1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
68 *
69 * nvme_wq will host works such are scan, aen handling, fw activation,
70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
74 */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 unsigned nsid);
96
nvme_set_queue_dying(struct nvme_ns * ns)97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 /*
100 * Revalidating a dead namespace sets capacity to 0. This will end
101 * buffered writers dirtying pages that can't be synced.
102 */
103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 return;
105 blk_set_queue_dying(ns->queue);
106 /* Forcibly unquiesce queues to avoid blocking dispatch */
107 blk_mq_unquiesce_queue(ns->queue);
108 /*
109 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 */
111 revalidate_disk(ns->disk);
112 }
113
nvme_queue_scan(struct nvme_ctrl * ctrl)114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 /*
117 * Only new queue scan work when admin and IO queues are both alive
118 */
119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124 * Use this function to proceed with scheduling reset_work for a controller
125 * that had previously been set to the resetting state. This is intended for
126 * code paths that can't be interrupted by other reset attempts. A hot removal
127 * may prevent this from succeeding.
128 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 if (ctrl->state != NVME_CTRL_RESETTING)
132 return -EBUSY;
133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 return -EBUSY;
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
nvme_reset_ctrl(struct nvme_ctrl * ctrl)139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 return -EBUSY;
143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 return -EBUSY;
145 return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 int ret;
152
153 ret = nvme_reset_ctrl(ctrl);
154 if (!ret) {
155 flush_work(&ctrl->reset_work);
156 if (ctrl->state != NVME_CTRL_LIVE)
157 ret = -ENETRESET;
158 }
159
160 return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 dev_info(ctrl->device,
167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169 flush_work(&ctrl->reset_work);
170 nvme_stop_ctrl(ctrl);
171 nvme_remove_namespaces(ctrl);
172 ctrl->ops->delete_ctrl(ctrl);
173 nvme_uninit_ctrl(ctrl);
174 nvme_put_ctrl(ctrl);
175 }
176
nvme_delete_ctrl_work(struct work_struct * work)177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179 struct nvme_ctrl *ctrl =
180 container_of(work, struct nvme_ctrl, delete_work);
181
182 nvme_do_delete_ctrl(ctrl);
183 }
184
nvme_delete_ctrl(struct nvme_ctrl * ctrl)185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 return -EBUSY;
189 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190 return -EBUSY;
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 int ret = 0;
198
199 /*
200 * Keep a reference until nvme_do_delete_ctrl() complete,
201 * since ->delete_ctrl can free the controller.
202 */
203 nvme_get_ctrl(ctrl);
204 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205 ret = -EBUSY;
206 if (!ret)
207 nvme_do_delete_ctrl(ctrl);
208 nvme_put_ctrl(ctrl);
209 return ret;
210 }
211
nvme_ns_has_pi(struct nvme_ns * ns)212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
213 {
214 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
215 }
216
nvme_error_status(u16 status)217 static blk_status_t nvme_error_status(u16 status)
218 {
219 switch (status & 0x7ff) {
220 case NVME_SC_SUCCESS:
221 return BLK_STS_OK;
222 case NVME_SC_CAP_EXCEEDED:
223 return BLK_STS_NOSPC;
224 case NVME_SC_LBA_RANGE:
225 return BLK_STS_TARGET;
226 case NVME_SC_BAD_ATTRIBUTES:
227 case NVME_SC_ONCS_NOT_SUPPORTED:
228 case NVME_SC_INVALID_OPCODE:
229 case NVME_SC_INVALID_FIELD:
230 case NVME_SC_INVALID_NS:
231 return BLK_STS_NOTSUPP;
232 case NVME_SC_WRITE_FAULT:
233 case NVME_SC_READ_ERROR:
234 case NVME_SC_UNWRITTEN_BLOCK:
235 case NVME_SC_ACCESS_DENIED:
236 case NVME_SC_READ_ONLY:
237 case NVME_SC_COMPARE_FAILED:
238 return BLK_STS_MEDIUM;
239 case NVME_SC_GUARD_CHECK:
240 case NVME_SC_APPTAG_CHECK:
241 case NVME_SC_REFTAG_CHECK:
242 case NVME_SC_INVALID_PI:
243 return BLK_STS_PROTECTION;
244 case NVME_SC_RESERVATION_CONFLICT:
245 return BLK_STS_NEXUS;
246 case NVME_SC_HOST_PATH_ERROR:
247 return BLK_STS_TRANSPORT;
248 default:
249 return BLK_STS_IOERR;
250 }
251 }
252
nvme_req_needs_retry(struct request * req)253 static inline bool nvme_req_needs_retry(struct request *req)
254 {
255 if (blk_noretry_request(req))
256 return false;
257 if (nvme_req(req)->status & NVME_SC_DNR)
258 return false;
259 if (nvme_req(req)->retries >= nvme_max_retries)
260 return false;
261 return true;
262 }
263
nvme_retry_req(struct request * req)264 static void nvme_retry_req(struct request *req)
265 {
266 struct nvme_ns *ns = req->q->queuedata;
267 unsigned long delay = 0;
268 u16 crd;
269
270 /* The mask and shift result must be <= 3 */
271 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
272 if (ns && crd)
273 delay = ns->ctrl->crdt[crd - 1] * 100;
274
275 nvme_req(req)->retries++;
276 blk_mq_requeue_request(req, false);
277 blk_mq_delay_kick_requeue_list(req->q, delay);
278 }
279
nvme_complete_rq(struct request * req)280 void nvme_complete_rq(struct request *req)
281 {
282 blk_status_t status = nvme_error_status(nvme_req(req)->status);
283
284 trace_nvme_complete_rq(req);
285
286 if (nvme_req(req)->ctrl->kas)
287 nvme_req(req)->ctrl->comp_seen = true;
288
289 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
290 if ((req->cmd_flags & REQ_NVME_MPATH) &&
291 blk_path_error(status)) {
292 nvme_failover_req(req);
293 return;
294 }
295
296 if (!blk_queue_dying(req->q)) {
297 nvme_retry_req(req);
298 return;
299 }
300 }
301
302 nvme_trace_bio_complete(req, status);
303 blk_mq_end_request(req, status);
304 }
305 EXPORT_SYMBOL_GPL(nvme_complete_rq);
306
nvme_cancel_request(struct request * req,void * data,bool reserved)307 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
308 {
309 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
310 "Cancelling I/O %d", req->tag);
311
312 /* don't abort one completed request */
313 if (blk_mq_request_completed(req))
314 return true;
315
316 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
317 blk_mq_complete_request(req);
318 return true;
319 }
320 EXPORT_SYMBOL_GPL(nvme_cancel_request);
321
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)322 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
323 enum nvme_ctrl_state new_state)
324 {
325 enum nvme_ctrl_state old_state;
326 unsigned long flags;
327 bool changed = false;
328
329 spin_lock_irqsave(&ctrl->lock, flags);
330
331 old_state = ctrl->state;
332 switch (new_state) {
333 case NVME_CTRL_LIVE:
334 switch (old_state) {
335 case NVME_CTRL_NEW:
336 case NVME_CTRL_RESETTING:
337 case NVME_CTRL_CONNECTING:
338 changed = true;
339 /* FALLTHRU */
340 default:
341 break;
342 }
343 break;
344 case NVME_CTRL_RESETTING:
345 switch (old_state) {
346 case NVME_CTRL_NEW:
347 case NVME_CTRL_LIVE:
348 changed = true;
349 /* FALLTHRU */
350 default:
351 break;
352 }
353 break;
354 case NVME_CTRL_CONNECTING:
355 switch (old_state) {
356 case NVME_CTRL_NEW:
357 case NVME_CTRL_RESETTING:
358 changed = true;
359 /* FALLTHRU */
360 default:
361 break;
362 }
363 break;
364 case NVME_CTRL_DELETING:
365 switch (old_state) {
366 case NVME_CTRL_LIVE:
367 case NVME_CTRL_RESETTING:
368 case NVME_CTRL_CONNECTING:
369 changed = true;
370 /* FALLTHRU */
371 default:
372 break;
373 }
374 break;
375 case NVME_CTRL_DEAD:
376 switch (old_state) {
377 case NVME_CTRL_DELETING:
378 changed = true;
379 /* FALLTHRU */
380 default:
381 break;
382 }
383 break;
384 default:
385 break;
386 }
387
388 if (changed) {
389 ctrl->state = new_state;
390 wake_up_all(&ctrl->state_wq);
391 }
392
393 spin_unlock_irqrestore(&ctrl->lock, flags);
394 if (changed && ctrl->state == NVME_CTRL_LIVE)
395 nvme_kick_requeue_lists(ctrl);
396 return changed;
397 }
398 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
399
400 /*
401 * Returns true for sink states that can't ever transition back to live.
402 */
nvme_state_terminal(struct nvme_ctrl * ctrl)403 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
404 {
405 switch (ctrl->state) {
406 case NVME_CTRL_NEW:
407 case NVME_CTRL_LIVE:
408 case NVME_CTRL_RESETTING:
409 case NVME_CTRL_CONNECTING:
410 return false;
411 case NVME_CTRL_DELETING:
412 case NVME_CTRL_DEAD:
413 return true;
414 default:
415 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
416 return true;
417 }
418 }
419
420 /*
421 * Waits for the controller state to be resetting, or returns false if it is
422 * not possible to ever transition to that state.
423 */
nvme_wait_reset(struct nvme_ctrl * ctrl)424 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
425 {
426 wait_event(ctrl->state_wq,
427 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
428 nvme_state_terminal(ctrl));
429 return ctrl->state == NVME_CTRL_RESETTING;
430 }
431 EXPORT_SYMBOL_GPL(nvme_wait_reset);
432
nvme_free_ns_head(struct kref * ref)433 static void nvme_free_ns_head(struct kref *ref)
434 {
435 struct nvme_ns_head *head =
436 container_of(ref, struct nvme_ns_head, ref);
437
438 nvme_mpath_remove_disk(head);
439 ida_simple_remove(&head->subsys->ns_ida, head->instance);
440 list_del_init(&head->entry);
441 cleanup_srcu_struct(&head->srcu);
442 nvme_put_subsystem(head->subsys);
443 kfree(head);
444 }
445
nvme_put_ns_head(struct nvme_ns_head * head)446 static void nvme_put_ns_head(struct nvme_ns_head *head)
447 {
448 kref_put(&head->ref, nvme_free_ns_head);
449 }
450
nvme_free_ns(struct kref * kref)451 static void nvme_free_ns(struct kref *kref)
452 {
453 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
454
455 if (ns->ndev)
456 nvme_nvm_unregister(ns);
457
458 put_disk(ns->disk);
459 nvme_put_ns_head(ns->head);
460 nvme_put_ctrl(ns->ctrl);
461 kfree(ns);
462 }
463
nvme_put_ns(struct nvme_ns * ns)464 static void nvme_put_ns(struct nvme_ns *ns)
465 {
466 kref_put(&ns->kref, nvme_free_ns);
467 }
468
nvme_clear_nvme_request(struct request * req)469 static inline void nvme_clear_nvme_request(struct request *req)
470 {
471 if (!(req->rq_flags & RQF_DONTPREP)) {
472 nvme_req(req)->retries = 0;
473 nvme_req(req)->flags = 0;
474 req->rq_flags |= RQF_DONTPREP;
475 }
476 }
477
nvme_alloc_request(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags,int qid)478 struct request *nvme_alloc_request(struct request_queue *q,
479 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
480 {
481 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
482 struct request *req;
483
484 if (qid == NVME_QID_ANY) {
485 req = blk_mq_alloc_request(q, op, flags);
486 } else {
487 req = blk_mq_alloc_request_hctx(q, op, flags,
488 qid ? qid - 1 : 0);
489 }
490 if (IS_ERR(req))
491 return req;
492
493 req->cmd_flags |= REQ_FAILFAST_DRIVER;
494 nvme_clear_nvme_request(req);
495 nvme_req(req)->cmd = cmd;
496
497 return req;
498 }
499 EXPORT_SYMBOL_GPL(nvme_alloc_request);
500
nvme_toggle_streams(struct nvme_ctrl * ctrl,bool enable)501 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
502 {
503 struct nvme_command c;
504
505 memset(&c, 0, sizeof(c));
506
507 c.directive.opcode = nvme_admin_directive_send;
508 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
509 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
510 c.directive.dtype = NVME_DIR_IDENTIFY;
511 c.directive.tdtype = NVME_DIR_STREAMS;
512 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
513
514 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
515 }
516
nvme_disable_streams(struct nvme_ctrl * ctrl)517 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
518 {
519 return nvme_toggle_streams(ctrl, false);
520 }
521
nvme_enable_streams(struct nvme_ctrl * ctrl)522 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
523 {
524 return nvme_toggle_streams(ctrl, true);
525 }
526
nvme_get_stream_params(struct nvme_ctrl * ctrl,struct streams_directive_params * s,u32 nsid)527 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
528 struct streams_directive_params *s, u32 nsid)
529 {
530 struct nvme_command c;
531
532 memset(&c, 0, sizeof(c));
533 memset(s, 0, sizeof(*s));
534
535 c.directive.opcode = nvme_admin_directive_recv;
536 c.directive.nsid = cpu_to_le32(nsid);
537 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
538 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
539 c.directive.dtype = NVME_DIR_STREAMS;
540
541 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
542 }
543
nvme_configure_directives(struct nvme_ctrl * ctrl)544 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
545 {
546 struct streams_directive_params s;
547 int ret;
548
549 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
550 return 0;
551 if (!streams)
552 return 0;
553
554 ret = nvme_enable_streams(ctrl);
555 if (ret)
556 return ret;
557
558 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
559 if (ret)
560 return ret;
561
562 ctrl->nssa = le16_to_cpu(s.nssa);
563 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
564 dev_info(ctrl->device, "too few streams (%u) available\n",
565 ctrl->nssa);
566 nvme_disable_streams(ctrl);
567 return 0;
568 }
569
570 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
571 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
572 return 0;
573 }
574
575 /*
576 * Check if 'req' has a write hint associated with it. If it does, assign
577 * a valid namespace stream to the write.
578 */
nvme_assign_write_stream(struct nvme_ctrl * ctrl,struct request * req,u16 * control,u32 * dsmgmt)579 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
580 struct request *req, u16 *control,
581 u32 *dsmgmt)
582 {
583 enum rw_hint streamid = req->write_hint;
584
585 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
586 streamid = 0;
587 else {
588 streamid--;
589 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
590 return;
591
592 *control |= NVME_RW_DTYPE_STREAMS;
593 *dsmgmt |= streamid << 16;
594 }
595
596 if (streamid < ARRAY_SIZE(req->q->write_hints))
597 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
598 }
599
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)600 static inline void nvme_setup_flush(struct nvme_ns *ns,
601 struct nvme_command *cmnd)
602 {
603 cmnd->common.opcode = nvme_cmd_flush;
604 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
605 }
606
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)607 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
608 struct nvme_command *cmnd)
609 {
610 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
611 struct nvme_dsm_range *range;
612 struct bio *bio;
613
614 range = kmalloc_array(segments, sizeof(*range),
615 GFP_ATOMIC | __GFP_NOWARN);
616 if (!range) {
617 /*
618 * If we fail allocation our range, fallback to the controller
619 * discard page. If that's also busy, it's safe to return
620 * busy, as we know we can make progress once that's freed.
