1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2011-2014, Intel Corporation.
4  */
5 
6 #ifndef _NVME_H
7 #define _NVME_H
8 
9 #include <linux/nvme.h>
10 #include <linux/cdev.h>
11 #include <linux/pci.h>
12 #include <linux/kref.h>
13 #include <linux/blk-mq.h>
14 #include <linux/sed-opal.h>
15 #include <linux/fault-inject.h>
16 #include <linux/rcupdate.h>
17 #include <linux/wait.h>
18 #include <linux/t10-pi.h>
19 
20 #include <trace/events/block.h>
21 
22 extern unsigned int nvme_io_timeout;
23 #define NVME_IO_TIMEOUT	(nvme_io_timeout * HZ)
24 
25 extern unsigned int admin_timeout;
26 #define NVME_ADMIN_TIMEOUT	(admin_timeout * HZ)
27 
28 #define NVME_DEFAULT_KATO	5
29 
30 #ifdef CONFIG_ARCH_NO_SG_CHAIN
31 #define  NVME_INLINE_SG_CNT  0
32 #define  NVME_INLINE_METADATA_SG_CNT  0
33 #else
34 #define  NVME_INLINE_SG_CNT  2
35 #define  NVME_INLINE_METADATA_SG_CNT  1
36 #endif
37 
38 /*
39  * Default to a 4K page size, with the intention to update this
40  * path in the future to accommodate architectures with differing
41  * kernel and IO page sizes.
42  */
43 #define NVME_CTRL_PAGE_SHIFT	12
44 #define NVME_CTRL_PAGE_SIZE	(1 << NVME_CTRL_PAGE_SHIFT)
45 
46 extern struct workqueue_struct *nvme_wq;
47 extern struct workqueue_struct *nvme_reset_wq;
48 extern struct workqueue_struct *nvme_delete_wq;
49 
50 /*
51  * List of workarounds for devices that required behavior not specified in
52  * the standard.
53  */
54 enum nvme_quirks {
55 	/*
56 	 * Prefers I/O aligned to a stripe size specified in a vendor
57 	 * specific Identify field.
58 	 */
59 	NVME_QUIRK_STRIPE_SIZE			= (1 << 0),
60 
61 	/*
62 	 * The controller doesn't handle Identify value others than 0 or 1
63 	 * correctly.
64 	 */
65 	NVME_QUIRK_IDENTIFY_CNS			= (1 << 1),
66 
67 	/*
68 	 * The controller deterministically returns O's on reads to
69 	 * logical blocks that deallocate was called on.
70 	 */
71 	NVME_QUIRK_DEALLOCATE_ZEROES		= (1 << 2),
72 
73 	/*
74 	 * The controller needs a delay before starts checking the device
75 	 * readiness, which is done by reading the NVME_CSTS_RDY bit.
76 	 */
77 	NVME_QUIRK_DELAY_BEFORE_CHK_RDY		= (1 << 3),
78 
79 	/*
80 	 * APST should not be used.
81 	 */
82 	NVME_QUIRK_NO_APST			= (1 << 4),
83 
84 	/*
85 	 * The deepest sleep state should not be used.
86 	 */
87 	NVME_QUIRK_NO_DEEPEST_PS		= (1 << 5),
88 
89 	/*
90 	 * Set MEDIUM priority on SQ creation
91 	 */
92 	NVME_QUIRK_MEDIUM_PRIO_SQ		= (1 << 7),
93 
94 	/*
95 	 * Ignore device provided subnqn.
96 	 */
97 	NVME_QUIRK_IGNORE_DEV_SUBNQN		= (1 << 8),
98 
99 	/*
100 	 * Broken Write Zeroes.
101 	 */
102 	NVME_QUIRK_DISABLE_WRITE_ZEROES		= (1 << 9),
103 
104 	/*
105 	 * Force simple suspend/resume path.
106 	 */
107 	NVME_QUIRK_SIMPLE_SUSPEND		= (1 << 10),
108 
109 	/*
110 	 * Use only one interrupt vector for all queues
111 	 */
112 	NVME_QUIRK_SINGLE_VECTOR		= (1 << 11),
113 
114 	/*
115 	 * Use non-standard 128 bytes SQEs.
