288
289 spin_lock_irqsave(&ctrl->lock, flags);
290
291 old_state = ctrl->state;
292 switch (new_state) {
293 case NVME_CTRL_ADMIN_ONLY:
294 switch (old_state) {
295 case NVME_CTRL_CONNECTING:
296 changed = true;
297 /* FALLTHRU */
298 default:
299 break;
300 }
301 break;
302 case NVME_CTRL_LIVE:
303 switch (old_state) {
304 case NVME_CTRL_NEW:
305 case NVME_CTRL_RESETTING:
306 case NVME_CTRL_CONNECTING:
307 changed = true;
308 /* FALLTHRU */
309 default:
310 break;
311 }
312 break;
313 case NVME_CTRL_RESETTING:
314 switch (old_state) {
315 case NVME_CTRL_NEW:
316 case NVME_CTRL_LIVE:
317 case NVME_CTRL_ADMIN_ONLY:
318 changed = true;
319 /* FALLTHRU */
320 default:
321 break;
322 }
323 break;
324 case NVME_CTRL_CONNECTING:
325 switch (old_state) {
326 case NVME_CTRL_NEW:
327 case NVME_CTRL_RESETTING:
328 changed = true;
329 /* FALLTHRU */
330 default:
331 break;
332 }
333 break;
334 case NVME_CTRL_DELETING:
335 switch (old_state) {
336 case NVME_CTRL_LIVE:
337 case NVME_CTRL_ADMIN_ONLY:
338 case NVME_CTRL_RESETTING:
339 case NVME_CTRL_CONNECTING:
340 changed = true;
341 /* FALLTHRU */
342 default:
343 break;
344 }
345 break;
346 case NVME_CTRL_DEAD:
347 switch (old_state) {
348 case NVME_CTRL_DELETING:
349 changed = true;
350 /* FALLTHRU */
351 default:
352 break;
353 }
354 break;
355 default:
356 break;
357 }
358
359 if (changed)
360 ctrl->state = new_state;
361
362 spin_unlock_irqrestore(&ctrl->lock, flags);
363 if (changed && ctrl->state == NVME_CTRL_LIVE)
364 nvme_kick_requeue_lists(ctrl);
365 return changed;
366 }
367 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
368
nvme_free_ns_head(struct kref * ref)369 static void nvme_free_ns_head(struct kref *ref)
370 {
371 struct nvme_ns_head *head =
372 container_of(ref, struct nvme_ns_head, ref);
373
374 nvme_mpath_remove_disk(head);
375 ida_simple_remove(&head->subsys->ns_ida, head->instance);
376 list_del_init(&head->entry);
377 cleanup_srcu_struct_quiesced(&head->srcu);
378 nvme_put_subsystem(head->subsys);
379 kfree(head);
380 }
381
nvme_put_ns_head(struct nvme_ns_head * head)382 static void nvme_put_ns_head(struct nvme_ns_head *head)
383 {
384 kref_put(&head->ref, nvme_free_ns_head);
385 }
386
nvme_free_ns(struct kref * kref)387 static void nvme_free_ns(struct kref *kref)
388 {
389 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
390
391 if (ns->ndev)
392 nvme_nvm_unregister(ns);
393
394 put_disk(ns->disk);
395 nvme_put_ns_head(ns->head);
396 nvme_put_ctrl(ns->ctrl);
397 kfree(ns);
398 }
399
nvme_put_ns(struct nvme_ns * ns)400 static void nvme_put_ns(struct nvme_ns *ns)
401 {
402 kref_put(&ns->kref, nvme_free_ns);
403 }
404
nvme_clear_nvme_request(struct request * req)405 static inline void nvme_clear_nvme_request(struct request *req)
406 {
407 if (!(req->rq_flags & RQF_DONTPREP)) {
408 nvme_req(req)->retries = 0;
409 nvme_req(req)->flags = 0;
410 req->rq_flags |= RQF_DONTPREP;
411 }
412 }
413
nvme_alloc_request(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags,int qid)414 struct request *nvme_alloc_request(struct request_queue *q,
415 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
416 {
417 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
418 struct request *req;
419
420 if (qid == NVME_QID_ANY) {
421 req = blk_mq_alloc_request(q, op, flags);
422 } else {
423 req = blk_mq_alloc_request_hctx(q, op, flags,
424 qid ? qid - 1 : 0);
425 }
426 if (IS_ERR(req))
427 return req;
428
429 req->cmd_flags |= REQ_FAILFAST_DRIVER;
430 nvme_clear_nvme_request(req);
431 nvme_req(req)->cmd = cmd;
432
433 return req;
434 }
435 EXPORT_SYMBOL_GPL(nvme_alloc_request);
436
nvme_toggle_streams(struct nvme_ctrl * ctrl,bool enable)437 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
438 {
439 struct nvme_command c;
440
441 memset(&c, 0, sizeof(c));
442
443 c.directive.opcode = nvme_admin_directive_send;
444 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
445 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
446 c.directive.dtype = NVME_DIR_IDENTIFY;
447 c.directive.tdtype = NVME_DIR_STREAMS;
448 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
449
450 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
451 }
452
nvme_disable_streams(struct nvme_ctrl * ctrl)453 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
454 {
455 return nvme_toggle_streams(ctrl, false);
456 }
457
nvme_enable_streams(struct nvme_ctrl * ctrl)458 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
459 {
460 return nvme_toggle_streams(ctrl, true);
461 }
462
nvme_get_stream_params(struct nvme_ctrl * ctrl,struct streams_directive_params * s,u32 nsid)463 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
464 struct streams_directive_params *s, u32 nsid)
465 {
466 struct nvme_command c;
467
468 memset(&c, 0, sizeof(c));
469 memset(s, 0, sizeof(*s));
470
471 c.directive.opcode = nvme_admin_directive_recv;
472 c.directive.nsid = cpu_to_le32(nsid);
473 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
474 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
475 c.directive.dtype = NVME_DIR_STREAMS;
476
477 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
478 }
479
nvme_configure_directives(struct nvme_ctrl * ctrl)480 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
481 {
482 struct streams_directive_params s;
483 int ret;
484
485 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
486 return 0;
487 if (!streams)
488 return 0;
489
490 ret = nvme_enable_streams(ctrl);
491 if (ret)
492 return ret;
493
494 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
495 if (ret)
496 return ret;
497
498 ctrl->nssa = le16_to_cpu(s.nssa);
499 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
500 dev_info(ctrl->device, "too few streams (%u) available\n",
501 ctrl->nssa);
502 nvme_disable_streams(ctrl);
503 return 0;
504 }
505
506 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
507 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
508 return 0;
509 }
510
511 /*
512 * Check if 'req' has a write hint associated with it. If it does, assign
513 * a valid namespace stream to the write.
514 */
nvme_assign_write_stream(struct nvme_ctrl * ctrl,struct request * req,u16 * control,u32 * dsmgmt)515 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
516 struct request *req, u16 *control,
517 u32 *dsmgmt)
518 {
519 enum rw_hint streamid = req->write_hint;
520
521 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
522 streamid = 0;
523 else {
524 streamid--;
525 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
526 return;
527
528 *control |= NVME_RW_DTYPE_STREAMS;
529 *dsmgmt |= streamid << 16;
530 }
531
532 if (streamid < ARRAY_SIZE(req->q->write_hints))
533 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
534 }
535
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)536 static inline void nvme_setup_flush(struct nvme_ns *ns,
537 struct nvme_command *cmnd)
538 {
539 memset(cmnd, 0, sizeof(*cmnd));
540 cmnd->common.opcode = nvme_cmd_flush;
541 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
542 }
543
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)544 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
545 struct nvme_command *cmnd)
546 {
547 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
548 struct nvme_dsm_range *range;
549 struct bio *bio;
550
551 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
552 if (!range)
553 return BLK_STS_RESOURCE;
554
555 __rq_for_each_bio(bio, req) {
556 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
557 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
558
559 if (n < segments) {
560 range[n].cattr = cpu_to_le32(0);
561 range[n].nlb = cpu_to_le32(nlb);
562 range[n].slba = cpu_to_le64(slba);
563 }
564 n++;
565 }
566
567 if (WARN_ON_ONCE(n != segments)) {
568 kfree(range);
569 return BLK_STS_IOERR;
570 }
571
572 memset(cmnd, 0, sizeof(*cmnd));
573 cmnd->dsm.opcode = nvme_cmd_dsm;
574 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
575 cmnd->dsm.nr = cpu_to_le32(segments - 1);
576 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
577
578 req->special_vec.bv_page = virt_to_page(range);
579 req->special_vec.bv_offset = offset_in_page(range);
580 req->special_vec.bv_len = sizeof(*range) * segments;
581 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
582
583 return BLK_STS_OK;
584 }
585
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)586 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
587 struct request *req, struct nvme_command *cmnd)
588 {
589 struct nvme_ctrl *ctrl = ns->ctrl;
590 u16 control = 0;
591 u32 dsmgmt = 0;
592
593 if (req->cmd_flags & REQ_FUA)
594 control |= NVME_RW_FUA;
595 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
596 control |= NVME_RW_LR;
597
598 if (req->cmd_flags & REQ_RAHEAD)
599 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
600
601 memset(cmnd, 0, sizeof(*cmnd));
602 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
603 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
604 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
605 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
606
607 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
608 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
609
610 if (ns->ms) {
611 /*
612 * If formated with metadata, the block layer always provides a
613 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
614 * we enable the PRACT bit for protection information or set the
615 * namespace capacity to zero to prevent any I/O.