621 */
622 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
623 return BLK_STS_RESOURCE;
624
625 range = page_address(ns->ctrl->discard_page);
626 }
627
628 __rq_for_each_bio(bio, req) {
629 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
630 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
631
632 if (n < segments) {
633 range[n].cattr = cpu_to_le32(0);
634 range[n].nlb = cpu_to_le32(nlb);
635 range[n].slba = cpu_to_le64(slba);
636 }
637 n++;
638 }
639
640 if (WARN_ON_ONCE(n != segments)) {
641 if (virt_to_page(range) == ns->ctrl->discard_page)
642 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
643 else
644 kfree(range);
645 return BLK_STS_IOERR;
646 }
647
648 cmnd->dsm.opcode = nvme_cmd_dsm;
649 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
650 cmnd->dsm.nr = cpu_to_le32(segments - 1);
651 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
652
653 req->special_vec.bv_page = virt_to_page(range);
654 req->special_vec.bv_offset = offset_in_page(range);
655 req->special_vec.bv_len = sizeof(*range) * segments;
656 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
657
658 return BLK_STS_OK;
659 }
660
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)661 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
662 struct request *req, struct nvme_command *cmnd)
663 {
664 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
665 return nvme_setup_discard(ns, req, cmnd);
666
667 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
668 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
669 cmnd->write_zeroes.slba =
670 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
671 cmnd->write_zeroes.length =
672 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
673 cmnd->write_zeroes.control = 0;
674 return BLK_STS_OK;
675 }
676
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)677 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
678 struct request *req, struct nvme_command *cmnd)
679 {
680 struct nvme_ctrl *ctrl = ns->ctrl;
681 u16 control = 0;
682 u32 dsmgmt = 0;
683
684 if (req->cmd_flags & REQ_FUA)
685 control |= NVME_RW_FUA;
686 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
687 control |= NVME_RW_LR;
688
689 if (req->cmd_flags & REQ_RAHEAD)
690 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
691
692 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
693 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
694 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
695 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
696
697 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
698 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
699
700 if (ns->ms) {
701 /*
702 * If formated with metadata, the block layer always provides a
703 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
704 * we enable the PRACT bit for protection information or set the
705 * namespace capacity to zero to prevent any I/O.
706 */
707 if (!blk_integrity_rq(req)) {
708 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
709 return BLK_STS_NOTSUPP;
710 control |= NVME_RW_PRINFO_PRACT;
711 }
712
713 switch (ns->pi_type) {
714 case NVME_NS_DPS_PI_TYPE3:
715 control |= NVME_RW_PRINFO_PRCHK_GUARD;
716 break;
717 case NVME_NS_DPS_PI_TYPE1:
718 case NVME_NS_DPS_PI_TYPE2:
719 control |= NVME_RW_PRINFO_PRCHK_GUARD |
720 NVME_RW_PRINFO_PRCHK_REF;
721 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
722 break;
723 }
724 }
725
726 cmnd->rw.control = cpu_to_le16(control);
727 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
728 return 0;
729 }
730
nvme_cleanup_cmd(struct request * req)731 void nvme_cleanup_cmd(struct request *req)
732 {
733 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
734 struct nvme_ns *ns = req->rq_disk->private_data;
735 struct page *page = req->special_vec.bv_page;
736
737 if (page == ns->ctrl->discard_page)
738 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
739 else
740 kfree(page_address(page) + req->special_vec.bv_offset);
741 }
742 }
743 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
744
nvme_setup_cmd(struct nvme_ns * ns,struct request * req,struct nvme_command * cmd)745 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
746 struct nvme_command *cmd)
747 {
748 blk_status_t ret = BLK_STS_OK;
749
750 nvme_clear_nvme_request(req);
751
752 memset(cmd, 0, sizeof(*cmd));
753 switch (req_op(req)) {
754 case REQ_OP_DRV_IN:
755 case REQ_OP_DRV_OUT:
756 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
757 break;
758 case REQ_OP_FLUSH:
759 nvme_setup_flush(ns, cmd);
760 break;
761 case REQ_OP_WRITE_ZEROES:
762 ret = nvme_setup_write_zeroes(ns, req, cmd);
763 break;
764 case REQ_OP_DISCARD:
765 ret = nvme_setup_discard(ns, req, cmd);
766 break;
767 case REQ_OP_READ:
768 case REQ_OP_WRITE:
769 ret = nvme_setup_rw(ns, req, cmd);
770 break;
771 default:
772 WARN_ON_ONCE(1);
773 return BLK_STS_IOERR;
774 }
775
776 cmd->common.command_id = req->tag;
777 trace_nvme_setup_cmd(req, cmd);
778 return ret;
779 }
780 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
781
nvme_end_sync_rq(struct request * rq,blk_status_t error)782 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
783 {
784 struct completion *waiting = rq->end_io_data;
785
786 rq->end_io_data = NULL;
787 complete(waiting);
788 }
789
nvme_execute_rq_polled(struct request_queue * q,struct gendisk * bd_disk,struct request * rq,int at_head)790 static void nvme_execute_rq_polled(struct request_queue *q,
791 struct gendisk *bd_disk, struct request *rq, int at_head)
792 {
793 DECLARE_COMPLETION_ONSTACK(wait);
794
795 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
796
797 rq->cmd_flags |= REQ_HIPRI;
798 rq->end_io_data = &wait;
799 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
800
801 while (!completion_done(&wait)) {
802 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
803 cond_resched();
804 }
805 }
806
807 /*
808 * Returns 0 on success. If the result is negative, it's a Linux error code;
809 * if the result is positive, it's an NVM Express status code
810 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,blk_mq_req_flags_t flags,bool poll)811 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
812 union nvme_result *result, void *buffer, unsigned bufflen,
813 unsigned timeout, int qid, int at_head,
814 blk_mq_req_flags_t flags, bool poll)
815 {
816 struct request *req;
817 int ret;
818
819 req = nvme_alloc_request(q, cmd, flags, qid);
820 if (IS_ERR(req))
821 return PTR_ERR(req);
822
823 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
824
825 if (buffer && bufflen) {
826 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
827 if (ret)
828 goto out;
829 }
830
831 if (poll)
832 nvme_execute_rq_polled(req->q, NULL, req, at_head);
833 else
834 blk_execute_rq(req->q, NULL, req, at_head);
835 if (result)
836 *result = nvme_req(req)->result;
837 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
838 ret = -EINTR;
839 else
840 ret = nvme_req(req)->status;
841 out:
842 blk_mq_free_request(req);
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
846
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)847 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
848 void *buffer, unsigned bufflen)
849 {
850 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
851 NVME_QID_ANY, 0, 0, false);
852 }
853 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
854
nvme_add_user_metadata(struct bio * bio,void __user * ubuf,unsigned len,u32 seed,bool write)855 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
856 unsigned len, u32 seed, bool write)
857 {
858 struct bio_integrity_payload *bip;
859 int ret = -ENOMEM;
860 void *buf;
861
862 buf = kmalloc(len, GFP_KERNEL);
863 if (!buf)
864 goto out;
865
866 ret = -EFAULT;
867 if (write && copy_from_user(buf, ubuf, len))
868 goto out_free_meta;
869
870 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
871 if (IS_ERR(bip)) {
872 ret = PTR_ERR(bip);
873 goto out_free_meta;
874 }
875
876 bip->bip_iter.bi_size = len;
877 bip->bip_iter.bi_sector = seed;
878 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
879 offset_in_page(buf));
880 if (ret == len)
881 return buf;
882 ret = -ENOMEM;
883 out_free_meta:
884 kfree(buf);
885 out:
886 return ERR_PTR(ret);
887 }
888
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,void __user * ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u64 * result,unsigned timeout)889 static int nvme_submit_user_cmd(struct request_queue *q,
890 struct nvme_command *cmd, void __user *ubuffer,
891 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
892 u32 meta_seed, u64 *result, unsigned timeout)
893 {
894 bool write = nvme_is_write(cmd);
895 struct nvme_ns *ns = q->queuedata;
896 struct gendisk *disk = ns ? ns->disk : NULL;
897 struct request *req;
898 struct bio *bio = NULL;
899 void *meta = NULL;
900 int ret;
901
902 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
903 if (IS_ERR(req))
904 return PTR_ERR(req);
905
906 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
907 nvme_req(req)->flags |= NVME_REQ_USERCMD;
908
909 if (ubuffer && bufflen) {
910 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
911 GFP_KERNEL);
912 if (ret)
913 goto out;
914 bio = req->bio;
915 bio->bi_disk = disk;
916 if (disk && meta_buffer && meta_len) {
917 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
918 meta_seed, write);
919 if (IS_ERR(meta)) {
920 ret = PTR_ERR(meta);
921 goto out_unmap;
922 }
923 req->cmd_flags |= REQ_INTEGRITY;
924 }
925 }
926
927 blk_execute_rq(req->q, disk, req, 0);
928 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
929 ret = -EINTR;
930 else
931 ret = nvme_req(req)->status;
932 if (result)
933 *result = le64_to_cpu(nvme_req(req)->result.u64);
934 if (meta && !ret && !write) {
935 if (copy_to_user(meta_buffer, meta, meta_len))
936 ret = -EFAULT;
937 }
938 kfree(meta);
939 out_unmap:
940 if (bio)
941 blk_rq_unmap_user(bio);
942 out:
943 blk_mq_free_request(req);
944 return ret;
945 }
946
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)947 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
948 {
949 struct nvme_ctrl *ctrl = rq->end_io_data;
950 unsigned long flags;
951 bool startka = false;
952
953 blk_mq_free_request(rq);
954
955 if (status) {
956 dev_err(ctrl->device,
957 "failed nvme_keep_alive_end_io error=%d\n",
958 status);
959 return;
960 }
961
962 ctrl->comp_seen = false;
963 spin_lock_irqsave(&ctrl->lock, flags);
964 if (ctrl->state == NVME_CTRL_LIVE ||
965 ctrl->state == NVME_CTRL_CONNECTING)
966 startka = true;
967 spin_unlock_irqrestore(&ctrl->lock, flags);
968 if (startka)
969 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
970 }
971
nvme_keep_alive(struct nvme_ctrl * ctrl)972 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
973 {
974 struct request *rq;
975
976 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
977 NVME_QID_ANY);
978 if (IS_ERR(rq))
979 return PTR_ERR(rq);
980
981 rq->timeout = ctrl->kato * HZ;
982 rq->end_io_data = ctrl;
983
984 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
985
986 return 0;
987 }
988
nvme_keep_alive_work(struct work_struct * work)989 static void nvme_keep_alive_work(struct work_struct *work)
990 {
991 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
992 struct nvme_ctrl, ka_work);
993 bool comp_seen = ctrl->comp_seen;
994
995 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
996 dev_dbg(ctrl->device,
997 "reschedule traffic based keep-alive timer\n");
998 ctrl->comp_seen = false;
999 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1000 return;
1001 }
1002
1003 if (nvme_keep_alive(ctrl)) {
1004 /* allocation failure, reset the controller */
1005 dev_err(ctrl->device, "keep-alive failed\n");
1006 nvme_reset_ctrl(ctrl);
1007 return;
1008 }
1009 }
1010
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1011 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1012 {
1013 if (unlikely(ctrl->kato == 0))
1014 return;
1015
1016 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1017 }
1018
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1019 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1020 {
1021 if (unlikely(ctrl->kato == 0))
1022 return;
1023
1024 cancel_delayed_work_sync(&ctrl->ka_work);
1025 }
1026 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1027
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1028 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1029 {
1030 struct nvme_command c = { };
1031 int error;
1032
1033 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1034 c.identify.opcode = nvme_admin_identify;
1035 c.identify.cns = NVME_ID_CNS_CTRL;
1036
1037 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1038 if (!*id)
1039 return -ENOMEM;
1040
1041 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1042 sizeof(struct nvme_id_ctrl));
1043 if (error)
1044 kfree(*id);
1045 return error;
1046 }
1047
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)1048 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1049 struct nvme_ns_ids *ids)
1050 {
1051 struct nvme_command c = { };
1052 int status;
1053 void *data;
1054 int pos;
1055 int len;
1056
1057 c.identify.opcode = nvme_admin_identify;
1058 c.identify.nsid = cpu_to_le32(nsid);
1059 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1060
1061 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1062 if (!data)
1063 return -ENOMEM;
1064
1065 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1066 NVME_IDENTIFY_DATA_SIZE);
1067 if (status)
1068 goto free_data;
1069
1070 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1071 struct nvme_ns_id_desc *cur = data + pos;
1072
1073 if (cur->nidl == 0)
1074 break;
1075
1076 switch (cur->nidt) {
1077 case NVME_NIDT_EUI64:
1078 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1079 dev_warn(ctrl->device,
1080 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1081 cur->nidl);
1082 goto free_data;
1083 }
1084 len = NVME_NIDT_EUI64_LEN;
1085 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1086 break;
1087 case NVME_NIDT_NGUID:
1088 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1089 dev_warn(ctrl->device,
1090 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1091 cur->nidl);
1092 goto free_data;
1093 }
1094 len = NVME_NIDT_NGUID_LEN;
1095 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1096 break;
1097 case NVME_NIDT_UUID:
1098 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1099 dev_warn(ctrl->device,
1100 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1101 cur->nidl);
1102 goto free_data;
1103 }
1104 len = NVME_NIDT_UUID_LEN;
1105 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1106 break;
1107 default:
1108 /* Skip unknown types */
1109 len = cur->nidl;
1110 break;
1111 }
1112
1113 len += sizeof(*cur);
1114 }
1115 free_data:
1116 kfree(data);
1117 return status;
1118 }
1119
nvme_identify_ns_list(struct nvme_ctrl * dev,unsigned nsid,__le32 * ns_list)1120 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1121 {
1122 struct nvme_command c = { };
1123
1124 c.identify.opcode = nvme_admin_identify;
1125 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1126 c.identify.nsid = cpu_to_le32(nsid);
1127 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1128 NVME_IDENTIFY_DATA_SIZE);
1129 }
1130
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1131 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1132 unsigned nsid, struct nvme_id_ns **id)
1133 {
1134 struct nvme_command c = { };
1135 int error;
1136
1137 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1138 c.identify.opcode = nvme_admin_identify;
1139 c.identify.nsid = cpu_to_le32(nsid);
1140 c.identify.cns = NVME_ID_CNS_NS;
1141
1142 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1143 if (!*id)
1144 return -ENOMEM;
1145
1146 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1147 if (error) {
1148 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1149 kfree(*id);
1150 }
1151
1152 return error;
1153 }
1154
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1155 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1156 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1157 {
1158 struct nvme_command c;
1159 union nvme_result res;
1160 int ret;
1161
1162 memset(&c, 0, sizeof(c));
1163 c.features.opcode = op;
1164 c.features.fid = cpu_to_le32(fid);
1165 c.features.dword11 = cpu_to_le32(dword11);
1166
1167 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1168 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1169 if (ret >= 0 && result)
1170 *result = le32_to_cpu(res.u32);
1171 return ret;
1172 }
1173
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1174 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1175 unsigned int dword11, void *buffer, size_t buflen,
1176 u32 *result)
1177 {
1178 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1179 buflen, result);
1180 }
1181 EXPORT_SYMBOL_GPL(nvme_set_features);
1182
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1183 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1184 unsigned int dword11, void *buffer, size_t buflen,
1185 u32 *result)
1186 {
1187 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1188 buflen, result);
1189 }
1190 EXPORT_SYMBOL_GPL(nvme_get_features);
1191
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1192 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1193 {
1194 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1195 u32 result;
1196 int status, nr_io_queues;
1197
1198 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1199 &result);
1200 if (status < 0)
1201 return status;
1202
1203 /*
1204 * Degraded controllers might return an error when setting the queue
1205 * count. We still want to be able to bring them online and offer
1206 * access to the admin queue, as that might be only way to fix them up.