116 	 */
117 	NVME_QUIRK_128_BYTES_SQES		= (1 << 12),
118 
119 	/*
120 	 * Prevent tag overlap between queues
121 	 */
122 	NVME_QUIRK_SHARED_TAGS                  = (1 << 13),
123 
124 	/*
125 	 * Don't change the value of the temperature threshold feature
126 	 */
127 	NVME_QUIRK_NO_TEMP_THRESH_CHANGE	= (1 << 14),
128 
129 	/*
130 	 * The controller doesn't handle the Identify Namespace
131 	 * Identification Descriptor list subcommand despite claiming
132 	 * NVMe 1.3 compliance.
133 	 */
134 	NVME_QUIRK_NO_NS_DESC_LIST		= (1 << 15),
135 
136 	/*
137 	 * The controller does not properly handle DMA addresses over
138 	 * 48 bits.
139 	 */
140 	NVME_QUIRK_DMA_ADDRESS_BITS_48		= (1 << 16),
141 
142 	/*
143 	 * The controller requires the command_id value be be limited, so skip
144 	 * encoding the generation sequence number.
145 	 */
146 	NVME_QUIRK_SKIP_CID_GEN			= (1 << 17),
147 };
148 
149 /*
150  * Common request structure for NVMe passthrough.  All drivers must have
151  * this structure as the first member of their request-private data.
152  */
153 struct nvme_request {
154 	struct nvme_command	*cmd;
155 	union nvme_result	result;
156 	u8			genctr;
157 	u8			retries;
158 	u8			flags;
159 	u16			status;
160 	struct nvme_ctrl	*ctrl;
161 };
162 
163 /*
164  * Mark a bio as coming in through the mpath node.
165  */
166 #define REQ_NVME_MPATH		REQ_DRV
167 
168 enum {
169 	NVME_REQ_CANCELLED		= (1 << 0),
170 	NVME_REQ_USERCMD		= (1 << 1),
171 };
172 
nvme_req(struct request * req)173 static inline struct nvme_request *nvme_req(struct request *req)
174 {
175 	return blk_mq_rq_to_pdu(req);
176 }
177 
nvme_req_qid(struct request * req)178 static inline u16 nvme_req_qid(struct request *req)
179 {
180 	if (!req->q->queuedata)
181 		return 0;
182 
183 	return req->mq_hctx->queue_num + 1;
184 }
185 
186 /* The below value is the specific amount of delay needed before checking
187  * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
188  * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
189  * found empirically.
190  */
191 #define NVME_QUIRK_DELAY_AMOUNT		2300
192 
193 /*
194  * enum nvme_ctrl_state: Controller state
195  *
196  * @NVME_CTRL_NEW:		New controller just allocated, initial state
197  * @NVME_CTRL_LIVE:		Controller is connected and I/O capable
198  * @NVME_CTRL_RESETTING:	Controller is resetting (or scheduled reset)
199  * @NVME_CTRL_CONNECTING:	Controller is disconnected, now connecting the
200  *				transport
201  * @NVME_CTRL_DELETING:		Controller is deleting (or scheduled deletion)
202  * @NVME_CTRL_DELETING_NOIO:	Controller is deleting and I/O is not
203  *				disabled/failed immediately. This state comes
204  * 				after all async event processing took place and
205  * 				before ns removal and the controller deletion
206  * 				progress
207  * @NVME_CTRL_DEAD:		Controller is non-present/unresponsive during
208  *				shutdown or removal. In this case we forcibly
209  *				kill all inflight I/O as they have no chance to
210  *				complete
211  */
212 enum nvme_ctrl_state {
213 	NVME_CTRL_NEW,
214 	NVME_CTRL_LIVE,
215 	NVME_CTRL_RESETTING,
216 	NVME_CTRL_CONNECTING,
217 	NVME_CTRL_DELETING,
218 	NVME_CTRL_DELETING_NOIO,
219 	NVME_CTRL_DEAD,
220 };
221 
222 struct nvme_fault_inject {
223 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
224 	struct fault_attr attr;
225 	struct dentry *parent;
226 	bool dont_retry;	/* DNR, do not retry */
227 	u16 status;		/* status code */
228 #endif
229 };
230 
231 struct nvme_ctrl {
232 	bool comp_seen;
233 	enum nvme_ctrl_state state;
234 	bool identified;
235 	spinlock_t lock;
