1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
68 *
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
74 */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 unsigned nsid);
95
nvme_update_bdev_size(struct gendisk * disk)96 static void nvme_update_bdev_size(struct gendisk *disk)
97 {
98 struct block_device *bdev = bdget_disk(disk, 0);
99
100 if (bdev) {
101 bd_set_nr_sectors(bdev, get_capacity(disk));
102 bdput(bdev);
103 }
104 }
105
106 /*
107 * Prepare a queue for teardown.
108 *
109 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
110 * the capacity to 0 after that to avoid blocking dispatchers that may be
111 * holding bd_butex. This will end buffered writers dirtying pages that can't
112 * be synced.
113 */
nvme_set_queue_dying(struct nvme_ns * ns)114 static void nvme_set_queue_dying(struct nvme_ns *ns)
115 {
116 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
117 return;
118
119 blk_set_queue_dying(ns->queue);
120 blk_mq_unquiesce_queue(ns->queue);
121
122 set_capacity(ns->disk, 0);
123 nvme_update_bdev_size(ns->disk);
124 }
125
nvme_queue_scan(struct nvme_ctrl * ctrl)126 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
127 {
128 /*
129 * Only new queue scan work when admin and IO queues are both alive
130 */
131 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
132 queue_work(nvme_wq, &ctrl->scan_work);
133 }
134
135 /*
136 * Use this function to proceed with scheduling reset_work for a controller
137 * that had previously been set to the resetting state. This is intended for
138 * code paths that can't be interrupted by other reset attempts. A hot removal
139 * may prevent this from succeeding.
140 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)141 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
142 {
143 if (ctrl->state != NVME_CTRL_RESETTING)
144 return -EBUSY;
145 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
146 return -EBUSY;
147 return 0;
148 }
149 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
150
nvme_reset_ctrl(struct nvme_ctrl * ctrl)151 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
152 {
153 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
154 return -EBUSY;
155 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
156 return -EBUSY;
157 return 0;
158 }
159 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
160
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)161 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
162 {
163 int ret;
164
165 ret = nvme_reset_ctrl(ctrl);
166 if (!ret) {
167 flush_work(&ctrl->reset_work);
168 if (ctrl->state != NVME_CTRL_LIVE)
169 ret = -ENETRESET;
170 }
171
172 return ret;
173 }
174 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
175
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)176 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
177 {
178 dev_info(ctrl->device,
179 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
180
181 flush_work(&ctrl->reset_work);
182 nvme_stop_ctrl(ctrl);
183 nvme_remove_namespaces(ctrl);
184 ctrl->ops->delete_ctrl(ctrl);
185 nvme_uninit_ctrl(ctrl);
186 }
187
nvme_delete_ctrl_work(struct work_struct * work)188 static void nvme_delete_ctrl_work(struct work_struct *work)
189 {
190 struct nvme_ctrl *ctrl =
191 container_of(work, struct nvme_ctrl, delete_work);
192
193 nvme_do_delete_ctrl(ctrl);
194 }
195
nvme_delete_ctrl(struct nvme_ctrl * ctrl)196 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
199 return -EBUSY;
200 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
201 return -EBUSY;
202 return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
205
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)206 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 /*
209 * Keep a reference until nvme_do_delete_ctrl() complete,
210 * since ->delete_ctrl can free the controller.
211 */
212 nvme_get_ctrl(ctrl);
213 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
214 nvme_do_delete_ctrl(ctrl);
215 nvme_put_ctrl(ctrl);
216 }
217
nvme_error_status(u16 status)218 static blk_status_t nvme_error_status(u16 status)
219 {
220 switch (status & 0x7ff) {
221 case NVME_SC_SUCCESS:
222 return BLK_STS_OK;
223 case NVME_SC_CAP_EXCEEDED:
224 return BLK_STS_NOSPC;
225 case NVME_SC_LBA_RANGE:
226 case NVME_SC_CMD_INTERRUPTED:
227 case NVME_SC_NS_NOT_READY:
228 return BLK_STS_TARGET;
229 case NVME_SC_BAD_ATTRIBUTES:
230 case NVME_SC_ONCS_NOT_SUPPORTED:
231 case NVME_SC_INVALID_OPCODE:
232 case NVME_SC_INVALID_FIELD:
233 case NVME_SC_INVALID_NS:
234 return BLK_STS_NOTSUPP;
235 case NVME_SC_WRITE_FAULT:
236 case NVME_SC_READ_ERROR:
237 case NVME_SC_UNWRITTEN_BLOCK:
238 case NVME_SC_ACCESS_DENIED:
239 case NVME_SC_READ_ONLY:
240 case NVME_SC_COMPARE_FAILED:
241 return BLK_STS_MEDIUM;
242 case NVME_SC_GUARD_CHECK:
243 case NVME_SC_APPTAG_CHECK:
244 case NVME_SC_REFTAG_CHECK:
245 case NVME_SC_INVALID_PI:
246 return BLK_STS_PROTECTION;
247 case NVME_SC_RESERVATION_CONFLICT:
248 return BLK_STS_NEXUS;
249 case NVME_SC_HOST_PATH_ERROR:
250 return BLK_STS_TRANSPORT;
251 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
252 return BLK_STS_ZONE_ACTIVE_RESOURCE;
253 case NVME_SC_ZONE_TOO_MANY_OPEN:
254 return BLK_STS_ZONE_OPEN_RESOURCE;
255 default:
256 return BLK_STS_IOERR;
257 }
258 }
259
nvme_retry_req(struct request * req)260 static void nvme_retry_req(struct request *req)
261 {
262 struct nvme_ns *ns = req->q->queuedata;
263 unsigned long delay = 0;
264 u16 crd;
265
266 /* The mask and shift result must be <= 3 */
267 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
268 if (ns && crd)
269 delay = ns->ctrl->crdt[crd - 1] * 100;
270
271 nvme_req(req)->retries++;
272 blk_mq_requeue_request(req, false);
273 blk_mq_delay_kick_requeue_list(req->q, delay);
274 }
275
276 enum nvme_disposition {
277 COMPLETE,
278 RETRY,
279 FAILOVER,
280 };
281
nvme_decide_disposition(struct request * req)282 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
283 {
284 if (likely(nvme_req(req)->status == 0))
285 return COMPLETE;
286
287 if (blk_noretry_request(req) ||
288 (nvme_req(req)->status & NVME_SC_DNR) ||
289 nvme_req(req)->retries >= nvme_max_retries)
290 return COMPLETE;
291
292 if (req->cmd_flags & REQ_NVME_MPATH) {
293 if (nvme_is_path_error(nvme_req(req)->status) ||
294 blk_queue_dying(req->q))
295 return FAILOVER;
296 } else {
297 if (blk_queue_dying(req->q))
298 return COMPLETE;
299 }
300
301 return RETRY;
302 }
303
nvme_end_req(struct request * req)304 static inline void nvme_end_req(struct request *req)
305 {
306 blk_status_t status = nvme_error_status(nvme_req(req)->status);
307
308 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
309 req_op(req) == REQ_OP_ZONE_APPEND)
310 req->__sector = nvme_lba_to_sect(req->q->queuedata,
311 le64_to_cpu(nvme_req(req)->result.u64));
312
313 nvme_trace_bio_complete(req, status);
314 blk_mq_end_request(req, status);
315 }
316
nvme_complete_rq(struct request * req)317 void nvme_complete_rq(struct request *req)
318 {
319 trace_nvme_complete_rq(req);
320 nvme_cleanup_cmd(req);
321
322 if (nvme_req(req)->ctrl->kas)
323 nvme_req(req)->ctrl->comp_seen = true;
324
325 switch (nvme_decide_disposition(req)) {
326 case COMPLETE:
327 nvme_end_req(req);
328 return;
329 case RETRY:
330 nvme_retry_req(req);
331 return;
332 case FAILOVER:
333 nvme_failover_req(req);
334 return;
335 }
336 }
337 EXPORT_SYMBOL_GPL(nvme_complete_rq);
338
nvme_cancel_request(struct request * req,void * data,bool reserved)339 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
340 {
341 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
342 "Cancelling I/O %d", req->tag);
343
344 /* don't abort one completed request */
345 if (blk_mq_request_completed(req))
346 return true;
347
348 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
349 blk_mq_complete_request(req);
350 return true;
351 }
352 EXPORT_SYMBOL_GPL(nvme_cancel_request);
353
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355 enum nvme_ctrl_state new_state)
356 {
357 enum nvme_ctrl_state old_state;
358 unsigned long flags;
359 bool changed = false;
360
361 spin_lock_irqsave(&ctrl->lock, flags);
362
363 old_state = ctrl->state;
364 switch (new_state) {
365 case NVME_CTRL_LIVE:
366 switch (old_state) {
367 case NVME_CTRL_NEW:
368 case NVME_CTRL_RESETTING:
369 case NVME_CTRL_CONNECTING:
370 changed = true;
371 fallthrough;
372 default:
373 break;
374 }
375 break;
376 case NVME_CTRL_RESETTING:
377 switch (old_state) {
378 case NVME_CTRL_NEW:
379 case NVME_CTRL_LIVE:
380 changed = true;
381 fallthrough;
382 default:
383 break;
384 }
385 break;
386 case NVME_CTRL_CONNECTING:
387 switch (old_state) {
388 case NVME_CTRL_NEW:
389 case NVME_CTRL_RESETTING:
390 changed = true;
391 fallthrough;
392 default:
393 break;
394 }
395 break;
396 case NVME_CTRL_DELETING:
397 switch (old_state) {
398 case NVME_CTRL_LIVE:
399 case NVME_CTRL_RESETTING:
400 case NVME_CTRL_CONNECTING:
401 changed = true;
402 fallthrough;
403 default:
404 break;
405 }
406 break;
407 case NVME_CTRL_DELETING_NOIO:
408 switch (old_state) {
409 case NVME_CTRL_DELETING:
410 case NVME_CTRL_DEAD:
411 changed = true;
412 fallthrough;
413 default:
414 break;
415 }
416 break;
417 case NVME_CTRL_DEAD:
418 switch (old_state) {
419 case NVME_CTRL_DELETING:
420 changed = true;
421 fallthrough;
422 default:
423 break;
424 }
425 break;
426 default:
427 break;
428 }
429
430 if (changed) {
431 ctrl->state = new_state;
432 wake_up_all(&ctrl->state_wq);
433 }
434
435 spin_unlock_irqrestore(&ctrl->lock, flags);
436 if (changed && ctrl->state == NVME_CTRL_LIVE)
437 nvme_kick_requeue_lists(ctrl);
438 return changed;
439 }
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
441
442 /*
443 * Returns true for sink states that can't ever transition back to live.
444 */
nvme_state_terminal(struct nvme_ctrl * ctrl)445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
446 {
447 switch (ctrl->state) {
448 case NVME_CTRL_NEW:
449 case NVME_CTRL_LIVE:
450 case NVME_CTRL_RESETTING:
451 case NVME_CTRL_CONNECTING:
452 return false;
453 case NVME_CTRL_DELETING:
454 case NVME_CTRL_DELETING_NOIO:
455 case NVME_CTRL_DEAD:
456 return true;
457 default:
458 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
459 return true;
460 }
461 }
462
463 /*
464 * Waits for the controller state to be resetting, or returns false if it is
465 * not possible to ever transition to that state.
466 */
nvme_wait_reset(struct nvme_ctrl * ctrl)467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
468 {
469 wait_event(ctrl->state_wq,
470 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471 nvme_state_terminal(ctrl));
472 return ctrl->state == NVME_CTRL_RESETTING;
473 }
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
475
nvme_free_ns_head(struct kref * ref)476 static void nvme_free_ns_head(struct kref *ref)
477 {
478 struct nvme_ns_head *head =
479 container_of(ref, struct nvme_ns_head, ref);
480
481 nvme_mpath_remove_disk(head);
482 ida_simple_remove(&head->subsys->ns_ida, head->instance);
483 cleanup_srcu_struct(&head->srcu);
484 nvme_put_subsystem(head->subsys);
485 kfree(head);
486 }
487
nvme_put_ns_head(struct nvme_ns_head * head)488 static void nvme_put_ns_head(struct nvme_ns_head *head)
489 {
490 kref_put(&head->ref, nvme_free_ns_head);
491 }
492
nvme_free_ns(struct kref * kref)493 static void nvme_free_ns(struct kref *kref)
494 {
495 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
496
497 if (ns->ndev)
498 nvme_nvm_unregister(ns);
499
500 put_disk(ns->disk);
501 nvme_put_ns_head(ns->head);
502 nvme_put_ctrl(ns->ctrl);
503 kfree(ns);
504 }
505
nvme_put_ns(struct nvme_ns * ns)506 void nvme_put_ns(struct nvme_ns *ns)
507 {
508 kref_put(&ns->kref, nvme_free_ns);
509 }
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
511
nvme_clear_nvme_request(struct request * req)512 static inline void nvme_clear_nvme_request(struct request *req)
513 {
514 if (!(req->rq_flags & RQF_DONTPREP)) {
515 nvme_req(req)->retries = 0;
516 nvme_req(req)->flags = 0;
517 req->rq_flags |= RQF_DONTPREP;
518 }
519 }
520
nvme_alloc_request(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags,int qid)521 struct request *nvme_alloc_request(struct request_queue *q,
522 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
523 {
524 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
525 struct request *req;
526
527 if (qid == NVME_QID_ANY) {
528 req = blk_mq_alloc_request(q, op, flags);
529 } else {
530 req = blk_mq_alloc_request_hctx(q, op, flags,
531 qid ? qid - 1 : 0);
532 }
533 if (IS_ERR(req))
534 return req;
535
536 req->cmd_flags |= REQ_FAILFAST_DRIVER;
537 nvme_clear_nvme_request(req);
538 nvme_req(req)->cmd = cmd;
539
540 return req;
541 }
542 EXPORT_SYMBOL_GPL(nvme_alloc_request);
543
nvme_toggle_streams(struct nvme_ctrl * ctrl,bool enable)544 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
545 {
546 struct nvme_command c;
547
548 memset(&c, 0, sizeof(c));
549
550 c.directive.opcode = nvme_admin_directive_send;
551 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
552 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
553 c.directive.dtype = NVME_DIR_IDENTIFY;
554 c.directive.tdtype = NVME_DIR_STREAMS;
555 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
556
557 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
558 }
559
nvme_disable_streams(struct nvme_ctrl * ctrl)560 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
561 {
562 return nvme_toggle_streams(ctrl, false);
563 }
564
nvme_enable_streams(struct nvme_ctrl * ctrl)565 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
566 {
567 return nvme_toggle_streams(ctrl, true);
568 }
569
nvme_get_stream_params(struct nvme_ctrl * ctrl,struct streams_directive_params * s,u32 nsid)570 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
571 struct streams_directive_params *s, u32 nsid)
572 {
573 struct nvme_command c;
574
575 memset(&c, 0, sizeof(c));
576 memset(s, 0, sizeof(*s));
577
578 c.directive.opcode = nvme_admin_directive_recv;
579 c.directive.nsid = cpu_to_le32(nsid);
580 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
581 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
582 c.directive.dtype = NVME_DIR_STREAMS;
583
584 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
585 }
586
nvme_configure_directives(struct nvme_ctrl * ctrl)587 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
588 {
589 struct streams_directive_params s;
590 int ret;
591
592 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
593 return 0;
594 if (!streams)
595 return 0;
596
597 ret = nvme_enable_streams(ctrl);
598 if (ret)
599 return ret;
600
601 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
602 if (ret)
603 goto out_disable_stream;
604
605 ctrl->nssa = le16_to_cpu(s.nssa);
606 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
607 dev_info(ctrl->device, "too few streams (%u) available\n",
608 ctrl->nssa);
609 goto out_disable_stream;
610 }
611
612 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
613 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
614 return 0;
615
616 out_disable_stream:
617 nvme_disable_streams(ctrl);
618 return ret;
619 }
620
621 /*
622 * Check if 'req' has a write hint associated with it. If it does, assign
623 * a valid namespace stream to the write.