1207 */
1208 if (status > 0) {
1209 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1210 *count = 0;
1211 } else {
1212 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1213 *count = min(*count, nr_io_queues);
1214 }
1215
1216 return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1219
1220 #define NVME_AEN_SUPPORTED \
1221 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1222 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1223
nvme_enable_aen(struct nvme_ctrl * ctrl)1224 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1225 {
1226 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1227 int status;
1228
1229 if (!supported_aens)
1230 return;
1231
1232 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1233 NULL, 0, &result);
1234 if (status)
1235 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1236 supported_aens);
1237
1238 queue_work(nvme_wq, &ctrl->async_event_work);
1239 }
1240
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1241 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1242 {
1243 struct nvme_user_io io;
1244 struct nvme_command c;
1245 unsigned length, meta_len;
1246 void __user *metadata;
1247
1248 if (copy_from_user(&io, uio, sizeof(io)))
1249 return -EFAULT;
1250 if (io.flags)
1251 return -EINVAL;
1252
1253 switch (io.opcode) {
1254 case nvme_cmd_write:
1255 case nvme_cmd_read:
1256 case nvme_cmd_compare:
1257 break;
1258 default:
1259 return -EINVAL;
1260 }
1261
1262 length = (io.nblocks + 1) << ns->lba_shift;
1263 meta_len = (io.nblocks + 1) * ns->ms;
1264 metadata = (void __user *)(uintptr_t)io.metadata;
1265
1266 if (ns->ext) {
1267 length += meta_len;
1268 meta_len = 0;
1269 } else if (meta_len) {
1270 if ((io.metadata & 3) || !io.metadata)
1271 return -EINVAL;
1272 }
1273
1274 memset(&c, 0, sizeof(c));
1275 c.rw.opcode = io.opcode;
1276 c.rw.flags = io.flags;
1277 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1278 c.rw.slba = cpu_to_le64(io.slba);
1279 c.rw.length = cpu_to_le16(io.nblocks);
1280 c.rw.control = cpu_to_le16(io.control);
1281 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1282 c.rw.reftag = cpu_to_le32(io.reftag);
1283 c.rw.apptag = cpu_to_le16(io.apptag);
1284 c.rw.appmask = cpu_to_le16(io.appmask);
1285
1286 return nvme_submit_user_cmd(ns->queue, &c,
1287 (void __user *)(uintptr_t)io.addr, length,
1288 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1289 }
1290
nvme_known_admin_effects(u8 opcode)1291 static u32 nvme_known_admin_effects(u8 opcode)
1292 {
1293 switch (opcode) {
1294 case nvme_admin_format_nvm:
1295 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1296 NVME_CMD_EFFECTS_CSE_MASK;
1297 case nvme_admin_sanitize_nvm:
1298 return NVME_CMD_EFFECTS_CSE_MASK;
1299 default:
1300 break;
1301 }
1302 return 0;
1303 }
1304
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1305 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1306 u8 opcode)
1307 {
1308 u32 effects = 0;
1309
1310 if (ns) {
1311 if (ctrl->effects)
1312 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1313 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1314 dev_warn(ctrl->device,
1315 "IO command:%02x has unhandled effects:%08x\n",
1316 opcode, effects);
1317 return 0;
1318 }
1319
1320 if (ctrl->effects)
1321 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1322 effects |= nvme_known_admin_effects(opcode);
1323
1324 /*
1325 * For simplicity, IO to all namespaces is quiesced even if the command
1326 * effects say only one namespace is affected.
1327 */
1328 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1329 mutex_lock(&ctrl->scan_lock);
1330 mutex_lock(&ctrl->subsys->lock);
1331 nvme_mpath_start_freeze(ctrl->subsys);
1332 nvme_mpath_wait_freeze(ctrl->subsys);
1333 nvme_start_freeze(ctrl);
1334 nvme_wait_freeze(ctrl);
1335 }
1336 return effects;
1337 }
1338
nvme_update_formats(struct nvme_ctrl * ctrl)1339 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1340 {
1341 struct nvme_ns *ns;
1342
1343 down_read(&ctrl->namespaces_rwsem);
1344 list_for_each_entry(ns, &ctrl->namespaces, list)
1345 if (ns->disk && nvme_revalidate_disk(ns->disk))
1346 nvme_set_queue_dying(ns);
1347 up_read(&ctrl->namespaces_rwsem);
1348 }
1349
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects)1350 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1351 {
1352 /*
1353 * Revalidate LBA changes prior to unfreezing. This is necessary to
1354 * prevent memory corruption if a logical block size was changed by
1355 * this command.
1356 */
1357 if (effects & NVME_CMD_EFFECTS_LBCC)
1358 nvme_update_formats(ctrl);
1359 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1360 nvme_unfreeze(ctrl);
1361 nvme_mpath_unfreeze(ctrl->subsys);
1362 mutex_unlock(&ctrl->subsys->lock);
1363 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1364 mutex_unlock(&ctrl->scan_lock);
1365 }
1366 if (effects & NVME_CMD_EFFECTS_CCC)
1367 nvme_init_identify(ctrl);
1368 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1369 nvme_queue_scan(ctrl);
1370 }
1371
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1372 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1373 struct nvme_passthru_cmd __user *ucmd)
1374 {
1375 struct nvme_passthru_cmd cmd;
1376 struct nvme_command c;
1377 unsigned timeout = 0;
1378 u32 effects;
1379 u64 result;
1380 int status;
1381
1382 if (!capable(CAP_SYS_ADMIN))
1383 return -EACCES;
1384 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1385 return -EFAULT;
1386 if (cmd.flags)
1387 return -EINVAL;
1388
1389 memset(&c, 0, sizeof(c));
1390 c.common.opcode = cmd.opcode;
1391 c.common.flags = cmd.flags;
1392 c.common.nsid = cpu_to_le32(cmd.nsid);
1393 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1394 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1395 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1396 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1397 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1398 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1399 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1400 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1401
1402 if (cmd.timeout_ms)
1403 timeout = msecs_to_jiffies(cmd.timeout_ms);
1404
1405 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1406 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1407 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1408 (void __user *)(uintptr_t)cmd.metadata,
1409 cmd.metadata_len, 0, &result, timeout);
1410 nvme_passthru_end(ctrl, effects);
1411
1412 if (status >= 0) {
1413 if (put_user(result, &ucmd->result))
1414 return -EFAULT;
1415 }
1416
1417 return status;
1418 }
1419
nvme_user_cmd64(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd64 __user * ucmd)1420 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1421 struct nvme_passthru_cmd64 __user *ucmd)
1422 {
1423 struct nvme_passthru_cmd64 cmd;
1424 struct nvme_command c;
1425 unsigned timeout = 0;
1426 u32 effects;
1427 int status;
1428
1429 if (!capable(CAP_SYS_ADMIN))
1430 return -EACCES;
1431 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1432 return -EFAULT;
1433 if (cmd.flags)
1434 return -EINVAL;
1435
1436 memset(&c, 0, sizeof(c));
1437 c.common.opcode = cmd.opcode;
1438 c.common.flags = cmd.flags;
1439 c.common.nsid = cpu_to_le32(cmd.nsid);
1440 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1441 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1442 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1443 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1444 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1445 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1446 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1447 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1448
1449 if (cmd.timeout_ms)
1450 timeout = msecs_to_jiffies(cmd.timeout_ms);
1451
1452 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1453 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1454 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1455 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1456 0, &cmd.result, timeout);
1457 nvme_passthru_end(ctrl, effects);
1458
1459 if (status >= 0) {
1460 if (put_user(cmd.result, &ucmd->result))
1461 return -EFAULT;
1462 }
1463
1464 return status;
1465 }
1466
1467 /*
1468 * Issue ioctl requests on the first available path. Note that unlike normal
1469 * block layer requests we will not retry failed request on another controller.
1470 */
nvme_get_ns_from_disk(struct gendisk * disk,struct nvme_ns_head ** head,int * srcu_idx)1471 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1472 struct nvme_ns_head **head, int *srcu_idx)
1473 {
1474 #ifdef CONFIG_NVME_MULTIPATH
1475 if (disk->fops == &nvme_ns_head_ops) {
1476 struct nvme_ns *ns;
1477
1478 *head = disk->private_data;
1479 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1480 ns = nvme_find_path(*head);
1481 if (!ns)
1482 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1483 return ns;
1484 }
1485 #endif
1486 *head = NULL;
1487 *srcu_idx = -1;
1488 return disk->private_data;
1489 }
1490
nvme_put_ns_from_disk(struct nvme_ns_head * head,int idx)1491 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1492 {
1493 if (head)
1494 srcu_read_unlock(&head->srcu, idx);
1495 }
1496
is_ctrl_ioctl(unsigned int cmd)1497 static bool is_ctrl_ioctl(unsigned int cmd)
1498 {
1499 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1500 return true;
1501 if (is_sed_ioctl(cmd))
1502 return true;
1503 return false;
1504 }
1505
nvme_handle_ctrl_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,struct nvme_ns_head * head,int srcu_idx)1506 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1507 void __user *argp,
1508 struct nvme_ns_head *head,
1509 int srcu_idx)
1510 {
1511 struct nvme_ctrl *ctrl = ns->ctrl;
1512 int ret;
1513
1514 nvme_get_ctrl(ns->ctrl);
1515 nvme_put_ns_from_disk(head, srcu_idx);
1516
1517 switch (cmd) {
1518 case NVME_IOCTL_ADMIN_CMD:
1519 ret = nvme_user_cmd(ctrl, NULL, argp);
1520 break;
1521 case NVME_IOCTL_ADMIN64_CMD:
1522 ret = nvme_user_cmd64(ctrl, NULL, argp);
1523 break;
1524 default:
1525 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1526 break;
1527 }
1528 nvme_put_ctrl(ctrl);
1529 return ret;
1530 }
1531
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1532 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1533 unsigned int cmd, unsigned long arg)
1534 {
1535 struct nvme_ns_head *head = NULL;
1536 void __user *argp = (void __user *)arg;
1537 struct nvme_ns *ns;
1538 int srcu_idx, ret;
1539
1540 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1541 if (unlikely(!ns))
1542 return -EWOULDBLOCK;
1543
1544 /*
1545 * Handle ioctls that apply to the controller instead of the namespace
1546 * seperately and drop the ns SRCU reference early. This avoids a
1547 * deadlock when deleting namespaces using the passthrough interface.
1548 */
1549 if (is_ctrl_ioctl(cmd))
1550 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1551
1552 switch (cmd) {
1553 case NVME_IOCTL_ID:
1554 force_successful_syscall_return();
1555 ret = ns->head->ns_id;
1556 break;
1557 case NVME_IOCTL_IO_CMD:
1558 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1559 break;
1560 case NVME_IOCTL_SUBMIT_IO:
1561 ret = nvme_submit_io(ns, argp);
1562 break;
1563 case NVME_IOCTL_IO64_CMD:
1564 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1565 break;
1566 default:
1567 if (ns->ndev)
1568 ret = nvme_nvm_ioctl(ns, cmd, arg);
1569 else
1570 ret = -ENOTTY;
1571 }
1572
1573 nvme_put_ns_from_disk(head, srcu_idx);
1574 return ret;
1575 }
1576
nvme_open(struct block_device * bdev,fmode_t mode)1577 static int nvme_open(struct block_device *bdev, fmode_t mode)
1578 {
1579 struct nvme_ns *ns = bdev->bd_disk->private_data;
1580
1581 #ifdef CONFIG_NVME_MULTIPATH
1582 /* should never be called due to GENHD_FL_HIDDEN */
1583 if (WARN_ON_ONCE(ns->head->disk))
1584 goto fail;
1585 #endif
1586 if (!kref_get_unless_zero(&ns->kref))
1587 goto fail;
1588 if (!try_module_get(ns->ctrl->ops->module))
1589 goto fail_put_ns;
1590
1591 return 0;
1592
1593 fail_put_ns:
1594 nvme_put_ns(ns);
1595 fail:
1596 return -ENXIO;
1597 }
1598
nvme_release(struct gendisk * disk,fmode_t mode)1599 static void nvme_release(struct gendisk *disk, fmode_t mode)
1600 {
1601 struct nvme_ns *ns = disk->private_data;
1602
1603 module_put(ns->ctrl->ops->module);
1604 nvme_put_ns(ns);
1605 }
1606
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1607 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1608 {
1609 /* some standard values */
1610 geo->heads = 1 << 6;
1611 geo->sectors = 1 << 5;
1612 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1613 return 0;
1614 }
1615
1616 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type)1617 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1618 {
1619 struct blk_integrity integrity;
1620
1621 memset(&integrity, 0, sizeof(integrity));
1622 switch (pi_type) {
1623 case NVME_NS_DPS_PI_TYPE3:
1624 integrity.profile = &t10_pi_type3_crc;
1625 integrity.tag_size = sizeof(u16) + sizeof(u32);
1626 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1627 break;
1628 case NVME_NS_DPS_PI_TYPE1:
1629 case NVME_NS_DPS_PI_TYPE2:
1630 integrity.profile = &t10_pi_type1_crc;
1631 integrity.tag_size = sizeof(u16);
1632 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1633 break;
1634 default:
1635 integrity.profile = NULL;
1636 break;
1637 }
1638 integrity.tuple_size = ms;
1639 blk_integrity_register(disk, &integrity);
1640 blk_queue_max_integrity_segments(disk->queue, 1);
1641 }
1642 #else
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type)1643 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1644 {
1645 }
1646 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1647
nvme_set_chunk_size(struct nvme_ns * ns)1648 static void nvme_set_chunk_size(struct nvme_ns *ns)
1649 {
1650 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1651 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1652 }
1653
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1654 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1655 {
1656 struct nvme_ctrl *ctrl = ns->ctrl;
1657 struct request_queue *queue = disk->queue;
1658 u32 size = queue_logical_block_size(queue);
1659
1660 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1661 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1662 return;
1663 }
1664
1665 if (ctrl->nr_streams && ns->sws && ns->sgs)
1666 size *= ns->sws * ns->sgs;
1667
1668 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1669 NVME_DSM_MAX_RANGES);
1670
1671 queue->limits.discard_alignment = 0;
1672 queue->limits.discard_granularity = size;
1673
1674 /* If discard is already enabled, don't reset queue limits */
1675 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1676 return;
1677
1678 blk_queue_max_discard_sectors(queue, UINT_MAX);
1679 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1680
1681 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1682 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1683 }
1684
nvme_config_write_zeroes(struct gendisk * disk,struct nvme_ns * ns)1685 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1686 {
1687 u32 max_sectors;
1688 unsigned short bs = 1 << ns->lba_shift;
1689
1690 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1691 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1692 return;
1693 /*
1694 * Even though NVMe spec explicitly states that MDTS is not
1695 * applicable to the write-zeroes:- "The restriction does not apply to
1696 * commands that do not transfer data between the host and the
1697 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1698 * In order to be more cautious use controller's max_hw_sectors value
1699 * to configure the maximum sectors for the write-zeroes which is
1700 * configured based on the controller's MDTS field in the
1701 * nvme_init_identify() if available.