236 	struct mutex scan_lock;
237 	const struct nvme_ctrl_ops *ops;
238 	struct request_queue *admin_q;
239 	struct request_queue *connect_q;
240 	struct request_queue *fabrics_q;
241 	struct device *dev;
242 	int instance;
243 	int numa_node;
244 	struct blk_mq_tag_set *tagset;
245 	struct blk_mq_tag_set *admin_tagset;
246 	struct list_head namespaces;
247 	struct rw_semaphore namespaces_rwsem;
248 	struct device ctrl_device;
249 	struct device *device;	/* char device */
250 #ifdef CONFIG_NVME_HWMON
251 	struct device *hwmon_device;
252 #endif
253 	struct cdev cdev;
254 	struct work_struct reset_work;
255 	struct work_struct delete_work;
256 	wait_queue_head_t state_wq;
257 
258 	struct nvme_subsystem *subsys;
259 	struct list_head subsys_entry;
260 
261 	struct opal_dev *opal_dev;
262 
263 	char name[12];
264 	u16 cntlid;
265 
266 	u32 ctrl_config;
267 	u16 mtfa;
268 	u32 queue_count;
269 
270 	u64 cap;
271 	u32 max_hw_sectors;
272 	u32 max_segments;
273 	u32 max_integrity_segments;
274 	u32 max_discard_sectors;
275 	u32 max_discard_segments;
276 	u32 max_zeroes_sectors;
277 #ifdef CONFIG_BLK_DEV_ZONED
278 	u32 max_zone_append;
279 #endif
280 	u16 crdt[3];
281 	u16 oncs;
282 	u16 oacs;
283 	u16 nssa;
284 	u16 nr_streams;
285 	u16 sqsize;
286 	u32 max_namespaces;
287 	atomic_t abort_limit;
288 	u8 vwc;
289 	u32 vs;
290 	u32 sgls;
291 	u16 kas;
292 	u8 npss;
293 	u8 apsta;
294 	u16 wctemp;
295 	u16 cctemp;
296 	u32 oaes;
297 	u32 aen_result;
298 	u32 ctratt;
299 	unsigned int shutdown_timeout;
300 	unsigned int kato;
301 	bool subsystem;
302 	unsigned long quirks;
303 	struct nvme_id_power_state psd[32];
304 	struct nvme_effects_log *effects;
305 	struct xarray cels;
306 	struct work_struct scan_work;
307 	struct work_struct async_event_work;
308 	struct delayed_work ka_work;
309 	struct delayed_work failfast_work;
310 	struct nvme_command ka_cmd;
311 	struct work_struct fw_act_work;
312 	unsigned long events;
313 
314 #ifdef CONFIG_NVME_MULTIPATH
315 	/* asymmetric namespace access: */
316 	u8 anacap;
317 	u8 anatt;
318 	u32 anagrpmax;
319 	u32 nanagrpid;
320 	struct mutex ana_lock;
321 	struct nvme_ana_rsp_hdr *ana_log_buf;
322 	size_t ana_log_size;
323 	struct timer_list anatt_timer;
324 	struct work_struct ana_work;
325 #endif
326 
327 	/* Power saving configuration */
328 	u64 ps_max_latency_us;
329 	bool apst_enabled;
330 
331 	/* PCIe only: */
332 	u32 hmpre;
333 	u32 hmmin;
334 	u32 hmminds;
335 	u16 hmmaxd;
336 
337 	/* Fabrics only */
338 	u32 ioccsz;
339 	u32 iorcsz;
340 	u16 icdoff;
341 	u16 maxcmd;
342 	int nr_reconnects;
343 	unsigned long flags;
344 #define NVME_CTRL_FAILFAST_EXPIRED	0
345 	struct nvmf_ctrl_options *opts;
346 
347 	struct page *discard_page;
348 	unsigned long discard_page_busy;
349 
350 	struct nvme_fault_inject fault_inject;
351 };
352 
353 enum nvme_iopolicy {
354 	NVME_IOPOLICY_NUMA,
355 	NVME_IOPOLICY_RR,
356 };
357 
358 struct nvme_subsystem {
359 	int			instance;
360 	struct device		dev;
361 	/*
362 	 * Because we unregister the device on the last put we need
363 	 * a separate refcount.
364 	 */
365 	struct kref		ref;
366 	struct list_head	entry;
367 	struct mutex		lock;
368 	struct list_head	ctrls;
369 	struct list_head	nsheads;
370 	char			subnqn[NVMF_NQN_SIZE];
371 	char			serial[20];
372 	char			model[40];
373 	char			firmware_rev[8];
374 	u8			cmic;
375 	u16			vendor_id;
376 	u16			awupf;	/* 0's based awupf value. */
377 	struct ida		ns_ida;
378 #ifdef CONFIG_NVME_MULTIPATH
379 	enum nvme_iopolicy	iopolicy;
380 #endif
381 };
382 
383 /*
384  * Container structure for uniqueue namespace identifiers.