616 */
617 if (!blk_integrity_rq(req)) {
618 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
619 return BLK_STS_NOTSUPP;
620 control |= NVME_RW_PRINFO_PRACT;
621 } else if (req_op(req) == REQ_OP_WRITE) {
622 t10_pi_prepare(req, ns->pi_type);
623 }
624
625 switch (ns->pi_type) {
626 case NVME_NS_DPS_PI_TYPE3:
627 control |= NVME_RW_PRINFO_PRCHK_GUARD;
628 break;
629 case NVME_NS_DPS_PI_TYPE1:
630 case NVME_NS_DPS_PI_TYPE2:
631 control |= NVME_RW_PRINFO_PRCHK_GUARD |
632 NVME_RW_PRINFO_PRCHK_REF;
633 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
634 break;
635 }
636 }
637
638 cmnd->rw.control = cpu_to_le16(control);
639 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
640 return 0;
641 }
642
nvme_cleanup_cmd(struct request * req)643 void nvme_cleanup_cmd(struct request *req)
644 {
645 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
646 nvme_req(req)->status == 0) {
647 struct nvme_ns *ns = req->rq_disk->private_data;
648
649 t10_pi_complete(req, ns->pi_type,
650 blk_rq_bytes(req) >> ns->lba_shift);
651 }
652 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
653 kfree(page_address(req->special_vec.bv_page) +
654 req->special_vec.bv_offset);
655 }
656 }
657 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
658
nvme_setup_cmd(struct nvme_ns * ns,struct request * req,struct nvme_command * cmd)659 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
660 struct nvme_command *cmd)
661 {
662 blk_status_t ret = BLK_STS_OK;
663
664 nvme_clear_nvme_request(req);
665
666 switch (req_op(req)) {
667 case REQ_OP_DRV_IN:
668 case REQ_OP_DRV_OUT:
669 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
670 break;
671 case REQ_OP_FLUSH:
672 nvme_setup_flush(ns, cmd);
673 break;
674 case REQ_OP_WRITE_ZEROES:
675 /* currently only aliased to deallocate for a few ctrls: */
676 case REQ_OP_DISCARD:
677 ret = nvme_setup_discard(ns, req, cmd);
678 break;
679 case REQ_OP_READ:
680 case REQ_OP_WRITE:
681 ret = nvme_setup_rw(ns, req, cmd);
682 break;
683 default:
684 WARN_ON_ONCE(1);
685 return BLK_STS_IOERR;
686 }
687
688 cmd->common.command_id = req->tag;
689 trace_nvme_setup_cmd(req, cmd);
690 return ret;
691 }
692 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
693
694 /*
695 * Returns 0 on success. If the result is negative, it's a Linux error code;
696 * if the result is positive, it's an NVM Express status code
697 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,blk_mq_req_flags_t flags)698 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
699 union nvme_result *result, void *buffer, unsigned bufflen,
700 unsigned timeout, int qid, int at_head,
701 blk_mq_req_flags_t flags)
702 {
703 struct request *req;
704 int ret;
705
706 req = nvme_alloc_request(q, cmd, flags, qid);
707 if (IS_ERR(req))
708 return PTR_ERR(req);
709
710 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
711
712 if (buffer && bufflen) {
713 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
714 if (ret)
715 goto out;
716 }
717
718 blk_execute_rq(req->q, NULL, req, at_head);
719 if (result)
720 *result = nvme_req(req)->result;
721 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
722 ret = -EINTR;
723 else
724 ret = nvme_req(req)->status;
725 out:
726 blk_mq_free_request(req);
727 return ret;
728 }
729 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
730
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)731 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
732 void *buffer, unsigned bufflen)
733 {
734 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
735 NVME_QID_ANY, 0, 0);
736 }
737 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
738
nvme_add_user_metadata(struct bio * bio,void __user * ubuf,unsigned len,u32 seed,bool write)739 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
740 unsigned len, u32 seed, bool write)
741 {
742 struct bio_integrity_payload *bip;
743 int ret = -ENOMEM;
744 void *buf;
745
746 buf = kmalloc(len, GFP_KERNEL);
747 if (!buf)
748 goto out;
749
750 ret = -EFAULT;
751 if (write && copy_from_user(buf, ubuf, len))
752 goto out_free_meta;
753
754 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
755 if (IS_ERR(bip)) {
756 ret = PTR_ERR(bip);
757 goto out_free_meta;
758 }
759
760 bip->bip_iter.bi_size = len;
761 bip->bip_iter.bi_sector = seed;
762 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
763 offset_in_page(buf));
764 if (ret == len)
765 return buf;
766 ret = -ENOMEM;
767 out_free_meta:
768 kfree(buf);
769 out:
770 return ERR_PTR(ret);
771 }
772
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,void __user * ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u32 * result,unsigned timeout)773 static int nvme_submit_user_cmd(struct request_queue *q,
774 struct nvme_command *cmd, void __user *ubuffer,
775 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
776 u32 meta_seed, u32 *result, unsigned timeout)
777 {
778 bool write = nvme_is_write(cmd);
779 struct nvme_ns *ns = q->queuedata;
780 struct gendisk *disk = ns ? ns->disk : NULL;
781 struct request *req;
782 struct bio *bio = NULL;
783 void *meta = NULL;
784 int ret;
785
786 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
787 if (IS_ERR(req))
788 return PTR_ERR(req);
789
790 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
791 nvme_req(req)->flags |= NVME_REQ_USERCMD;
792
793 if (ubuffer && bufflen) {
794 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
795 GFP_KERNEL);
796 if (ret)
797 goto out;
798 bio = req->bio;
799 bio->bi_disk = disk;
800 if (disk && meta_buffer && meta_len) {
801 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
802 meta_seed, write);
803 if (IS_ERR(meta)) {
804 ret = PTR_ERR(meta);
805 goto out_unmap;
806 }
807 req->cmd_flags |= REQ_INTEGRITY;
808 }
809 }
810
811 blk_execute_rq(req->q, disk, req, 0);
812 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
813 ret = -EINTR;
814 else
815 ret = nvme_req(req)->status;
816 if (result)
817 *result = le32_to_cpu(nvme_req(req)->result.u32);
818 if (meta && !ret && !write) {
819 if (copy_to_user(meta_buffer, meta, meta_len))
820 ret = -EFAULT;
821 }
822 kfree(meta);
823 out_unmap:
824 if (bio)
825 blk_rq_unmap_user(bio);
826 out:
827 blk_mq_free_request(req);
828 return ret;
829 }
830
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)831 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
832 {
833 struct nvme_ctrl *ctrl = rq->end_io_data;
834
835 blk_mq_free_request(rq);
836
837 if (status) {
838 dev_err(ctrl->device,
839 "failed nvme_keep_alive_end_io error=%d\n",
840 status);
841 return;
842 }
843
844 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
845 }
846
nvme_keep_alive(struct nvme_ctrl * ctrl)847 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
848 {
849 struct request *rq;
850
851 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
852 NVME_QID_ANY);
853 if (IS_ERR(rq))
854 return PTR_ERR(rq);
855
856 rq->timeout = ctrl->kato * HZ;
857 rq->end_io_data = ctrl;
858
859 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
860
861 return 0;
862 }
863
nvme_keep_alive_work(struct work_struct * work)864 static void nvme_keep_alive_work(struct work_struct *work)
865 {
866 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
867 struct nvme_ctrl, ka_work);
868
869 if (nvme_keep_alive(ctrl)) {
870 /* allocation failure, reset the controller */
871 dev_err(ctrl->device, "keep-alive failed\n");
872 nvme_reset_ctrl(ctrl);
873 return;
874 }
875 }
876
nvme_start_keep_alive(struct nvme_ctrl * ctrl)877 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
878 {
879 if (unlikely(ctrl->kato == 0))
880 return;
881
882 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
883 }
884
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)885 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
886 {
887 if (unlikely(ctrl->kato == 0))
888 return;
889
890 cancel_delayed_work_sync(&ctrl->ka_work);
891 }
892 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
893
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)894 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
895 {
896 struct nvme_command c = { };
897 int error;
898
899 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
900 c.identify.opcode = nvme_admin_identify;
901 c.identify.cns = NVME_ID_CNS_CTRL;
902
903 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
904 if (!*id)
905 return -ENOMEM;
906
907 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
908 sizeof(struct nvme_id_ctrl));
909 if (error)
910 kfree(*id);
911 return error;
912 }
913
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)914 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
915 struct nvme_ns_ids *ids)
916 {
917 struct nvme_command c = { };
918 int status;
919 void *data;
920 int pos;
921 int len;
922
923 c.identify.opcode = nvme_admin_identify;
924 c.identify.nsid = cpu_to_le32(nsid);
925 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
926
927 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
928 if (!data)
929 return -ENOMEM;
930
931 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
932 NVME_IDENTIFY_DATA_SIZE);
933 if (status)
934 goto free_data;
935
936 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
937 struct nvme_ns_id_desc *cur = data + pos;
938
939 if (cur->nidl == 0)
940 break;
941
942 switch (cur->nidt) {
943 case NVME_NIDT_EUI64:
944 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
945 dev_warn(ctrl->device,
946 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
947 cur->nidl);
948 goto free_data;
949 }
950 len = NVME_NIDT_EUI64_LEN;
951 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
952 break;
953 case NVME_NIDT_NGUID:
954 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
955 dev_warn(ctrl->device,
956 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
957 cur->nidl);
958 goto free_data;
959 }
960 len = NVME_NIDT_NGUID_LEN;
961 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
962 break;
963 case NVME_NIDT_UUID:
964 if (cur->nidl != NVME_NIDT_UUID_LEN) {
965 dev_warn(ctrl->device,
966 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
967 cur->nidl);
968 goto free_data;
969 }
970 len = NVME_NIDT_UUID_LEN;
971 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
972 break;
973 default:
974 /* Skip unnkown types */
975 len = cur->nidl;
976 break;
977 }
978
979 len += sizeof(*cur);
980 }
981 free_data:
982 kfree(data);
983 return status;
984 }
985
nvme_identify_ns_list(struct nvme_ctrl * dev,unsigned nsid,__le32 * ns_list)986 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
987 {
988 struct nvme_command c = { };
989
990 c.identify.opcode = nvme_admin_identify;
991 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
992 c.identify.nsid = cpu_to_le32(nsid);
993 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
994 NVME_IDENTIFY_DATA_SIZE);
995 }
996
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid)997 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
998 unsigned nsid)
999 {
1000 struct nvme_id_ns *id;
1001 struct nvme_command c = { };
1002 int error;
1003
1004 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1005 c.identify.opcode = nvme_admin_identify;
1006 c.identify.nsid = cpu_to_le32(nsid);
1007 c.identify.cns = NVME_ID_CNS_NS;
1008
1009 id = kmalloc(sizeof(*id), GFP_KERNEL);
1010 if (!id)
1011 return NULL;
1012
1013 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1014 if (error) {
1015 dev_warn(ctrl->device, "Identify namespace failed\n");
1016 kfree(id);
1017 return NULL;
1018 }
1019
1020 return id;
1021 }
1022
nvme_set_features(struct nvme_ctrl * dev,unsigned fid,unsigned dword11,void * buffer,size_t buflen,u32 * result)1023 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1024 void *buffer, size_t buflen, u32 *result)
1025 {
1026 struct nvme_command c;
1027 union nvme_result res;
1028 int ret;
1029
1030 memset(&c, 0, sizeof(c));
1031 c.features.opcode = nvme_admin_set_features;
1032 c.features.fid = cpu_to_le32(fid);
1033 c.features.dword11 = cpu_to_le32(dword11);
1034
1035 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1036 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1037 if (ret >= 0 && result)
1038 *result = le32_to_cpu(res.u32);
1039 return ret;
1040 }
1041
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1042 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1043 {
1044 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1045 u32 result;
1046 int status, nr_io_queues;
1047
1048 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1049 &result);
1050 if (status < 0)
1051 return status;
1052
1053 /*
1054 * Degraded controllers might return an error when setting the queue
1055 * count. We still want to be able to bring them online and offer
1056 * access to the admin queue, as that might be only way to fix them up.
1057 */
1058 if (status > 0) {
1059 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1060 *count = 0;
1061 } else {
1062 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1063 *count = min(*count, nr_io_queues);
1064 }
1065
1066 return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1069
1070 #define NVME_AEN_SUPPORTED \
1071 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1072
nvme_enable_aen(struct nvme_ctrl * ctrl)1073 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1074 {
1075 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1076 int status;
1077
1078 if (!supported_aens)
1079 return;
1080
1081 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1082 NULL, 0, &result);
1083 if (status)
1084 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1085 supported_aens);
1086 }
1087
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1088 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1089 {
1090 struct nvme_user_io io;
1091 struct nvme_command c;
1092 unsigned length, meta_len;
1093 void __user *metadata;
1094
1095 if (copy_from_user(&io, uio, sizeof(io)))
1096 return -EFAULT;
1097 if (io.flags)
1098 return -EINVAL;
1099
1100 switch (io.opcode) {
1101 case nvme_cmd_write:
1102 case nvme_cmd_read:
1103 case nvme_cmd_compare:
1104 break;
1105 default:
1106 return -EINVAL;
1107 }
1108
1109 length = (io.nblocks + 1) << ns->lba_shift;
1110 meta_len = (io.nblocks + 1) * ns->ms;
1111 metadata = (void __user *)(uintptr_t)io.metadata;
1112
1113 if (ns->ext) {
1114 length += meta_len;
1115 meta_len = 0;
1116 } else if (meta_len) {
1117 if ((io.metadata & 3) || !io.metadata)
1118 return -EINVAL;
1119 }
1120
1121 memset(&c, 0, sizeof(c));
1122 c.rw.opcode = io.opcode;
1123 c.rw.flags = io.flags;
1124 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1125 c.rw.slba = cpu_to_le64(io.slba);
1126 c.rw.length = cpu_to_le16(io.nblocks);
1127 c.rw.control = cpu_to_le16(io.control);
1128 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1129 c.rw.reftag = cpu_to_le32(io.reftag);
1130 c.rw.apptag = cpu_to_le16(io.apptag);
1131 c.rw.appmask = cpu_to_le16(io.appmask);
1132
1133 return nvme_submit_user_cmd(ns->queue, &c,
1134 (void __user *)(uintptr_t)io.addr, length,
1135 metadata, meta_len, io.slba, NULL, 0);
1136 }
1137
nvme_known_admin_effects(u8 opcode)1138 static u32 nvme_known_admin_effects(u8 opcode)
1139 {
1140 switch (opcode) {
1141 case nvme_admin_format_nvm:
1142 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1143 NVME_CMD_EFFECTS_CSE_MASK;
1144 case nvme_admin_sanitize_nvm:
1145 return NVME_CMD_EFFECTS_CSE_MASK;
1146 default:
1147 break;
1148 }
1149 return 0;
1150 }
1151
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1152 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1153 u8 opcode)
1154 {
1155 u32 effects = 0;
1156
1157 if (ns) {
1158 if (ctrl->effects)
1159 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1160 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1161 dev_warn(ctrl->device,
1162 "IO command:%02x has unhandled effects:%08x\n",
1163 opcode, effects);
1164 return 0;
1165 }
1166
1167 if (ctrl->effects)
1168 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1169 else
1170 effects = nvme_known_admin_effects(opcode);
1171
1172 /*
1173 * For simplicity, IO to all namespaces is quiesced even if the command
1174 * effects say only one namespace is affected.
1175 */
1176 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1177 nvme_start_freeze(ctrl);
1178 nvme_wait_freeze(ctrl);
1179 }
1180 return effects;
1181 }
1182
nvme_update_formats(struct nvme_ctrl * ctrl)1183 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1184 {
1185 struct nvme_ns *ns;
1186
1187 down_read(&ctrl->namespaces_rwsem);
1188 list_for_each_entry(ns, &ctrl->namespaces, list)
1189 if (ns->disk && nvme_revalidate_disk(ns->disk))
1190 nvme_set_queue_dying(ns);
1191 up_read(&ctrl->namespaces_rwsem);
1192
1193 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1194 }
1195
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects)1196 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1197 {
1198 /*
1199 * Revalidate LBA changes prior to unfreezing. This is necessary to
1200 * prevent memory corruption if a logical block size was changed by
1201 * this command.