624 */
nvme_assign_write_stream(struct nvme_ctrl * ctrl,struct request * req,u16 * control,u32 * dsmgmt)625 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
626 struct request *req, u16 *control,
627 u32 *dsmgmt)
628 {
629 enum rw_hint streamid = req->write_hint;
630
631 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
632 streamid = 0;
633 else {
634 streamid--;
635 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
636 return;
637
638 *control |= NVME_RW_DTYPE_STREAMS;
639 *dsmgmt |= streamid << 16;
640 }
641
642 if (streamid < ARRAY_SIZE(req->q->write_hints))
643 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
644 }
645
nvme_setup_passthrough(struct request * req,struct nvme_command * cmd)646 static void nvme_setup_passthrough(struct request *req,
647 struct nvme_command *cmd)
648 {
649 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
650 /* passthru commands should let the driver set the SGL flags */
651 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
652 }
653
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)654 static inline void nvme_setup_flush(struct nvme_ns *ns,
655 struct nvme_command *cmnd)
656 {
657 cmnd->common.opcode = nvme_cmd_flush;
658 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
659 }
660
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)661 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
662 struct nvme_command *cmnd)
663 {
664 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
665 struct nvme_dsm_range *range;
666 struct bio *bio;
667
668 /*
669 * Some devices do not consider the DSM 'Number of Ranges' field when
670 * determining how much data to DMA. Always allocate memory for maximum
671 * number of segments to prevent device reading beyond end of buffer.
672 */
673 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
674
675 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
676 if (!range) {
677 /*
678 * If we fail allocation our range, fallback to the controller
679 * discard page. If that's also busy, it's safe to return
680 * busy, as we know we can make progress once that's freed.
681 */
682 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
683 return BLK_STS_RESOURCE;
684
685 range = page_address(ns->ctrl->discard_page);
686 }
687
688 __rq_for_each_bio(bio, req) {
689 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
690 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
691
692 if (n < segments) {
693 range[n].cattr = cpu_to_le32(0);
694 range[n].nlb = cpu_to_le32(nlb);
695 range[n].slba = cpu_to_le64(slba);
696 }
697 n++;
698 }
699
700 if (WARN_ON_ONCE(n != segments)) {
701 if (virt_to_page(range) == ns->ctrl->discard_page)
702 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
703 else
704 kfree(range);
705 return BLK_STS_IOERR;
706 }
707
708 cmnd->dsm.opcode = nvme_cmd_dsm;
709 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
710 cmnd->dsm.nr = cpu_to_le32(segments - 1);
711 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
712
713 req->special_vec.bv_page = virt_to_page(range);
714 req->special_vec.bv_offset = offset_in_page(range);
715 req->special_vec.bv_len = alloc_size;
716 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
717
718 return BLK_STS_OK;
719 }
720
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)721 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
722 struct request *req, struct nvme_command *cmnd)
723 {
724 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
725 return nvme_setup_discard(ns, req, cmnd);
726
727 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
728 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
729 cmnd->write_zeroes.slba =
730 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
731 cmnd->write_zeroes.length =
732 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
733 cmnd->write_zeroes.control = 0;
734 return BLK_STS_OK;
735 }
736
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)737 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
738 struct request *req, struct nvme_command *cmnd,
739 enum nvme_opcode op)
740 {
741 struct nvme_ctrl *ctrl = ns->ctrl;
742 u16 control = 0;
743 u32 dsmgmt = 0;
744
745 if (req->cmd_flags & REQ_FUA)
746 control |= NVME_RW_FUA;
747 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
748 control |= NVME_RW_LR;
749
750 if (req->cmd_flags & REQ_RAHEAD)
751 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
752
753 cmnd->rw.opcode = op;
754 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
755 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
756 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
757
758 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
759 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
760
761 if (ns->ms) {
762 /*
763 * If formated with metadata, the block layer always provides a
764 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
765 * we enable the PRACT bit for protection information or set the
766 * namespace capacity to zero to prevent any I/O.
767 */
768 if (!blk_integrity_rq(req)) {
769 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
770 return BLK_STS_NOTSUPP;
771 control |= NVME_RW_PRINFO_PRACT;
772 }
773
774 switch (ns->pi_type) {
775 case NVME_NS_DPS_PI_TYPE3:
776 control |= NVME_RW_PRINFO_PRCHK_GUARD;
777 break;
778 case NVME_NS_DPS_PI_TYPE1:
779 case NVME_NS_DPS_PI_TYPE2:
780 control |= NVME_RW_PRINFO_PRCHK_GUARD |
781 NVME_RW_PRINFO_PRCHK_REF;
782 if (op == nvme_cmd_zone_append)
783 control |= NVME_RW_APPEND_PIREMAP;
784 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
785 break;
786 }
787 }
788
789 cmnd->rw.control = cpu_to_le16(control);
790 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
791 return 0;
792 }
793
nvme_cleanup_cmd(struct request * req)794 void nvme_cleanup_cmd(struct request *req)
795 {
796 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
797 struct nvme_ns *ns = req->rq_disk->private_data;
798 struct page *page = req->special_vec.bv_page;
799
800 if (page == ns->ctrl->discard_page)
801 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
802 else
803 kfree(page_address(page) + req->special_vec.bv_offset);
804 }
805 }
806 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
807
nvme_setup_cmd(struct nvme_ns * ns,struct request * req,struct nvme_command * cmd)808 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
809 struct nvme_command *cmd)
810 {
811 blk_status_t ret = BLK_STS_OK;
812
813 nvme_clear_nvme_request(req);
814
815 memset(cmd, 0, sizeof(*cmd));
816 switch (req_op(req)) {
817 case REQ_OP_DRV_IN:
818 case REQ_OP_DRV_OUT:
819 nvme_setup_passthrough(req, cmd);
820 break;
821 case REQ_OP_FLUSH:
822 nvme_setup_flush(ns, cmd);
823 break;
824 case REQ_OP_ZONE_RESET_ALL:
825 case REQ_OP_ZONE_RESET:
826 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
827 break;
828 case REQ_OP_ZONE_OPEN:
829 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
830 break;
831 case REQ_OP_ZONE_CLOSE:
832 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
833 break;
834 case REQ_OP_ZONE_FINISH:
835 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
836 break;
837 case REQ_OP_WRITE_ZEROES:
838 ret = nvme_setup_write_zeroes(ns, req, cmd);
839 break;
840 case REQ_OP_DISCARD:
841 ret = nvme_setup_discard(ns, req, cmd);
842 break;
843 case REQ_OP_READ:
844 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
845 break;
846 case REQ_OP_WRITE:
847 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
848 break;
849 case REQ_OP_ZONE_APPEND:
850 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
851 break;
852 default:
853 WARN_ON_ONCE(1);
854 return BLK_STS_IOERR;
855 }
856
857 cmd->common.command_id = req->tag;
858 trace_nvme_setup_cmd(req, cmd);
859 return ret;
860 }
861 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
862
nvme_end_sync_rq(struct request * rq,blk_status_t error)863 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
864 {
865 struct completion *waiting = rq->end_io_data;
866
867 rq->end_io_data = NULL;
868 complete(waiting);
869 }
870
nvme_execute_rq_polled(struct request_queue * q,struct gendisk * bd_disk,struct request * rq,int at_head)871 static void nvme_execute_rq_polled(struct request_queue *q,
872 struct gendisk *bd_disk, struct request *rq, int at_head)
873 {
874 DECLARE_COMPLETION_ONSTACK(wait);
875
876 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
877
878 rq->cmd_flags |= REQ_HIPRI;
879 rq->end_io_data = &wait;
880 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
881
882 while (!completion_done(&wait)) {
883 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
884 cond_resched();
885 }
886 }
887
888 /*
889 * Returns 0 on success. If the result is negative, it's a Linux error code;
890 * if the result is positive, it's an NVM Express status code
891 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,blk_mq_req_flags_t flags,bool poll)892 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
893 union nvme_result *result, void *buffer, unsigned bufflen,
894 unsigned timeout, int qid, int at_head,
895 blk_mq_req_flags_t flags, bool poll)
896 {
897 struct request *req;
898 int ret;
899
900 req = nvme_alloc_request(q, cmd, flags, qid);
901 if (IS_ERR(req))
902 return PTR_ERR(req);
903
904 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
905
906 if (buffer && bufflen) {
907 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
908 if (ret)
909 goto out;
910 }
911
912 if (poll)
913 nvme_execute_rq_polled(req->q, NULL, req, at_head);
914 else
915 blk_execute_rq(req->q, NULL, req, at_head);
916 if (result)
917 *result = nvme_req(req)->result;
918 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
919 ret = -EINTR;
920 else
921 ret = nvme_req(req)->status;
922 out:
923 blk_mq_free_request(req);
924 return ret;
925 }
926 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
927
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)928 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
929 void *buffer, unsigned bufflen)
930 {
931 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
932 NVME_QID_ANY, 0, 0, false);
933 }
934 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
935
nvme_add_user_metadata(struct bio * bio,void __user * ubuf,unsigned len,u32 seed,bool write)936 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
937 unsigned len, u32 seed, bool write)
938 {
939 struct bio_integrity_payload *bip;
940 int ret = -ENOMEM;
941 void *buf;
942
943 buf = kmalloc(len, GFP_KERNEL);
944 if (!buf)
945 goto out;
946
947 ret = -EFAULT;
948 if (write && copy_from_user(buf, ubuf, len))
949 goto out_free_meta;
950
951 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
952 if (IS_ERR(bip)) {
953 ret = PTR_ERR(bip);
954 goto out_free_meta;
955 }
956
957 bip->bip_iter.bi_size = len;
958 bip->bip_iter.bi_sector = seed;
959 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
960 offset_in_page(buf));
961 if (ret == len)
962 return buf;
963 ret = -ENOMEM;
964 out_free_meta:
965 kfree(buf);
966 out:
967 return ERR_PTR(ret);
968 }
969
nvme_known_admin_effects(u8 opcode)970 static u32 nvme_known_admin_effects(u8 opcode)
971 {
972 switch (opcode) {
973 case nvme_admin_format_nvm:
974 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
975 NVME_CMD_EFFECTS_CSE_MASK;
976 case nvme_admin_sanitize_nvm:
977 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
978 default:
979 break;
980 }
981 return 0;
982 }
983
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)984 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
985 {
986 u32 effects = 0;
987
988 if (ns) {
989 if (ns->head->effects)
990 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
991 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
992 dev_warn(ctrl->device,
993 "IO command:%02x has unhandled effects:%08x\n",
994 opcode, effects);
995 return 0;
996 }
997
998 if (ctrl->effects)
999 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1000 effects |= nvme_known_admin_effects(opcode);
1001
1002 return effects;
1003 }
1004 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1005
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1006 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1007 u8 opcode)
1008 {
1009 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1010
1011 /*
1012 * For simplicity, IO to all namespaces is quiesced even if the command
1013 * effects say only one namespace is affected.