1702 */
1703 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1704 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1705 else
1706 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1707
1708 blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1709 }
1710
nvme_report_ns_ids(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns * id,struct nvme_ns_ids * ids)1711 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1712 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1713 {
1714 int ret = 0;
1715
1716 memset(ids, 0, sizeof(*ids));
1717
1718 if (ctrl->vs >= NVME_VS(1, 1, 0))
1719 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1720 if (ctrl->vs >= NVME_VS(1, 2, 0))
1721 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1722 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1723 /* Don't treat error as fatal we potentially
1724 * already have a NGUID or EUI-64
1725 */
1726 ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1727 if (ret)
1728 dev_warn(ctrl->device,
1729 "Identify Descriptors failed (%d)\n", ret);
1730 }
1731 return ret;
1732 }
1733
nvme_ns_ids_valid(struct nvme_ns_ids * ids)1734 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1735 {
1736 return !uuid_is_null(&ids->uuid) ||
1737 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1738 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1739 }
1740
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1741 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1742 {
1743 return uuid_equal(&a->uuid, &b->uuid) &&
1744 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1745 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1746 }
1747
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1748 static void nvme_update_disk_info(struct gendisk *disk,
1749 struct nvme_ns *ns, struct nvme_id_ns *id)
1750 {
1751 sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1752 unsigned short bs = 1 << ns->lba_shift;
1753 u32 atomic_bs, phys_bs, io_opt;
1754
1755 if (ns->lba_shift > PAGE_SHIFT) {
1756 /* unsupported block size, set capacity to 0 later */
1757 bs = (1 << 9);
1758 }
1759 blk_mq_freeze_queue(disk->queue);
1760 blk_integrity_unregister(disk);
1761
1762 if (id->nabo == 0) {
1763 /*
1764 * Bit 1 indicates whether NAWUPF is defined for this namespace
1765 * and whether it should be used instead of AWUPF. If NAWUPF ==
1766 * 0 then AWUPF must be used instead.
1767 */
1768 if (id->nsfeat & (1 << 1) && id->nawupf)
1769 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1770 else
1771 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1772 } else {
1773 atomic_bs = bs;
1774 }
1775 phys_bs = bs;
1776 io_opt = bs;
1777 if (id->nsfeat & (1 << 4)) {
1778 /* NPWG = Namespace Preferred Write Granularity */
1779 phys_bs *= 1 + le16_to_cpu(id->npwg);
1780 /* NOWS = Namespace Optimal Write Size */
1781 io_opt *= 1 + le16_to_cpu(id->nows);
1782 }
1783
1784 blk_queue_logical_block_size(disk->queue, bs);
1785 /*
1786 * Linux filesystems assume writing a single physical block is
1787 * an atomic operation. Hence limit the physical block size to the
1788 * value of the Atomic Write Unit Power Fail parameter.
1789 */
1790 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1791 blk_queue_io_min(disk->queue, phys_bs);
1792 blk_queue_io_opt(disk->queue, io_opt);
1793
1794 if (ns->ms && !ns->ext &&
1795 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1796 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1797 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1798 ns->lba_shift > PAGE_SHIFT)
1799 capacity = 0;
1800
1801 set_capacity(disk, capacity);
1802
1803 nvme_config_discard(disk, ns);
1804 nvme_config_write_zeroes(disk, ns);
1805
1806 if (id->nsattr & (1 << 0))
1807 set_disk_ro(disk, true);
1808 else
1809 set_disk_ro(disk, false);
1810
1811 blk_mq_unfreeze_queue(disk->queue);
1812 }
1813
__nvme_revalidate_disk(struct gendisk * disk,struct nvme_id_ns * id)1814 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1815 {
1816 struct nvme_ns *ns = disk->private_data;
1817
1818 /*
1819 * If identify namespace failed, use default 512 byte block size so
1820 * block layer can use before failing read/write for 0 capacity.
1821 */
1822 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1823 if (ns->lba_shift == 0)
1824 ns->lba_shift = 9;
1825 ns->noiob = le16_to_cpu(id->noiob);
1826 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1827 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1828 /* the PI implementation requires metadata equal t10 pi tuple size */
1829 if (ns->ms == sizeof(struct t10_pi_tuple))
1830 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1831 else
1832 ns->pi_type = 0;
1833
1834 if (ns->noiob)
1835 nvme_set_chunk_size(ns);
1836 nvme_update_disk_info(disk, ns, id);
1837 #ifdef CONFIG_NVME_MULTIPATH
1838 if (ns->head->disk) {
1839 nvme_update_disk_info(ns->head->disk, ns, id);
1840 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1841 revalidate_disk(ns->head->disk);
1842 }
1843 #endif
1844 }
1845
nvme_revalidate_disk(struct gendisk * disk)1846 static int nvme_revalidate_disk(struct gendisk *disk)
1847 {
1848 struct nvme_ns *ns = disk->private_data;
1849 struct nvme_ctrl *ctrl = ns->ctrl;
1850 struct nvme_id_ns *id;
1851 struct nvme_ns_ids ids;
1852 int ret = 0;
1853
1854 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1855 set_capacity(disk, 0);
1856 return -ENODEV;
1857 }
1858
1859 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1860 if (ret)
1861 goto out;
1862
1863 if (id->ncap == 0) {
1864 ret = -ENODEV;
1865 goto free_id;
1866 }
1867
1868 __nvme_revalidate_disk(disk, id);
1869 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1870 if (ret)
1871 goto free_id;
1872
1873 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1874 dev_err(ctrl->device,
1875 "identifiers changed for nsid %d\n", ns->head->ns_id);
1876 ret = -ENODEV;
1877 }
1878
1879 free_id:
1880 kfree(id);
1881 out:
1882 /*
1883 * Only fail the function if we got a fatal error back from the
1884 * device, otherwise ignore the error and just move on.
1885 */
1886 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1887 ret = 0;
1888 else if (ret > 0)
1889 ret = blk_status_to_errno(nvme_error_status(ret));
1890 return ret;
1891 }
1892
nvme_pr_type(enum pr_type type)1893 static char nvme_pr_type(enum pr_type type)
1894 {
1895 switch (type) {
1896 case PR_WRITE_EXCLUSIVE:
1897 return 1;
1898 case PR_EXCLUSIVE_ACCESS:
1899 return 2;
1900 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1901 return 3;
1902 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1903 return 4;
1904 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1905 return 5;
1906 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1907 return 6;
1908 default:
1909 return 0;
1910 }
1911 };
1912
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)1913 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1914 u64 key, u64 sa_key, u8 op)
1915 {
1916 struct nvme_ns_head *head = NULL;
1917 struct nvme_ns *ns;
1918 struct nvme_command c;
1919 int srcu_idx, ret;
1920 u8 data[16] = { 0, };
1921
1922 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1923 if (unlikely(!ns))
1924 return -EWOULDBLOCK;
1925
1926 put_unaligned_le64(key, &data[0]);
1927 put_unaligned_le64(sa_key, &data[8]);
1928
1929 memset(&c, 0, sizeof(c));
1930 c.common.opcode = op;
1931 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1932 c.common.cdw10 = cpu_to_le32(cdw10);
1933
1934 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1935 nvme_put_ns_from_disk(head, srcu_idx);
1936 return ret;
1937 }
1938
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)1939 static int nvme_pr_register(struct block_device *bdev, u64 old,
1940 u64 new, unsigned flags)
1941 {
1942 u32 cdw10;
1943
1944 if (flags & ~PR_FL_IGNORE_KEY)
1945 return -EOPNOTSUPP;
1946
1947 cdw10 = old ? 2 : 0;
1948 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1949 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1950 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1951 }
1952
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)1953 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1954 enum pr_type type, unsigned flags)
1955 {
1956 u32 cdw10;
1957
1958 if (flags & ~PR_FL_IGNORE_KEY)
1959 return -EOPNOTSUPP;
1960
1961 cdw10 = nvme_pr_type(type) << 8;
1962 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1963 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1964 }
1965
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)1966 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1967 enum pr_type type, bool abort)
1968 {
1969 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1970 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1971 }
1972
nvme_pr_clear(struct block_device * bdev,u64 key)1973 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1974 {
1975 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1976 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1977 }
1978
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1979 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1980 {
1981 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1982 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1983 }
1984
1985 static const struct pr_ops nvme_pr_ops = {
1986 .pr_register = nvme_pr_register,
1987 .pr_reserve = nvme_pr_reserve,
1988 .pr_release = nvme_pr_release,
1989 .pr_preempt = nvme_pr_preempt,
1990 .pr_clear = nvme_pr_clear,
1991 };
1992
1993 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)1994 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1995 bool send)
1996 {
1997 struct nvme_ctrl *ctrl = data;
1998 struct nvme_command cmd;
1999
2000 memset(&cmd, 0, sizeof(cmd));
2001 if (send)
2002 cmd.common.opcode = nvme_admin_security_send;
2003 else
2004 cmd.common.opcode = nvme_admin_security_recv;
2005 cmd.common.nsid = 0;
2006 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2007 cmd.common.cdw11 = cpu_to_le32(len);
2008
2009 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2010 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2011 }
2012 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2013 #endif /* CONFIG_BLK_SED_OPAL */
2014
2015 static const struct block_device_operations nvme_fops = {
2016 .owner = THIS_MODULE,
2017 .ioctl = nvme_ioctl,
2018 .compat_ioctl = nvme_ioctl,
2019 .open = nvme_open,
2020 .release = nvme_release,
2021 .getgeo = nvme_getgeo,
2022 .revalidate_disk= nvme_revalidate_disk,
2023 .pr_ops = &nvme_pr_ops,
2024 };
2025
2026 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)2027 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2028 {
2029 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2030
2031 if (!kref_get_unless_zero(&head->ref))
2032 return -ENXIO;
2033 return 0;
2034 }
2035
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)2036 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2037 {
2038 nvme_put_ns_head(disk->private_data);
2039 }
2040
2041 const struct block_device_operations nvme_ns_head_ops = {
2042 .owner = THIS_MODULE,
2043 .open = nvme_ns_head_open,
2044 .release = nvme_ns_head_release,
2045 .ioctl = nvme_ioctl,
2046 .compat_ioctl = nvme_ioctl,
2047 .getgeo = nvme_getgeo,
2048 .pr_ops = &nvme_pr_ops,
2049 };
2050 #endif /* CONFIG_NVME_MULTIPATH */
2051
nvme_wait_ready(struct nvme_ctrl * ctrl,u64 cap,bool enabled)2052 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2053 {
2054 unsigned long timeout =
2055 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2056 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2057 int ret;
2058
2059 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2060 if (csts == ~0)
2061 return -ENODEV;
2062 if ((csts & NVME_CSTS_RDY) == bit)
2063 break;
2064
2065 msleep(100);
2066 if (fatal_signal_pending(current))
2067 return -EINTR;
2068 if (time_after(jiffies, timeout)) {
2069 dev_err(ctrl->device,
2070 "Device not ready; aborting %s\n", enabled ?
2071 "initialisation" : "reset");
2072 return -ENODEV;
2073 }
2074 }
2075
2076 return ret;
2077 }
2078
2079 /*
2080 * If the device has been passed off to us in an enabled state, just clear
2081 * the enabled bit. The spec says we should set the 'shutdown notification
2082 * bits', but doing so may cause the device to complete commands to the
2083 * admin queue ... and we don't know what memory that might be pointing at!
2084 */
nvme_disable_ctrl(struct nvme_ctrl * ctrl)2085 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2086 {
2087 int ret;
2088
2089 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2090 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2091
2092 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2093 if (ret)
2094 return ret;
2095
2096 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2097 msleep(NVME_QUIRK_DELAY_AMOUNT);
2098
2099 return nvme_wait_ready(ctrl, ctrl->cap, false);
2100 }
2101 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2102
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2103 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2104 {
2105 /*
2106 * Default to a 4K page size, with the intention to update this
2107 * path in the future to accomodate architectures with differing
2108 * kernel and IO page sizes.
2109 */
2110 unsigned dev_page_min, page_shift = 12;
2111 int ret;
2112
2113 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2114 if (ret) {
2115 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2116 return ret;
2117 }
2118 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2119
2120 if (page_shift < dev_page_min) {
2121 dev_err(ctrl->device,
2122 "Minimum device page size %u too large for host (%u)\n",
2123 1 << dev_page_min, 1 << page_shift);
2124 return -ENODEV;
2125 }
2126
2127 ctrl->page_size = 1 << page_shift;
2128
2129 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2130 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2131 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2132 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2133 ctrl->ctrl_config |= NVME_CC_ENABLE;
2134
2135 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2136 if (ret)
2137 return ret;
2138 return nvme_wait_ready(ctrl, ctrl->cap, true);
2139 }
2140 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2141
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)2142 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2143 {
2144 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2145 u32 csts;
2146 int ret;
2147
2148 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2149 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2150
2151 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2152 if (ret)
2153 return ret;
2154
2155 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2156 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2157 break;
2158
2159 msleep(100);
2160 if (fatal_signal_pending(current))
2161 return -EINTR;
2162 if (time_after(jiffies, timeout)) {
2163 dev_err(ctrl->device,
2164 "Device shutdown incomplete; abort shutdown\n");
2165 return -ENODEV;
2166 }
2167 }
2168
2169 return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2172
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)2173 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2174 struct request_queue *q)
2175 {
2176 bool vwc = false;
2177
2178 if (ctrl->max_hw_sectors) {
2179 u32 max_segments =
2180 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2181
2182 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2183 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2184 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2185 }
2186 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2187 is_power_of_2(ctrl->max_hw_sectors))
2188 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2189 blk_queue_virt_boundary(q, ctrl->page_size - 1);
2190 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2191 vwc = true;
2192 blk_queue_write_cache(q, vwc, vwc);
2193 }
2194
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2195 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2196 {
2197 __le64 ts;
2198 int ret;
2199
2200 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2201 return 0;
2202
2203 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2204 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2205 NULL);
2206 if (ret)
2207 dev_warn_once(ctrl->device,
2208 "could not set timestamp (%d)\n", ret);
2209 return ret;
2210 }
2211
nvme_configure_acre(struct nvme_ctrl * ctrl)2212 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2213 {
2214 struct nvme_feat_host_behavior *host;
2215 int ret;
2216
2217 /* Don't bother enabling the feature if retry delay is not reported */
2218 if (!ctrl->crdt[0])
2219 return 0;
2220
2221 host = kzalloc(sizeof(*host), GFP_KERNEL);
2222 if (!host)
2223 return 0;
2224
2225 host->acre = NVME_ENABLE_ACRE;
2226 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2227 host, sizeof(*host), NULL);
2228 kfree(host);
2229 return ret;
2230 }
2231
nvme_configure_apst(struct nvme_ctrl * ctrl)2232 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2233 {
2234 /*
2235 * APST (Autonomous Power State Transition) lets us program a
2236 * table of power state transitions that the controller will
2237 * perform automatically. We configure it with a simple
2238 * heuristic: we are willing to spend at most 2% of the time
2239 * transitioning between power states. Therefore, when running
2240 * in any given state, we will enter the next lower-power
2241 * non-operational state after waiting 50 * (enlat + exlat)
2242 * microseconds, as long as that state's exit latency is under
2243 * the requested maximum latency.