1202 */
1203 if (effects & NVME_CMD_EFFECTS_LBCC)
1204 nvme_update_formats(ctrl);
1205 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1206 nvme_unfreeze(ctrl);
1207 if (effects & NVME_CMD_EFFECTS_CCC)
1208 nvme_init_identify(ctrl);
1209 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1210 nvme_queue_scan(ctrl);
1211 }
1212
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1213 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1214 struct nvme_passthru_cmd __user *ucmd)
1215 {
1216 struct nvme_passthru_cmd cmd;
1217 struct nvme_command c;
1218 unsigned timeout = 0;
1219 u32 effects;
1220 int status;
1221
1222 if (!capable(CAP_SYS_ADMIN))
1223 return -EACCES;
1224 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1225 return -EFAULT;
1226 if (cmd.flags)
1227 return -EINVAL;
1228
1229 memset(&c, 0, sizeof(c));
1230 c.common.opcode = cmd.opcode;
1231 c.common.flags = cmd.flags;
1232 c.common.nsid = cpu_to_le32(cmd.nsid);
1233 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1234 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1235 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1236 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1237 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1238 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1239 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1240 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1241
1242 if (cmd.timeout_ms)
1243 timeout = msecs_to_jiffies(cmd.timeout_ms);
1244
1245 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1246 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1247 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1248 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1249 0, &cmd.result, timeout);
1250 nvme_passthru_end(ctrl, effects);
1251
1252 if (status >= 0) {
1253 if (put_user(cmd.result, &ucmd->result))
1254 return -EFAULT;
1255 }
1256
1257 return status;
1258 }
1259
1260 /*
1261 * Issue ioctl requests on the first available path. Note that unlike normal
1262 * block layer requests we will not retry failed request on another controller.
1263 */
nvme_get_ns_from_disk(struct gendisk * disk,struct nvme_ns_head ** head,int * srcu_idx)1264 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1265 struct nvme_ns_head **head, int *srcu_idx)
1266 {
1267 #ifdef CONFIG_NVME_MULTIPATH
1268 if (disk->fops == &nvme_ns_head_ops) {
1269 *head = disk->private_data;
1270 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1271 return nvme_find_path(*head);
1272 }
1273 #endif
1274 *head = NULL;
1275 *srcu_idx = -1;
1276 return disk->private_data;
1277 }
1278
nvme_put_ns_from_disk(struct nvme_ns_head * head,int idx)1279 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1280 {
1281 if (head)
1282 srcu_read_unlock(&head->srcu, idx);
1283 }
1284
nvme_ns_ioctl(struct nvme_ns * ns,unsigned cmd,unsigned long arg)1285 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1286 {
1287 switch (cmd) {
1288 case NVME_IOCTL_ID:
1289 force_successful_syscall_return();
1290 return ns->head->ns_id;
1291 case NVME_IOCTL_ADMIN_CMD:
1292 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1293 case NVME_IOCTL_IO_CMD:
1294 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1295 case NVME_IOCTL_SUBMIT_IO:
1296 return nvme_submit_io(ns, (void __user *)arg);
1297 default:
1298 #ifdef CONFIG_NVM
1299 if (ns->ndev)
1300 return nvme_nvm_ioctl(ns, cmd, arg);
1301 #endif
1302 if (is_sed_ioctl(cmd))
1303 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1304 (void __user *) arg);
1305 return -ENOTTY;
1306 }
1307 }
1308
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1309 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1310 unsigned int cmd, unsigned long arg)
1311 {
1312 struct nvme_ns_head *head = NULL;
1313 struct nvme_ns *ns;
1314 int srcu_idx, ret;
1315
1316 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1317 if (unlikely(!ns))
1318 ret = -EWOULDBLOCK;
1319 else
1320 ret = nvme_ns_ioctl(ns, cmd, arg);
1321 nvme_put_ns_from_disk(head, srcu_idx);
1322 return ret;
1323 }
1324
nvme_open(struct block_device * bdev,fmode_t mode)1325 static int nvme_open(struct block_device *bdev, fmode_t mode)
1326 {
1327 struct nvme_ns *ns = bdev->bd_disk->private_data;
1328
1329 #ifdef CONFIG_NVME_MULTIPATH
1330 /* should never be called due to GENHD_FL_HIDDEN */
1331 if (WARN_ON_ONCE(ns->head->disk))
1332 goto fail;
1333 #endif
1334 if (!kref_get_unless_zero(&ns->kref))
1335 goto fail;
1336 if (!try_module_get(ns->ctrl->ops->module))
1337 goto fail_put_ns;
1338
1339 return 0;
1340
1341 fail_put_ns:
1342 nvme_put_ns(ns);
1343 fail:
1344 return -ENXIO;
1345 }
1346
nvme_release(struct gendisk * disk,fmode_t mode)1347 static void nvme_release(struct gendisk *disk, fmode_t mode)
1348 {
1349 struct nvme_ns *ns = disk->private_data;
1350
1351 module_put(ns->ctrl->ops->module);
1352 nvme_put_ns(ns);
1353 }
1354
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1355 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1356 {
1357 /* some standard values */
1358 geo->heads = 1 << 6;
1359 geo->sectors = 1 << 5;
1360 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1361 return 0;
1362 }
1363
1364 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type)1365 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1366 {
1367 struct blk_integrity integrity;
1368
1369 memset(&integrity, 0, sizeof(integrity));
1370 switch (pi_type) {
1371 case NVME_NS_DPS_PI_TYPE3:
1372 integrity.profile = &t10_pi_type3_crc;
1373 integrity.tag_size = sizeof(u16) + sizeof(u32);
1374 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1375 break;
1376 case NVME_NS_DPS_PI_TYPE1:
1377 case NVME_NS_DPS_PI_TYPE2:
1378 integrity.profile = &t10_pi_type1_crc;
1379 integrity.tag_size = sizeof(u16);
1380 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1381 break;
1382 default:
1383 integrity.profile = NULL;
1384 break;
1385 }
1386 integrity.tuple_size = ms;
1387 blk_integrity_register(disk, &integrity);
1388 blk_queue_max_integrity_segments(disk->queue, 1);
1389 }
1390 #else
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type)1391 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1392 {
1393 }
1394 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1395
nvme_set_chunk_size(struct nvme_ns * ns)1396 static void nvme_set_chunk_size(struct nvme_ns *ns)
1397 {
1398 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1399 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1400 }
1401
nvme_config_discard(struct nvme_ns * ns)1402 static void nvme_config_discard(struct nvme_ns *ns)
1403 {
1404 struct nvme_ctrl *ctrl = ns->ctrl;
1405 struct request_queue *queue = ns->queue;
1406 u32 size = queue_logical_block_size(queue);
1407
1408 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1409 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1410 return;
1411 }
1412
1413 if (ctrl->nr_streams && ns->sws && ns->sgs)
1414 size *= ns->sws * ns->sgs;
1415
1416 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1417 NVME_DSM_MAX_RANGES);
1418
1419 queue->limits.discard_alignment = 0;
1420 queue->limits.discard_granularity = size;
1421
1422 /* If discard is already enabled, don't reset queue limits */
1423 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1424 return;
1425
1426 blk_queue_max_discard_sectors(queue, UINT_MAX);
1427 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1428
1429 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1430 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1431 }
1432
nvme_report_ns_ids(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns * id,struct nvme_ns_ids * ids)1433 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1434 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1435 {
1436 memset(ids, 0, sizeof(*ids));
1437
1438 if (ctrl->vs >= NVME_VS(1, 1, 0))
1439 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1440 if (ctrl->vs >= NVME_VS(1, 2, 0))
1441 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1442 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1443 /* Don't treat error as fatal we potentially
1444 * already have a NGUID or EUI-64
1445 */
1446 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1447 dev_warn(ctrl->device,
1448 "%s: Identify Descriptors failed\n", __func__);
1449 }
1450 }
1451
nvme_ns_ids_valid(struct nvme_ns_ids * ids)1452 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1453 {
1454 return !uuid_is_null(&ids->uuid) ||
1455 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1456 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1457 }
1458
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1459 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1460 {
1461 return uuid_equal(&a->uuid, &b->uuid) &&
1462 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1463 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1464 }
1465
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1466 static void nvme_update_disk_info(struct gendisk *disk,
1467 struct nvme_ns *ns, struct nvme_id_ns *id)
1468 {
1469 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1470 unsigned short bs = 1 << ns->lba_shift;
1471
1472 blk_mq_freeze_queue(disk->queue);
1473 blk_integrity_unregister(disk);
1474
1475 blk_queue_logical_block_size(disk->queue, bs);
1476 blk_queue_physical_block_size(disk->queue, bs);
1477 blk_queue_io_min(disk->queue, bs);
1478
1479 if (ns->ms && !ns->ext &&
1480 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1481 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1482 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1483 capacity = 0;
1484
1485 set_capacity(disk, capacity);
1486 nvme_config_discard(ns);
1487
1488 if (id->nsattr & (1 << 0))
1489 set_disk_ro(disk, true);
1490 else
1491 set_disk_ro(disk, false);
1492
1493 blk_mq_unfreeze_queue(disk->queue);
1494 }
1495
__nvme_revalidate_disk(struct gendisk * disk,struct nvme_id_ns * id)1496 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1497 {
1498 struct nvme_ns *ns = disk->private_data;
1499
1500 /*
1501 * If identify namespace failed, use default 512 byte block size so
1502 * block layer can use before failing read/write for 0 capacity.