1014 */
1015 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1016 mutex_lock(&ctrl->scan_lock);
1017 mutex_lock(&ctrl->subsys->lock);
1018 nvme_mpath_start_freeze(ctrl->subsys);
1019 nvme_mpath_wait_freeze(ctrl->subsys);
1020 nvme_start_freeze(ctrl);
1021 nvme_wait_freeze(ctrl);
1022 }
1023 return effects;
1024 }
1025
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects)1026 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1027 {
1028 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1029 nvme_unfreeze(ctrl);
1030 nvme_mpath_unfreeze(ctrl->subsys);
1031 mutex_unlock(&ctrl->subsys->lock);
1032 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1033 mutex_unlock(&ctrl->scan_lock);
1034 }
1035 if (effects & NVME_CMD_EFFECTS_CCC)
1036 nvme_init_identify(ctrl);
1037 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1038 nvme_queue_scan(ctrl);
1039 flush_work(&ctrl->scan_work);
1040 }
1041 }
1042
nvme_execute_passthru_rq(struct request * rq)1043 void nvme_execute_passthru_rq(struct request *rq)
1044 {
1045 struct nvme_command *cmd = nvme_req(rq)->cmd;
1046 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1047 struct nvme_ns *ns = rq->q->queuedata;
1048 struct gendisk *disk = ns ? ns->disk : NULL;
1049 u32 effects;
1050
1051 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1052 blk_execute_rq(rq->q, disk, rq, 0);
1053 nvme_passthru_end(ctrl, effects);
1054 }
1055 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1056
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,void __user * ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u64 * result,unsigned timeout)1057 static int nvme_submit_user_cmd(struct request_queue *q,
1058 struct nvme_command *cmd, void __user *ubuffer,
1059 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1060 u32 meta_seed, u64 *result, unsigned timeout)
1061 {
1062 bool write = nvme_is_write(cmd);
1063 struct nvme_ns *ns = q->queuedata;
1064 struct gendisk *disk = ns ? ns->disk : NULL;
1065 struct request *req;
1066 struct bio *bio = NULL;
1067 void *meta = NULL;
1068 int ret;
1069
1070 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1071 if (IS_ERR(req))
1072 return PTR_ERR(req);
1073
1074 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1075 nvme_req(req)->flags |= NVME_REQ_USERCMD;
1076
1077 if (ubuffer && bufflen) {
1078 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1079 GFP_KERNEL);
1080 if (ret)
1081 goto out;
1082 bio = req->bio;
1083 bio->bi_disk = disk;
1084 if (disk && meta_buffer && meta_len) {
1085 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1086 meta_seed, write);
1087 if (IS_ERR(meta)) {
1088 ret = PTR_ERR(meta);
1089 goto out_unmap;
1090 }
1091 req->cmd_flags |= REQ_INTEGRITY;
1092 }
1093 }
1094
1095 nvme_execute_passthru_rq(req);
1096 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1097 ret = -EINTR;
1098 else
1099 ret = nvme_req(req)->status;
1100 if (result)
1101 *result = le64_to_cpu(nvme_req(req)->result.u64);
1102 if (meta && !ret && !write) {
1103 if (copy_to_user(meta_buffer, meta, meta_len))
1104 ret = -EFAULT;
1105 }
1106 kfree(meta);
1107 out_unmap:
1108 if (bio)
1109 blk_rq_unmap_user(bio);
1110 out:
1111 blk_mq_free_request(req);
1112 return ret;
1113 }
1114
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1115 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1116 {
1117 struct nvme_ctrl *ctrl = rq->end_io_data;
1118 unsigned long flags;
1119 bool startka = false;
1120
1121 blk_mq_free_request(rq);
1122
1123 if (status) {
1124 dev_err(ctrl->device,
1125 "failed nvme_keep_alive_end_io error=%d\n",
1126 status);
1127 return;
1128 }
1129
1130 ctrl->comp_seen = false;
1131 spin_lock_irqsave(&ctrl->lock, flags);
1132 if (ctrl->state == NVME_CTRL_LIVE ||
1133 ctrl->state == NVME_CTRL_CONNECTING)
1134 startka = true;
1135 spin_unlock_irqrestore(&ctrl->lock, flags);
1136 if (startka)
1137 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1138 }
1139
nvme_keep_alive(struct nvme_ctrl * ctrl)1140 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1141 {
1142 struct request *rq;
1143
1144 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1145 NVME_QID_ANY);
1146 if (IS_ERR(rq))
1147 return PTR_ERR(rq);
1148
1149 rq->timeout = ctrl->kato * HZ;
1150 rq->end_io_data = ctrl;
1151
1152 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1153
1154 return 0;
1155 }
1156
nvme_keep_alive_work(struct work_struct * work)1157 static void nvme_keep_alive_work(struct work_struct *work)
1158 {
1159 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1160 struct nvme_ctrl, ka_work);
1161 bool comp_seen = ctrl->comp_seen;
1162
1163 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1164 dev_dbg(ctrl->device,
1165 "reschedule traffic based keep-alive timer\n");
1166 ctrl->comp_seen = false;
1167 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1168 return;
1169 }
1170
1171 if (nvme_keep_alive(ctrl)) {
1172 /* allocation failure, reset the controller */
1173 dev_err(ctrl->device, "keep-alive failed\n");
1174 nvme_reset_ctrl(ctrl);
1175 return;
1176 }
1177 }
1178
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1179 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1180 {
1181 if (unlikely(ctrl->kato == 0))
1182 return;
1183
1184 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1185 }
1186
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1187 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1188 {
1189 if (unlikely(ctrl->kato == 0))
1190 return;
1191
1192 cancel_delayed_work_sync(&ctrl->ka_work);
1193 }
1194 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1195
1196 /*
1197 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1198 * flag, thus sending any new CNS opcodes has a big chance of not working.
1199 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1200 * (but not for any later version).
1201 */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1202 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1203 {
1204 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1205 return ctrl->vs < NVME_VS(1, 2, 0);
1206 return ctrl->vs < NVME_VS(1, 1, 0);
1207 }
1208
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1209 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1210 {
1211 struct nvme_command c = { };
1212 int error;
1213
1214 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1215 c.identify.opcode = nvme_admin_identify;
1216 c.identify.cns = NVME_ID_CNS_CTRL;
1217
1218 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1219 if (!*id)
1220 return -ENOMEM;
1221
1222 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1223 sizeof(struct nvme_id_ctrl));
1224 if (error)
1225 kfree(*id);
1226 return error;
1227 }
1228
nvme_multi_css(struct nvme_ctrl * ctrl)1229 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1230 {
1231 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1232 }
1233
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1234 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1235 struct nvme_ns_id_desc *cur, bool *csi_seen)
1236 {
1237 const char *warn_str = "ctrl returned bogus length:";
1238 void *data = cur;
1239
1240 switch (cur->nidt) {
1241 case NVME_NIDT_EUI64:
1242 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1243 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1244 warn_str, cur->nidl);
1245 return -1;
1246 }
1247 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1248 return NVME_NIDT_EUI64_LEN;
1249 case NVME_NIDT_NGUID:
1250 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1251 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1252 warn_str, cur->nidl);
1253 return -1;
1254 }
1255 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1256 return NVME_NIDT_NGUID_LEN;
1257 case NVME_NIDT_UUID:
1258 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1259 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1260 warn_str, cur->nidl);
1261 return -1;
1262 }
1263 uuid_copy(&ids->uuid, data + sizeof(*cur));
1264 return NVME_NIDT_UUID_LEN;
1265 case NVME_NIDT_CSI:
1266 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1267 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1268 warn_str, cur->nidl);
1269 return -1;
1270 }
1271 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1272 *csi_seen = true;
1273 return NVME_NIDT_CSI_LEN;
1274 default:
1275 /* Skip unknown types */
1276 return cur->nidl;
1277 }
1278 }
1279
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)1280 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1281 struct nvme_ns_ids *ids)
1282 {
1283 struct nvme_command c = { };
1284 bool csi_seen = false;
1285 int status, pos, len;
1286 void *data;
1287
1288 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1289 return 0;
1290 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1291 return 0;
1292
1293 c.identify.opcode = nvme_admin_identify;
1294 c.identify.nsid = cpu_to_le32(nsid);
1295 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1296
1297 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1298 if (!data)
1299 return -ENOMEM;
1300
1301 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1302 NVME_IDENTIFY_DATA_SIZE);
1303 if (status) {
1304 dev_warn(ctrl->device,
1305 "Identify Descriptors failed (%d)\n", status);
1306 goto free_data;
1307 }
1308
1309 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1310 struct nvme_ns_id_desc *cur = data + pos;
1311
1312 if (cur->nidl == 0)
1313 break;
1314
1315 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1316 if (len < 0)
1317 break;
1318
1319 len += sizeof(*cur);
1320 }
1321
1322 if (nvme_multi_css(ctrl) && !csi_seen) {
1323 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1324 nsid);
1325 status = -EINVAL;
1326 }
1327
1328 free_data:
1329 kfree(data);
1330 return status;
1331 }
1332
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids,struct nvme_id_ns ** id)1333 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1334 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1335 {
1336 struct nvme_command c = { };
1337 int error;
1338
1339 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1340 c.identify.opcode = nvme_admin_identify;
1341 c.identify.nsid = cpu_to_le32(nsid);
1342 c.identify.cns = NVME_ID_CNS_NS;
1343
1344 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1345 if (!*id)
1346 return -ENOMEM;
1347
1348 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1349 if (error) {
1350 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1351 goto out_free_id;
1352 }
1353
1354 error = -ENODEV;
1355 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1356 goto out_free_id;
1357
1358 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1359 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1360 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1361 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1362 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1363 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1364
1365 return 0;
1366
1367 out_free_id:
1368 kfree(*id);
1369 return error;
1370 }
1371
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1372 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1373 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1374 {
1375 union nvme_result res = { 0 };
1376 struct nvme_command c;
1377 int ret;
1378
1379 memset(&c, 0, sizeof(c));
1380 c.features.opcode = op;
1381 c.features.fid = cpu_to_le32(fid);
1382 c.features.dword11 = cpu_to_le32(dword11);
1383
1384 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1385 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1386 if (ret >= 0 && result)
1387 *result = le32_to_cpu(res.u32);
1388 return ret;
1389 }
1390
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1391 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1392 unsigned int dword11, void *buffer, size_t buflen,
1393 u32 *result)
1394 {
1395 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1396 buflen, result);
1397 }
1398 EXPORT_SYMBOL_GPL(nvme_set_features);
1399
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1400 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1401 unsigned int dword11, void *buffer, size_t buflen,
1402 u32 *result)
1403 {
1404 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1405 buflen, result);
1406 }
1407 EXPORT_SYMBOL_GPL(nvme_get_features);
1408
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1409 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1410 {
1411 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1412 u32 result;
1413 int status, nr_io_queues;
1414
1415 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1416 &result);
1417 if (status < 0)
1418 return status;
1419
1420 /*
1421 * Degraded controllers might return an error when setting the queue
1422 * count. We still want to be able to bring them online and offer
1423 * access to the admin queue, as that might be only way to fix them up.
1424 */
1425 if (status > 0) {
1426 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1427 *count = 0;
1428 } else {
1429 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1430 *count = min(*count, nr_io_queues);
1431 }
1432
1433 return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1436
1437 #define NVME_AEN_SUPPORTED \
1438 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1439 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1440
nvme_enable_aen(struct nvme_ctrl * ctrl)1441 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1442 {
1443 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1444 int status;
1445
1446 if (!supported_aens)
1447 return;
1448
1449 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1450 NULL, 0, &result);
1451 if (status)
1452 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1453 supported_aens);
1454
1455 queue_work(nvme_wq, &ctrl->async_event_work);
1456 }
1457
1458 /*
1459 * Convert integer values from ioctl structures to user pointers, silently
1460 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1461 * kernels.
1462 */
nvme_to_user_ptr(uintptr_t ptrval)1463 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1464 {
1465 if (in_compat_syscall())
1466 ptrval = (compat_uptr_t)ptrval;
1467 return (void __user *)ptrval;
1468 }
1469
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1470 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1471 {
1472 struct nvme_user_io io;
1473 struct nvme_command c;
1474 unsigned length, meta_len;
1475 void __user *metadata;
1476
1477 if (copy_from_user(&io, uio, sizeof(io)))
1478 return -EFAULT;
1479 if (io.flags)
1480 return -EINVAL;
1481
1482 switch (io.opcode) {
1483 case nvme_cmd_write:
1484 case nvme_cmd_read:
1485 case nvme_cmd_compare:
1486 break;
1487 default:
1488 return -EINVAL;
1489 }
1490
1491 length = (io.nblocks + 1) << ns->lba_shift;
1492 meta_len = (io.nblocks + 1) * ns->ms;
1493 metadata = nvme_to_user_ptr(io.metadata);
1494
1495 if (ns->features & NVME_NS_EXT_LBAS) {
1496 length += meta_len;
1497 meta_len = 0;
1498 } else if (meta_len) {
1499 if ((io.metadata & 3) || !io.metadata)
1500 return -EINVAL;
1501 }
1502
1503 memset(&c, 0, sizeof(c));
1504 c.rw.opcode = io.opcode;
1505 c.rw.flags = io.flags;
1506 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1507 c.rw.slba = cpu_to_le64(io.slba);
1508 c.rw.length = cpu_to_le16(io.nblocks);
1509 c.rw.control = cpu_to_le16(io.control);
1510 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1511 c.rw.reftag = cpu_to_le32(io.reftag);
1512 c.rw.apptag = cpu_to_le16(io.apptag);
1513 c.rw.appmask = cpu_to_le16(io.appmask);
1514
1515 return nvme_submit_user_cmd(ns->queue, &c,
1516 nvme_to_user_ptr(io.addr), length,
1517 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1518 }
1519
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1520 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1521 struct nvme_passthru_cmd __user *ucmd)
1522 {
1523 struct nvme_passthru_cmd cmd;
1524 struct nvme_command c;
1525 unsigned timeout = 0;
1526 u64 result;
1527 int status;
1528
1529 if (!capable(CAP_SYS_ADMIN))
1530 return -EACCES;
1531 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1532 return -EFAULT;
1533 if (cmd.flags)
1534 return -EINVAL;
1535
1536 memset(&c, 0, sizeof(c));
1537 c.common.opcode = cmd.opcode;
1538 c.common.flags = cmd.flags;
1539 c.common.nsid = cpu_to_le32(cmd.nsid);
1540 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1541 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1542 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1543 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1544 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1545 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1546 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1547 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1548
1549 if (cmd.timeout_ms)
1550 timeout = msecs_to_jiffies(cmd.timeout_ms);
1551
1552 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1553 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1554 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1555 0, &result, timeout);
1556
1557 if (status >= 0) {
1558 if (put_user(result, &ucmd->result))
1559 return -EFAULT;
1560 }
1561
1562 return status;
1563 }
1564
nvme_user_cmd64(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd64 __user * ucmd)1565 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1566 struct nvme_passthru_cmd64 __user *ucmd)
1567 {
1568 struct nvme_passthru_cmd64 cmd;
1569 struct nvme_command c;
1570 unsigned timeout = 0;
1571 int status;
1572
1573 if (!capable(CAP_SYS_ADMIN))
1574 return -EACCES;
1575 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1576 return -EFAULT;
1577 if (cmd.flags)
1578 return -EINVAL;
1579
1580 memset(&c, 0, sizeof(c));
1581 c.common.opcode = cmd.opcode;
1582 c.common.flags = cmd.flags;
1583 c.common.nsid = cpu_to_le32(cmd.nsid);
1584 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1585 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1586 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1587 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1588 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1589 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1590 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1591 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1592
1593 if (cmd.timeout_ms)
1594 timeout = msecs_to_jiffies(cmd.timeout_ms);
1595
1596 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1597 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1598 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1599 0, &cmd.result, timeout);
1600
1601 if (status >= 0) {
1602 if (put_user(cmd.result, &ucmd->result))
1603 return -EFAULT;
1604 }
1605
1606 return status;
1607 }
1608
1609 /*
1610 * Issue ioctl requests on the first available path. Note that unlike normal
1611 * block layer requests we will not retry failed request on another controller.