2244 *
2245 * We will not autonomously enter any non-operational state for
2246 * which the total latency exceeds ps_max_latency_us. Users
2247 * can set ps_max_latency_us to zero to turn off APST.
2248 */
2249
2250 unsigned apste;
2251 struct nvme_feat_auto_pst *table;
2252 u64 max_lat_us = 0;
2253 int max_ps = -1;
2254 int ret;
2255
2256 /*
2257 * If APST isn't supported or if we haven't been initialized yet,
2258 * then don't do anything.
2259 */
2260 if (!ctrl->apsta)
2261 return 0;
2262
2263 if (ctrl->npss > 31) {
2264 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2265 return 0;
2266 }
2267
2268 table = kzalloc(sizeof(*table), GFP_KERNEL);
2269 if (!table)
2270 return 0;
2271
2272 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2273 /* Turn off APST. */
2274 apste = 0;
2275 dev_dbg(ctrl->device, "APST disabled\n");
2276 } else {
2277 __le64 target = cpu_to_le64(0);
2278 int state;
2279
2280 /*
2281 * Walk through all states from lowest- to highest-power.
2282 * According to the spec, lower-numbered states use more
2283 * power. NPSS, despite the name, is the index of the
2284 * lowest-power state, not the number of states.
2285 */
2286 for (state = (int)ctrl->npss; state >= 0; state--) {
2287 u64 total_latency_us, exit_latency_us, transition_ms;
2288
2289 if (target)
2290 table->entries[state] = target;
2291
2292 /*
2293 * Don't allow transitions to the deepest state
2294 * if it's quirked off.
2295 */
2296 if (state == ctrl->npss &&
2297 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2298 continue;
2299
2300 /*
2301 * Is this state a useful non-operational state for
2302 * higher-power states to autonomously transition to?
2303 */
2304 if (!(ctrl->psd[state].flags &
2305 NVME_PS_FLAGS_NON_OP_STATE))
2306 continue;
2307
2308 exit_latency_us =
2309 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2310 if (exit_latency_us > ctrl->ps_max_latency_us)
2311 continue;
2312
2313 total_latency_us =
2314 exit_latency_us +
2315 le32_to_cpu(ctrl->psd[state].entry_lat);
2316
2317 /*
2318 * This state is good. Use it as the APST idle
2319 * target for higher power states.
2320 */
2321 transition_ms = total_latency_us + 19;
2322 do_div(transition_ms, 20);
2323 if (transition_ms > (1 << 24) - 1)
2324 transition_ms = (1 << 24) - 1;
2325
2326 target = cpu_to_le64((state << 3) |
2327 (transition_ms << 8));
2328
2329 if (max_ps == -1)
2330 max_ps = state;
2331
2332 if (total_latency_us > max_lat_us)
2333 max_lat_us = total_latency_us;
2334 }
2335
2336 apste = 1;
2337
2338 if (max_ps == -1) {
2339 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2340 } else {
2341 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2342 max_ps, max_lat_us, (int)sizeof(*table), table);
2343 }
2344 }
2345
2346 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2347 table, sizeof(*table), NULL);
2348 if (ret)
2349 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2350
2351 kfree(table);
2352 return ret;
2353 }
2354
nvme_set_latency_tolerance(struct device * dev,s32 val)2355 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2356 {
2357 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2358 u64 latency;
2359
2360 switch (val) {
2361 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2362 case PM_QOS_LATENCY_ANY:
2363 latency = U64_MAX;
2364 break;
2365
2366 default:
2367 latency = val;
2368 }
2369
2370 if (ctrl->ps_max_latency_us != latency) {
2371 ctrl->ps_max_latency_us = latency;
2372 nvme_configure_apst(ctrl);
2373 }
2374 }
2375
2376 struct nvme_core_quirk_entry {
2377 /*
2378 * NVMe model and firmware strings are padded with spaces. For
2379 * simplicity, strings in the quirk table are padded with NULLs
2380 * instead.
2381 */
2382 u16 vid;
2383 const char *mn;
2384 const char *fr;
2385 unsigned long quirks;
2386 };
2387
2388 static const struct nvme_core_quirk_entry core_quirks[] = {
2389 {
2390 /*
2391 * This Toshiba device seems to die using any APST states. See:
2392 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2393 */
2394 .vid = 0x1179,
2395 .mn = "THNSF5256GPUK TOSHIBA",
2396 .quirks = NVME_QUIRK_NO_APST,
2397 },
2398 {
2399 /*
2400 * This LiteON CL1-3D*-Q11 firmware version has a race
2401 * condition associated with actions related to suspend to idle
2402 * LiteON has resolved the problem in future firmware
2403 */
2404 .vid = 0x14a4,
2405 .fr = "22301111",
2406 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2407 },
2408 {
2409 /*
2410 * This Kingston E8FK11.T firmware version has no interrupt
2411 * after resume with actions related to suspend to idle
2412 * https://bugzilla.kernel.org/show_bug.cgi?id=204887
2413 */
2414 .vid = 0x2646,
2415 .fr = "E8FK11.T",
2416 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2417 }
2418 };
2419
2420 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2421 static bool string_matches(const char *idstr, const char *match, size_t len)
2422 {
2423 size_t matchlen;
2424
2425 if (!match)
2426 return true;
2427
2428 matchlen = strlen(match);
2429 WARN_ON_ONCE(matchlen > len);
2430
2431 if (memcmp(idstr, match, matchlen))
2432 return false;
2433
2434 for (; matchlen < len; matchlen++)
2435 if (idstr[matchlen] != ' ')
2436 return false;
2437
2438 return true;
2439 }
2440
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2441 static bool quirk_matches(const struct nvme_id_ctrl *id,
2442 const struct nvme_core_quirk_entry *q)
2443 {
2444 return q->vid == le16_to_cpu(id->vid) &&
2445 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2446 string_matches(id->fr, q->fr, sizeof(id->fr));
2447 }
2448
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2449 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2450 struct nvme_id_ctrl *id)
2451 {
2452 size_t nqnlen;
2453 int off;
2454
2455 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2456 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2457 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2458 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2459 return;
2460 }
2461
2462 if (ctrl->vs >= NVME_VS(1, 2, 1))
2463 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2464 }
2465
2466 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2467 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2468 "nqn.2014.08.org.nvmexpress:%04x%04x",
2469 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2470 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2471 off += sizeof(id->sn);
2472 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2473 off += sizeof(id->mn);
2474 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2475 }
2476
nvme_release_subsystem(struct device * dev)2477 static void nvme_release_subsystem(struct device *dev)
2478 {
2479 struct nvme_subsystem *subsys =
2480 container_of(dev, struct nvme_subsystem, dev);
2481
2482 if (subsys->instance >= 0)
2483 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2484 kfree(subsys);
2485 }
2486
nvme_destroy_subsystem(struct kref * ref)2487 static void nvme_destroy_subsystem(struct kref *ref)
2488 {
2489 struct nvme_subsystem *subsys =
2490 container_of(ref, struct nvme_subsystem, ref);
2491
2492 mutex_lock(&nvme_subsystems_lock);
2493 list_del(&subsys->entry);
2494 mutex_unlock(&nvme_subsystems_lock);
2495
2496 ida_destroy(&subsys->ns_ida);
2497 device_del(&subsys->dev);
2498 put_device(&subsys->dev);
2499 }
2500
nvme_put_subsystem(struct nvme_subsystem * subsys)2501 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2502 {
2503 kref_put(&subsys->ref, nvme_destroy_subsystem);
2504 }
2505
__nvme_find_get_subsystem(const char * subsysnqn)2506 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2507 {
2508 struct nvme_subsystem *subsys;
2509
2510 lockdep_assert_held(&nvme_subsystems_lock);
2511
2512 /*
2513 * Fail matches for discovery subsystems. This results
2514 * in each discovery controller bound to a unique subsystem.
2515 * This avoids issues with validating controller values
2516 * that can only be true when there is a single unique subsystem.
2517 * There may be multiple and completely independent entities
2518 * that provide discovery controllers.
2519 */
2520 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2521 return NULL;
2522
2523 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2524 if (strcmp(subsys->subnqn, subsysnqn))
2525 continue;
2526 if (!kref_get_unless_zero(&subsys->ref))
2527 continue;
2528 return subsys;
2529 }
2530
2531 return NULL;
2532 }
2533
2534 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2535 struct device_attribute subsys_attr_##_name = \
2536 __ATTR(_name, _mode, _show, NULL)
2537
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2538 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2539 struct device_attribute *attr,
2540 char *buf)
2541 {
2542 struct nvme_subsystem *subsys =
2543 container_of(dev, struct nvme_subsystem, dev);
2544
2545 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2546 }
2547 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2548
2549 #define nvme_subsys_show_str_function(field) \
2550 static ssize_t subsys_##field##_show(struct device *dev, \
2551 struct device_attribute *attr, char *buf) \
2552 { \
2553 struct nvme_subsystem *subsys = \
2554 container_of(dev, struct nvme_subsystem, dev); \
2555 return sprintf(buf, "%.*s\n", \
2556 (int)sizeof(subsys->field), subsys->field); \
2557 } \
2558 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2559
2560 nvme_subsys_show_str_function(model);
2561 nvme_subsys_show_str_function(serial);
2562 nvme_subsys_show_str_function(firmware_rev);
2563
2564 static struct attribute *nvme_subsys_attrs[] = {
2565 &subsys_attr_model.attr,
2566 &subsys_attr_serial.attr,
2567 &subsys_attr_firmware_rev.attr,
2568 &subsys_attr_subsysnqn.attr,
2569 #ifdef CONFIG_NVME_MULTIPATH
2570 &subsys_attr_iopolicy.attr,
2571 #endif
2572 NULL,
2573 };
2574
2575 static struct attribute_group nvme_subsys_attrs_group = {
2576 .attrs = nvme_subsys_attrs,
2577 };
2578
2579 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2580 &nvme_subsys_attrs_group,
2581 NULL,
2582 };
2583
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2584 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2585 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2586 {
2587 struct nvme_ctrl *tmp;
2588
2589 lockdep_assert_held(&nvme_subsystems_lock);
2590
2591 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2592 if (tmp->state == NVME_CTRL_DELETING ||
2593 tmp->state == NVME_CTRL_DEAD)
2594 continue;
2595
2596 if (tmp->cntlid == ctrl->cntlid) {
2597 dev_err(ctrl->device,
2598 "Duplicate cntlid %u with %s, rejecting\n",
2599 ctrl->cntlid, dev_name(tmp->device));
2600 return false;
2601 }
2602
2603 if ((id->cmic & (1 << 1)) ||
2604 (ctrl->opts && ctrl->opts->discovery_nqn))
2605 continue;
2606
2607 dev_err(ctrl->device,
2608 "Subsystem does not support multiple controllers\n");
2609 return false;
2610 }
2611
2612 return true;
2613 }
2614
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2615 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2616 {
2617 struct nvme_subsystem *subsys, *found;
2618 int ret;
2619
2620 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2621 if (!subsys)
2622 return -ENOMEM;
2623
2624 subsys->instance = -1;
2625 mutex_init(&subsys->lock);
2626 kref_init(&subsys->ref);
2627 INIT_LIST_HEAD(&subsys->ctrls);
2628 INIT_LIST_HEAD(&subsys->nsheads);
2629 nvme_init_subnqn(subsys, ctrl, id);
2630 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2631 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2632 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2633 subsys->vendor_id = le16_to_cpu(id->vid);
2634 subsys->cmic = id->cmic;
2635 subsys->awupf = le16_to_cpu(id->awupf);
2636 #ifdef CONFIG_NVME_MULTIPATH
2637 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2638 #endif
2639
2640 subsys->dev.class = nvme_subsys_class;
2641 subsys->dev.release = nvme_release_subsystem;
2642 subsys->dev.groups = nvme_subsys_attrs_groups;
2643 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2644 device_initialize(&subsys->dev);
2645
2646 mutex_lock(&nvme_subsystems_lock);
2647 found = __nvme_find_get_subsystem(subsys->subnqn);
2648 if (found) {
2649 put_device(&subsys->dev);
2650 subsys = found;
2651
2652 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2653 ret = -EINVAL;
2654 goto out_put_subsystem;
2655 }
2656 } else {
2657 ret = device_add(&subsys->dev);
2658 if (ret) {
2659 dev_err(ctrl->device,
2660 "failed to register subsystem device.\n");
2661 put_device(&subsys->dev);
2662 goto out_unlock;
2663 }
2664 ida_init(&subsys->ns_ida);
2665 list_add_tail(&subsys->entry, &nvme_subsystems);
2666 }
2667
2668 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2669 dev_name(ctrl->device));
2670 if (ret) {
2671 dev_err(ctrl->device,
2672 "failed to create sysfs link from subsystem.\n");
2673 goto out_put_subsystem;
2674 }
2675
2676 if (!found)
2677 subsys->instance = ctrl->instance;
2678 ctrl->subsys = subsys;
2679 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2680 mutex_unlock(&nvme_subsystems_lock);
2681 return 0;
2682
2683 out_put_subsystem:
2684 nvme_put_subsystem(subsys);
2685 out_unlock:
2686 mutex_unlock(&nvme_subsystems_lock);
2687 return ret;
2688 }
2689
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,void * log,size_t size,u64 offset)2690 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2691 void *log, size_t size, u64 offset)
2692 {
2693 struct nvme_command c = { };
2694 unsigned long dwlen = size / 4 - 1;
2695
2696 c.get_log_page.opcode = nvme_admin_get_log_page;
2697 c.get_log_page.nsid = cpu_to_le32(nsid);
2698 c.get_log_page.lid = log_page;
2699 c.get_log_page.lsp = lsp;
2700 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2701 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2702 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2703 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2704
2705 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2706 }
2707
nvme_get_effects_log(struct nvme_ctrl * ctrl)2708 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2709 {
2710 int ret;
2711
2712 if (!ctrl->effects)
2713 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2714
2715 if (!ctrl->effects)
2716 return 0;
2717
2718 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2719 ctrl->effects, sizeof(*ctrl->effects), 0);
2720 if (ret) {
2721 kfree(ctrl->effects);
2722 ctrl->effects = NULL;
2723 }
2724 return ret;
2725 }
2726
2727 /*
2728 * Initialize the cached copies of the Identify data and various controller
2729 * register in our nvme_ctrl structure. This should be called as soon as
2730 * the admin queue is fully up and running.
2731 */
nvme_init_identify(struct nvme_ctrl * ctrl)2732 int nvme_init_identify(struct nvme_ctrl *ctrl)
2733 {
2734 struct nvme_id_ctrl *id;
2735 int ret, page_shift;
2736 u32 max_hw_sectors;
2737 bool prev_apst_enabled;
2738
2739 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2740 if (ret) {
2741 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2742 return ret;
2743 }
2744 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2745 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2746
2747 if (ctrl->vs >= NVME_VS(1, 1, 0))
2748 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2749
2750 ret = nvme_identify_ctrl(ctrl, &id);
2751 if (ret) {
2752 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2753 return -EIO;
2754 }
2755
2756 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2757 ret = nvme_get_effects_log(ctrl);
2758 if (ret < 0)
2759 goto out_free;
2760 }
2761
2762 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2763 ctrl->cntlid = le16_to_cpu(id->cntlid);
2764
2765 if (!ctrl->identified) {
2766 int i;
2767
2768 ret = nvme_init_subsystem(ctrl, id);
2769 if (ret)
2770 goto out_free;
2771
2772 /*
2773 * Check for quirks. Quirk can depend on firmware version,
2774 * so, in principle, the set of quirks present can change
2775 * across a reset. As a possible future enhancement, we
2776 * could re-scan for quirks every time we reinitialize
2777 * the device, but we'd have to make sure that the driver
2778 * behaves intelligently if the quirks change.