1503 */
1504 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1505 if (ns->lba_shift == 0)
1506 ns->lba_shift = 9;
1507 ns->noiob = le16_to_cpu(id->noiob);
1508 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1509 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1510 /* the PI implementation requires metadata equal t10 pi tuple size */
1511 if (ns->ms == sizeof(struct t10_pi_tuple))
1512 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1513 else
1514 ns->pi_type = 0;
1515
1516 if (ns->noiob)
1517 nvme_set_chunk_size(ns);
1518 nvme_update_disk_info(disk, ns, id);
1519 if (ns->ndev)
1520 nvme_nvm_update_nvm_info(ns);
1521 #ifdef CONFIG_NVME_MULTIPATH
1522 if (ns->head->disk)
1523 nvme_update_disk_info(ns->head->disk, ns, id);
1524 #endif
1525 }
1526
nvme_revalidate_disk(struct gendisk * disk)1527 static int nvme_revalidate_disk(struct gendisk *disk)
1528 {
1529 struct nvme_ns *ns = disk->private_data;
1530 struct nvme_ctrl *ctrl = ns->ctrl;
1531 struct nvme_id_ns *id;
1532 struct nvme_ns_ids ids;
1533 int ret = 0;
1534
1535 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1536 set_capacity(disk, 0);
1537 return -ENODEV;
1538 }
1539
1540 id = nvme_identify_ns(ctrl, ns->head->ns_id);
1541 if (!id)
1542 return -ENODEV;
1543
1544 if (id->ncap == 0) {
1545 ret = -ENODEV;
1546 goto out;
1547 }
1548
1549 __nvme_revalidate_disk(disk, id);
1550 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1551 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1552 dev_err(ctrl->device,
1553 "identifiers changed for nsid %d\n", ns->head->ns_id);
1554 ret = -ENODEV;
1555 }
1556
1557 out:
1558 kfree(id);
1559 return ret;
1560 }
1561
nvme_pr_type(enum pr_type type)1562 static char nvme_pr_type(enum pr_type type)
1563 {
1564 switch (type) {
1565 case PR_WRITE_EXCLUSIVE:
1566 return 1;
1567 case PR_EXCLUSIVE_ACCESS:
1568 return 2;
1569 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1570 return 3;
1571 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1572 return 4;
1573 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1574 return 5;
1575 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1576 return 6;
1577 default:
1578 return 0;
1579 }
1580 };
1581
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)1582 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1583 u64 key, u64 sa_key, u8 op)
1584 {
1585 struct nvme_ns_head *head = NULL;
1586 struct nvme_ns *ns;
1587 struct nvme_command c;
1588 int srcu_idx, ret;
1589 u8 data[16] = { 0, };
1590
1591 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1592 if (unlikely(!ns))
1593 return -EWOULDBLOCK;
1594
1595 put_unaligned_le64(key, &data[0]);
1596 put_unaligned_le64(sa_key, &data[8]);
1597
1598 memset(&c, 0, sizeof(c));
1599 c.common.opcode = op;
1600 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1601 c.common.cdw10[0] = cpu_to_le32(cdw10);
1602
1603 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1604 nvme_put_ns_from_disk(head, srcu_idx);
1605 return ret;
1606 }
1607
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)1608 static int nvme_pr_register(struct block_device *bdev, u64 old,
1609 u64 new, unsigned flags)
1610 {
1611 u32 cdw10;
1612
1613 if (flags & ~PR_FL_IGNORE_KEY)
1614 return -EOPNOTSUPP;
1615
1616 cdw10 = old ? 2 : 0;
1617 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1618 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1619 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1620 }
1621
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)1622 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1623 enum pr_type type, unsigned flags)
1624 {
1625 u32 cdw10;
1626
1627 if (flags & ~PR_FL_IGNORE_KEY)
1628 return -EOPNOTSUPP;
1629
1630 cdw10 = nvme_pr_type(type) << 8;
1631 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1632 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1633 }
1634
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)1635 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1636 enum pr_type type, bool abort)
1637 {
1638 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1639 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1640 }
1641
nvme_pr_clear(struct block_device * bdev,u64 key)1642 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1643 {
1644 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1645 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1646 }
1647
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1648 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1649 {
1650 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1651 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1652 }
1653
1654 static const struct pr_ops nvme_pr_ops = {
1655 .pr_register = nvme_pr_register,
1656 .pr_reserve = nvme_pr_reserve,
1657 .pr_release = nvme_pr_release,
1658 .pr_preempt = nvme_pr_preempt,
1659 .pr_clear = nvme_pr_clear,
1660 };
1661
1662 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)1663 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1664 bool send)
1665 {
1666 struct nvme_ctrl *ctrl = data;
1667 struct nvme_command cmd;
1668
1669 memset(&cmd, 0, sizeof(cmd));
1670 if (send)
1671 cmd.common.opcode = nvme_admin_security_send;
1672 else
1673 cmd.common.opcode = nvme_admin_security_recv;
1674 cmd.common.nsid = 0;
1675 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1676 cmd.common.cdw10[1] = cpu_to_le32(len);
1677
1678 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1679 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1680 }
1681 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1682 #endif /* CONFIG_BLK_SED_OPAL */
1683
1684 static const struct block_device_operations nvme_fops = {
1685 .owner = THIS_MODULE,
1686 .ioctl = nvme_ioctl,
1687 .compat_ioctl = nvme_ioctl,
1688 .open = nvme_open,
1689 .release = nvme_release,
1690 .getgeo = nvme_getgeo,
1691 .revalidate_disk= nvme_revalidate_disk,
1692 .pr_ops = &nvme_pr_ops,
1693 };
1694
1695 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)1696 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1697 {
1698 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1699
1700 if (!kref_get_unless_zero(&head->ref))
1701 return -ENXIO;
1702 return 0;
1703 }
1704
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)1705 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1706 {
1707 nvme_put_ns_head(disk->private_data);
1708 }
1709
1710 const struct block_device_operations nvme_ns_head_ops = {
1711 .owner = THIS_MODULE,
1712 .open = nvme_ns_head_open,
1713 .release = nvme_ns_head_release,
1714 .ioctl = nvme_ioctl,
1715 .compat_ioctl = nvme_ioctl,
1716 .getgeo = nvme_getgeo,
1717 .pr_ops = &nvme_pr_ops,
1718 };
1719 #endif /* CONFIG_NVME_MULTIPATH */
1720
nvme_wait_ready(struct nvme_ctrl * ctrl,u64 cap,bool enabled)1721 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1722 {
1723 unsigned long timeout =
1724 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1725 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1726 int ret;
1727
1728 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1729 if (csts == ~0)
1730 return -ENODEV;
1731 if ((csts & NVME_CSTS_RDY) == bit)
1732 break;
1733
1734 msleep(100);
1735 if (fatal_signal_pending(current))
1736 return -EINTR;
1737 if (time_after(jiffies, timeout)) {
1738 dev_err(ctrl->device,
1739 "Device not ready; aborting %s\n", enabled ?
1740 "initialisation" : "reset");
1741 return -ENODEV;
1742 }
1743 }
1744
1745 return ret;
1746 }
1747
1748 /*
1749 * If the device has been passed off to us in an enabled state, just clear
1750 * the enabled bit. The spec says we should set the 'shutdown notification
1751 * bits', but doing so may cause the device to complete commands to the
1752 * admin queue ... and we don't know what memory that might be pointing at!
1753 */
nvme_disable_ctrl(struct nvme_ctrl * ctrl,u64 cap)1754 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1755 {
1756 int ret;
1757
1758 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1759 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1760
1761 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1762 if (ret)
1763 return ret;
1764
1765 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1766 msleep(NVME_QUIRK_DELAY_AMOUNT);
1767
1768 return nvme_wait_ready(ctrl, cap, false);
1769 }
1770 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1771
nvme_enable_ctrl(struct nvme_ctrl * ctrl,u64 cap)1772 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1773 {
1774 /*
1775 * Default to a 4K page size, with the intention to update this
1776 * path in the future to accomodate architectures with differing
1777 * kernel and IO page sizes.
1778 */
1779 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1780 int ret;
1781
1782 if (page_shift < dev_page_min) {
1783 dev_err(ctrl->device,
1784 "Minimum device page size %u too large for host (%u)\n",
1785 1 << dev_page_min, 1 << page_shift);
1786 return -ENODEV;
1787 }
1788
1789 ctrl->page_size = 1 << page_shift;
1790
1791 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1792 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1793 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1794 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1795 ctrl->ctrl_config |= NVME_CC_ENABLE;
1796
1797 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1798 if (ret)
1799 return ret;
1800 return nvme_wait_ready(ctrl, cap, true);
1801 }
1802 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1803
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)1804 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1805 {
1806 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1807 u32 csts;
1808 int ret;
1809
1810 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1811 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1812
1813 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1814 if (ret)
1815 return ret;
1816
1817 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1818 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1819 break;
1820
1821 msleep(100);
1822 if (fatal_signal_pending(current))
1823 return -EINTR;
1824 if (time_after(jiffies, timeout)) {
1825 dev_err(ctrl->device,
1826 "Device shutdown incomplete; abort shutdown\n");
1827 return -ENODEV;
1828 }
1829 }
1830
1831 return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1834
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1835 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1836 struct request_queue *q)
1837 {
1838 bool vwc = false;
1839
1840 if (ctrl->max_hw_sectors) {
1841 u32 max_segments =
1842 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1843
1844 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1845 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1846 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1847 }
1848 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1849 is_power_of_2(ctrl->max_hw_sectors))
1850 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1851 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1852 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1853 vwc = true;
1854 blk_queue_write_cache(q, vwc, vwc);
1855 }
1856
nvme_configure_timestamp(struct nvme_ctrl * ctrl)1857 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1858 {
1859 __le64 ts;
1860 int ret;
1861
1862 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1863 return 0;
1864
1865 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1866 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1867 NULL);
1868 if (ret)
1869 dev_warn_once(ctrl->device,
1870 "could not set timestamp (%d)\n", ret);
1871 return ret;
1872 }
1873
nvme_configure_apst(struct nvme_ctrl * ctrl)1874 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1875 {
1876 /*
1877 * APST (Autonomous Power State Transition) lets us program a
1878 * table of power state transitions that the controller will
1879 * perform automatically. We configure it with a simple
1880 * heuristic: we are willing to spend at most 2% of the time
1881 * transitioning between power states. Therefore, when running
1882 * in any given state, we will enter the next lower-power
1883 * non-operational state after waiting 50 * (enlat + exlat)
1884 * microseconds, as long as that state's exit latency is under
1885 * the requested maximum latency.
1886 *
1887 * We will not autonomously enter any non-operational state for
1888 * which the total latency exceeds ps_max_latency_us. Users
1889 * can set ps_max_latency_us to zero to turn off APST.
1890 */
1891
1892 unsigned apste;
1893 struct nvme_feat_auto_pst *table;
1894 u64 max_lat_us = 0;
1895 int max_ps = -1;
1896 int ret;
1897
1898 /*
1899 * If APST isn't supported or if we haven't been initialized yet,
1900 * then don't do anything.
1901 */
1902 if (!ctrl->apsta)
1903 return 0;
1904
1905 if (ctrl->npss > 31) {
1906 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1907 return 0;
1908 }
1909
1910 table = kzalloc(sizeof(*table), GFP_KERNEL);
1911 if (!table)
1912 return 0;
1913
1914 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1915 /* Turn off APST. */
1916 apste = 0;
1917 dev_dbg(ctrl->device, "APST disabled\n");
1918 } else {
1919 __le64 target = cpu_to_le64(0);
1920 int state;
1921
1922 /*
1923 * Walk through all states from lowest- to highest-power.
1924 * According to the spec, lower-numbered states use more
1925 * power. NPSS, despite the name, is the index of the
1926 * lowest-power state, not the number of states.
1927 */
1928 for (state = (int)ctrl->npss; state >= 0; state--) {
1929 u64 total_latency_us, exit_latency_us, transition_ms;
1930
1931 if (target)
1932 table->entries[state] = target;
1933
1934 /*
1935 * Don't allow transitions to the deepest state
1936 * if it's quirked off.
1937 */
1938 if (state == ctrl->npss &&
1939 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1940 continue;
1941
1942 /*
1943 * Is this state a useful non-operational state for
1944 * higher-power states to autonomously transition to?
1945 */
1946 if (!(ctrl->psd[state].flags &
1947 NVME_PS_FLAGS_NON_OP_STATE))
1948 continue;
1949
1950 exit_latency_us =
1951 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1952 if (exit_latency_us > ctrl->ps_max_latency_us)
1953 continue;
1954
1955 total_latency_us =
1956 exit_latency_us +
1957 le32_to_cpu(ctrl->psd[state].entry_lat);
1958
1959 /*
1960 * This state is good. Use it as the APST idle
1961 * target for higher power states.
1962 */
1963 transition_ms = total_latency_us + 19;
1964 do_div(transition_ms, 20);
1965 if (transition_ms > (1 << 24) - 1)
1966 transition_ms = (1 << 24) - 1;
1967
1968 target = cpu_to_le64((state << 3) |
1969 (transition_ms << 8));
1970
1971 if (max_ps == -1)
1972 max_ps = state;
1973
1974 if (total_latency_us > max_lat_us)
1975 max_lat_us = total_latency_us;
1976 }
1977
1978 apste = 1;
1979
1980 if (max_ps == -1) {
1981 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1982 } else {
1983 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1984 max_ps, max_lat_us, (int)sizeof(*table), table);
1985 }
1986 }
1987
1988 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1989 table, sizeof(*table), NULL);
1990 if (ret)
1991 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1992
1993 kfree(table);
1994 return ret;
1995 }
1996
nvme_set_latency_tolerance(struct device * dev,s32 val)1997 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1998 {
1999 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2000 u64 latency;
2001
2002 switch (val) {
2003 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2004 case PM_QOS_LATENCY_ANY:
2005 latency = U64_MAX;
2006 break;
2007
2008 default:
2009 latency = val;
2010 }
2011
2012 if (ctrl->ps_max_latency_us != latency) {
2013 ctrl->ps_max_latency_us = latency;
2014 nvme_configure_apst(ctrl);
2015 }
2016 }
2017
2018 struct nvme_core_quirk_entry {
2019 /*
2020 * NVMe model and firmware strings are padded with spaces. For
2021 * simplicity, strings in the quirk table are padded with NULLs
2022 * instead.