1612 */
nvme_get_ns_from_disk(struct gendisk * disk,struct nvme_ns_head ** head,int * srcu_idx)1613 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1614 struct nvme_ns_head **head, int *srcu_idx)
1615 {
1616 #ifdef CONFIG_NVME_MULTIPATH
1617 if (disk->fops == &nvme_ns_head_ops) {
1618 struct nvme_ns *ns;
1619
1620 *head = disk->private_data;
1621 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1622 ns = nvme_find_path(*head);
1623 if (!ns)
1624 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1625 return ns;
1626 }
1627 #endif
1628 *head = NULL;
1629 *srcu_idx = -1;
1630 return disk->private_data;
1631 }
1632
nvme_put_ns_from_disk(struct nvme_ns_head * head,int idx)1633 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1634 {
1635 if (head)
1636 srcu_read_unlock(&head->srcu, idx);
1637 }
1638
is_ctrl_ioctl(unsigned int cmd)1639 static bool is_ctrl_ioctl(unsigned int cmd)
1640 {
1641 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1642 return true;
1643 if (is_sed_ioctl(cmd))
1644 return true;
1645 return false;
1646 }
1647
nvme_handle_ctrl_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,struct nvme_ns_head * head,int srcu_idx)1648 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1649 void __user *argp,
1650 struct nvme_ns_head *head,
1651 int srcu_idx)
1652 {
1653 struct nvme_ctrl *ctrl = ns->ctrl;
1654 int ret;
1655
1656 nvme_get_ctrl(ns->ctrl);
1657 nvme_put_ns_from_disk(head, srcu_idx);
1658
1659 switch (cmd) {
1660 case NVME_IOCTL_ADMIN_CMD:
1661 ret = nvme_user_cmd(ctrl, NULL, argp);
1662 break;
1663 case NVME_IOCTL_ADMIN64_CMD:
1664 ret = nvme_user_cmd64(ctrl, NULL, argp);
1665 break;
1666 default:
1667 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1668 break;
1669 }
1670 nvme_put_ctrl(ctrl);
1671 return ret;
1672 }
1673
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1674 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1675 unsigned int cmd, unsigned long arg)
1676 {
1677 struct nvme_ns_head *head = NULL;
1678 void __user *argp = (void __user *)arg;
1679 struct nvme_ns *ns;
1680 int srcu_idx, ret;
1681
1682 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1683 if (unlikely(!ns))
1684 return -EWOULDBLOCK;
1685
1686 /*
1687 * Handle ioctls that apply to the controller instead of the namespace
1688 * seperately and drop the ns SRCU reference early. This avoids a
1689 * deadlock when deleting namespaces using the passthrough interface.
1690 */
1691 if (is_ctrl_ioctl(cmd))
1692 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1693
1694 switch (cmd) {
1695 case NVME_IOCTL_ID:
1696 force_successful_syscall_return();
1697 ret = ns->head->ns_id;
1698 break;
1699 case NVME_IOCTL_IO_CMD:
1700 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1701 break;
1702 case NVME_IOCTL_SUBMIT_IO:
1703 ret = nvme_submit_io(ns, argp);
1704 break;
1705 case NVME_IOCTL_IO64_CMD:
1706 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1707 break;
1708 default:
1709 if (ns->ndev)
1710 ret = nvme_nvm_ioctl(ns, cmd, arg);
1711 else
1712 ret = -ENOTTY;
1713 }
1714
1715 nvme_put_ns_from_disk(head, srcu_idx);
1716 return ret;
1717 }
1718
1719 #ifdef CONFIG_COMPAT
1720 struct nvme_user_io32 {
1721 __u8 opcode;
1722 __u8 flags;
1723 __u16 control;
1724 __u16 nblocks;
1725 __u16 rsvd;
1726 __u64 metadata;
1727 __u64 addr;
1728 __u64 slba;
1729 __u32 dsmgmt;
1730 __u32 reftag;
1731 __u16 apptag;
1732 __u16 appmask;
1733 } __attribute__((__packed__));
1734
1735 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1736
nvme_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1737 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1738 unsigned int cmd, unsigned long arg)
1739 {
1740 /*
1741 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1742 * between 32 bit programs and 64 bit kernel.
1743 * The cause is that the results of sizeof(struct nvme_user_io),
1744 * which is used to define NVME_IOCTL_SUBMIT_IO,
1745 * are not same between 32 bit compiler and 64 bit compiler.
1746 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1747 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1748 * Other IOCTL numbers are same between 32 bit and 64 bit.
1749 * So there is nothing to do regarding to other IOCTL numbers.
1750 */
1751 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1752 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1753
1754 return nvme_ioctl(bdev, mode, cmd, arg);
1755 }
1756 #else
1757 #define nvme_compat_ioctl NULL
1758 #endif /* CONFIG_COMPAT */
1759
nvme_open(struct block_device * bdev,fmode_t mode)1760 static int nvme_open(struct block_device *bdev, fmode_t mode)
1761 {
1762 struct nvme_ns *ns = bdev->bd_disk->private_data;
1763
1764 #ifdef CONFIG_NVME_MULTIPATH
1765 /* should never be called due to GENHD_FL_HIDDEN */
1766 if (WARN_ON_ONCE(ns->head->disk))
1767 goto fail;
1768 #endif
1769 if (!kref_get_unless_zero(&ns->kref))
1770 goto fail;
1771 if (!try_module_get(ns->ctrl->ops->module))
1772 goto fail_put_ns;
1773
1774 return 0;
1775
1776 fail_put_ns:
1777 nvme_put_ns(ns);
1778 fail:
1779 return -ENXIO;
1780 }
1781
nvme_release(struct gendisk * disk,fmode_t mode)1782 static void nvme_release(struct gendisk *disk, fmode_t mode)
1783 {
1784 struct nvme_ns *ns = disk->private_data;
1785
1786 module_put(ns->ctrl->ops->module);
1787 nvme_put_ns(ns);
1788 }
1789
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1790 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1791 {
1792 /* some standard values */
1793 geo->heads = 1 << 6;
1794 geo->sectors = 1 << 5;
1795 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1796 return 0;
1797 }
1798
1799 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1800 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1801 u32 max_integrity_segments)
1802 {
1803 struct blk_integrity integrity;
1804
1805 memset(&integrity, 0, sizeof(integrity));
1806 switch (pi_type) {
1807 case NVME_NS_DPS_PI_TYPE3:
1808 integrity.profile = &t10_pi_type3_crc;
1809 integrity.tag_size = sizeof(u16) + sizeof(u32);
1810 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1811 break;
1812 case NVME_NS_DPS_PI_TYPE1:
1813 case NVME_NS_DPS_PI_TYPE2:
1814 integrity.profile = &t10_pi_type1_crc;
1815 integrity.tag_size = sizeof(u16);
1816 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1817 break;
1818 default:
1819 integrity.profile = NULL;
1820 break;
1821 }
1822 integrity.tuple_size = ms;
1823 blk_integrity_register(disk, &integrity);
1824 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1825 }
1826 #else
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1827 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1828 u32 max_integrity_segments)
1829 {
1830 }
1831 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1832
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1833 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1834 {
1835 struct nvme_ctrl *ctrl = ns->ctrl;
1836 struct request_queue *queue = disk->queue;
1837 u32 size = queue_logical_block_size(queue);
1838
1839 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1840 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1841 return;
1842 }
1843
1844 if (ctrl->nr_streams && ns->sws && ns->sgs)
1845 size *= ns->sws * ns->sgs;
1846
1847 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1848 NVME_DSM_MAX_RANGES);
1849
1850 queue->limits.discard_alignment = 0;
1851 queue->limits.discard_granularity = size;
1852
1853 /* If discard is already enabled, don't reset queue limits */
1854 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1855 return;
1856
1857 blk_queue_max_discard_sectors(queue, UINT_MAX);
1858 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1859
1860 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1861 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1862 }
1863
nvme_config_write_zeroes(struct gendisk * disk,struct nvme_ns * ns)1864 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1865 {
1866 u64 max_blocks;
1867
1868 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1869 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1870 return;
1871 /*
1872 * Even though NVMe spec explicitly states that MDTS is not
1873 * applicable to the write-zeroes:- "The restriction does not apply to
1874 * commands that do not transfer data between the host and the
1875 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1876 * In order to be more cautious use controller's max_hw_sectors value
1877 * to configure the maximum sectors for the write-zeroes which is
1878 * configured based on the controller's MDTS field in the
1879 * nvme_init_identify() if available.
1880 */
1881 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1882 max_blocks = (u64)USHRT_MAX + 1;
1883 else
1884 max_blocks = ns->ctrl->max_hw_sectors + 1;
1885
1886 blk_queue_max_write_zeroes_sectors(disk->queue,
1887 nvme_lba_to_sect(ns, max_blocks));
1888 }
1889
nvme_ns_ids_valid(struct nvme_ns_ids * ids)1890 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1891 {
1892 return !uuid_is_null(&ids->uuid) ||
1893 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1894 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1895 }
1896
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1897 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1898 {
1899 return uuid_equal(&a->uuid, &b->uuid) &&
1900 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1901 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1902 a->csi == b->csi;
1903 }
1904
nvme_setup_streams_ns(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 * phys_bs,u32 * io_opt)1905 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1906 u32 *phys_bs, u32 *io_opt)
1907 {
1908 struct streams_directive_params s;
1909 int ret;
1910
1911 if (!ctrl->nr_streams)
1912 return 0;
1913
1914 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1915 if (ret)
1916 return ret;
1917
1918 ns->sws = le32_to_cpu(s.sws);
1919 ns->sgs = le16_to_cpu(s.sgs);
1920
1921 if (ns->sws) {
1922 *phys_bs = ns->sws * (1 << ns->lba_shift);
1923 if (ns->sgs)
1924 *io_opt = *phys_bs * ns->sgs;
1925 }
1926
1927 return 0;
1928 }
1929
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1930 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1931 {
1932 struct nvme_ctrl *ctrl = ns->ctrl;
1933
1934 /*
1935 * The PI implementation requires the metadata size to be equal to the
1936 * t10 pi tuple size.
1937 */
1938 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1939 if (ns->ms == sizeof(struct t10_pi_tuple))
1940 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1941 else
1942 ns->pi_type = 0;
1943
1944 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1945 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1946 return 0;
1947 if (ctrl->ops->flags & NVME_F_FABRICS) {
1948 /*
1949 * The NVMe over Fabrics specification only supports metadata as
1950 * part of the extended data LBA. We rely on HCA/HBA support to
1951 * remap the separate metadata buffer from the block layer.
1952 */
1953 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1954 return -EINVAL;
1955 if (ctrl->max_integrity_segments)
1956 ns->features |=
1957 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1958 } else {
1959 /*
1960 * For PCIe controllers, we can't easily remap the separate
1961 * metadata buffer from the block layer and thus require a
1962 * separate metadata buffer for block layer metadata/PI support.
1963 * We allow extended LBAs for the passthrough interface, though.
1964 */
1965 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1966 ns->features |= NVME_NS_EXT_LBAS;
1967 else
1968 ns->features |= NVME_NS_METADATA_SUPPORTED;
1969 }
1970
1971 return 0;
1972 }
1973
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1974 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1975 struct request_queue *q)
1976 {
1977 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1978
1979 if (ctrl->max_hw_sectors) {
1980 u32 max_segments =
1981 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1982
1983 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1984 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1985 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1986 }
1987 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1988 blk_queue_dma_alignment(q, 7);
1989 blk_queue_write_cache(q, vwc, vwc);
1990 }
1991
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1992 static void nvme_update_disk_info(struct gendisk *disk,
1993 struct nvme_ns *ns, struct nvme_id_ns *id)
1994 {
1995 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1996 unsigned short bs = 1 << ns->lba_shift;
1997 u32 atomic_bs, phys_bs, io_opt = 0;
1998
1999 /*
2000 * The block layer can't support LBA sizes larger than the page size
2001 * yet, so catch this early and don't allow block I/O.
2002 */
2003 if (ns->lba_shift > PAGE_SHIFT) {
2004 capacity = 0;
2005 bs = (1 << 9);
2006 }
2007
2008 blk_integrity_unregister(disk);
2009
2010 atomic_bs = phys_bs = bs;
2011 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2012 if (id->nabo == 0) {
2013 /*
2014 * Bit 1 indicates whether NAWUPF is defined for this namespace
2015 * and whether it should be used instead of AWUPF. If NAWUPF ==
2016 * 0 then AWUPF must be used instead.
2017 */
2018 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2019 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2020 else
2021 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2022 }
2023
2024 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2025 /* NPWG = Namespace Preferred Write Granularity */
2026 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2027 /* NOWS = Namespace Optimal Write Size */
2028 io_opt = bs * (1 + le16_to_cpu(id->nows));
2029 }
2030
2031 blk_queue_logical_block_size(disk->queue, bs);
2032 /*
2033 * Linux filesystems assume writing a single physical block is
2034 * an atomic operation. Hence limit the physical block size to the
2035 * value of the Atomic Write Unit Power Fail parameter.