2779 */
2780 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2781 if (quirk_matches(id, &core_quirks[i]))
2782 ctrl->quirks |= core_quirks[i].quirks;
2783 }
2784 }
2785
2786 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2787 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2788 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2789 }
2790
2791 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2792 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2793 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2794
2795 ctrl->oacs = le16_to_cpu(id->oacs);
2796 ctrl->oncs = le16_to_cpu(id->oncs);
2797 ctrl->mtfa = le16_to_cpu(id->mtfa);
2798 ctrl->oaes = le32_to_cpu(id->oaes);
2799 atomic_set(&ctrl->abort_limit, id->acl + 1);
2800 ctrl->vwc = id->vwc;
2801 if (id->mdts)
2802 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2803 else
2804 max_hw_sectors = UINT_MAX;
2805 ctrl->max_hw_sectors =
2806 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2807
2808 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2809 ctrl->sgls = le32_to_cpu(id->sgls);
2810 ctrl->kas = le16_to_cpu(id->kas);
2811 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2812 ctrl->ctratt = le32_to_cpu(id->ctratt);
2813
2814 if (id->rtd3e) {
2815 /* us -> s */
2816 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2817
2818 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2819 shutdown_timeout, 60);
2820
2821 if (ctrl->shutdown_timeout != shutdown_timeout)
2822 dev_info(ctrl->device,
2823 "Shutdown timeout set to %u seconds\n",
2824 ctrl->shutdown_timeout);
2825 } else
2826 ctrl->shutdown_timeout = shutdown_timeout;
2827
2828 ctrl->npss = id->npss;
2829 ctrl->apsta = id->apsta;
2830 prev_apst_enabled = ctrl->apst_enabled;
2831 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2832 if (force_apst && id->apsta) {
2833 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2834 ctrl->apst_enabled = true;
2835 } else {
2836 ctrl->apst_enabled = false;
2837 }
2838 } else {
2839 ctrl->apst_enabled = id->apsta;
2840 }
2841 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2842
2843 if (ctrl->ops->flags & NVME_F_FABRICS) {
2844 ctrl->icdoff = le16_to_cpu(id->icdoff);
2845 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2846 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2847 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2848
2849 /*
2850 * In fabrics we need to verify the cntlid matches the
2851 * admin connect
2852 */
2853 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2854 ret = -EINVAL;
2855 goto out_free;
2856 }
2857
2858 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2859 dev_err(ctrl->device,
2860 "keep-alive support is mandatory for fabrics\n");
2861 ret = -EINVAL;
2862 goto out_free;
2863 }
2864 } else {
2865 ctrl->hmpre = le32_to_cpu(id->hmpre);
2866 ctrl->hmmin = le32_to_cpu(id->hmmin);
2867 ctrl->hmminds = le32_to_cpu(id->hmminds);
2868 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2869 }
2870
2871 ret = nvme_mpath_init(ctrl, id);
2872 kfree(id);
2873
2874 if (ret < 0)
2875 return ret;
2876
2877 if (ctrl->apst_enabled && !prev_apst_enabled)
2878 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2879 else if (!ctrl->apst_enabled && prev_apst_enabled)
2880 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2881
2882 ret = nvme_configure_apst(ctrl);
2883 if (ret < 0)
2884 return ret;
2885
2886 ret = nvme_configure_timestamp(ctrl);
2887 if (ret < 0)
2888 return ret;
2889
2890 ret = nvme_configure_directives(ctrl);
2891 if (ret < 0)
2892 return ret;
2893
2894 ret = nvme_configure_acre(ctrl);
2895 if (ret < 0)
2896 return ret;
2897
2898 ctrl->identified = true;
2899
2900 return 0;
2901
2902 out_free:
2903 kfree(id);
2904 return ret;
2905 }
2906 EXPORT_SYMBOL_GPL(nvme_init_identify);
2907
nvme_dev_open(struct inode * inode,struct file * file)2908 static int nvme_dev_open(struct inode *inode, struct file *file)
2909 {
2910 struct nvme_ctrl *ctrl =
2911 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2912
2913 switch (ctrl->state) {
2914 case NVME_CTRL_LIVE:
2915 break;
2916 default:
2917 return -EWOULDBLOCK;
2918 }
2919
2920 file->private_data = ctrl;
2921 return 0;
2922 }
2923
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp)2924 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2925 {
2926 struct nvme_ns *ns;
2927 int ret;
2928
2929 down_read(&ctrl->namespaces_rwsem);
2930 if (list_empty(&ctrl->namespaces)) {
2931 ret = -ENOTTY;
2932 goto out_unlock;
2933 }
2934
2935 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2936 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2937 dev_warn(ctrl->device,
2938 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2939 ret = -EINVAL;
2940 goto out_unlock;
2941 }
2942
2943 dev_warn(ctrl->device,
2944 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2945 kref_get(&ns->kref);
2946 up_read(&ctrl->namespaces_rwsem);
2947
2948 ret = nvme_user_cmd(ctrl, ns, argp);
2949 nvme_put_ns(ns);
2950 return ret;
2951
2952 out_unlock:
2953 up_read(&ctrl->namespaces_rwsem);
2954 return ret;
2955 }
2956
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2957 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2958 unsigned long arg)
2959 {
2960 struct nvme_ctrl *ctrl = file->private_data;
2961 void __user *argp = (void __user *)arg;
2962
2963 switch (cmd) {
2964 case NVME_IOCTL_ADMIN_CMD:
2965 return nvme_user_cmd(ctrl, NULL, argp);
2966 case NVME_IOCTL_ADMIN64_CMD:
2967 return nvme_user_cmd64(ctrl, NULL, argp);
2968 case NVME_IOCTL_IO_CMD:
2969 return nvme_dev_user_cmd(ctrl, argp);
2970 case NVME_IOCTL_RESET:
2971 dev_warn(ctrl->device, "resetting controller\n");
2972 return nvme_reset_ctrl_sync(ctrl);
2973 case NVME_IOCTL_SUBSYS_RESET:
2974 return nvme_reset_subsystem(ctrl);
2975 case NVME_IOCTL_RESCAN:
2976 nvme_queue_scan(ctrl);
2977 return 0;
2978 default:
2979 return -ENOTTY;
2980 }
2981 }
2982
2983 static const struct file_operations nvme_dev_fops = {
2984 .owner = THIS_MODULE,
2985 .open = nvme_dev_open,
2986 .unlocked_ioctl = nvme_dev_ioctl,
2987 .compat_ioctl = nvme_dev_ioctl,
2988 };
2989
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2990 static ssize_t nvme_sysfs_reset(struct device *dev,
2991 struct device_attribute *attr, const char *buf,
2992 size_t count)
2993 {
2994 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2995 int ret;
2996
2997 ret = nvme_reset_ctrl_sync(ctrl);
2998 if (ret < 0)
2999 return ret;
3000 return count;
3001 }
3002 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3003
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3004 static ssize_t nvme_sysfs_rescan(struct device *dev,
3005 struct device_attribute *attr, const char *buf,
3006 size_t count)
3007 {
3008 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3009
3010 nvme_queue_scan(ctrl);
3011 return count;
3012 }
3013 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3014
dev_to_ns_head(struct device * dev)3015 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3016 {
3017 struct gendisk *disk = dev_to_disk(dev);
3018
3019 if (disk->fops == &nvme_fops)
3020 return nvme_get_ns_from_dev(dev)->head;
3021 else
3022 return disk->private_data;
3023 }
3024
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)3025 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3026 char *buf)
3027 {
3028 struct nvme_ns_head *head = dev_to_ns_head(dev);
3029 struct nvme_ns_ids *ids = &head->ids;
3030 struct nvme_subsystem *subsys = head->subsys;
3031 int serial_len = sizeof(subsys->serial);
3032 int model_len = sizeof(subsys->model);
3033
3034 if (!uuid_is_null(&ids->uuid))
3035 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3036
3037 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3038 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3039
3040 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3041 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3042
3043 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3044 subsys->serial[serial_len - 1] == '\0'))
3045 serial_len--;
3046 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3047 subsys->model[model_len - 1] == '\0'))
3048 model_len--;
3049
3050 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3051 serial_len, subsys->serial, model_len, subsys->model,
3052 head->ns_id);
3053 }
3054 static DEVICE_ATTR_RO(wwid);
3055
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)3056 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3057 char *buf)
3058 {
3059 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3060 }
3061 static DEVICE_ATTR_RO(nguid);
3062
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)3063 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3064 char *buf)
3065 {
3066 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3067
3068 /* For backward compatibility expose the NGUID to userspace if
3069 * we have no UUID set
3070 */
3071 if (uuid_is_null(&ids->uuid)) {
3072 printk_ratelimited(KERN_WARNING
3073 "No UUID available providing old NGUID\n");
3074 return sprintf(buf, "%pU\n", ids->nguid);
3075 }
3076 return sprintf(buf, "%pU\n", &ids->uuid);
3077 }
3078 static DEVICE_ATTR_RO(uuid);
3079
eui_show(struct device * dev,struct device_attribute * attr,char * buf)3080 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3081 char *buf)
3082 {
3083 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3084 }
3085 static DEVICE_ATTR_RO(eui);
3086
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)3087 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3088 char *buf)
3089 {
3090 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3091 }
3092 static DEVICE_ATTR_RO(nsid);
3093
3094 static struct attribute *nvme_ns_id_attrs[] = {
3095 &dev_attr_wwid.attr,
3096 &dev_attr_uuid.attr,
3097 &dev_attr_nguid.attr,
3098 &dev_attr_eui.attr,
3099 &dev_attr_nsid.attr,
3100 #ifdef CONFIG_NVME_MULTIPATH
3101 &dev_attr_ana_grpid.attr,
3102 &dev_attr_ana_state.attr,
3103 #endif
3104 NULL,
3105 };
3106
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3107 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3108 struct attribute *a, int n)
3109 {
3110 struct device *dev = container_of(kobj, struct device, kobj);
3111 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3112
3113 if (a == &dev_attr_uuid.attr) {
3114 if (uuid_is_null(&ids->uuid) &&
3115 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3116 return 0;
3117 }
3118 if (a == &dev_attr_nguid.attr) {
3119 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3120 return 0;
3121 }
3122 if (a == &dev_attr_eui.attr) {
3123 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3124 return 0;
3125 }
3126 #ifdef CONFIG_NVME_MULTIPATH
3127 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3128 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3129 return 0;
3130 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3131 return 0;
3132 }
3133 #endif
3134 return a->mode;
3135 }
3136
3137 static const struct attribute_group nvme_ns_id_attr_group = {
3138 .attrs = nvme_ns_id_attrs,
3139 .is_visible = nvme_ns_id_attrs_are_visible,
3140 };
3141
3142 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3143 &nvme_ns_id_attr_group,
3144 #ifdef CONFIG_NVM
3145 &nvme_nvm_attr_group,
3146 #endif
3147 NULL,
3148 };
3149
3150 #define nvme_show_str_function(field) \
3151 static ssize_t field##_show(struct device *dev, \
3152 struct device_attribute *attr, char *buf) \
3153 { \
3154 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3155 return sprintf(buf, "%.*s\n", \
3156 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3157 } \
3158 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3159
3160 nvme_show_str_function(model);
3161 nvme_show_str_function(serial);
3162 nvme_show_str_function(firmware_rev);
3163
3164 #define nvme_show_int_function(field) \
3165 static ssize_t field##_show(struct device *dev, \
3166 struct device_attribute *attr, char *buf) \
3167 { \
3168 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3169 return sprintf(buf, "%d\n", ctrl->field); \
3170 } \
3171 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3172
3173 nvme_show_int_function(cntlid);
3174 nvme_show_int_function(numa_node);
3175 nvme_show_int_function(queue_count);
3176 nvme_show_int_function(sqsize);
3177
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3178 static ssize_t nvme_sysfs_delete(struct device *dev,
3179 struct device_attribute *attr, const char *buf,
3180 size_t count)
3181 {
3182 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3183
3184 if (device_remove_file_self(dev, attr))
3185 nvme_delete_ctrl_sync(ctrl);
3186 return count;
3187 }
3188 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3189
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)3190 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3191 struct device_attribute *attr,
3192 char *buf)
3193 {
3194 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3195
3196 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3197 }
3198 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3199
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)3200 static ssize_t nvme_sysfs_show_state(struct device *dev,
3201 struct device_attribute *attr,
3202 char *buf)
3203 {
3204 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3205 static const char *const state_name[] = {
3206 [NVME_CTRL_NEW] = "new",
3207 [NVME_CTRL_LIVE] = "live",
3208 [NVME_CTRL_RESETTING] = "resetting",
3209 [NVME_CTRL_CONNECTING] = "connecting",
3210 [NVME_CTRL_DELETING] = "deleting",
3211 [NVME_CTRL_DEAD] = "dead",
3212 };
3213
3214 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3215 state_name[ctrl->state])
3216 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3217
3218 return sprintf(buf, "unknown state\n");
3219 }
3220
3221 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3222
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)3223 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3224 struct device_attribute *attr,
3225 char *buf)
3226 {
3227 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3228
3229 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3230 }
3231 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3232
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)3233 static ssize_t nvme_sysfs_show_address(struct device *dev,
3234 struct device_attribute *attr,
3235 char *buf)
3236 {
3237 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3238
3239 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3240 }
3241 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3242
3243 static struct attribute *nvme_dev_attrs[] = {
3244 &dev_attr_reset_controller.attr,
3245 &dev_attr_rescan_controller.attr,
3246 &dev_attr_model.attr,
3247 &dev_attr_serial.attr,
3248 &dev_attr_firmware_rev.attr,
3249 &dev_attr_cntlid.attr,
3250 &dev_attr_delete_controller.attr,