2023 */
2024 u16 vid;
2025 const char *mn;
2026 const char *fr;
2027 unsigned long quirks;
2028 };
2029
2030 static const struct nvme_core_quirk_entry core_quirks[] = {
2031 {
2032 /*
2033 * This Toshiba device seems to die using any APST states. See:
2034 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2035 */
2036 .vid = 0x1179,
2037 .mn = "THNSF5256GPUK TOSHIBA",
2038 .quirks = NVME_QUIRK_NO_APST,
2039 }
2040 };
2041
2042 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2043 static bool string_matches(const char *idstr, const char *match, size_t len)
2044 {
2045 size_t matchlen;
2046
2047 if (!match)
2048 return true;
2049
2050 matchlen = strlen(match);
2051 WARN_ON_ONCE(matchlen > len);
2052
2053 if (memcmp(idstr, match, matchlen))
2054 return false;
2055
2056 for (; matchlen < len; matchlen++)
2057 if (idstr[matchlen] != ' ')
2058 return false;
2059
2060 return true;
2061 }
2062
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2063 static bool quirk_matches(const struct nvme_id_ctrl *id,
2064 const struct nvme_core_quirk_entry *q)
2065 {
2066 return q->vid == le16_to_cpu(id->vid) &&
2067 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2068 string_matches(id->fr, q->fr, sizeof(id->fr));
2069 }
2070
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2071 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2072 struct nvme_id_ctrl *id)
2073 {
2074 size_t nqnlen;
2075 int off;
2076
2077 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2078 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2079 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2080 return;
2081 }
2082
2083 if (ctrl->vs >= NVME_VS(1, 2, 1))
2084 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2085
2086 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2087 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2088 "nqn.2014.08.org.nvmexpress:%4x%4x",
2089 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2090 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2091 off += sizeof(id->sn);
2092 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2093 off += sizeof(id->mn);
2094 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2095 }
2096
__nvme_release_subsystem(struct nvme_subsystem * subsys)2097 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2098 {
2099 ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2100 kfree(subsys);
2101 }
2102
nvme_release_subsystem(struct device * dev)2103 static void nvme_release_subsystem(struct device *dev)
2104 {
2105 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2106 }
2107
nvme_destroy_subsystem(struct kref * ref)2108 static void nvme_destroy_subsystem(struct kref *ref)
2109 {
2110 struct nvme_subsystem *subsys =
2111 container_of(ref, struct nvme_subsystem, ref);
2112
2113 mutex_lock(&nvme_subsystems_lock);
2114 list_del(&subsys->entry);
2115 mutex_unlock(&nvme_subsystems_lock);
2116
2117 ida_destroy(&subsys->ns_ida);
2118 device_del(&subsys->dev);
2119 put_device(&subsys->dev);
2120 }
2121
nvme_put_subsystem(struct nvme_subsystem * subsys)2122 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2123 {
2124 kref_put(&subsys->ref, nvme_destroy_subsystem);
2125 }
2126
__nvme_find_get_subsystem(const char * subsysnqn)2127 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2128 {
2129 struct nvme_subsystem *subsys;
2130
2131 lockdep_assert_held(&nvme_subsystems_lock);
2132
2133 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2134 if (strcmp(subsys->subnqn, subsysnqn))
2135 continue;
2136 if (!kref_get_unless_zero(&subsys->ref))
2137 continue;
2138 return subsys;
2139 }
2140
2141 return NULL;
2142 }
2143
2144 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2145 struct device_attribute subsys_attr_##_name = \
2146 __ATTR(_name, _mode, _show, NULL)
2147
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2148 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2149 struct device_attribute *attr,
2150 char *buf)
2151 {
2152 struct nvme_subsystem *subsys =
2153 container_of(dev, struct nvme_subsystem, dev);
2154
2155 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2156 }
2157 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2158
2159 #define nvme_subsys_show_str_function(field) \
2160 static ssize_t subsys_##field##_show(struct device *dev, \
2161 struct device_attribute *attr, char *buf) \
2162 { \
2163 struct nvme_subsystem *subsys = \
2164 container_of(dev, struct nvme_subsystem, dev); \
2165 return sprintf(buf, "%.*s\n", \
2166 (int)sizeof(subsys->field), subsys->field); \
2167 } \
2168 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2169
2170 nvme_subsys_show_str_function(model);
2171 nvme_subsys_show_str_function(serial);
2172 nvme_subsys_show_str_function(firmware_rev);
2173
2174 static struct attribute *nvme_subsys_attrs[] = {
2175 &subsys_attr_model.attr,
2176 &subsys_attr_serial.attr,
2177 &subsys_attr_firmware_rev.attr,
2178 &subsys_attr_subsysnqn.attr,
2179 NULL,
2180 };
2181
2182 static struct attribute_group nvme_subsys_attrs_group = {
2183 .attrs = nvme_subsys_attrs,
2184 };
2185
2186 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2187 &nvme_subsys_attrs_group,
2188 NULL,
2189 };
2190
nvme_active_ctrls(struct nvme_subsystem * subsys)2191 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2192 {
2193 int count = 0;
2194 struct nvme_ctrl *ctrl;
2195
2196 mutex_lock(&subsys->lock);
2197 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2198 if (ctrl->state != NVME_CTRL_DELETING &&
2199 ctrl->state != NVME_CTRL_DEAD)
2200 count++;
2201 }
2202 mutex_unlock(&subsys->lock);
2203
2204 return count;
2205 }
2206
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2207 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2208 {
2209 struct nvme_subsystem *subsys, *found;
2210 int ret;
2211
2212 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2213 if (!subsys)
2214 return -ENOMEM;
2215 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2216 if (ret < 0) {
2217 kfree(subsys);
2218 return ret;
2219 }
2220 subsys->instance = ret;
2221 mutex_init(&subsys->lock);
2222 kref_init(&subsys->ref);
2223 INIT_LIST_HEAD(&subsys->ctrls);
2224 INIT_LIST_HEAD(&subsys->nsheads);
2225 nvme_init_subnqn(subsys, ctrl, id);
2226 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2227 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2228 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2229 subsys->vendor_id = le16_to_cpu(id->vid);
2230 subsys->cmic = id->cmic;
2231
2232 subsys->dev.class = nvme_subsys_class;
2233 subsys->dev.release = nvme_release_subsystem;
2234 subsys->dev.groups = nvme_subsys_attrs_groups;
2235 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2236 device_initialize(&subsys->dev);
2237
2238 mutex_lock(&nvme_subsystems_lock);
2239 found = __nvme_find_get_subsystem(subsys->subnqn);
2240 if (found) {
2241 /*
2242 * Verify that the subsystem actually supports multiple
2243 * controllers, else bail out.
2244 */
2245 if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2246 nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2247 dev_err(ctrl->device,
2248 "ignoring ctrl due to duplicate subnqn (%s).\n",
2249 found->subnqn);
2250 nvme_put_subsystem(found);
2251 ret = -EINVAL;
2252 goto out_unlock;
2253 }
2254
2255 __nvme_release_subsystem(subsys);
2256 subsys = found;
2257 } else {
2258 ret = device_add(&subsys->dev);
2259 if (ret) {
2260 dev_err(ctrl->device,
2261 "failed to register subsystem device.\n");
2262 goto out_unlock;
2263 }
2264 ida_init(&subsys->ns_ida);
2265 list_add_tail(&subsys->entry, &nvme_subsystems);
2266 }
2267
2268 ctrl->subsys = subsys;
2269 mutex_unlock(&nvme_subsystems_lock);
2270
2271 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2272 dev_name(ctrl->device))) {
2273 dev_err(ctrl->device,
2274 "failed to create sysfs link from subsystem.\n");
2275 /* the transport driver will eventually put the subsystem */
2276 return -EINVAL;
2277 }
2278
2279 mutex_lock(&subsys->lock);
2280 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2281 mutex_unlock(&subsys->lock);
2282
2283 return 0;
2284
2285 out_unlock:
2286 mutex_unlock(&nvme_subsystems_lock);
2287 put_device(&subsys->dev);
2288 return ret;
2289 }
2290
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,void * log,size_t size,u64 offset)2291 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2292 void *log, size_t size, u64 offset)
2293 {
2294 struct nvme_command c = { };
2295 unsigned long dwlen = size / 4 - 1;
2296
2297 c.get_log_page.opcode = nvme_admin_get_log_page;
2298 c.get_log_page.nsid = cpu_to_le32(nsid);
2299 c.get_log_page.lid = log_page;
2300 c.get_log_page.lsp = lsp;
2301 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2302 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2303 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2304 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2305
2306 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2307 }
2308
nvme_get_effects_log(struct nvme_ctrl * ctrl)2309 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2310 {
2311 int ret;
2312
2313 if (!ctrl->effects)
2314 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2315
2316 if (!ctrl->effects)
2317 return 0;
2318
2319 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2320 ctrl->effects, sizeof(*ctrl->effects), 0);
2321 if (ret) {
2322 kfree(ctrl->effects);
2323 ctrl->effects = NULL;
2324 }
2325 return ret;
2326 }
2327
2328 /*
2329 * Initialize the cached copies of the Identify data and various controller
2330 * register in our nvme_ctrl structure. This should be called as soon as
2331 * the admin queue is fully up and running.
2332 */
nvme_init_identify(struct nvme_ctrl * ctrl)2333 int nvme_init_identify(struct nvme_ctrl *ctrl)
2334 {
2335 struct nvme_id_ctrl *id;
2336 u64 cap;
2337 int ret, page_shift;
2338 u32 max_hw_sectors;
2339 bool prev_apst_enabled;
2340
2341 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2342 if (ret) {
2343 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2344 return ret;
2345 }
2346
2347 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2348 if (ret) {
2349 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2350 return ret;
2351 }
2352 page_shift = NVME_CAP_MPSMIN(cap) + 12;
2353
2354 if (ctrl->vs >= NVME_VS(1, 1, 0))
2355 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2356
2357 ret = nvme_identify_ctrl(ctrl, &id);
2358 if (ret) {
2359 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2360 return -EIO;
2361 }
2362
2363 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2364 ret = nvme_get_effects_log(ctrl);
2365 if (ret < 0)
2366 goto out_free;
2367 }
2368
2369 if (!ctrl->identified) {
2370 int i;
2371
2372 ret = nvme_init_subsystem(ctrl, id);
2373 if (ret)
2374 goto out_free;
2375
2376 /*
2377 * Check for quirks. Quirk can depend on firmware version,
2378 * so, in principle, the set of quirks present can change
2379 * across a reset. As a possible future enhancement, we
2380 * could re-scan for quirks every time we reinitialize
2381 * the device, but we'd have to make sure that the driver
2382 * behaves intelligently if the quirks change.