385  */
386 struct nvme_ns_ids {
387 	u8	eui64[8];
388 	u8	nguid[16];
389 	uuid_t	uuid;
390 	u8	csi;
391 };
392 
393 /*
394  * Anchor structure for namespaces.  There is one for each namespace in a
395  * NVMe subsystem that any of our controllers can see, and the namespace
396  * structure for each controller is chained of it.  For private namespaces
397  * there is a 1:1 relation to our namespace structures, that is ->list
398  * only ever has a single entry for private namespaces.
399  */
400 struct nvme_ns_head {
401 	struct list_head	list;
402 	struct srcu_struct      srcu;
403 	struct nvme_subsystem	*subsys;
404 	unsigned		ns_id;
405 	struct nvme_ns_ids	ids;
406 	struct list_head	entry;
407 	struct kref		ref;
408 	bool			shared;
409 	int			instance;
410 	struct nvme_effects_log *effects;
411 
412 	struct cdev		cdev;
413 	struct device		cdev_device;
414 
415 	struct gendisk		*disk;
416 #ifdef CONFIG_NVME_MULTIPATH
417 	struct bio_list		requeue_list;
418 	spinlock_t		requeue_lock;
419 	struct work_struct	requeue_work;
420 	struct mutex		lock;
421 	unsigned long		flags;
422 #define NVME_NSHEAD_DISK_LIVE	0
423 	struct nvme_ns __rcu	*current_path[];
424 #endif
425 };
426 
nvme_ns_head_multipath(struct nvme_ns_head * head)427 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
428 {
429 	return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
430 }
431 
432 enum nvme_ns_features {
433 	NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
434 	NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
435 };
436 
437 struct nvme_ns {
438 	struct list_head list;
439 
440 	struct nvme_ctrl *ctrl;
441 	struct request_queue *queue;
442 	struct gendisk *disk;
443 #ifdef CONFIG_NVME_MULTIPATH
444 	enum nvme_ana_state ana_state;
445 	u32 ana_grpid;
446 #endif
447 	struct list_head siblings;
448 	struct kref kref;
449 	struct nvme_ns_head *head;
450 
451 	int lba_shift;
452 	u16 ms;
453 	u16 sgs;
454 	u32 sws;
455 	u8 pi_type;
456 #ifdef CONFIG_BLK_DEV_ZONED
457 	u64 zsze;
458 #endif
459 	unsigned long features;
460 	unsigned long flags;
461 #define NVME_NS_REMOVING	0
462 #define NVME_NS_DEAD     	1
463 #define NVME_NS_ANA_PENDING	2
464 #define NVME_NS_FORCE_RO	3
465 #define NVME_NS_READY		4
466 
467 	struct cdev		cdev;
468 	struct device		cdev_device;
469 
470 	struct nvme_fault_inject fault_inject;
471 
472 };
473 
474 /* NVMe ns supports metadata actions by the controller (generate/strip) */
nvme_ns_has_pi(struct nvme_ns * ns)475 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
476 {
477 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
478 }
479 
480 struct nvme_ctrl_ops {
481 	const char *name;
482 	struct module *module;
483 	unsigned int flags;
484 #define NVME_F_FABRICS			(1 << 0)
485 #define NVME_F_METADATA_SUPPORTED	(1 << 1)
486 #define NVME_F_PCI_P2PDMA		(1 << 2)
487 	int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
488 	int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
489 	int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
490 	void (*free_ctrl)(struct nvme_ctrl *ctrl);
491 	void (*submit_async_event)(struct nvme_ctrl *ctrl);
492 	void (*delete_ctrl)(struct nvme_ctrl *ctrl);
493 	int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
494 };
495 
496 /*
497  * nvme command_id is constructed as such:
498  * | xxxx | xxxxxxxxxxxx |
499  *   gen    request tag
500  */
501 #define nvme_genctr_mask(gen)			(gen & 0xf)
502 #define nvme_cid_install_genctr(gen)		(nvme_genctr_mask(gen) << 12)
503 #define nvme_genctr_from_cid(cid)		((cid & 0xf000) >> 12)
504 #define nvme_tag_from_cid(cid)			(cid & 0xfff)