3251 &dev_attr_transport.attr,
3252 &dev_attr_subsysnqn.attr,
3253 &dev_attr_address.attr,
3254 &dev_attr_state.attr,
3255 &dev_attr_numa_node.attr,
3256 &dev_attr_queue_count.attr,
3257 &dev_attr_sqsize.attr,
3258 NULL
3259 };
3260
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3261 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3262 struct attribute *a, int n)
3263 {
3264 struct device *dev = container_of(kobj, struct device, kobj);
3265 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3266
3267 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3268 return 0;
3269 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3270 return 0;
3271
3272 return a->mode;
3273 }
3274
3275 static struct attribute_group nvme_dev_attrs_group = {
3276 .attrs = nvme_dev_attrs,
3277 .is_visible = nvme_dev_attrs_are_visible,
3278 };
3279
3280 static const struct attribute_group *nvme_dev_attr_groups[] = {
3281 &nvme_dev_attrs_group,
3282 NULL,
3283 };
3284
__nvme_find_ns_head(struct nvme_subsystem * subsys,unsigned nsid)3285 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3286 unsigned nsid)
3287 {
3288 struct nvme_ns_head *h;
3289
3290 lockdep_assert_held(&subsys->lock);
3291
3292 list_for_each_entry(h, &subsys->nsheads, entry) {
3293 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3294 return h;
3295 }
3296
3297 return NULL;
3298 }
3299
__nvme_check_ids(struct nvme_subsystem * subsys,struct nvme_ns_head * new)3300 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3301 struct nvme_ns_head *new)
3302 {
3303 struct nvme_ns_head *h;
3304
3305 lockdep_assert_held(&subsys->lock);
3306
3307 list_for_each_entry(h, &subsys->nsheads, entry) {
3308 if (nvme_ns_ids_valid(&new->ids) &&
3309 !list_empty(&h->list) &&
3310 nvme_ns_ids_equal(&new->ids, &h->ids))
3311 return -EINVAL;
3312 }
3313
3314 return 0;
3315 }
3316
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns * id)3317 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3318 unsigned nsid, struct nvme_id_ns *id)
3319 {
3320 struct nvme_ns_head *head;
3321 size_t size = sizeof(*head);
3322 int ret = -ENOMEM;
3323
3324 #ifdef CONFIG_NVME_MULTIPATH
3325 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3326 #endif
3327
3328 head = kzalloc(size, GFP_KERNEL);
3329 if (!head)
3330 goto out;
3331 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3332 if (ret < 0)
3333 goto out_free_head;
3334 head->instance = ret;
3335 INIT_LIST_HEAD(&head->list);
3336 ret = init_srcu_struct(&head->srcu);
3337 if (ret)
3338 goto out_ida_remove;
3339 head->subsys = ctrl->subsys;
3340 head->ns_id = nsid;
3341 kref_init(&head->ref);
3342
3343 ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3344 if (ret)
3345 goto out_cleanup_srcu;
3346
3347 ret = __nvme_check_ids(ctrl->subsys, head);
3348 if (ret) {
3349 dev_err(ctrl->device,
3350 "duplicate IDs for nsid %d\n", nsid);
3351 goto out_cleanup_srcu;
3352 }
3353
3354 ret = nvme_mpath_alloc_disk(ctrl, head);
3355 if (ret)
3356 goto out_cleanup_srcu;
3357
3358 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3359
3360 kref_get(&ctrl->subsys->ref);
3361
3362 return head;
3363 out_cleanup_srcu:
3364 cleanup_srcu_struct(&head->srcu);
3365 out_ida_remove:
3366 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3367 out_free_head:
3368 kfree(head);
3369 out:
3370 if (ret > 0)
3371 ret = blk_status_to_errno(nvme_error_status(ret));
3372 return ERR_PTR(ret);
3373 }
3374
nvme_init_ns_head(struct nvme_ns * ns,unsigned nsid,struct nvme_id_ns * id)3375 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3376 struct nvme_id_ns *id)
3377 {
3378 struct nvme_ctrl *ctrl = ns->ctrl;
3379 bool is_shared = id->nmic & (1 << 0);
3380 struct nvme_ns_head *head = NULL;
3381 int ret = 0;
3382
3383 mutex_lock(&ctrl->subsys->lock);
3384 if (is_shared)
3385 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3386 if (!head) {
3387 head = nvme_alloc_ns_head(ctrl, nsid, id);
3388 if (IS_ERR(head)) {
3389 ret = PTR_ERR(head);
3390 goto out_unlock;
3391 }
3392 } else {
3393 struct nvme_ns_ids ids;
3394
3395 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3396 if (ret)
3397 goto out_unlock;
3398
3399 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3400 dev_err(ctrl->device,
3401 "IDs don't match for shared namespace %d\n",
3402 nsid);
3403 ret = -EINVAL;
3404 goto out_unlock;
3405 }
3406 }
3407
3408 list_add_tail(&ns->siblings, &head->list);
3409 ns->head = head;
3410
3411 out_unlock:
3412 mutex_unlock(&ctrl->subsys->lock);
3413 if (ret > 0)
3414 ret = blk_status_to_errno(nvme_error_status(ret));
3415 return ret;
3416 }
3417
ns_cmp(void * priv,struct list_head * a,struct list_head * b)3418 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3419 {
3420 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3421 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3422
3423 return nsa->head->ns_id - nsb->head->ns_id;
3424 }
3425
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3426 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3427 {
3428 struct nvme_ns *ns, *ret = NULL;
3429
3430 down_read(&ctrl->namespaces_rwsem);
3431 list_for_each_entry(ns, &ctrl->namespaces, list) {
3432 if (ns->head->ns_id == nsid) {
3433 if (!kref_get_unless_zero(&ns->kref))
3434 continue;
3435 ret = ns;
3436 break;
3437 }
3438 if (ns->head->ns_id > nsid)
3439 break;
3440 }
3441 up_read(&ctrl->namespaces_rwsem);
3442 return ret;
3443 }
3444
nvme_setup_streams_ns(struct nvme_ctrl * ctrl,struct nvme_ns * ns)3445 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3446 {
3447 struct streams_directive_params s;
3448 int ret;
3449
3450 if (!ctrl->nr_streams)
3451 return 0;
3452
3453 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3454 if (ret)
3455 return ret;
3456
3457 ns->sws = le32_to_cpu(s.sws);
3458 ns->sgs = le16_to_cpu(s.sgs);
3459
3460 if (ns->sws) {
3461 unsigned int bs = 1 << ns->lba_shift;
3462
3463 blk_queue_io_min(ns->queue, bs * ns->sws);
3464 if (ns->sgs)
3465 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3466 }
3467
3468 return 0;
3469 }
3470
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)3471 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3472 {
3473 struct nvme_ns *ns;
3474 struct gendisk *disk;
3475 struct nvme_id_ns *id;
3476 char disk_name[DISK_NAME_LEN];
3477 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3478
3479 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3480 if (!ns)
3481 return -ENOMEM;
3482
3483 ns->queue = blk_mq_init_queue(ctrl->tagset);
3484 if (IS_ERR(ns->queue)) {
3485 ret = PTR_ERR(ns->queue);
3486 goto out_free_ns;
3487 }
3488
3489 if (ctrl->opts && ctrl->opts->data_digest)
3490 ns->queue->backing_dev_info->capabilities
3491 |= BDI_CAP_STABLE_WRITES;
3492
3493 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3494 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3495 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3496
3497 ns->queue->queuedata = ns;
3498 ns->ctrl = ctrl;
3499
3500 kref_init(&ns->kref);
3501 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3502
3503 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3504 nvme_set_queue_limits(ctrl, ns->queue);
3505
3506 ret = nvme_identify_ns(ctrl, nsid, &id);
3507 if (ret)
3508 goto out_free_queue;
3509
3510 if (id->ncap == 0) {
3511 ret = -EINVAL;
3512 goto out_free_id;
3513 }
3514
3515 ret = nvme_init_ns_head(ns, nsid, id);
3516 if (ret)
3517 goto out_free_id;
3518 nvme_setup_streams_ns(ctrl, ns);
3519 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3520
3521 disk = alloc_disk_node(0, node);
3522 if (!disk) {
3523 ret = -ENOMEM;
3524 goto out_unlink_ns;
3525 }
3526
3527 disk->fops = &nvme_fops;
3528 disk->private_data = ns;
3529 disk->queue = ns->queue;
3530 disk->flags = flags;
3531 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3532 ns->disk = disk;
3533
3534 __nvme_revalidate_disk(disk, id);
3535
3536 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3537 ret = nvme_nvm_register(ns, disk_name, node);
3538 if (ret) {
3539 dev_warn(ctrl->device, "LightNVM init failure\n");
3540 goto out_put_disk;
3541 }
3542 }
3543
3544 down_write(&ctrl->namespaces_rwsem);
3545 list_add_tail(&ns->list, &ctrl->namespaces);
3546 up_write(&ctrl->namespaces_rwsem);
3547
3548 nvme_get_ctrl(ctrl);
3549
3550 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3551
3552 nvme_mpath_add_disk(ns, id);
3553 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3554 kfree(id);
3555
3556 return 0;
3557 out_put_disk:
3558 put_disk(ns->disk);
3559 out_unlink_ns:
3560 mutex_lock(&ctrl->subsys->lock);
3561 list_del_rcu(&ns->siblings);
3562 mutex_unlock(&ctrl->subsys->lock);
3563 nvme_put_ns_head(ns->head);
3564 out_free_id:
3565 kfree(id);
3566 out_free_queue:
3567 blk_cleanup_queue(ns->queue);
3568 out_free_ns:
3569 kfree(ns);
3570 if (ret > 0)
3571 ret = blk_status_to_errno(nvme_error_status(ret));
3572 return ret;
3573 }
3574
nvme_ns_remove(struct nvme_ns * ns)3575 static void nvme_ns_remove(struct nvme_ns *ns)
3576 {
3577 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3578 return;
3579
3580 nvme_fault_inject_fini(&ns->fault_inject);
3581
3582 mutex_lock(&ns->ctrl->subsys->lock);
3583 list_del_rcu(&ns->siblings);
3584 mutex_unlock(&ns->ctrl->subsys->lock);
3585 synchronize_rcu(); /* guarantee not available in head->list */
3586 nvme_mpath_clear_current_path(ns);
3587 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3588
3589 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3590 del_gendisk(ns->disk);
3591 blk_cleanup_queue(ns->queue);
3592 if (blk_get_integrity(ns->disk))
3593 blk_integrity_unregister(ns->disk);
3594 }
3595
3596 down_write(&ns->ctrl->namespaces_rwsem);
3597 list_del_init(&ns->list);
3598 up_write(&ns->ctrl->namespaces_rwsem);
3599
3600 nvme_mpath_check_last_path(ns);
3601 nvme_put_ns(ns);
3602 }
3603
nvme_validate_ns(struct nvme_ctrl * ctrl,unsigned nsid)3604 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3605 {
3606 struct nvme_ns *ns;
3607
3608 ns = nvme_find_get_ns(ctrl, nsid);
3609 if (ns) {
3610 if (ns->disk && revalidate_disk(ns->disk))
3611 nvme_ns_remove(ns);
3612 nvme_put_ns(ns);
3613 } else
3614 nvme_alloc_ns(ctrl, nsid);
3615 }
3616
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)3617 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3618 unsigned nsid)
3619 {
3620 struct nvme_ns *ns, *next;
3621 LIST_HEAD(rm_list);
3622
3623 down_write(&ctrl->namespaces_rwsem);
3624 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3625 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3626 list_move_tail(&ns->list, &rm_list);
3627 }
3628 up_write(&ctrl->namespaces_rwsem);
3629
3630 list_for_each_entry_safe(ns, next, &rm_list, list)
3631 nvme_ns_remove(ns);
3632
3633 }
3634
nvme_scan_ns_list(struct nvme_ctrl * ctrl,unsigned nn)3635 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3636 {
3637 struct nvme_ns *ns;
3638 __le32 *ns_list;
3639 unsigned i, j, nsid, prev = 0;
3640 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3641 int ret = 0;
3642
3643 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3644 if (!ns_list)
3645 return -ENOMEM;
3646
3647 for (i = 0; i < num_lists; i++) {
3648 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3649 if (ret)
3650 goto free;
3651
3652 for (j = 0; j < min(nn, 1024U); j++) {
3653 nsid = le32_to_cpu(ns_list[j]);
3654 if (!nsid)
3655 goto out;
3656
3657 nvme_validate_ns(ctrl, nsid);
3658
3659 while (++prev < nsid) {
3660 ns = nvme_find_get_ns(ctrl, prev);
3661 if (ns) {
3662 nvme_ns_remove(ns);
3663 nvme_put_ns(ns);
3664 }
3665 }
3666 }
3667 nn -= j;
3668 }
3669 out:
3670 nvme_remove_invalid_namespaces(ctrl, prev);
3671 free:
3672 kfree(ns_list);
3673 return ret;
3674 }
3675
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl,unsigned nn)3676 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3677 {
3678 unsigned i;
3679
3680 for (i = 1; i <= nn; i++)
3681 nvme_validate_ns(ctrl, i);
3682
3683 nvme_remove_invalid_namespaces(ctrl, nn);
3684 }
3685
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)3686 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3687 {
3688 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3689 __le32 *log;
3690 int error;
3691
3692 log = kzalloc(log_size, GFP_KERNEL);
3693 if (!log)
3694 return;
3695
3696 /*
3697 * We need to read the log to clear the AEN, but we don't want to rely
3698 * on it for the changed namespace information as userspace could have
3699 * raced with us in reading the log page, which could cause us to miss
3700 * updates.
3701 */
3702 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3703 log_size, 0);
3704 if (error)
3705 dev_warn(ctrl->device,
3706 "reading changed ns log failed: %d\n", error);
3707
3708 kfree(log);
3709 }
3710
nvme_scan_work(struct work_struct * work)3711 static void nvme_scan_work(struct work_struct *work)
3712 {
3713 struct nvme_ctrl *ctrl =
3714 container_of(work, struct nvme_ctrl, scan_work);
3715 struct nvme_id_ctrl *id;
3716 unsigned nn;
3717
3718 /* No tagset on a live ctrl means IO queues could not created */
3719 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3720 return;
3721
3722 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3723 dev_info(ctrl->device, "rescanning namespaces.\n");
3724 nvme_clear_changed_ns_log(ctrl);
3725 }
3726
3727 if (nvme_identify_ctrl(ctrl, &id))
3728 return;
3729
3730 mutex_lock(&ctrl->scan_lock);
3731 nn = le32_to_cpu(id->nn);
3732 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3733 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3734 if (!nvme_scan_ns_list(ctrl, nn))
3735 goto out_free_id;
3736 }
3737 nvme_scan_ns_sequential(ctrl, nn);
3738 out_free_id:
3739 mutex_unlock(&ctrl->scan_lock);
3740 kfree(id);
3741 down_write(&ctrl->namespaces_rwsem);
3742 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3743 up_write(&ctrl->namespaces_rwsem);
3744 }
3745
3746 /*
3747 * This function iterates the namespace list unlocked to allow recovery from
3748 * controller failure. It is up to the caller to ensure the namespace list is
3749 * not modified by scan work while this function is executing.
3750 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)3751 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3752 {
3753 struct nvme_ns *ns, *next;
3754 LIST_HEAD(ns_list);
3755
3756 /*
3757 * make sure to requeue I/O to all namespaces as these
3758 * might result from the scan itself and must complete
3759 * for the scan_work to make progress
3760 */
3761 nvme_mpath_clear_ctrl_paths(ctrl);
3762
3763 /* prevent racing with ns scanning */
3764 flush_work(&ctrl->scan_work);
3765
3766 /*
3767 * The dead states indicates the controller was not gracefully
3768 * disconnected. In that case, we won't be able to flush any data while
3769 * removing the namespaces' disks; fail all the queues now to avoid
3770 * potentially having to clean up the failed sync later.