2383 */
2384 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2385 if (quirk_matches(id, &core_quirks[i]))
2386 ctrl->quirks |= core_quirks[i].quirks;
2387 }
2388 }
2389
2390 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2391 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2392 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2393 }
2394
2395 ctrl->oacs = le16_to_cpu(id->oacs);
2396 ctrl->oncs = le16_to_cpup(&id->oncs);
2397 ctrl->oaes = le32_to_cpu(id->oaes);
2398 atomic_set(&ctrl->abort_limit, id->acl + 1);
2399 ctrl->vwc = id->vwc;
2400 ctrl->cntlid = le16_to_cpup(&id->cntlid);
2401 if (id->mdts)
2402 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2403 else
2404 max_hw_sectors = UINT_MAX;
2405 ctrl->max_hw_sectors =
2406 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2407
2408 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2409 ctrl->sgls = le32_to_cpu(id->sgls);
2410 ctrl->kas = le16_to_cpu(id->kas);
2411 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2412
2413 if (id->rtd3e) {
2414 /* us -> s */
2415 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2416
2417 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2418 shutdown_timeout, 60);
2419
2420 if (ctrl->shutdown_timeout != shutdown_timeout)
2421 dev_info(ctrl->device,
2422 "Shutdown timeout set to %u seconds\n",
2423 ctrl->shutdown_timeout);
2424 } else
2425 ctrl->shutdown_timeout = shutdown_timeout;
2426
2427 ctrl->npss = id->npss;
2428 ctrl->apsta = id->apsta;
2429 prev_apst_enabled = ctrl->apst_enabled;
2430 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2431 if (force_apst && id->apsta) {
2432 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2433 ctrl->apst_enabled = true;
2434 } else {
2435 ctrl->apst_enabled = false;
2436 }
2437 } else {
2438 ctrl->apst_enabled = id->apsta;
2439 }
2440 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2441
2442 if (ctrl->ops->flags & NVME_F_FABRICS) {
2443 ctrl->icdoff = le16_to_cpu(id->icdoff);
2444 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2445 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2446 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2447
2448 /*
2449 * In fabrics we need to verify the cntlid matches the
2450 * admin connect
2451 */
2452 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2453 ret = -EINVAL;
2454 goto out_free;
2455 }
2456
2457 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2458 dev_err(ctrl->device,
2459 "keep-alive support is mandatory for fabrics\n");
2460 ret = -EINVAL;
2461 goto out_free;
2462 }
2463 } else {
2464 ctrl->cntlid = le16_to_cpu(id->cntlid);
2465 ctrl->hmpre = le32_to_cpu(id->hmpre);
2466 ctrl->hmmin = le32_to_cpu(id->hmmin);
2467 ctrl->hmminds = le32_to_cpu(id->hmminds);
2468 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2469 }
2470
2471 ret = nvme_mpath_init(ctrl, id);
2472 kfree(id);
2473
2474 if (ret < 0)
2475 return ret;
2476
2477 if (ctrl->apst_enabled && !prev_apst_enabled)
2478 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2479 else if (!ctrl->apst_enabled && prev_apst_enabled)
2480 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2481
2482 ret = nvme_configure_apst(ctrl);
2483 if (ret < 0)
2484 return ret;
2485
2486 ret = nvme_configure_timestamp(ctrl);
2487 if (ret < 0)
2488 return ret;
2489
2490 ret = nvme_configure_directives(ctrl);
2491 if (ret < 0)
2492 return ret;
2493
2494 ctrl->identified = true;
2495
2496 return 0;
2497
2498 out_free:
2499 kfree(id);
2500 return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(nvme_init_identify);
2503
nvme_dev_open(struct inode * inode,struct file * file)2504 static int nvme_dev_open(struct inode *inode, struct file *file)
2505 {
2506 struct nvme_ctrl *ctrl =
2507 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2508
2509 switch (ctrl->state) {
2510 case NVME_CTRL_LIVE:
2511 case NVME_CTRL_ADMIN_ONLY:
2512 break;
2513 default:
2514 return -EWOULDBLOCK;
2515 }
2516
2517 file->private_data = ctrl;
2518 return 0;
2519 }
2520
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp)2521 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2522 {
2523 struct nvme_ns *ns;
2524 int ret;
2525
2526 down_read(&ctrl->namespaces_rwsem);
2527 if (list_empty(&ctrl->namespaces)) {
2528 ret = -ENOTTY;
2529 goto out_unlock;
2530 }
2531
2532 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2533 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2534 dev_warn(ctrl->device,
2535 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2536 ret = -EINVAL;
2537 goto out_unlock;
2538 }
2539
2540 dev_warn(ctrl->device,
2541 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2542 kref_get(&ns->kref);
2543 up_read(&ctrl->namespaces_rwsem);
2544
2545 ret = nvme_user_cmd(ctrl, ns, argp);
2546 nvme_put_ns(ns);
2547 return ret;
2548
2549 out_unlock:
2550 up_read(&ctrl->namespaces_rwsem);
2551 return ret;
2552 }
2553
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2554 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2555 unsigned long arg)
2556 {
2557 struct nvme_ctrl *ctrl = file->private_data;
2558 void __user *argp = (void __user *)arg;
2559
2560 switch (cmd) {
2561 case NVME_IOCTL_ADMIN_CMD:
2562 return nvme_user_cmd(ctrl, NULL, argp);
2563 case NVME_IOCTL_IO_CMD:
2564 return nvme_dev_user_cmd(ctrl, argp);
2565 case NVME_IOCTL_RESET:
2566 dev_warn(ctrl->device, "resetting controller\n");
2567 return nvme_reset_ctrl_sync(ctrl);
2568 case NVME_IOCTL_SUBSYS_RESET:
2569 return nvme_reset_subsystem(ctrl);
2570 case NVME_IOCTL_RESCAN:
2571 nvme_queue_scan(ctrl);
2572 return 0;
2573 default:
2574 return -ENOTTY;
2575 }
2576 }
2577
2578 static const struct file_operations nvme_dev_fops = {
2579 .owner = THIS_MODULE,
2580 .open = nvme_dev_open,
2581 .unlocked_ioctl = nvme_dev_ioctl,
2582 .compat_ioctl = nvme_dev_ioctl,
2583 };
2584
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2585 static ssize_t nvme_sysfs_reset(struct device *dev,
2586 struct device_attribute *attr, const char *buf,
2587 size_t count)
2588 {
2589 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2590 int ret;
2591
2592 ret = nvme_reset_ctrl_sync(ctrl);
2593 if (ret < 0)
2594 return ret;
2595 return count;
2596 }
2597 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2598
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2599 static ssize_t nvme_sysfs_rescan(struct device *dev,
2600 struct device_attribute *attr, const char *buf,
2601 size_t count)
2602 {
2603 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2604
2605 nvme_queue_scan(ctrl);
2606 return count;
2607 }
2608 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2609
dev_to_ns_head(struct device * dev)2610 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2611 {
2612 struct gendisk *disk = dev_to_disk(dev);
2613
2614 if (disk->fops == &nvme_fops)
2615 return nvme_get_ns_from_dev(dev)->head;
2616 else
2617 return disk->private_data;
2618 }
2619
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)2620 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2621 char *buf)
2622 {
2623 struct nvme_ns_head *head = dev_to_ns_head(dev);
2624 struct nvme_ns_ids *ids = &head->ids;
2625 struct nvme_subsystem *subsys = head->subsys;
2626 int serial_len = sizeof(subsys->serial);
2627 int model_len = sizeof(subsys->model);
2628
2629 if (!uuid_is_null(&ids->uuid))
2630 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2631
2632 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2633 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2634
2635 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2636 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2637
2638 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2639 subsys->serial[serial_len - 1] == '\0'))
2640 serial_len--;
2641 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2642 subsys->model[model_len - 1] == '\0'))
2643 model_len--;
2644
2645 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2646 serial_len, subsys->serial, model_len, subsys->model,
2647 head->ns_id);
2648 }
2649 static DEVICE_ATTR_RO(wwid);
2650
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)2651 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2652 char *buf)
2653 {
2654 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2655 }
2656 static DEVICE_ATTR_RO(nguid);
2657
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)2658 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2659 char *buf)
2660 {
2661 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2662
2663 /* For backward compatibility expose the NGUID to userspace if
2664 * we have no UUID set
2665 */
2666 if (uuid_is_null(&ids->uuid)) {
2667 printk_ratelimited(KERN_WARNING
2668 "No UUID available providing old NGUID\n");
2669 return sprintf(buf, "%pU\n", ids->nguid);
2670 }
2671 return sprintf(buf, "%pU\n", &ids->uuid);
2672 }
2673 static DEVICE_ATTR_RO(uuid);
2674
eui_show(struct device * dev,struct device_attribute * attr,char * buf)2675 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2676 char *buf)
2677 {
2678 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2679 }
2680 static DEVICE_ATTR_RO(eui);
2681
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)2682 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2683 char *buf)
2684 {
2685 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2686 }
2687 static DEVICE_ATTR_RO(nsid);
2688
2689 static struct attribute *nvme_ns_id_attrs[] = {
2690 &dev_attr_wwid.attr,
2691 &dev_attr_uuid.attr,
2692 &dev_attr_nguid.attr,
2693 &dev_attr_eui.attr,
2694 &dev_attr_nsid.attr,
2695 #ifdef CONFIG_NVME_MULTIPATH
2696 &dev_attr_ana_grpid.attr,
2697 &dev_attr_ana_state.attr,
2698 #endif
2699 NULL,
2700 };
2701
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2702 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2703 struct attribute *a, int n)
2704 {
2705 struct device *dev = container_of(kobj, struct device, kobj);
2706 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2707
2708 if (a == &dev_attr_uuid.attr) {
2709 if (uuid_is_null(&ids->uuid) &&
2710 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2711 return 0;
2712 }
2713 if (a == &dev_attr_nguid.attr) {
2714 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2715 return 0;
2716 }
2717 if (a == &dev_attr_eui.attr) {
2718 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2719 return 0;
2720 }
2721 #ifdef CONFIG_NVME_MULTIPATH
2722 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2723 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2724 return 0;
2725 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2726 return 0;
2727 }
2728 #endif
2729 return a->mode;
2730 }
2731
2732 const struct attribute_group nvme_ns_id_attr_group = {
2733 .attrs = nvme_ns_id_attrs,
2734 .is_visible = nvme_ns_id_attrs_are_visible,
2735 };
2736
2737 #define nvme_show_str_function(field) \
2738 static ssize_t field##_show(struct device *dev, \
2739 struct device_attribute *attr, char *buf) \
2740 { \
2741 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2742 return sprintf(buf, "%.*s\n", \
2743 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2744 } \
2745 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2746
2747 nvme_show_str_function(model);
2748 nvme_show_str_function(serial);
2749 nvme_show_str_function(firmware_rev);
2750
2751 #define nvme_show_int_function(field) \
2752 static ssize_t field##_show(struct device *dev, \
2753 struct device_attribute *attr, char *buf) \
2754 { \
2755 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2756 return sprintf(buf, "%d\n", ctrl->field); \
2757 } \
2758 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2759
2760 nvme_show_int_function(cntlid);
2761
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2762 static ssize_t nvme_sysfs_delete(struct device *dev,
2763 struct device_attribute *attr, const char *buf,
2764 size_t count)
2765 {
2766 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2767
2768 if (device_remove_file_self(dev, attr))
2769 nvme_delete_ctrl_sync(ctrl);
2770 return count;
2771 }
2772 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2773
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)2774 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2775 struct device_attribute *attr,
2776 char *buf)
2777 {
2778 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2779
2780 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2781 }
2782 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2783
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)2784 static ssize_t nvme_sysfs_show_state(struct device *dev,
2785 struct device_attribute *attr,
2786 char *buf)
2787 {
2788 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2789 static const char *const state_name[] = {
2790 [NVME_CTRL_NEW] = "new",
2791 [NVME_CTRL_LIVE] = "live",
2792 [NVME_CTRL_ADMIN_ONLY] = "only-admin",
2793 [NVME_CTRL_RESETTING] = "resetting",
2794 [NVME_CTRL_CONNECTING] = "connecting",
2795 [NVME_CTRL_DELETING] = "deleting",
2796 [NVME_CTRL_DEAD] = "dead",
2797 };
2798
2799 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2800 state_name[ctrl->state])
2801 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2802
2803 return sprintf(buf, "unknown state\n");
2804 }
2805
2806 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2807
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)2808 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2809 struct device_attribute *attr,
2810 char *buf)
2811 {
2812 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2813
2814 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2815 }
2816 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2817
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)2818 static ssize_t nvme_sysfs_show_address(struct device *dev,
2819 struct device_attribute *attr,
2820 char *buf)
2821 {
2822 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2823
2824 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2825 }
2826 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2827