2036 */
2037 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2038 blk_queue_io_min(disk->queue, phys_bs);
2039 blk_queue_io_opt(disk->queue, io_opt);
2040
2041 /*
2042 * Register a metadata profile for PI, or the plain non-integrity NVMe
2043 * metadata masquerading as Type 0 if supported, otherwise reject block
2044 * I/O to namespaces with metadata except when the namespace supports
2045 * PI, as it can strip/insert in that case.
2046 */
2047 if (ns->ms) {
2048 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2049 (ns->features & NVME_NS_METADATA_SUPPORTED))
2050 nvme_init_integrity(disk, ns->ms, ns->pi_type,
2051 ns->ctrl->max_integrity_segments);
2052 else if (!nvme_ns_has_pi(ns))
2053 capacity = 0;
2054 }
2055
2056 set_capacity_revalidate_and_notify(disk, capacity, false);
2057
2058 nvme_config_discard(disk, ns);
2059 nvme_config_write_zeroes(disk, ns);
2060
2061 if (id->nsattr & NVME_NS_ATTR_RO)
2062 set_disk_ro(disk, true);
2063 }
2064
nvme_first_scan(struct gendisk * disk)2065 static inline bool nvme_first_scan(struct gendisk *disk)
2066 {
2067 /* nvme_alloc_ns() scans the disk prior to adding it */
2068 return !(disk->flags & GENHD_FL_UP);
2069 }
2070
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)2071 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2072 {
2073 struct nvme_ctrl *ctrl = ns->ctrl;
2074 u32 iob;
2075
2076 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2077 is_power_of_2(ctrl->max_hw_sectors))
2078 iob = ctrl->max_hw_sectors;
2079 else
2080 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2081
2082 if (!iob)
2083 return;
2084
2085 if (!is_power_of_2(iob)) {
2086 if (nvme_first_scan(ns->disk))
2087 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2088 ns->disk->disk_name, iob);
2089 return;
2090 }
2091
2092 if (blk_queue_is_zoned(ns->disk->queue)) {
2093 if (nvme_first_scan(ns->disk))
2094 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2095 ns->disk->disk_name);
2096 return;
2097 }
2098
2099 blk_queue_chunk_sectors(ns->queue, iob);
2100 }
2101
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_id_ns * id)2102 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2103 {
2104 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2105 int ret;
2106
2107 blk_mq_freeze_queue(ns->disk->queue);
2108 ns->lba_shift = id->lbaf[lbaf].ds;
2109 nvme_set_queue_limits(ns->ctrl, ns->queue);
2110
2111 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2112 ret = nvme_update_zone_info(ns, lbaf);
2113 if (ret)
2114 goto out_unfreeze;
2115 }
2116
2117 ret = nvme_configure_metadata(ns, id);
2118 if (ret)
2119 goto out_unfreeze;
2120 nvme_set_chunk_sectors(ns, id);
2121 nvme_update_disk_info(ns->disk, ns, id);
2122 blk_mq_unfreeze_queue(ns->disk->queue);
2123
2124 if (blk_queue_is_zoned(ns->queue)) {
2125 ret = nvme_revalidate_zones(ns);
2126 if (ret && !nvme_first_scan(ns->disk))
2127 return ret;
2128 }
2129
2130 #ifdef CONFIG_NVME_MULTIPATH
2131 if (ns->head->disk) {
2132 blk_mq_freeze_queue(ns->head->disk->queue);
2133 nvme_update_disk_info(ns->head->disk, ns, id);
2134 blk_stack_limits(&ns->head->disk->queue->limits,
2135 &ns->queue->limits, 0);
2136 blk_queue_update_readahead(ns->head->disk->queue);
2137 nvme_update_bdev_size(ns->head->disk);
2138 blk_mq_unfreeze_queue(ns->head->disk->queue);
2139 }
2140 #endif
2141 return 0;
2142
2143 out_unfreeze:
2144 blk_mq_unfreeze_queue(ns->disk->queue);
2145 return ret;
2146 }
2147
nvme_pr_type(enum pr_type type)2148 static char nvme_pr_type(enum pr_type type)
2149 {
2150 switch (type) {
2151 case PR_WRITE_EXCLUSIVE:
2152 return 1;
2153 case PR_EXCLUSIVE_ACCESS:
2154 return 2;
2155 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2156 return 3;
2157 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2158 return 4;
2159 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2160 return 5;
2161 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2162 return 6;
2163 default:
2164 return 0;
2165 }
2166 };
2167
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)2168 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2169 u64 key, u64 sa_key, u8 op)
2170 {
2171 struct nvme_ns_head *head = NULL;
2172 struct nvme_ns *ns;
2173 struct nvme_command c;
2174 int srcu_idx, ret;
2175 u8 data[16] = { 0, };
2176
2177 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2178 if (unlikely(!ns))
2179 return -EWOULDBLOCK;
2180
2181 put_unaligned_le64(key, &data[0]);
2182 put_unaligned_le64(sa_key, &data[8]);
2183
2184 memset(&c, 0, sizeof(c));
2185 c.common.opcode = op;
2186 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2187 c.common.cdw10 = cpu_to_le32(cdw10);
2188
2189 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2190 nvme_put_ns_from_disk(head, srcu_idx);
2191 return ret;
2192 }
2193
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)2194 static int nvme_pr_register(struct block_device *bdev, u64 old,
2195 u64 new, unsigned flags)
2196 {
2197 u32 cdw10;
2198
2199 if (flags & ~PR_FL_IGNORE_KEY)
2200 return -EOPNOTSUPP;
2201
2202 cdw10 = old ? 2 : 0;
2203 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2204 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2205 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2206 }
2207
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)2208 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2209 enum pr_type type, unsigned flags)
2210 {
2211 u32 cdw10;
2212
2213 if (flags & ~PR_FL_IGNORE_KEY)
2214 return -EOPNOTSUPP;
2215
2216 cdw10 = nvme_pr_type(type) << 8;
2217 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2218 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2219 }
2220
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)2221 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2222 enum pr_type type, bool abort)
2223 {
2224 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2225 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2226 }
2227
nvme_pr_clear(struct block_device * bdev,u64 key)2228 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2229 {
2230 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2231 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2232 }
2233
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2234 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2235 {
2236 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2237 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2238 }
2239
2240 static const struct pr_ops nvme_pr_ops = {
2241 .pr_register = nvme_pr_register,
2242 .pr_reserve = nvme_pr_reserve,
2243 .pr_release = nvme_pr_release,
2244 .pr_preempt = nvme_pr_preempt,
2245 .pr_clear = nvme_pr_clear,
2246 };
2247
2248 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2249 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2250 bool send)
2251 {
2252 struct nvme_ctrl *ctrl = data;
2253 struct nvme_command cmd;
2254
2255 memset(&cmd, 0, sizeof(cmd));
2256 if (send)
2257 cmd.common.opcode = nvme_admin_security_send;
2258 else
2259 cmd.common.opcode = nvme_admin_security_recv;
2260 cmd.common.nsid = 0;
2261 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2262 cmd.common.cdw11 = cpu_to_le32(len);
2263
2264 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2265 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2266 }
2267 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2268 #endif /* CONFIG_BLK_SED_OPAL */
2269
2270 static const struct block_device_operations nvme_fops = {
2271 .owner = THIS_MODULE,
2272 .ioctl = nvme_ioctl,
2273 .compat_ioctl = nvme_compat_ioctl,
2274 .open = nvme_open,
2275 .release = nvme_release,
2276 .getgeo = nvme_getgeo,
2277 .report_zones = nvme_report_zones,
2278 .pr_ops = &nvme_pr_ops,
2279 };
2280
2281 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)2282 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2283 {
2284 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2285
2286 if (!kref_get_unless_zero(&head->ref))
2287 return -ENXIO;
2288 return 0;
2289 }
2290
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)2291 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2292 {
2293 nvme_put_ns_head(disk->private_data);
2294 }
2295
2296 const struct block_device_operations nvme_ns_head_ops = {
2297 .owner = THIS_MODULE,
2298 .submit_bio = nvme_ns_head_submit_bio,
2299 .open = nvme_ns_head_open,
2300 .release = nvme_ns_head_release,
2301 .ioctl = nvme_ioctl,
2302 .compat_ioctl = nvme_compat_ioctl,
2303 .getgeo = nvme_getgeo,
2304 .report_zones = nvme_report_zones,
2305 .pr_ops = &nvme_pr_ops,
2306 };
2307 #endif /* CONFIG_NVME_MULTIPATH */
2308
nvme_wait_ready(struct nvme_ctrl * ctrl,u64 cap,bool enabled)2309 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2310 {
2311 unsigned long timeout =
2312 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2313 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2314 int ret;
2315
2316 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2317 if (csts == ~0)
2318 return -ENODEV;
2319 if ((csts & NVME_CSTS_RDY) == bit)
2320 break;
2321
2322 usleep_range(1000, 2000);
2323 if (fatal_signal_pending(current))
2324 return -EINTR;
2325 if (time_after(jiffies, timeout)) {
2326 dev_err(ctrl->device,
2327 "Device not ready; aborting %s, CSTS=0x%x\n",
2328 enabled ? "initialisation" : "reset", csts);
2329 return -ENODEV;
2330 }
2331 }
2332
2333 return ret;
2334 }
2335
2336 /*
2337 * If the device has been passed off to us in an enabled state, just clear
2338 * the enabled bit. The spec says we should set the 'shutdown notification
2339 * bits', but doing so may cause the device to complete commands to the
2340 * admin queue ... and we don't know what memory that might be pointing at!
2341 */
nvme_disable_ctrl(struct nvme_ctrl * ctrl)2342 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2343 {
2344 int ret;
2345
2346 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2347 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2348
2349 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2350 if (ret)
2351 return ret;
2352
2353 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2354 msleep(NVME_QUIRK_DELAY_AMOUNT);
2355
2356 return nvme_wait_ready(ctrl, ctrl->cap, false);
2357 }
2358 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2359
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2360 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2361 {
2362 unsigned dev_page_min;
2363 int ret;
2364
2365 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2366 if (ret) {
2367 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2368 return ret;
2369 }
2370 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2371
2372 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2373 dev_err(ctrl->device,
2374 "Minimum device page size %u too large for host (%u)\n",
2375 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2376 return -ENODEV;
2377 }
2378
2379 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2380 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2381 else
2382 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2383 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2384 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2385 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2386 ctrl->ctrl_config |= NVME_CC_ENABLE;
2387
2388 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2389 if (ret)
2390 return ret;
2391 return nvme_wait_ready(ctrl, ctrl->cap, true);
2392 }
2393 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2394
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)2395 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2396 {
2397 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2398 u32 csts;
2399 int ret;
2400
2401 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2402 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2403
2404 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2405 if (ret)
2406 return ret;
2407
2408 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2409 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2410 break;
2411
2412 msleep(100);
2413 if (fatal_signal_pending(current))
2414 return -EINTR;
2415 if (time_after(jiffies, timeout)) {
2416 dev_err(ctrl->device,
2417 "Device shutdown incomplete; abort shutdown\n");
2418 return -ENODEV;
2419 }
2420 }
2421
2422 return ret;
2423 }
2424 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2425
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2426 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2427 {
2428 __le64 ts;
2429 int ret;
2430
2431 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2432 return 0;
2433
2434 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2435 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2436 NULL);
2437 if (ret)
2438 dev_warn_once(ctrl->device,
2439 "could not set timestamp (%d)\n", ret);
2440 return ret;
2441 }
2442
nvme_configure_acre(struct nvme_ctrl * ctrl)2443 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2444 {
2445 struct nvme_feat_host_behavior *host;
2446 int ret;
2447
2448 /* Don't bother enabling the feature if retry delay is not reported */
2449 if (!ctrl->crdt[0])
2450 return 0;
2451
2452 host = kzalloc(sizeof(*host), GFP_KERNEL);
2453 if (!host)
2454 return 0;
2455
2456 host->acre = NVME_ENABLE_ACRE;
2457 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2458 host, sizeof(*host), NULL);
2459 kfree(host);
2460 return ret;
2461 }
2462
nvme_configure_apst(struct nvme_ctrl * ctrl)2463 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2464 {
2465 /*
2466 * APST (Autonomous Power State Transition) lets us program a
2467 * table of power state transitions that the controller will
2468 * perform automatically. We configure it with a simple
2469 * heuristic: we are willing to spend at most 2% of the time
2470 * transitioning between power states. Therefore, when running
2471 * in any given state, we will enter the next lower-power
2472 * non-operational state after waiting 50 * (enlat + exlat)
2473 * microseconds, as long as that state's exit latency is under
2474 * the requested maximum latency.
2475 *
2476 * We will not autonomously enter any non-operational state for
2477 * which the total latency exceeds ps_max_latency_us. Users
2478 * can set ps_max_latency_us to zero to turn off APST.
2479 */
2480
2481 unsigned apste;
2482 struct nvme_feat_auto_pst *table;
2483 u64 max_lat_us = 0;
2484 int max_ps = -1;
2485 int ret;
2486
2487 /*
2488 * If APST isn't supported or if we haven't been initialized yet,
2489 * then don't do anything.
2490 */
2491 if (!ctrl->apsta)
2492 return 0;
2493
2494 if (ctrl->npss > 31) {
2495 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2496 return 0;
2497 }
2498
2499 table = kzalloc(sizeof(*table), GFP_KERNEL);
2500 if (!table)
2501 return 0;
2502
2503 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2504 /* Turn off APST. */
2505 apste = 0;
2506 dev_dbg(ctrl->device, "APST disabled\n");
2507 } else {
2508 __le64 target = cpu_to_le64(0);
2509 int state;
2510
2511 /*
2512 * Walk through all states from lowest- to highest-power.
2513 * According to the spec, lower-numbered states use more
2514 * power. NPSS, despite the name, is the index of the
2515 * lowest-power state, not the number of states.
2516 */
2517 for (state = (int)ctrl->npss; state >= 0; state--) {
2518 u64 total_latency_us, exit_latency_us, transition_ms;
2519
2520 if (target)
2521 table->entries[state] = target;
2522
2523 /*
2524 * Don't allow transitions to the deepest state
2525 * if it's quirked off.