505 
nvme_cid(struct request * rq)506 static inline u16 nvme_cid(struct request *rq)
507 {
508 	return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
509 }
510 
nvme_find_rq(struct blk_mq_tags * tags,u16 command_id)511 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
512 		u16 command_id)
513 {
514 	u8 genctr = nvme_genctr_from_cid(command_id);
515 	u16 tag = nvme_tag_from_cid(command_id);
516 	struct request *rq;
517 
518 	rq = blk_mq_tag_to_rq(tags, tag);
519 	if (unlikely(!rq)) {
520 		pr_err("could not locate request for tag %#x\n",
521 			tag);
522 		return NULL;
523 	}
524 	if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
525 		dev_err(nvme_req(rq)->ctrl->device,
526 			"request %#x genctr mismatch (got %#x expected %#x)\n",
527 			tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
528 		return NULL;
529 	}
530 	return rq;
531 }
532 
nvme_cid_to_rq(struct blk_mq_tags * tags,u16 command_id)533 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
534                 u16 command_id)
535 {
536 	return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
537 }
538 
539 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
540 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
541 			    const char *dev_name);
542 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
543 void nvme_should_fail(struct request *req);
544 #else
nvme_fault_inject_init(struct nvme_fault_inject * fault_inj,const char * dev_name)545 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
546 					  const char *dev_name)
547 {
548 }
nvme_fault_inject_fini(struct nvme_fault_inject * fault_inj)549 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
550 {
551 }
nvme_should_fail(struct request * req)552 static inline void nvme_should_fail(struct request *req) {}
553 #endif
554 
nvme_reset_subsystem(struct nvme_ctrl * ctrl)555 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
556 {
557 	if (!ctrl->subsystem)
558 		return -ENOTTY;
559 	return ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
560 }
561 
562 /*
563  * Convert a 512B sector number to a device logical block number.
564  */
nvme_sect_to_lba(struct nvme_ns * ns,sector_t sector)565 static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
566 {
567 	return sector >> (ns->lba_shift - SECTOR_SHIFT);
568 }
569 
570 /*
571  * Convert a device logical block number to a 512B sector number.
572  */
nvme_lba_to_sect(struct nvme_ns * ns,u64 lba)573 static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
574 {
575 	return lba << (ns->lba_shift - SECTOR_SHIFT);
576 }
577 
578 /*
579  * Convert byte length to nvme's 0-based num dwords
580  */
nvme_bytes_to_numd(size_t len)581 static inline u32 nvme_bytes_to_numd(size_t len)
582 {
583 	return (len >> 2) - 1;
584 }
585 
nvme_is_ana_error(u16 status)586 static inline bool nvme_is_ana_error(u16 status)
587 {
588 	switch (status & 0x7ff) {
589 	case NVME_SC_ANA_TRANSITION:
590 	case NVME_SC_ANA_INACCESSIBLE:
591 	case NVME_SC_ANA_PERSISTENT_LOSS:
592 		return true;
593 	default:
594 		return false;
595 	}
596 }
597 
nvme_is_path_error(u16 status)598 static inline bool nvme_is_path_error(u16 status)
599 {
600 	/* check for a status code type of 'path related status' */
601 	return (status & 0x700) == 0x300;
602 }
603 
604 /*
605  * Fill in the status and result information from the CQE, and then figure out
606  * if blk-mq will need to use IPI magic to complete the request, and if yes do
607  * so.  If not let the caller complete the request without an indirect function
608  * call.