2828 static struct attribute *nvme_dev_attrs[] = {
2829 &dev_attr_reset_controller.attr,
2830 &dev_attr_rescan_controller.attr,
2831 &dev_attr_model.attr,
2832 &dev_attr_serial.attr,
2833 &dev_attr_firmware_rev.attr,
2834 &dev_attr_cntlid.attr,
2835 &dev_attr_delete_controller.attr,
2836 &dev_attr_transport.attr,
2837 &dev_attr_subsysnqn.attr,
2838 &dev_attr_address.attr,
2839 &dev_attr_state.attr,
2840 NULL
2841 };
2842
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2843 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2844 struct attribute *a, int n)
2845 {
2846 struct device *dev = container_of(kobj, struct device, kobj);
2847 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2848
2849 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2850 return 0;
2851 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2852 return 0;
2853
2854 return a->mode;
2855 }
2856
2857 static struct attribute_group nvme_dev_attrs_group = {
2858 .attrs = nvme_dev_attrs,
2859 .is_visible = nvme_dev_attrs_are_visible,
2860 };
2861
2862 static const struct attribute_group *nvme_dev_attr_groups[] = {
2863 &nvme_dev_attrs_group,
2864 NULL,
2865 };
2866
__nvme_find_ns_head(struct nvme_subsystem * subsys,unsigned nsid)2867 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2868 unsigned nsid)
2869 {
2870 struct nvme_ns_head *h;
2871
2872 lockdep_assert_held(&subsys->lock);
2873
2874 list_for_each_entry(h, &subsys->nsheads, entry) {
2875 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2876 return h;
2877 }
2878
2879 return NULL;
2880 }
2881
__nvme_check_ids(struct nvme_subsystem * subsys,struct nvme_ns_head * new)2882 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2883 struct nvme_ns_head *new)
2884 {
2885 struct nvme_ns_head *h;
2886
2887 lockdep_assert_held(&subsys->lock);
2888
2889 list_for_each_entry(h, &subsys->nsheads, entry) {
2890 if (nvme_ns_ids_valid(&new->ids) &&
2891 !list_empty(&h->list) &&
2892 nvme_ns_ids_equal(&new->ids, &h->ids))
2893 return -EINVAL;
2894 }
2895
2896 return 0;
2897 }
2898
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns * id)2899 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2900 unsigned nsid, struct nvme_id_ns *id)
2901 {
2902 struct nvme_ns_head *head;
2903 int ret = -ENOMEM;
2904
2905 head = kzalloc(sizeof(*head), GFP_KERNEL);
2906 if (!head)
2907 goto out;
2908 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2909 if (ret < 0)
2910 goto out_free_head;
2911 head->instance = ret;
2912 INIT_LIST_HEAD(&head->list);
2913 ret = init_srcu_struct(&head->srcu);
2914 if (ret)
2915 goto out_ida_remove;
2916 head->subsys = ctrl->subsys;
2917 head->ns_id = nsid;
2918 kref_init(&head->ref);
2919
2920 nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2921
2922 ret = __nvme_check_ids(ctrl->subsys, head);
2923 if (ret) {
2924 dev_err(ctrl->device,
2925 "duplicate IDs for nsid %d\n", nsid);
2926 goto out_cleanup_srcu;
2927 }
2928
2929 ret = nvme_mpath_alloc_disk(ctrl, head);
2930 if (ret)
2931 goto out_cleanup_srcu;
2932
2933 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2934
2935 kref_get(&ctrl->subsys->ref);
2936
2937 return head;
2938 out_cleanup_srcu:
2939 cleanup_srcu_struct(&head->srcu);
2940 out_ida_remove:
2941 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2942 out_free_head:
2943 kfree(head);
2944 out:
2945 return ERR_PTR(ret);
2946 }
2947
nvme_init_ns_head(struct nvme_ns * ns,unsigned nsid,struct nvme_id_ns * id)2948 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2949 struct nvme_id_ns *id)
2950 {
2951 struct nvme_ctrl *ctrl = ns->ctrl;
2952 bool is_shared = id->nmic & (1 << 0);
2953 struct nvme_ns_head *head = NULL;
2954 int ret = 0;
2955
2956 mutex_lock(&ctrl->subsys->lock);
2957 if (is_shared)
2958 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2959 if (!head) {
2960 head = nvme_alloc_ns_head(ctrl, nsid, id);
2961 if (IS_ERR(head)) {
2962 ret = PTR_ERR(head);
2963 goto out_unlock;
2964 }
2965 } else {
2966 struct nvme_ns_ids ids;
2967
2968 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2969 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2970 dev_err(ctrl->device,
2971 "IDs don't match for shared namespace %d\n",
2972 nsid);
2973 ret = -EINVAL;
2974 goto out_unlock;
2975 }
2976 }
2977
2978 list_add_tail(&ns->siblings, &head->list);
2979 ns->head = head;
2980
2981 out_unlock:
2982 mutex_unlock(&ctrl->subsys->lock);
2983 return ret;
2984 }
2985
ns_cmp(void * priv,struct list_head * a,struct list_head * b)2986 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2987 {
2988 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2989 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2990
2991 return nsa->head->ns_id - nsb->head->ns_id;
2992 }
2993
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)2994 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2995 {
2996 struct nvme_ns *ns, *ret = NULL;
2997
2998 down_read(&ctrl->namespaces_rwsem);
2999 list_for_each_entry(ns, &ctrl->namespaces, list) {
3000 if (ns->head->ns_id == nsid) {
3001 if (!kref_get_unless_zero(&ns->kref))
3002 continue;
3003 ret = ns;
3004 break;
3005 }
3006 if (ns->head->ns_id > nsid)
3007 break;
3008 }
3009 up_read(&ctrl->namespaces_rwsem);
3010 return ret;
3011 }
3012
nvme_setup_streams_ns(struct nvme_ctrl * ctrl,struct nvme_ns * ns)3013 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3014 {
3015 struct streams_directive_params s;
3016 int ret;
3017
3018 if (!ctrl->nr_streams)
3019 return 0;
3020
3021 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3022 if (ret)
3023 return ret;
3024
3025 ns->sws = le32_to_cpu(s.sws);
3026 ns->sgs = le16_to_cpu(s.sgs);
3027
3028 if (ns->sws) {
3029 unsigned int bs = 1 << ns->lba_shift;
3030
3031 blk_queue_io_min(ns->queue, bs * ns->sws);
3032 if (ns->sgs)
3033 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3034 }
3035
3036 return 0;
3037 }
3038
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)3039 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3040 {
3041 struct nvme_ns *ns;
3042 struct gendisk *disk;
3043 struct nvme_id_ns *id;
3044 char disk_name[DISK_NAME_LEN];
3045 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
3046
3047 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3048 if (!ns)
3049 return;
3050
3051 ns->queue = blk_mq_init_queue(ctrl->tagset);
3052 if (IS_ERR(ns->queue))
3053 goto out_free_ns;
3054 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3055 ns->queue->queuedata = ns;
3056 ns->ctrl = ctrl;
3057
3058 kref_init(&ns->kref);
3059 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3060
3061 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3062 nvme_set_queue_limits(ctrl, ns->queue);
3063
3064 id = nvme_identify_ns(ctrl, nsid);
3065 if (!id)
3066 goto out_free_queue;
3067
3068 if (id->ncap == 0)
3069 goto out_free_id;
3070
3071 if (nvme_init_ns_head(ns, nsid, id))
3072 goto out_free_id;
3073 nvme_setup_streams_ns(ctrl, ns);
3074 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3075
3076 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3077 if (nvme_nvm_register(ns, disk_name, node)) {
3078 dev_warn(ctrl->device, "LightNVM init failure\n");
3079 goto out_unlink_ns;
3080 }
3081 }
3082
3083 disk = alloc_disk_node(0, node);
3084 if (!disk)
3085 goto out_unlink_ns;
3086
3087 disk->fops = &nvme_fops;
3088 disk->private_data = ns;
3089 disk->queue = ns->queue;
3090 disk->flags = flags;
3091 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3092 ns->disk = disk;
3093
3094 __nvme_revalidate_disk(disk, id);
3095
3096 down_write(&ctrl->namespaces_rwsem);
3097 list_add_tail(&ns->list, &ctrl->namespaces);
3098 up_write(&ctrl->namespaces_rwsem);
3099
3100 nvme_get_ctrl(ctrl);
3101
3102 device_add_disk(ctrl->device, ns->disk);
3103 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3104 &nvme_ns_id_attr_group))
3105 pr_warn("%s: failed to create sysfs group for identification\n",
3106 ns->disk->disk_name);
3107 if (ns->ndev && nvme_nvm_register_sysfs(ns))
3108 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3109 ns->disk->disk_name);
3110
3111 nvme_mpath_add_disk(ns, id);
3112 nvme_fault_inject_init(ns);
3113 kfree(id);
3114
3115 return;
3116 out_unlink_ns:
3117 mutex_lock(&ctrl->subsys->lock);
3118 list_del_rcu(&ns->siblings);
3119 mutex_unlock(&ctrl->subsys->lock);
3120 out_free_id:
3121 kfree(id);
3122 out_free_queue:
3123 blk_cleanup_queue(ns->queue);
3124 out_free_ns:
3125 kfree(ns);
3126 }
3127
nvme_ns_remove(struct nvme_ns * ns)3128 static void nvme_ns_remove(struct nvme_ns *ns)
3129 {
3130 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3131 return;
3132
3133 nvme_fault_inject_fini(ns);
3134 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3135 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3136 &nvme_ns_id_attr_group);
3137 if (ns->ndev)
3138 nvme_nvm_unregister_sysfs(ns);
3139 del_gendisk(ns->disk);
3140 blk_cleanup_queue(ns->queue);
3141 if (blk_get_integrity(ns->disk))
3142 blk_integrity_unregister(ns->disk);
3143 }
3144
3145 mutex_lock(&ns->ctrl->subsys->lock);
3146 list_del_rcu(&ns->siblings);
3147 nvme_mpath_clear_current_path(ns);
3148 mutex_unlock(&ns->ctrl->subsys->lock);
3149
3150 down_write(&ns->ctrl->namespaces_rwsem);
3151 list_del_init(&ns->list);
3152 up_write(&ns->ctrl->namespaces_rwsem);
3153
3154 synchronize_srcu(&ns->head->srcu);
3155 nvme_mpath_check_last_path(ns);
3156 nvme_put_ns(ns);
3157 }
3158
nvme_validate_ns(struct nvme_ctrl * ctrl,unsigned nsid)3159 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3160 {
3161 struct nvme_ns *ns;
3162
3163 ns = nvme_find_get_ns(ctrl, nsid);
3164 if (ns) {
3165 if (ns->disk && revalidate_disk(ns->disk))
3166 nvme_ns_remove(ns);
3167 nvme_put_ns(ns);
3168 } else
3169 nvme_alloc_ns(ctrl, nsid);
3170 }
3171
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)3172 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3173 unsigned nsid)
3174 {
3175 struct nvme_ns *ns, *next;
3176 LIST_HEAD(rm_list);
3177
3178 down_write(&ctrl->namespaces_rwsem);
3179 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3180 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3181 list_move_tail(&ns->list, &rm_list);
3182 }
3183 up_write(&ctrl->namespaces_rwsem);
3184
3185 list_for_each_entry_safe(ns, next, &rm_list, list)
3186 nvme_ns_remove(ns);
3187
3188 }
3189
nvme_scan_ns_list(struct nvme_ctrl * ctrl,unsigned nn)3190 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3191 {
3192 struct nvme_ns *ns;
3193 __le32 *ns_list;
3194 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3195 int ret = 0;
3196
3197 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3198 if (!ns_list)
3199 return -ENOMEM;
3200
3201 for (i = 0; i < num_lists; i++) {
3202 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3203 if (ret)
3204 goto free;
3205
3206 for (j = 0; j < min(nn, 1024U); j++) {
3207 nsid = le32_to_cpu(ns_list[j]);
3208 if (!nsid)
3209 goto out;
3210
3211 nvme_validate_ns(ctrl, nsid);
3212
3213 while (++prev < nsid) {
3214 ns = nvme_find_get_ns(ctrl, prev);
3215 if (ns) {
3216 nvme_ns_remove(ns);
3217 nvme_put_ns(ns);
3218 }
3219 }
3220 }
3221 nn -= j;
3222 }
3223 out:
3224 nvme_remove_invalid_namespaces(ctrl, prev);
3225 free:
3226 kfree(ns_list);
3227 return ret;
3228 }
3229
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl,unsigned nn)3230 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3231 {
3232 unsigned i;
3233
3234 for (i = 1; i <= nn; i++)
3235 nvme_validate_ns(ctrl, i);
3236
3237 nvme_remove_invalid_namespaces(ctrl, nn);
3238 }
3239
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)3240 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3241 {
3242 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3243 __le32 *log;
3244 int error;
3245
3246 log = kzalloc(log_size, GFP_KERNEL);
3247 if (!log)
3248 return;
3249
3250 /*
3251 * We need to read the log to clear the AEN, but we don't want to rely
3252 * on it for the changed namespace information as userspace could have
3253 * raced with us in reading the log page, which could cause us to miss
3254 * updates.
3255 */
3256 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3257 log_size, 0);
3258 if (error)
3259 dev_warn(ctrl->device,
3260 "reading changed ns log failed: %d\n", error);
3261
3262 kfree(log);
3263 }
3264
nvme_scan_work(struct work_struct * work)3265 static void nvme_scan_work(struct work_struct *work)
3266 {
3267 struct nvme_ctrl *ctrl =
3268 container_of(work, struct nvme_ctrl, scan_work);
3269 struct nvme_id_ctrl *id;
3270 unsigned nn;
3271
3272 if (ctrl->state != NVME_CTRL_LIVE)
3273 return;
3274
3275 WARN_ON_ONCE(!ctrl->tagset);
3276
3277 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3278 dev_info(ctrl->device, "rescanning namespaces.\n");
3279 nvme_clear_changed_ns_log(ctrl);
3280 }
3281
3282 if (nvme_identify_ctrl(ctrl, &id))
3283 return;
3284
3285 nn = le32_to_cpu(id->nn);
3286 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3287 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3288 if (!nvme_scan_ns_list(ctrl, nn))
3289 goto out_free_id;
3290 }
3291 nvme_scan_ns_sequential(ctrl, nn);
3292 out_free_id:
3293 kfree(id);
3294 down_write(&ctrl->namespaces_rwsem);
3295 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3296 up_write(&ctrl->namespaces_rwsem);
3297 }
3298
3299 /*
3300 * This function iterates the namespace list unlocked to allow recovery from
3301 * controller failure. It is up to the caller to ensure the namespace list is
3302 * not modified by scan work while this function is executing.
3303 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)3304 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3305 {
3306 struct nvme_ns *ns, *next;
3307 LIST_HEAD(ns_list);
3308
3309 /*
3310 * The dead states indicates the controller was not gracefully
3311 * disconnected. In that case, we won't be able to flush any data while
3312 * removing the namespaces' disks; fail all the queues now to avoid
3313 * potentially having to clean up the failed sync later.