2526 */
2527 if (state == ctrl->npss &&
2528 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2529 continue;
2530
2531 /*
2532 * Is this state a useful non-operational state for
2533 * higher-power states to autonomously transition to?
2534 */
2535 if (!(ctrl->psd[state].flags &
2536 NVME_PS_FLAGS_NON_OP_STATE))
2537 continue;
2538
2539 exit_latency_us =
2540 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2541 if (exit_latency_us > ctrl->ps_max_latency_us)
2542 continue;
2543
2544 total_latency_us =
2545 exit_latency_us +
2546 le32_to_cpu(ctrl->psd[state].entry_lat);
2547
2548 /*
2549 * This state is good. Use it as the APST idle
2550 * target for higher power states.
2551 */
2552 transition_ms = total_latency_us + 19;
2553 do_div(transition_ms, 20);
2554 if (transition_ms > (1 << 24) - 1)
2555 transition_ms = (1 << 24) - 1;
2556
2557 target = cpu_to_le64((state << 3) |
2558 (transition_ms << 8));
2559
2560 if (max_ps == -1)
2561 max_ps = state;
2562
2563 if (total_latency_us > max_lat_us)
2564 max_lat_us = total_latency_us;
2565 }
2566
2567 apste = 1;
2568
2569 if (max_ps == -1) {
2570 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2571 } else {
2572 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2573 max_ps, max_lat_us, (int)sizeof(*table), table);
2574 }
2575 }
2576
2577 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2578 table, sizeof(*table), NULL);
2579 if (ret)
2580 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2581
2582 kfree(table);
2583 return ret;
2584 }
2585
nvme_set_latency_tolerance(struct device * dev,s32 val)2586 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2587 {
2588 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2589 u64 latency;
2590
2591 switch (val) {
2592 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2593 case PM_QOS_LATENCY_ANY:
2594 latency = U64_MAX;
2595 break;
2596
2597 default:
2598 latency = val;
2599 }
2600
2601 if (ctrl->ps_max_latency_us != latency) {
2602 ctrl->ps_max_latency_us = latency;
2603 nvme_configure_apst(ctrl);
2604 }
2605 }
2606
2607 struct nvme_core_quirk_entry {
2608 /*
2609 * NVMe model and firmware strings are padded with spaces. For
2610 * simplicity, strings in the quirk table are padded with NULLs
2611 * instead.
2612 */
2613 u16 vid;
2614 const char *mn;
2615 const char *fr;
2616 unsigned long quirks;
2617 };
2618
2619 static const struct nvme_core_quirk_entry core_quirks[] = {
2620 {
2621 /*
2622 * This Toshiba device seems to die using any APST states. See:
2623 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2624 */
2625 .vid = 0x1179,
2626 .mn = "THNSF5256GPUK TOSHIBA",
2627 .quirks = NVME_QUIRK_NO_APST,
2628 },
2629 {
2630 /*
2631 * This LiteON CL1-3D*-Q11 firmware version has a race
2632 * condition associated with actions related to suspend to idle
2633 * LiteON has resolved the problem in future firmware
2634 */
2635 .vid = 0x14a4,
2636 .fr = "22301111",
2637 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2638 }
2639 };
2640
2641 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2642 static bool string_matches(const char *idstr, const char *match, size_t len)
2643 {
2644 size_t matchlen;
2645
2646 if (!match)
2647 return true;
2648
2649 matchlen = strlen(match);
2650 WARN_ON_ONCE(matchlen > len);
2651
2652 if (memcmp(idstr, match, matchlen))
2653 return false;
2654
2655 for (; matchlen < len; matchlen++)
2656 if (idstr[matchlen] != ' ')
2657 return false;
2658
2659 return true;
2660 }
2661
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2662 static bool quirk_matches(const struct nvme_id_ctrl *id,
2663 const struct nvme_core_quirk_entry *q)
2664 {
2665 return q->vid == le16_to_cpu(id->vid) &&
2666 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2667 string_matches(id->fr, q->fr, sizeof(id->fr));
2668 }
2669
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2670 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2671 struct nvme_id_ctrl *id)
2672 {
2673 size_t nqnlen;
2674 int off;
2675
2676 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2677 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2678 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2679 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2680 return;
2681 }
2682
2683 if (ctrl->vs >= NVME_VS(1, 2, 1))
2684 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2685 }
2686
2687 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2688 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2689 "nqn.2014.08.org.nvmexpress:%04x%04x",
2690 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2691 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2692 off += sizeof(id->sn);
2693 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2694 off += sizeof(id->mn);
2695 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2696 }
2697
nvme_release_subsystem(struct device * dev)2698 static void nvme_release_subsystem(struct device *dev)
2699 {
2700 struct nvme_subsystem *subsys =
2701 container_of(dev, struct nvme_subsystem, dev);
2702
2703 if (subsys->instance >= 0)
2704 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2705 kfree(subsys);
2706 }
2707
nvme_destroy_subsystem(struct kref * ref)2708 static void nvme_destroy_subsystem(struct kref *ref)
2709 {
2710 struct nvme_subsystem *subsys =
2711 container_of(ref, struct nvme_subsystem, ref);
2712
2713 mutex_lock(&nvme_subsystems_lock);
2714 list_del(&subsys->entry);
2715 mutex_unlock(&nvme_subsystems_lock);
2716
2717 ida_destroy(&subsys->ns_ida);
2718 device_del(&subsys->dev);
2719 put_device(&subsys->dev);
2720 }
2721
nvme_put_subsystem(struct nvme_subsystem * subsys)2722 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2723 {
2724 kref_put(&subsys->ref, nvme_destroy_subsystem);
2725 }
2726
__nvme_find_get_subsystem(const char * subsysnqn)2727 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2728 {
2729 struct nvme_subsystem *subsys;
2730
2731 lockdep_assert_held(&nvme_subsystems_lock);
2732
2733 /*
2734 * Fail matches for discovery subsystems. This results
2735 * in each discovery controller bound to a unique subsystem.
2736 * This avoids issues with validating controller values
2737 * that can only be true when there is a single unique subsystem.
2738 * There may be multiple and completely independent entities
2739 * that provide discovery controllers.
2740 */
2741 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2742 return NULL;
2743
2744 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2745 if (strcmp(subsys->subnqn, subsysnqn))
2746 continue;
2747 if (!kref_get_unless_zero(&subsys->ref))
2748 continue;
2749 return subsys;
2750 }
2751
2752 return NULL;
2753 }
2754
2755 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2756 struct device_attribute subsys_attr_##_name = \
2757 __ATTR(_name, _mode, _show, NULL)
2758
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2759 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2760 struct device_attribute *attr,
2761 char *buf)
2762 {
2763 struct nvme_subsystem *subsys =
2764 container_of(dev, struct nvme_subsystem, dev);
2765
2766 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2767 }
2768 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2769
2770 #define nvme_subsys_show_str_function(field) \
2771 static ssize_t subsys_##field##_show(struct device *dev, \
2772 struct device_attribute *attr, char *buf) \
2773 { \
2774 struct nvme_subsystem *subsys = \
2775 container_of(dev, struct nvme_subsystem, dev); \
2776 return sprintf(buf, "%.*s\n", \
2777 (int)sizeof(subsys->field), subsys->field); \
2778 } \
2779 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2780
2781 nvme_subsys_show_str_function(model);
2782 nvme_subsys_show_str_function(serial);
2783 nvme_subsys_show_str_function(firmware_rev);
2784
2785 static struct attribute *nvme_subsys_attrs[] = {
2786 &subsys_attr_model.attr,
2787 &subsys_attr_serial.attr,
2788 &subsys_attr_firmware_rev.attr,
2789 &subsys_attr_subsysnqn.attr,
2790 #ifdef CONFIG_NVME_MULTIPATH
2791 &subsys_attr_iopolicy.attr,
2792 #endif
2793 NULL,
2794 };
2795
2796 static struct attribute_group nvme_subsys_attrs_group = {
2797 .attrs = nvme_subsys_attrs,
2798 };
2799
2800 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2801 &nvme_subsys_attrs_group,
2802 NULL,
2803 };
2804
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2805 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2806 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2807 {
2808 struct nvme_ctrl *tmp;
2809
2810 lockdep_assert_held(&nvme_subsystems_lock);
2811
2812 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2813 if (nvme_state_terminal(tmp))
2814 continue;
2815
2816 if (tmp->cntlid == ctrl->cntlid) {
2817 dev_err(ctrl->device,
2818 "Duplicate cntlid %u with %s, rejecting\n",
2819 ctrl->cntlid, dev_name(tmp->device));
2820 return false;
2821 }
2822
2823 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2824 (ctrl->opts && ctrl->opts->discovery_nqn))
2825 continue;
2826
2827 dev_err(ctrl->device,
2828 "Subsystem does not support multiple controllers\n");
2829 return false;
2830 }
2831
2832 return true;
2833 }
2834
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2835 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2836 {
2837 struct nvme_subsystem *subsys, *found;
2838 int ret;
2839
2840 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2841 if (!subsys)
2842 return -ENOMEM;
2843
2844 subsys->instance = -1;
2845 mutex_init(&subsys->lock);
2846 kref_init(&subsys->ref);
2847 INIT_LIST_HEAD(&subsys->ctrls);
2848 INIT_LIST_HEAD(&subsys->nsheads);
2849 nvme_init_subnqn(subsys, ctrl, id);
2850 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2851 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2852 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2853 subsys->vendor_id = le16_to_cpu(id->vid);
2854 subsys->cmic = id->cmic;
2855 subsys->awupf = le16_to_cpu(id->awupf);
2856 #ifdef CONFIG_NVME_MULTIPATH
2857 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2858 #endif
2859
2860 subsys->dev.class = nvme_subsys_class;
2861 subsys->dev.release = nvme_release_subsystem;
2862 subsys->dev.groups = nvme_subsys_attrs_groups;
2863 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2864 device_initialize(&subsys->dev);
2865
2866 mutex_lock(&nvme_subsystems_lock);
2867 found = __nvme_find_get_subsystem(subsys->subnqn);
2868 if (found) {
2869 put_device(&subsys->dev);
2870 subsys = found;
2871
2872 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2873 ret = -EINVAL;
2874 goto out_put_subsystem;
2875 }
2876 } else {
2877 ret = device_add(&subsys->dev);
2878 if (ret) {
2879 dev_err(ctrl->device,
2880 "failed to register subsystem device.\n");
2881 put_device(&subsys->dev);
2882 goto out_unlock;
2883 }
2884 ida_init(&subsys->ns_ida);
2885 list_add_tail(&subsys->entry, &nvme_subsystems);
2886 }
2887
2888 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2889 dev_name(ctrl->device));
2890 if (ret) {
2891 dev_err(ctrl->device,
2892 "failed to create sysfs link from subsystem.\n");
2893 goto out_put_subsystem;
2894 }
2895
2896 if (!found)
2897 subsys->instance = ctrl->instance;
2898 ctrl->subsys = subsys;
2899 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2900 mutex_unlock(&nvme_subsystems_lock);
2901 return 0;
2902
2903 out_put_subsystem:
2904 nvme_put_subsystem(subsys);
2905 out_unlock:
2906 mutex_unlock(&nvme_subsystems_lock);
2907 return ret;
2908 }
2909
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2910 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2911 void *log, size_t size, u64 offset)
2912 {
2913 struct nvme_command c = { };
2914 u32 dwlen = nvme_bytes_to_numd(size);
2915
2916 c.get_log_page.opcode = nvme_admin_get_log_page;
2917 c.get_log_page.nsid = cpu_to_le32(nsid);
2918 c.get_log_page.lid = log_page;
2919 c.get_log_page.lsp = lsp;
2920 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2921 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2922 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2923 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2924 c.get_log_page.csi = csi;
2925
2926 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2927 }
2928
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2929 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2930 struct nvme_effects_log **log)
2931 {
2932 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2933 int ret;
2934
2935 if (cel)
2936 goto out;
2937
2938 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2939 if (!cel)
2940 return -ENOMEM;
2941
2942 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2943 cel, sizeof(*cel), 0);
2944 if (ret) {
2945 kfree(cel);
2946 return ret;
2947 }
2948
2949 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2950 out:
2951 *log = cel;
2952 return 0;
2953 }
2954
2955 /*
2956 * Initialize the cached copies of the Identify data and various controller
2957 * register in our nvme_ctrl structure. This should be called as soon as
2958 * the admin queue is fully up and running.
2959 */
nvme_init_identify(struct nvme_ctrl * ctrl)2960 int nvme_init_identify(struct nvme_ctrl *ctrl)
2961 {
2962 struct nvme_id_ctrl *id;
2963 int ret, page_shift;
2964 u32 max_hw_sectors;
2965 bool prev_apst_enabled;
2966
2967 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2968 if (ret) {
2969 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2970 return ret;
2971 }
2972 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2973 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2974
2975 if (ctrl->vs >= NVME_VS(1, 1, 0))
2976 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2977
2978 ret = nvme_identify_ctrl(ctrl, &id);
2979 if (ret) {
2980 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2981 return -EIO;
2982 }
2983
2984 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2985 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2986 if (ret < 0)
2987 goto out_free;
2988 }
2989
2990 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2991 ctrl->cntlid = le16_to_cpu(id->cntlid);
2992
2993 if (!ctrl->identified) {
2994 int i;
2995
2996 ret = nvme_init_subsystem(ctrl, id);
2997 if (ret)
2998 goto out_free;
2999
3000 /*
3001 * Check for quirks. Quirk can depend on firmware version,
3002 * so, in principle, the set of quirks present can change
3003 * across a reset. As a possible future enhancement, we
3004 * could re-scan for quirks every time we reinitialize
3005 * the device, but we'd have to make sure that the driver
3006 * behaves intelligently if the quirks change.