609  */
nvme_try_complete_req(struct request * req,__le16 status,union nvme_result result)610 static inline bool nvme_try_complete_req(struct request *req, __le16 status,
611 		union nvme_result result)
612 {
613 	struct nvme_request *rq = nvme_req(req);
614 
615 	rq->status = le16_to_cpu(status) >> 1;
616 	rq->result = result;
617 	/* inject error when permitted by fault injection framework */
618 	nvme_should_fail(req);
619 	if (unlikely(blk_should_fake_timeout(req->q)))
620 		return true;
621 	return blk_mq_complete_request_remote(req);
622 }
623 
nvme_get_ctrl(struct nvme_ctrl * ctrl)624 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
625 {
626 	get_device(ctrl->device);
627 }
628 
nvme_put_ctrl(struct nvme_ctrl * ctrl)629 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
630 {
631 	put_device(ctrl->device);
632 }
633 
nvme_is_aen_req(u16 qid,__u16 command_id)634 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
635 {
636 	return !qid &&
637 		nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
638 }
639 
640 void nvme_complete_rq(struct request *req);
641 blk_status_t nvme_host_path_error(struct request *req);
642 bool nvme_cancel_request(struct request *req, void *data, bool reserved);
643 void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
644 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
645 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
646 		enum nvme_ctrl_state new_state);
647 bool nvme_wait_reset(struct nvme_ctrl *ctrl);
648 int nvme_disable_ctrl(struct nvme_ctrl *ctrl);
649 int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
650 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl);
651 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
652 		const struct nvme_ctrl_ops *ops, unsigned long quirks);
653 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
654 void nvme_start_ctrl(struct nvme_ctrl *ctrl);
655 void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
656 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl);
657 
658 void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
659 
660 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
661 		bool send);
662 
663 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
664 		volatile union nvme_result *res);
665 
666 void nvme_stop_queues(struct nvme_ctrl *ctrl);
667 void nvme_start_queues(struct nvme_ctrl *ctrl);
668 void nvme_kill_queues(struct nvme_ctrl *ctrl);
669 void nvme_sync_queues(struct nvme_ctrl *ctrl);
670 void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
671 void nvme_unfreeze(struct nvme_ctrl *ctrl);
672 void nvme_wait_freeze(struct nvme_ctrl *ctrl);
673 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
674 void nvme_start_freeze(struct nvme_ctrl *ctrl);
675 
676 #define NVME_QID_ANY -1
677 struct request *nvme_alloc_request(struct request_queue *q,
678 		struct nvme_command *cmd, blk_mq_req_flags_t flags);
679 void nvme_cleanup_cmd(struct request *req);
680 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
681 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
682 		struct request *req);
683 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
684 		bool queue_live);
685 
nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)686 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
687 		bool queue_live)
688 {
689 	if (likely(ctrl->state == NVME_CTRL_LIVE))
690 		return true;
691 	if (ctrl->ops->flags & NVME_F_FABRICS &&
692 	    ctrl->state == NVME_CTRL_DELETING)
693 		return true;
694 	return __nvme_check_ready(ctrl, rq, queue_live);
695 }
696 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
697 		void *buf, unsigned bufflen);
698 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
699 		union nvme_result *result, void *buffer, unsigned bufflen,
700 		unsigned timeout, int qid, int at_head,
701 		blk_mq_req_flags_t flags);
702 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
703 		      unsigned int dword11, void *buffer, size_t buflen,
704 		      u32 *result);
705 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
706 		      unsigned int dword11, void *buffer, size_t buflen,
707 		      u32 *result);
708 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
709 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
710 int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
711 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
712 int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
713 int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
714 void nvme_queue_scan(struct nvme_ctrl *ctrl);
715 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
716 		void *log, size_t size, u64 offset);
717 bool nvme_tryget_ns_head(struct nvme_ns_head *head);
718 void nvme_put_ns_head(struct nvme_ns_head *head);
719 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
720 		const struct file_operations *fops, struct module *owner);
721 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
722 int nvme_ioctl(struct block_device *bdev, fmode_t mode,
723 		unsigned int cmd, unsigned long arg);
724 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
725 int nvme_ns_head_ioctl(struct block_device *bdev, fmode_t mode,
726 		unsigned int cmd, unsigned long arg);
727 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
728 		unsigned long arg);
729 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
730 		unsigned long arg);
731 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
732 
733 extern const struct attribute_group *nvme_ns_id_attr_groups[];
734 extern const struct pr_ops nvme_pr_ops;
735 extern const struct block_device_operations nvme_ns_head_ops;
736 
737 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
738 #ifdef CONFIG_NVME_MULTIPATH
nvme_ctrl_use_ana(struct nvme_ctrl * ctrl)739 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
740 {
741 	return ctrl->ana_log_buf != NULL;
742 }
743 
744 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
745 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
746 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
747 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags);
748 void nvme_failover_req(struct request *req);