3314 */
3315 if (ctrl->state == NVME_CTRL_DEAD)
3316 nvme_kill_queues(ctrl);
3317
3318 down_write(&ctrl->namespaces_rwsem);
3319 list_splice_init(&ctrl->namespaces, &ns_list);
3320 up_write(&ctrl->namespaces_rwsem);
3321
3322 list_for_each_entry_safe(ns, next, &ns_list, list)
3323 nvme_ns_remove(ns);
3324 }
3325 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3326
nvme_aen_uevent(struct nvme_ctrl * ctrl)3327 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3328 {
3329 char *envp[2] = { NULL, NULL };
3330 u32 aen_result = ctrl->aen_result;
3331
3332 ctrl->aen_result = 0;
3333 if (!aen_result)
3334 return;
3335
3336 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3337 if (!envp[0])
3338 return;
3339 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3340 kfree(envp[0]);
3341 }
3342
nvme_async_event_work(struct work_struct * work)3343 static void nvme_async_event_work(struct work_struct *work)
3344 {
3345 struct nvme_ctrl *ctrl =
3346 container_of(work, struct nvme_ctrl, async_event_work);
3347
3348 nvme_aen_uevent(ctrl);
3349 ctrl->ops->submit_async_event(ctrl);
3350 }
3351
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)3352 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3353 {
3354
3355 u32 csts;
3356
3357 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3358 return false;
3359
3360 if (csts == ~0)
3361 return false;
3362
3363 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3364 }
3365
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)3366 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3367 {
3368 struct nvme_fw_slot_info_log *log;
3369
3370 log = kmalloc(sizeof(*log), GFP_KERNEL);
3371 if (!log)
3372 return;
3373
3374 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3375 sizeof(*log), 0))
3376 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3377 kfree(log);
3378 }
3379
nvme_fw_act_work(struct work_struct * work)3380 static void nvme_fw_act_work(struct work_struct *work)
3381 {
3382 struct nvme_ctrl *ctrl = container_of(work,
3383 struct nvme_ctrl, fw_act_work);
3384 unsigned long fw_act_timeout;
3385
3386 if (ctrl->mtfa)
3387 fw_act_timeout = jiffies +
3388 msecs_to_jiffies(ctrl->mtfa * 100);
3389 else
3390 fw_act_timeout = jiffies +
3391 msecs_to_jiffies(admin_timeout * 1000);
3392
3393 nvme_stop_queues(ctrl);
3394 while (nvme_ctrl_pp_status(ctrl)) {
3395 if (time_after(jiffies, fw_act_timeout)) {
3396 dev_warn(ctrl->device,
3397 "Fw activation timeout, reset controller\n");
3398 nvme_reset_ctrl(ctrl);
3399 break;
3400 }
3401 msleep(100);
3402 }
3403
3404 if (ctrl->state != NVME_CTRL_LIVE)
3405 return;
3406
3407 nvme_start_queues(ctrl);
3408 /* read FW slot information to clear the AER */
3409 nvme_get_fw_slot_info(ctrl);
3410 }
3411
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)3412 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3413 {
3414 switch ((result & 0xff00) >> 8) {
3415 case NVME_AER_NOTICE_NS_CHANGED:
3416 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3417 nvme_queue_scan(ctrl);
3418 break;
3419 case NVME_AER_NOTICE_FW_ACT_STARTING:
3420 queue_work(nvme_wq, &ctrl->fw_act_work);
3421 break;
3422 #ifdef CONFIG_NVME_MULTIPATH
3423 case NVME_AER_NOTICE_ANA:
3424 if (!ctrl->ana_log_buf)
3425 break;
3426 queue_work(nvme_wq, &ctrl->ana_work);
3427 break;
3428 #endif
3429 default:
3430 dev_warn(ctrl->device, "async event result %08x\n", result);
3431 }
3432 }
3433
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)3434 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3435 volatile union nvme_result *res)
3436 {
3437 u32 result = le32_to_cpu(res->u32);
3438
3439 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3440 return;
3441
3442 switch (result & 0x7) {
3443 case NVME_AER_NOTICE:
3444 nvme_handle_aen_notice(ctrl, result);
3445 break;
3446 case NVME_AER_ERROR:
3447 case NVME_AER_SMART:
3448 case NVME_AER_CSS:
3449 case NVME_AER_VS:
3450 ctrl->aen_result = result;
3451 break;
3452 default:
3453 break;
3454 }
3455 queue_work(nvme_wq, &ctrl->async_event_work);
3456 }
3457 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3458
nvme_stop_ctrl(struct nvme_ctrl * ctrl)3459 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3460 {
3461 nvme_mpath_stop(ctrl);
3462 nvme_stop_keep_alive(ctrl);
3463 flush_work(&ctrl->async_event_work);
3464 flush_work(&ctrl->scan_work);
3465 cancel_work_sync(&ctrl->fw_act_work);
3466 if (ctrl->ops->stop_ctrl)
3467 ctrl->ops->stop_ctrl(ctrl);
3468 }
3469 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3470
nvme_start_ctrl(struct nvme_ctrl * ctrl)3471 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3472 {
3473 if (ctrl->kato)
3474 nvme_start_keep_alive(ctrl);
3475
3476 if (ctrl->queue_count > 1) {
3477 nvme_queue_scan(ctrl);
3478 nvme_enable_aen(ctrl);
3479 queue_work(nvme_wq, &ctrl->async_event_work);
3480 nvme_start_queues(ctrl);
3481 }
3482 }
3483 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3484
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)3485 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3486 {
3487 cdev_device_del(&ctrl->cdev, ctrl->device);
3488 }
3489 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3490
nvme_free_ctrl(struct device * dev)3491 static void nvme_free_ctrl(struct device *dev)
3492 {
3493 struct nvme_ctrl *ctrl =
3494 container_of(dev, struct nvme_ctrl, ctrl_device);
3495 struct nvme_subsystem *subsys = ctrl->subsys;
3496
3497 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3498 kfree(ctrl->effects);
3499 nvme_mpath_uninit(ctrl);
3500
3501 if (subsys) {
3502 mutex_lock(&subsys->lock);
3503 list_del(&ctrl->subsys_entry);
3504 mutex_unlock(&subsys->lock);
3505 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3506 }
3507
3508 ctrl->ops->free_ctrl(ctrl);
3509
3510 if (subsys)
3511 nvme_put_subsystem(subsys);
3512 }
3513
3514 /*
3515 * Initialize a NVMe controller structures. This needs to be called during
3516 * earliest initialization so that we have the initialized structured around
3517 * during probing.
3518 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)3519 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3520 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3521 {
3522 int ret;
3523
3524 ctrl->state = NVME_CTRL_NEW;
3525 spin_lock_init(&ctrl->lock);
3526 INIT_LIST_HEAD(&ctrl->namespaces);
3527 init_rwsem(&ctrl->namespaces_rwsem);
3528 ctrl->dev = dev;
3529 ctrl->ops = ops;
3530 ctrl->quirks = quirks;
3531 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3532 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3533 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3534 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3535
3536 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3537 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3538 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3539
3540 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3541 if (ret < 0)
3542 goto out;
3543 ctrl->instance = ret;
3544
3545 device_initialize(&ctrl->ctrl_device);
3546 ctrl->device = &ctrl->ctrl_device;
3547 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3548 ctrl->device->class = nvme_class;
3549 ctrl->device->parent = ctrl->dev;
3550 ctrl->device->groups = nvme_dev_attr_groups;
3551 ctrl->device->release = nvme_free_ctrl;
3552 dev_set_drvdata(ctrl->device, ctrl);
3553 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3554 if (ret)
3555 goto out_release_instance;
3556
3557 cdev_init(&ctrl->cdev, &nvme_dev_fops);
3558 ctrl->cdev.owner = ops->module;
3559 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3560 if (ret)
3561 goto out_free_name;
3562
3563 /*
3564 * Initialize latency tolerance controls. The sysfs files won't
3565 * be visible to userspace unless the device actually supports APST.
3566 */
3567 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3568 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3569 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3570
3571 return 0;
3572 out_free_name:
3573 kfree_const(dev->kobj.name);
3574 out_release_instance:
3575 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3576 out:
3577 return ret;
3578 }
3579 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3580
3581 /**
3582 * nvme_kill_queues(): Ends all namespace queues
3583 * @ctrl: the dead controller that needs to end
3584 *
3585 * Call this function when the driver determines it is unable to get the
3586 * controller in a state capable of servicing IO.
3587 */
nvme_kill_queues(struct nvme_ctrl * ctrl)3588 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3589 {
3590 struct nvme_ns *ns;
3591
3592 down_read(&ctrl->namespaces_rwsem);
3593
3594 /* Forcibly unquiesce queues to avoid blocking dispatch */
3595 if (ctrl->admin_q)
3596 blk_mq_unquiesce_queue(ctrl->admin_q);
3597
3598 list_for_each_entry(ns, &ctrl->namespaces, list)
3599 nvme_set_queue_dying(ns);
3600
3601 up_read(&ctrl->namespaces_rwsem);
3602 }
3603 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3604
nvme_unfreeze(struct nvme_ctrl * ctrl)3605 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3606 {
3607 struct nvme_ns *ns;
3608
3609 down_read(&ctrl->namespaces_rwsem);
3610 list_for_each_entry(ns, &ctrl->namespaces, list)
3611 blk_mq_unfreeze_queue(ns->queue);
3612 up_read(&ctrl->namespaces_rwsem);
3613 }
3614 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3615
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)3616 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3617 {
3618 struct nvme_ns *ns;
3619
3620 down_read(&ctrl->namespaces_rwsem);
3621 list_for_each_entry(ns, &ctrl->namespaces, list) {
3622 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3623 if (timeout <= 0)
3624 break;
3625 }
3626 up_read(&ctrl->namespaces_rwsem);
3627 }
3628 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3629
nvme_wait_freeze(struct nvme_ctrl * ctrl)3630 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3631 {
3632 struct nvme_ns *ns;
3633
3634 down_read(&ctrl->namespaces_rwsem);
3635 list_for_each_entry(ns, &ctrl->namespaces, list)
3636 blk_mq_freeze_queue_wait(ns->queue);
3637 up_read(&ctrl->namespaces_rwsem);
3638 }
3639 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3640
nvme_start_freeze(struct nvme_ctrl * ctrl)3641 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3642 {
3643 struct nvme_ns *ns;
3644
3645 down_read(&ctrl->namespaces_rwsem);
3646 list_for_each_entry(ns, &ctrl->namespaces, list)
3647 blk_freeze_queue_start(ns->queue);
3648 up_read(&ctrl->namespaces_rwsem);
3649 }
3650 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3651
nvme_stop_queues(struct nvme_ctrl * ctrl)3652 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3653 {
3654 struct nvme_ns *ns;
3655
3656 down_read(&ctrl->namespaces_rwsem);
3657 list_for_each_entry(ns, &ctrl->namespaces, list)
3658 blk_mq_quiesce_queue(ns->queue);
3659 up_read(&ctrl->namespaces_rwsem);
3660 }
3661 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3662
nvme_start_queues(struct nvme_ctrl * ctrl)3663 void nvme_start_queues(struct nvme_ctrl *ctrl)
3664 {
3665 struct nvme_ns *ns;
3666
3667 down_read(&ctrl->namespaces_rwsem);
3668 list_for_each_entry(ns, &ctrl->namespaces, list)
3669 blk_mq_unquiesce_queue(ns->queue);
3670 up_read(&ctrl->namespaces_rwsem);
3671 }
3672 EXPORT_SYMBOL_GPL(nvme_start_queues);
3673
nvme_core_init(void)3674 int __init nvme_core_init(void)
3675 {
3676 int result = -ENOMEM;
3677
3678 nvme_wq = alloc_workqueue("nvme-wq",
3679 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3680 if (!nvme_wq)
3681 goto out;
3682
3683 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3684 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3685 if (!nvme_reset_wq)
3686 goto destroy_wq;
3687
3688 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3689 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3690 if (!nvme_delete_wq)
3691 goto destroy_reset_wq;
3692
3693 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3694 if (result < 0)
3695 goto destroy_delete_wq;
3696
3697 nvme_class = class_create(THIS_MODULE, "nvme");
3698 if (IS_ERR(nvme_class)) {
3699 result = PTR_ERR(nvme_class);
3700 goto unregister_chrdev;
3701 }
3702
3703 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3704 if (IS_ERR(nvme_subsys_class)) {
3705 result = PTR_ERR(nvme_subsys_class);
3706 goto destroy_class;
3707 }
3708 return 0;
3709
3710 destroy_class:
3711 class_destroy(nvme_class);
3712 unregister_chrdev:
3713 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3714 destroy_delete_wq:
3715 destroy_workqueue(nvme_delete_wq);
3716 destroy_reset_wq:
3717 destroy_workqueue(nvme_reset_wq);
3718 destroy_wq:
3719 destroy_workqueue(nvme_wq);
3720 out:
3721 return result;
3722 }
3723
nvme_core_exit(void)3724 void nvme_core_exit(void)
3725 {
3726 ida_destroy(&nvme_subsystems_ida);
3727 class_destroy(nvme_subsys_class);
3728 class_destroy(nvme_class);
3729 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3730 destroy_workqueue(nvme_delete_wq);
3731 destroy_workqueue(nvme_reset_wq);
3732 destroy_workqueue(nvme_wq);
3733 }
3734
3735 MODULE_LICENSE("GPL");
3736 MODULE_VERSION("1.0");
3737 module_init(nvme_core_init);
3738 module_exit(nvme_core_exit);
3739