3007 */
3008 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3009 if (quirk_matches(id, &core_quirks[i]))
3010 ctrl->quirks |= core_quirks[i].quirks;
3011 }
3012 }
3013
3014 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3015 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3016 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3017 }
3018
3019 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3020 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3021 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3022
3023 ctrl->oacs = le16_to_cpu(id->oacs);
3024 ctrl->oncs = le16_to_cpu(id->oncs);
3025 ctrl->mtfa = le16_to_cpu(id->mtfa);
3026 ctrl->oaes = le32_to_cpu(id->oaes);
3027 ctrl->wctemp = le16_to_cpu(id->wctemp);
3028 ctrl->cctemp = le16_to_cpu(id->cctemp);
3029
3030 atomic_set(&ctrl->abort_limit, id->acl + 1);
3031 ctrl->vwc = id->vwc;
3032 if (id->mdts)
3033 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3034 else
3035 max_hw_sectors = UINT_MAX;
3036 ctrl->max_hw_sectors =
3037 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3038
3039 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3040 ctrl->sgls = le32_to_cpu(id->sgls);
3041 ctrl->kas = le16_to_cpu(id->kas);
3042 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3043 ctrl->ctratt = le32_to_cpu(id->ctratt);
3044
3045 if (id->rtd3e) {
3046 /* us -> s */
3047 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3048
3049 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3050 shutdown_timeout, 60);
3051
3052 if (ctrl->shutdown_timeout != shutdown_timeout)
3053 dev_info(ctrl->device,
3054 "Shutdown timeout set to %u seconds\n",
3055 ctrl->shutdown_timeout);
3056 } else
3057 ctrl->shutdown_timeout = shutdown_timeout;
3058
3059 ctrl->npss = id->npss;
3060 ctrl->apsta = id->apsta;
3061 prev_apst_enabled = ctrl->apst_enabled;
3062 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3063 if (force_apst && id->apsta) {
3064 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3065 ctrl->apst_enabled = true;
3066 } else {
3067 ctrl->apst_enabled = false;
3068 }
3069 } else {
3070 ctrl->apst_enabled = id->apsta;
3071 }
3072 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3073
3074 if (ctrl->ops->flags & NVME_F_FABRICS) {
3075 ctrl->icdoff = le16_to_cpu(id->icdoff);
3076 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3077 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3078 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3079
3080 /*
3081 * In fabrics we need to verify the cntlid matches the
3082 * admin connect
3083 */
3084 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3085 dev_err(ctrl->device,
3086 "Mismatching cntlid: Connect %u vs Identify "
3087 "%u, rejecting\n",
3088 ctrl->cntlid, le16_to_cpu(id->cntlid));
3089 ret = -EINVAL;
3090 goto out_free;
3091 }
3092
3093 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3094 dev_err(ctrl->device,
3095 "keep-alive support is mandatory for fabrics\n");
3096 ret = -EINVAL;
3097 goto out_free;
3098 }
3099 } else {
3100 ctrl->hmpre = le32_to_cpu(id->hmpre);
3101 ctrl->hmmin = le32_to_cpu(id->hmmin);
3102 ctrl->hmminds = le32_to_cpu(id->hmminds);
3103 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3104 }
3105
3106 ret = nvme_mpath_init(ctrl, id);
3107 kfree(id);
3108
3109 if (ret < 0)
3110 return ret;
3111
3112 if (ctrl->apst_enabled && !prev_apst_enabled)
3113 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3114 else if (!ctrl->apst_enabled && prev_apst_enabled)
3115 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3116
3117 ret = nvme_configure_apst(ctrl);
3118 if (ret < 0)
3119 return ret;
3120
3121 ret = nvme_configure_timestamp(ctrl);
3122 if (ret < 0)
3123 return ret;
3124
3125 ret = nvme_configure_directives(ctrl);
3126 if (ret < 0)
3127 return ret;
3128
3129 ret = nvme_configure_acre(ctrl);
3130 if (ret < 0)
3131 return ret;
3132
3133 if (!ctrl->identified) {
3134 ret = nvme_hwmon_init(ctrl);
3135 if (ret < 0)
3136 return ret;
3137 }
3138
3139 ctrl->identified = true;
3140
3141 return 0;
3142
3143 out_free:
3144 kfree(id);
3145 return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(nvme_init_identify);
3148
nvme_dev_open(struct inode * inode,struct file * file)3149 static int nvme_dev_open(struct inode *inode, struct file *file)
3150 {
3151 struct nvme_ctrl *ctrl =
3152 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3153
3154 switch (ctrl->state) {
3155 case NVME_CTRL_LIVE:
3156 break;
3157 default:
3158 return -EWOULDBLOCK;
3159 }
3160
3161 nvme_get_ctrl(ctrl);
3162 if (!try_module_get(ctrl->ops->module)) {
3163 nvme_put_ctrl(ctrl);
3164 return -EINVAL;
3165 }
3166
3167 file->private_data = ctrl;
3168 return 0;
3169 }
3170
nvme_dev_release(struct inode * inode,struct file * file)3171 static int nvme_dev_release(struct inode *inode, struct file *file)
3172 {
3173 struct nvme_ctrl *ctrl =
3174 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3175
3176 module_put(ctrl->ops->module);
3177 nvme_put_ctrl(ctrl);
3178 return 0;
3179 }
3180
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp)3181 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3182 {
3183 struct nvme_ns *ns;
3184 int ret;
3185
3186 down_read(&ctrl->namespaces_rwsem);
3187 if (list_empty(&ctrl->namespaces)) {
3188 ret = -ENOTTY;
3189 goto out_unlock;
3190 }
3191
3192 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3193 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3194 dev_warn(ctrl->device,
3195 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3196 ret = -EINVAL;
3197 goto out_unlock;
3198 }
3199
3200 dev_warn(ctrl->device,
3201 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3202 kref_get(&ns->kref);
3203 up_read(&ctrl->namespaces_rwsem);
3204
3205 ret = nvme_user_cmd(ctrl, ns, argp);
3206 nvme_put_ns(ns);
3207 return ret;
3208
3209 out_unlock:
3210 up_read(&ctrl->namespaces_rwsem);
3211 return ret;
3212 }
3213
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3214 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3215 unsigned long arg)
3216 {
3217 struct nvme_ctrl *ctrl = file->private_data;
3218 void __user *argp = (void __user *)arg;
3219
3220 switch (cmd) {
3221 case NVME_IOCTL_ADMIN_CMD:
3222 return nvme_user_cmd(ctrl, NULL, argp);
3223 case NVME_IOCTL_ADMIN64_CMD:
3224 return nvme_user_cmd64(ctrl, NULL, argp);
3225 case NVME_IOCTL_IO_CMD:
3226 return nvme_dev_user_cmd(ctrl, argp);
3227 case NVME_IOCTL_RESET:
3228 dev_warn(ctrl->device, "resetting controller\n");
3229 return nvme_reset_ctrl_sync(ctrl);
3230 case NVME_IOCTL_SUBSYS_RESET:
3231 return nvme_reset_subsystem(ctrl);
3232 case NVME_IOCTL_RESCAN:
3233 nvme_queue_scan(ctrl);
3234 return 0;
3235 default:
3236 return -ENOTTY;
3237 }
3238 }
3239
3240 static const struct file_operations nvme_dev_fops = {
3241 .owner = THIS_MODULE,
3242 .open = nvme_dev_open,
3243 .release = nvme_dev_release,
3244 .unlocked_ioctl = nvme_dev_ioctl,
3245 .compat_ioctl = compat_ptr_ioctl,
3246 };
3247
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3248 static ssize_t nvme_sysfs_reset(struct device *dev,
3249 struct device_attribute *attr, const char *buf,
3250 size_t count)
3251 {
3252 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3253 int ret;
3254
3255 ret = nvme_reset_ctrl_sync(ctrl);
3256 if (ret < 0)
3257 return ret;
3258 return count;
3259 }
3260 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3261
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3262 static ssize_t nvme_sysfs_rescan(struct device *dev,
3263 struct device_attribute *attr, const char *buf,
3264 size_t count)
3265 {
3266 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3267
3268 nvme_queue_scan(ctrl);
3269 return count;
3270 }
3271 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3272
dev_to_ns_head(struct device * dev)3273 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3274 {
3275 struct gendisk *disk = dev_to_disk(dev);
3276
3277 if (disk->fops == &nvme_fops)
3278 return nvme_get_ns_from_dev(dev)->head;
3279 else
3280 return disk->private_data;
3281 }
3282
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)3283 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3284 char *buf)
3285 {
3286 struct nvme_ns_head *head = dev_to_ns_head(dev);
3287 struct nvme_ns_ids *ids = &head->ids;
3288 struct nvme_subsystem *subsys = head->subsys;
3289 int serial_len = sizeof(subsys->serial);
3290 int model_len = sizeof(subsys->model);
3291
3292 if (!uuid_is_null(&ids->uuid))
3293 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3294
3295 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3296 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3297
3298 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3299 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3300
3301 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3302 subsys->serial[serial_len - 1] == '\0'))
3303 serial_len--;
3304 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3305 subsys->model[model_len - 1] == '\0'))
3306 model_len--;
3307
3308 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3309 serial_len, subsys->serial, model_len, subsys->model,
3310 head->ns_id);
3311 }
3312 static DEVICE_ATTR_RO(wwid);
3313
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)3314 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3315 char *buf)
3316 {
3317 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3318 }
3319 static DEVICE_ATTR_RO(nguid);
3320
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)3321 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3322 char *buf)
3323 {
3324 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3325
3326 /* For backward compatibility expose the NGUID to userspace if
3327 * we have no UUID set
3328 */
3329 if (uuid_is_null(&ids->uuid)) {
3330 printk_ratelimited(KERN_WARNING
3331 "No UUID available providing old NGUID\n");
3332 return sprintf(buf, "%pU\n", ids->nguid);
3333 }
3334 return sprintf(buf, "%pU\n", &ids->uuid);
3335 }
3336 static DEVICE_ATTR_RO(uuid);
3337
eui_show(struct device * dev,struct device_attribute * attr,char * buf)3338 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3339 char *buf)
3340 {
3341 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3342 }
3343 static DEVICE_ATTR_RO(eui);
3344
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)3345 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3346 char *buf)
3347 {
3348 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3349 }
3350 static DEVICE_ATTR_RO(nsid);
3351
3352 static struct attribute *nvme_ns_id_attrs[] = {
3353 &dev_attr_wwid.attr,
3354 &dev_attr_uuid.attr,
3355 &dev_attr_nguid.attr,
3356 &dev_attr_eui.attr,
3357 &dev_attr_nsid.attr,
3358 #ifdef CONFIG_NVME_MULTIPATH
3359 &dev_attr_ana_grpid.attr,
3360 &dev_attr_ana_state.attr,
3361 #endif
3362 NULL,
3363 };
3364
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3365 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3366 struct attribute *a, int n)
3367 {
3368 struct device *dev = container_of(kobj, struct device, kobj);
3369 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3370
3371 if (a == &dev_attr_uuid.attr) {
3372 if (uuid_is_null(&ids->uuid) &&
3373 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3374 return 0;
3375 }
3376 if (a == &dev_attr_nguid.attr) {
3377 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3378 return 0;
3379 }
3380 if (a == &dev_attr_eui.attr) {
3381 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3382 return 0;
3383 }
3384 #ifdef CONFIG_NVME_MULTIPATH
3385 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3386 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3387 return 0;
3388 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3389 return 0;
3390 }
3391 #endif
3392 return a->mode;
3393 }
3394
3395 static const struct attribute_group nvme_ns_id_attr_group = {
3396 .attrs = nvme_ns_id_attrs,
3397 .is_visible = nvme_ns_id_attrs_are_visible,
3398 };
3399
3400 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3401 &nvme_ns_id_attr_group,
3402 #ifdef CONFIG_NVM
3403 &nvme_nvm_attr_group,
3404 #endif
3405 NULL,
3406 };
3407
3408 #define nvme_show_str_function(field) \
3409 static ssize_t field##_show(struct device *dev, \
3410 struct device_attribute *attr, char *buf) \
3411 { \
3412 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3413 return sprintf(buf, "%.*s\n", \
3414 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3415 } \
3416 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3417
3418 nvme_show_str_function(model);
3419 nvme_show_str_function(serial);
3420 nvme_show_str_function(firmware_rev);
3421
3422 #define nvme_show_int_function(field) \
3423 static ssize_t field##_show(struct device *dev, \
3424 struct device_attribute *attr, char *buf) \
3425 { \
3426 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3427 return sprintf(buf, "%d\n", ctrl->field); \
3428 } \
3429 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3430
3431 nvme_show_int_function(cntlid);
3432 nvme_show_int_function(numa_node);
3433 nvme_show_int_function(queue_count);
3434 nvme_show_int_function(sqsize);
3435
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3436 static ssize_t nvme_sysfs_delete(struct device *dev,
3437 struct device_attribute *attr, const char *buf,
3438 size_t count)
3439 {
3440 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3441
3442 if (device_remove_file_self(dev, attr))
3443 nvme_delete_ctrl_sync(ctrl);
3444 return count;
3445 }
3446 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3447
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)3448 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3449 struct device_attribute *attr,
3450 char *buf)
3451 {
3452 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3453
3454 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3455 }
3456 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3457
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)3458 static ssize_t nvme_sysfs_show_state(struct device *dev,
3459 struct device_attribute *attr,
3460 char *buf)
3461 {
3462 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3463 static const char *const state_name[] = {
3464 [NVME_CTRL_NEW] = "new",
3465 [NVME_CTRL_LIVE] = "live",
3466 [NVME_CTRL_RESETTING] = "resetting",
3467 [NVME_CTRL_CONNECTING] = "connecting",
3468 [NVME_CTRL_DELETING] = "deleting",
3469 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3470 [NVME_CTRL_DEAD] = "dead",
3471 };
3472
3473 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3474 state_name[ctrl->state])
3475 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3476
3477 return sprintf(buf, "unknown state\n");
3478 }
3479
3480 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3481
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)3482 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3483 struct device_attribute *attr,
3484 char *buf)
3485 {