3771 */
3772 if (ctrl->state == NVME_CTRL_DEAD)
3773 nvme_kill_queues(ctrl);
3774
3775 down_write(&ctrl->namespaces_rwsem);
3776 list_splice_init(&ctrl->namespaces, &ns_list);
3777 up_write(&ctrl->namespaces_rwsem);
3778
3779 list_for_each_entry_safe(ns, next, &ns_list, list)
3780 nvme_ns_remove(ns);
3781 }
3782 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3783
nvme_class_uevent(struct device * dev,struct kobj_uevent_env * env)3784 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3785 {
3786 struct nvme_ctrl *ctrl =
3787 container_of(dev, struct nvme_ctrl, ctrl_device);
3788 struct nvmf_ctrl_options *opts = ctrl->opts;
3789 int ret;
3790
3791 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3792 if (ret)
3793 return ret;
3794
3795 if (opts) {
3796 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3797 if (ret)
3798 return ret;
3799
3800 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3801 opts->trsvcid ?: "none");
3802 if (ret)
3803 return ret;
3804
3805 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3806 opts->host_traddr ?: "none");
3807 }
3808 return ret;
3809 }
3810
nvme_aen_uevent(struct nvme_ctrl * ctrl)3811 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3812 {
3813 char *envp[2] = { NULL, NULL };
3814 u32 aen_result = ctrl->aen_result;
3815
3816 ctrl->aen_result = 0;
3817 if (!aen_result)
3818 return;
3819
3820 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3821 if (!envp[0])
3822 return;
3823 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3824 kfree(envp[0]);
3825 }
3826
nvme_async_event_work(struct work_struct * work)3827 static void nvme_async_event_work(struct work_struct *work)
3828 {
3829 struct nvme_ctrl *ctrl =
3830 container_of(work, struct nvme_ctrl, async_event_work);
3831
3832 nvme_aen_uevent(ctrl);
3833 ctrl->ops->submit_async_event(ctrl);
3834 }
3835
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)3836 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3837 {
3838
3839 u32 csts;
3840
3841 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3842 return false;
3843
3844 if (csts == ~0)
3845 return false;
3846
3847 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3848 }
3849
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)3850 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3851 {
3852 struct nvme_fw_slot_info_log *log;
3853
3854 log = kmalloc(sizeof(*log), GFP_KERNEL);
3855 if (!log)
3856 return;
3857
3858 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3859 sizeof(*log), 0))
3860 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3861 kfree(log);
3862 }
3863
nvme_fw_act_work(struct work_struct * work)3864 static void nvme_fw_act_work(struct work_struct *work)
3865 {
3866 struct nvme_ctrl *ctrl = container_of(work,
3867 struct nvme_ctrl, fw_act_work);
3868 unsigned long fw_act_timeout;
3869
3870 if (ctrl->mtfa)
3871 fw_act_timeout = jiffies +
3872 msecs_to_jiffies(ctrl->mtfa * 100);
3873 else
3874 fw_act_timeout = jiffies +
3875 msecs_to_jiffies(admin_timeout * 1000);
3876
3877 nvme_stop_queues(ctrl);
3878 while (nvme_ctrl_pp_status(ctrl)) {
3879 if (time_after(jiffies, fw_act_timeout)) {
3880 dev_warn(ctrl->device,
3881 "Fw activation timeout, reset controller\n");
3882 nvme_try_sched_reset(ctrl);
3883 return;
3884 }
3885 msleep(100);
3886 }
3887
3888 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3889 return;
3890
3891 nvme_start_queues(ctrl);
3892 /* read FW slot information to clear the AER */
3893 nvme_get_fw_slot_info(ctrl);
3894 }
3895
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)3896 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3897 {
3898 u32 aer_notice_type = (result & 0xff00) >> 8;
3899
3900 trace_nvme_async_event(ctrl, aer_notice_type);
3901
3902 switch (aer_notice_type) {
3903 case NVME_AER_NOTICE_NS_CHANGED:
3904 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3905 nvme_queue_scan(ctrl);
3906 break;
3907 case NVME_AER_NOTICE_FW_ACT_STARTING:
3908 /*
3909 * We are (ab)using the RESETTING state to prevent subsequent
3910 * recovery actions from interfering with the controller's
3911 * firmware activation.
3912 */
3913 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3914 queue_work(nvme_wq, &ctrl->fw_act_work);
3915 break;
3916 #ifdef CONFIG_NVME_MULTIPATH
3917 case NVME_AER_NOTICE_ANA:
3918 if (!ctrl->ana_log_buf)
3919 break;
3920 queue_work(nvme_wq, &ctrl->ana_work);
3921 break;
3922 #endif
3923 case NVME_AER_NOTICE_DISC_CHANGED:
3924 ctrl->aen_result = result;
3925 break;
3926 default:
3927 dev_warn(ctrl->device, "async event result %08x\n", result);
3928 }
3929 }
3930
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)3931 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3932 volatile union nvme_result *res)
3933 {
3934 u32 result = le32_to_cpu(res->u32);
3935 u32 aer_type = result & 0x07;
3936
3937 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3938 return;
3939
3940 switch (aer_type) {
3941 case NVME_AER_NOTICE:
3942 nvme_handle_aen_notice(ctrl, result);
3943 break;
3944 case NVME_AER_ERROR:
3945 case NVME_AER_SMART:
3946 case NVME_AER_CSS:
3947 case NVME_AER_VS:
3948 trace_nvme_async_event(ctrl, aer_type);
3949 ctrl->aen_result = result;
3950 break;
3951 default:
3952 break;
3953 }
3954 queue_work(nvme_wq, &ctrl->async_event_work);
3955 }
3956 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3957
nvme_stop_ctrl(struct nvme_ctrl * ctrl)3958 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3959 {
3960 nvme_mpath_stop(ctrl);
3961 nvme_stop_keep_alive(ctrl);
3962 flush_work(&ctrl->async_event_work);
3963 cancel_work_sync(&ctrl->fw_act_work);
3964 }
3965 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3966
nvme_start_ctrl(struct nvme_ctrl * ctrl)3967 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3968 {
3969 if (ctrl->kato)
3970 nvme_start_keep_alive(ctrl);
3971
3972 nvme_enable_aen(ctrl);
3973
3974 if (ctrl->queue_count > 1) {
3975 nvme_queue_scan(ctrl);
3976 nvme_start_queues(ctrl);
3977 }
3978 }
3979 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3980
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)3981 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3982 {
3983 nvme_fault_inject_fini(&ctrl->fault_inject);
3984 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3985 cdev_device_del(&ctrl->cdev, ctrl->device);
3986 }
3987 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3988
nvme_free_ctrl(struct device * dev)3989 static void nvme_free_ctrl(struct device *dev)
3990 {
3991 struct nvme_ctrl *ctrl =
3992 container_of(dev, struct nvme_ctrl, ctrl_device);
3993 struct nvme_subsystem *subsys = ctrl->subsys;
3994
3995 if (subsys && ctrl->instance != subsys->instance)
3996 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3997
3998 kfree(ctrl->effects);
3999 nvme_mpath_uninit(ctrl);
4000 __free_page(ctrl->discard_page);
4001
4002 if (subsys) {
4003 mutex_lock(&nvme_subsystems_lock);
4004 list_del(&ctrl->subsys_entry);
4005 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4006 mutex_unlock(&nvme_subsystems_lock);
4007 }
4008
4009 ctrl->ops->free_ctrl(ctrl);
4010
4011 if (subsys)
4012 nvme_put_subsystem(subsys);
4013 }
4014
4015 /*
4016 * Initialize a NVMe controller structures. This needs to be called during
4017 * earliest initialization so that we have the initialized structured around
4018 * during probing.
4019 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4020 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4021 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4022 {
4023 int ret;
4024
4025 ctrl->state = NVME_CTRL_NEW;
4026 spin_lock_init(&ctrl->lock);
4027 mutex_init(&ctrl->scan_lock);
4028 INIT_LIST_HEAD(&ctrl->namespaces);
4029 init_rwsem(&ctrl->namespaces_rwsem);
4030 ctrl->dev = dev;
4031 ctrl->ops = ops;
4032 ctrl->quirks = quirks;
4033 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4034 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4035 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4036 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4037 init_waitqueue_head(&ctrl->state_wq);
4038
4039 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4040 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4041 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4042
4043 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4044 PAGE_SIZE);
4045 ctrl->discard_page = alloc_page(GFP_KERNEL);
4046 if (!ctrl->discard_page) {
4047 ret = -ENOMEM;
4048 goto out;
4049 }
4050
4051 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4052 if (ret < 0)
4053 goto out;
4054 ctrl->instance = ret;
4055
4056 device_initialize(&ctrl->ctrl_device);
4057 ctrl->device = &ctrl->ctrl_device;
4058 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4059 ctrl->device->class = nvme_class;
4060 ctrl->device->parent = ctrl->dev;
4061 ctrl->device->groups = nvme_dev_attr_groups;
4062 ctrl->device->release = nvme_free_ctrl;
4063 dev_set_drvdata(ctrl->device, ctrl);
4064 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4065 if (ret)
4066 goto out_release_instance;
4067
4068 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4069 ctrl->cdev.owner = ops->module;
4070 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4071 if (ret)
4072 goto out_free_name;
4073
4074 /*
4075 * Initialize latency tolerance controls. The sysfs files won't
4076 * be visible to userspace unless the device actually supports APST.
4077 */
4078 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4079 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4080 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4081
4082 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4083
4084 return 0;
4085 out_free_name:
4086 kfree_const(ctrl->device->kobj.name);
4087 out_release_instance:
4088 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4089 out:
4090 if (ctrl->discard_page)
4091 __free_page(ctrl->discard_page);
4092 return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4095
4096 /**
4097 * nvme_kill_queues(): Ends all namespace queues
4098 * @ctrl: the dead controller that needs to end
4099 *
4100 * Call this function when the driver determines it is unable to get the
4101 * controller in a state capable of servicing IO.
4102 */
nvme_kill_queues(struct nvme_ctrl * ctrl)4103 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4104 {
4105 struct nvme_ns *ns;
4106
4107 down_read(&ctrl->namespaces_rwsem);
4108
4109 /* Forcibly unquiesce queues to avoid blocking dispatch */
4110 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4111 blk_mq_unquiesce_queue(ctrl->admin_q);
4112
4113 list_for_each_entry(ns, &ctrl->namespaces, list)
4114 nvme_set_queue_dying(ns);
4115
4116 up_read(&ctrl->namespaces_rwsem);
4117 }
4118 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4119
nvme_unfreeze(struct nvme_ctrl * ctrl)4120 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4121 {
4122 struct nvme_ns *ns;
4123
4124 down_read(&ctrl->namespaces_rwsem);
4125 list_for_each_entry(ns, &ctrl->namespaces, list)
4126 blk_mq_unfreeze_queue(ns->queue);
4127 up_read(&ctrl->namespaces_rwsem);
4128 }
4129 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4130
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4131 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4132 {
4133 struct nvme_ns *ns;
4134
4135 down_read(&ctrl->namespaces_rwsem);
4136 list_for_each_entry(ns, &ctrl->namespaces, list) {
4137 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4138 if (timeout <= 0)
4139 break;
4140 }
4141 up_read(&ctrl->namespaces_rwsem);
4142 }
4143 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4144
nvme_wait_freeze(struct nvme_ctrl * ctrl)4145 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4146 {
4147 struct nvme_ns *ns;
4148
4149 down_read(&ctrl->namespaces_rwsem);
4150 list_for_each_entry(ns, &ctrl->namespaces, list)
4151 blk_mq_freeze_queue_wait(ns->queue);
4152 up_read(&ctrl->namespaces_rwsem);
4153 }
4154 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4155
nvme_start_freeze(struct nvme_ctrl * ctrl)4156 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4157 {
4158 struct nvme_ns *ns;
4159
4160 down_read(&ctrl->namespaces_rwsem);
4161 list_for_each_entry(ns, &ctrl->namespaces, list)
4162 blk_freeze_queue_start(ns->queue);
4163 up_read(&ctrl->namespaces_rwsem);
4164 }
4165 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4166
nvme_stop_queues(struct nvme_ctrl * ctrl)4167 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4168 {
4169 struct nvme_ns *ns;
4170
4171 down_read(&ctrl->namespaces_rwsem);
4172 list_for_each_entry(ns, &ctrl->namespaces, list)
4173 blk_mq_quiesce_queue(ns->queue);
4174 up_read(&ctrl->namespaces_rwsem);
4175 }
4176 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4177
nvme_start_queues(struct nvme_ctrl * ctrl)4178 void nvme_start_queues(struct nvme_ctrl *ctrl)
4179 {
4180 struct nvme_ns *ns;
4181
4182 down_read(&ctrl->namespaces_rwsem);
4183 list_for_each_entry(ns, &ctrl->namespaces, list)
4184 blk_mq_unquiesce_queue(ns->queue);
4185 up_read(&ctrl->namespaces_rwsem);
4186 }
4187 EXPORT_SYMBOL_GPL(nvme_start_queues);
4188
4189
nvme_sync_queues(struct nvme_ctrl * ctrl)4190 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4191 {
4192 struct nvme_ns *ns;
4193
4194 down_read(&ctrl->namespaces_rwsem);
4195 list_for_each_entry(ns, &ctrl->namespaces, list)
4196 blk_sync_queue(ns->queue);
4197 up_read(&ctrl->namespaces_rwsem);
4198
4199 if (ctrl->admin_q)
4200 blk_sync_queue(ctrl->admin_q);
4201 }
4202 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4203
4204 /*
4205 * Check we didn't inadvertently grow the command structure sizes:
4206 */
_nvme_check_size(void)4207 static inline void _nvme_check_size(void)
4208 {
4209 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4210 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4211 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4212 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4213 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4214 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4215 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4216 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4217 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4218 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4219 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4220 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4221 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4222 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4223 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4224 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4225 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4226 }
4227
4228
nvme_core_init(void)4229 static int __init nvme_core_init(void)
4230 {
4231 int result = -ENOMEM;
4232
4233 _nvme_check_size();
4234
4235 nvme_wq = alloc_workqueue("nvme-wq",
4236 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4237 if (!nvme_wq)
4238 goto out;
4239
4240 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4241 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4242 if (!nvme_reset_wq)
4243 goto destroy_wq;
4244
4245 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4246 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4247 if (!nvme_delete_wq)
4248 goto destroy_reset_wq;
4249
4250 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4251 if (result < 0)
4252 goto destroy_delete_wq;
4253
4254 nvme_class = class_create(THIS_MODULE, "nvme");
4255 if (IS_ERR(nvme_class)) {
4256 result = PTR_ERR(nvme_class);
4257 goto unregister_chrdev;
4258 }
4259 nvme_class->dev_uevent = nvme_class_uevent;
4260
4261 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4262 if (IS_ERR(nvme_subsys_class)) {
4263 result = PTR_ERR(nvme_subsys_class);
4264 goto destroy_class;
4265 }
4266 return 0;
4267
4268 destroy_class:
4269 class_destroy(nvme_class);
4270 unregister_chrdev:
4271 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4272 destroy_delete_wq:
4273 destroy_workqueue(nvme_delete_wq);
4274 destroy_reset_wq:
4275 destroy_workqueue(nvme_reset_wq);
4276 destroy_wq:
4277 destroy_workqueue(nvme_wq);
4278 out:
4279 return result;
4280 }
4281
nvme_core_exit(void)4282 static void __exit nvme_core_exit(void)
4283 {
4284 class_destroy(nvme_subsys_class);
4285 class_destroy(nvme_class);
4286 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4287 destroy_workqueue(nvme_delete_wq);
4288 destroy_workqueue(nvme_reset_wq);
4289 destroy_workqueue(nvme_wq);
4290 }
4291
4292 MODULE_LICENSE("GPL");
4293 MODULE_VERSION("1.0");
4294 module_init(nvme_core_init);
4295 module_exit(nvme_core_exit);
4296