749 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
750 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
751 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id);
752 void nvme_mpath_remove_disk(struct nvme_ns_head *head);
753 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
754 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
755 void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
756 void nvme_mpath_stop(struct nvme_ctrl *ctrl);
757 bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
758 void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
759 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
760 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
761 
nvme_trace_bio_complete(struct request * req)762 static inline void nvme_trace_bio_complete(struct request *req)
763 {
764 	struct nvme_ns *ns = req->q->queuedata;
765 
766 	if (req->cmd_flags & REQ_NVME_MPATH)
767 		trace_block_bio_complete(ns->head->disk->queue, req->bio);
768 }
769 
770 extern struct device_attribute dev_attr_ana_grpid;
771 extern struct device_attribute dev_attr_ana_state;
772 extern struct device_attribute subsys_attr_iopolicy;
773 
774 #else
nvme_ctrl_use_ana(struct nvme_ctrl * ctrl)775 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
776 {
777 	return false;
778 }
nvme_mpath_set_disk_name(struct nvme_ns * ns,char * disk_name,int * flags)779 static inline bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name,
780 		int *flags)
781 {
782 	return false;
783 }
nvme_failover_req(struct request * req)784 static inline void nvme_failover_req(struct request *req)
785 {
786 }
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)787 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
788 {
789 }
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)790 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
791 		struct nvme_ns_head *head)
792 {
793 	return 0;
794 }
nvme_mpath_add_disk(struct nvme_ns * ns,struct nvme_id_ns * id)795 static inline void nvme_mpath_add_disk(struct nvme_ns *ns,
796 		struct nvme_id_ns *id)
797 {
798 }
nvme_mpath_remove_disk(struct nvme_ns_head * head)799 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
800 {
801 }
nvme_mpath_clear_current_path(struct nvme_ns * ns)802 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
803 {
804 	return false;
805 }
nvme_mpath_revalidate_paths(struct nvme_ns * ns)806 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
807 {
808 }
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)809 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
810 {
811 }
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)812 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
813 {
814 }
nvme_trace_bio_complete(struct request * req)815 static inline void nvme_trace_bio_complete(struct request *req)
816 {
817 }
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)818 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
819 {
820 }
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)821 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
822 		struct nvme_id_ctrl *id)
823 {
824 	if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
825 		dev_warn(ctrl->device,
826 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
827 	return 0;
828 }
nvme_mpath_uninit(struct nvme_ctrl * ctrl)829 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
830 {
831 }
nvme_mpath_stop(struct nvme_ctrl * ctrl)832 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
833 {
834 }
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)835 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
836 {
837 }
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)838 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
839 {
840 }
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)841 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
842 {
843 }
844 #endif /* CONFIG_NVME_MULTIPATH */
845 
846 int nvme_revalidate_zones(struct nvme_ns *ns);
847 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
848 		unsigned int nr_zones, report_zones_cb cb, void *data);
849 #ifdef CONFIG_BLK_DEV_ZONED
850 int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf);
851 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
852 				       struct nvme_command *cmnd,
853 				       enum nvme_zone_mgmt_action action);
854 #else
nvme_setup_zone_mgmt_send(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_zone_mgmt_action action)855 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
856 		struct request *req, struct nvme_command *cmnd,
857 		enum nvme_zone_mgmt_action action)
858 {
859 	return BLK_STS_NOTSUPP;
860 }
861 
nvme_update_zone_info(struct nvme_ns * ns,unsigned lbaf)862 static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
863 {
864 	dev_warn(ns->ctrl->device,
865 		 "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n");
866 	return -EPROTONOSUPPORT;
867 }
868 #endif
869 
nvme_get_ns_from_dev(struct device * dev)870 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
871 {
872 	return dev_to_disk(dev)->private_data;
873 }
874 
875 #ifdef CONFIG_NVME_HWMON
876 int nvme_hwmon_init(struct nvme_ctrl *ctrl);
877 void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
878 #else
nvme_hwmon_init(struct nvme_ctrl * ctrl)879 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
880 {
881 	return 0;
882 }
883 
nvme_hwmon_exit(struct nvme_ctrl * ctrl)884 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
885 {
886 }
887 #endif
888 
nvme_ctrl_sgl_supported(struct nvme_ctrl * ctrl)889 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
890 {
891 	return ctrl->sgls & ((1 << 0) | (1 << 1));
892 }
893 
894 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
895 			 u8 opcode);
896 int nvme_execute_passthru_rq(struct request *rq);
897 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
898 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
899 void nvme_put_ns(struct nvme_ns *ns);
900 
nvme_multi_css(struct nvme_ctrl * ctrl)901 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
902 {
903 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
904 }
905 
906 #endif /* _NVME_H */
907