3486 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3487
3488 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3489 }
3490 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3491
nvme_sysfs_show_hostnqn(struct device * dev,struct device_attribute * attr,char * buf)3492 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3493 struct device_attribute *attr,
3494 char *buf)
3495 {
3496 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3497
3498 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3499 }
3500 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3501
nvme_sysfs_show_hostid(struct device * dev,struct device_attribute * attr,char * buf)3502 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3503 struct device_attribute *attr,
3504 char *buf)
3505 {
3506 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3507
3508 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3509 }
3510 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3511
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)3512 static ssize_t nvme_sysfs_show_address(struct device *dev,
3513 struct device_attribute *attr,
3514 char *buf)
3515 {
3516 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3517
3518 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3519 }
3520 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3521
nvme_ctrl_loss_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3522 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3523 struct device_attribute *attr, char *buf)
3524 {
3525 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3526 struct nvmf_ctrl_options *opts = ctrl->opts;
3527
3528 if (ctrl->opts->max_reconnects == -1)
3529 return sprintf(buf, "off\n");
3530 return sprintf(buf, "%d\n",
3531 opts->max_reconnects * opts->reconnect_delay);
3532 }
3533
nvme_ctrl_loss_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3534 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3535 struct device_attribute *attr, const char *buf, size_t count)
3536 {
3537 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3538 struct nvmf_ctrl_options *opts = ctrl->opts;
3539 int ctrl_loss_tmo, err;
3540
3541 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3542 if (err)
3543 return -EINVAL;
3544
3545 else if (ctrl_loss_tmo < 0)
3546 opts->max_reconnects = -1;
3547 else
3548 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3549 opts->reconnect_delay);
3550 return count;
3551 }
3552 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3553 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3554
nvme_ctrl_reconnect_delay_show(struct device * dev,struct device_attribute * attr,char * buf)3555 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3556 struct device_attribute *attr, char *buf)
3557 {
3558 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3559
3560 if (ctrl->opts->reconnect_delay == -1)
3561 return sprintf(buf, "off\n");
3562 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3563 }
3564
nvme_ctrl_reconnect_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3565 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3566 struct device_attribute *attr, const char *buf, size_t count)
3567 {
3568 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3569 unsigned int v;
3570 int err;
3571
3572 err = kstrtou32(buf, 10, &v);
3573 if (err)
3574 return err;
3575
3576 ctrl->opts->reconnect_delay = v;
3577 return count;
3578 }
3579 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3580 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3581
3582 static struct attribute *nvme_dev_attrs[] = {
3583 &dev_attr_reset_controller.attr,
3584 &dev_attr_rescan_controller.attr,
3585 &dev_attr_model.attr,
3586 &dev_attr_serial.attr,
3587 &dev_attr_firmware_rev.attr,
3588 &dev_attr_cntlid.attr,
3589 &dev_attr_delete_controller.attr,
3590 &dev_attr_transport.attr,
3591 &dev_attr_subsysnqn.attr,
3592 &dev_attr_address.attr,
3593 &dev_attr_state.attr,
3594 &dev_attr_numa_node.attr,
3595 &dev_attr_queue_count.attr,
3596 &dev_attr_sqsize.attr,
3597 &dev_attr_hostnqn.attr,
3598 &dev_attr_hostid.attr,
3599 &dev_attr_ctrl_loss_tmo.attr,
3600 &dev_attr_reconnect_delay.attr,
3601 NULL
3602 };
3603
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3604 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3605 struct attribute *a, int n)
3606 {
3607 struct device *dev = container_of(kobj, struct device, kobj);
3608 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3609
3610 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3611 return 0;
3612 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3613 return 0;
3614 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3615 return 0;
3616 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3617 return 0;
3618 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3619 return 0;
3620 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3621 return 0;
3622
3623 return a->mode;
3624 }
3625
3626 static struct attribute_group nvme_dev_attrs_group = {
3627 .attrs = nvme_dev_attrs,
3628 .is_visible = nvme_dev_attrs_are_visible,
3629 };
3630
3631 static const struct attribute_group *nvme_dev_attr_groups[] = {
3632 &nvme_dev_attrs_group,
3633 NULL,
3634 };
3635
nvme_find_ns_head(struct nvme_subsystem * subsys,unsigned nsid)3636 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3637 unsigned nsid)
3638 {
3639 struct nvme_ns_head *h;
3640
3641 lockdep_assert_held(&subsys->lock);
3642
3643 list_for_each_entry(h, &subsys->nsheads, entry) {
3644 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3645 return h;
3646 }
3647
3648 return NULL;
3649 }
3650
__nvme_check_ids(struct nvme_subsystem * subsys,struct nvme_ns_head * new)3651 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3652 struct nvme_ns_head *new)
3653 {
3654 struct nvme_ns_head *h;
3655
3656 lockdep_assert_held(&subsys->lock);
3657
3658 list_for_each_entry(h, &subsys->nsheads, entry) {
3659 if (nvme_ns_ids_valid(&new->ids) &&
3660 nvme_ns_ids_equal(&new->ids, &h->ids))
3661 return -EINVAL;
3662 }
3663
3664 return 0;
3665 }
3666
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3667 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3668 unsigned nsid, struct nvme_ns_ids *ids)
3669 {
3670 struct nvme_ns_head *head;
3671 size_t size = sizeof(*head);
3672 int ret = -ENOMEM;
3673
3674 #ifdef CONFIG_NVME_MULTIPATH
3675 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3676 #endif
3677
3678 head = kzalloc(size, GFP_KERNEL);
3679 if (!head)
3680 goto out;
3681 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3682 if (ret < 0)
3683 goto out_free_head;
3684 head->instance = ret;
3685 INIT_LIST_HEAD(&head->list);
3686 ret = init_srcu_struct(&head->srcu);
3687 if (ret)
3688 goto out_ida_remove;
3689 head->subsys = ctrl->subsys;
3690 head->ns_id = nsid;
3691 head->ids = *ids;
3692 kref_init(&head->ref);
3693
3694 ret = __nvme_check_ids(ctrl->subsys, head);
3695 if (ret) {
3696 dev_err(ctrl->device,
3697 "duplicate IDs for nsid %d\n", nsid);
3698 goto out_cleanup_srcu;
3699 }
3700
3701 if (head->ids.csi) {
3702 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3703 if (ret)
3704 goto out_cleanup_srcu;
3705 } else
3706 head->effects = ctrl->effects;
3707
3708 ret = nvme_mpath_alloc_disk(ctrl, head);
3709 if (ret)
3710 goto out_cleanup_srcu;
3711
3712 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3713
3714 kref_get(&ctrl->subsys->ref);
3715
3716 return head;
3717 out_cleanup_srcu:
3718 cleanup_srcu_struct(&head->srcu);
3719 out_ida_remove:
3720 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3721 out_free_head:
3722 kfree(head);
3723 out:
3724 if (ret > 0)
3725 ret = blk_status_to_errno(nvme_error_status(ret));
3726 return ERR_PTR(ret);
3727 }
3728
nvme_init_ns_head(struct nvme_ns * ns,unsigned nsid,struct nvme_ns_ids * ids,bool is_shared)3729 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3730 struct nvme_ns_ids *ids, bool is_shared)
3731 {
3732 struct nvme_ctrl *ctrl = ns->ctrl;
3733 struct nvme_ns_head *head = NULL;
3734 int ret = 0;
3735
3736 mutex_lock(&ctrl->subsys->lock);
3737 head = nvme_find_ns_head(ctrl->subsys, nsid);
3738 if (!head) {
3739 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3740 if (IS_ERR(head)) {
3741 ret = PTR_ERR(head);
3742 goto out_unlock;
3743 }
3744 head->shared = is_shared;
3745 } else {
3746 ret = -EINVAL;
3747 if (!is_shared || !head->shared) {
3748 dev_err(ctrl->device,
3749 "Duplicate unshared namespace %d\n", nsid);
3750 goto out_put_ns_head;
3751 }
3752 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3753 dev_err(ctrl->device,
3754 "IDs don't match for shared namespace %d\n",
3755 nsid);
3756 goto out_put_ns_head;
3757 }
3758 }
3759
3760 list_add_tail(&ns->siblings, &head->list);
3761 ns->head = head;
3762 mutex_unlock(&ctrl->subsys->lock);
3763 return 0;
3764
3765 out_put_ns_head:
3766 nvme_put_ns_head(head);
3767 out_unlock:
3768 mutex_unlock(&ctrl->subsys->lock);
3769 return ret;
3770 }
3771
ns_cmp(void * priv,struct list_head * a,struct list_head * b)3772 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3773 {
3774 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3775 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3776
3777 return nsa->head->ns_id - nsb->head->ns_id;
3778 }
3779
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3780 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3781 {
3782 struct nvme_ns *ns, *ret = NULL;
3783
3784 down_read(&ctrl->namespaces_rwsem);
3785 list_for_each_entry(ns, &ctrl->namespaces, list) {
3786 if (ns->head->ns_id == nsid) {
3787 if (!kref_get_unless_zero(&ns->kref))
3788 continue;
3789 ret = ns;
3790 break;
3791 }
3792 if (ns->head->ns_id > nsid)
3793 break;
3794 }
3795 up_read(&ctrl->namespaces_rwsem);
3796 return ret;
3797 }
3798 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3799
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3800 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3801 struct nvme_ns_ids *ids)
3802 {
3803 struct nvme_ns *ns;
3804 struct gendisk *disk;
3805 struct nvme_id_ns *id;
3806 char disk_name[DISK_NAME_LEN];
3807 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3808
3809 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3810 return;
3811
3812 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3813 if (!ns)
3814 goto out_free_id;
3815
3816 ns->queue = blk_mq_init_queue(ctrl->tagset);
3817 if (IS_ERR(ns->queue))
3818 goto out_free_ns;
3819
3820 if (ctrl->opts && ctrl->opts->data_digest)
3821 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3822
3823 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3824 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3825 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3826
3827 ns->queue->queuedata = ns;
3828 ns->ctrl = ctrl;
3829 kref_init(&ns->kref);
3830
3831 ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3832 if (ret)
3833 goto out_free_queue;
3834 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3835
3836 disk = alloc_disk_node(0, node);
3837 if (!disk)
3838 goto out_unlink_ns;
3839
3840 disk->fops = &nvme_fops;
3841 disk->private_data = ns;
3842 disk->queue = ns->queue;
3843 disk->flags = flags;
3844 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3845 ns->disk = disk;
3846
3847 if (nvme_update_ns_info(ns, id))
3848 goto out_put_disk;
3849
3850 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3851 ret = nvme_nvm_register(ns, disk_name, node);
3852 if (ret) {
3853 dev_warn(ctrl->device, "LightNVM init failure\n");
3854 goto out_put_disk;
3855 }
3856 }
3857
3858 down_write(&ctrl->namespaces_rwsem);
3859 list_add_tail(&ns->list, &ctrl->namespaces);
3860 up_write(&ctrl->namespaces_rwsem);
3861
3862 nvme_get_ctrl(ctrl);
3863
3864 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3865
3866 nvme_mpath_add_disk(ns, id);
3867 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3868 kfree(id);
3869
3870 return;
3871 out_put_disk:
3872 /* prevent double queue cleanup */
3873 ns->disk->queue = NULL;
3874 put_disk(ns->disk);
3875 out_unlink_ns:
3876 mutex_lock(&ctrl->subsys->lock);
3877 list_del_rcu(&ns->siblings);
3878 if (list_empty(&ns->head->list))
3879 list_del_init(&ns->head->entry);
3880 mutex_unlock(&ctrl->subsys->lock);
3881 nvme_put_ns_head(ns->head);
3882 out_free_queue:
3883 blk_cleanup_queue(ns->queue);
3884 out_free_ns:
3885 kfree(ns);
3886 out_free_id:
3887 kfree(id);
3888 }
3889
nvme_ns_remove(struct nvme_ns * ns)3890 static void nvme_ns_remove(struct nvme_ns *ns)
3891 {
3892 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3893 return;
3894
3895 set_capacity(ns->disk, 0);
3896 nvme_fault_inject_fini(&ns->fault_inject);
3897
3898 mutex_lock(&ns->ctrl->subsys->lock);
3899 list_del_rcu(&ns->siblings);
3900 if (list_empty(&ns->head->list))
3901 list_del_init(&ns->head->entry);
3902 mutex_unlock(&ns->ctrl->subsys->lock);
3903
3904 synchronize_rcu(); /* guarantee not available in head->list */
3905 nvme_mpath_clear_current_path(ns);
3906 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3907
3908 if (ns->disk->flags & GENHD_FL_UP) {
3909 del_gendisk(ns->disk);
3910 blk_cleanup_queue(ns->queue);
3911 if (blk_get_integrity(ns->disk))
3912 blk_integrity_unregister(ns->disk);
3913 }
3914
3915 down_write(&ns->ctrl->namespaces_rwsem);
3916 list_del_init(&ns->list);
3917 up_write(&ns->ctrl->namespaces_rwsem);
3918
3919 nvme_mpath_check_last_path(ns);
3920 nvme_put_ns(ns);
3921 }
3922
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3923 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3924 {
3925 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3926
3927 if (ns) {
3928 nvme_ns_remove(ns);
3929 nvme_put_ns(ns);
3930 }
3931 }
3932
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_ids * ids)3933 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3934 {
3935 struct nvme_id_ns *id;
3936 int ret = -ENODEV;
3937
3938 if (test_bit(NVME_NS_DEAD, &ns->flags))
3939 goto out;
3940
3941 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3942 if (ret)
3943 goto out;
3944
3945 ret = -ENODEV;
3946 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3947 dev_err(ns->ctrl->device,
3948 "identifiers changed for nsid %d\n", ns->head->ns_id);
3949 goto out_free_id;
3950 }
3951
3952 ret = nvme_update_ns_info(ns, id);
3953
3954 out_free_id:
3955 kfree(id);
3956 out:
3957 /*
3958 * Only remove the namespace if we got a fatal error back from the
3959 * device, otherwise ignore the error and just move on.
3960 *
3961 * TODO: we should probably schedule a delayed retry here.
3962 */
3963 if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
3964 nvme_ns_remove(ns);
3965 else
3966 revalidate_disk_size(ns->disk, true);
3967 }
3968
nvme_validate_or_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)3969 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3970 {
3971 struct nvme_ns_ids ids = { };
3972 struct nvme_ns *ns;
3973
3974 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3975 return;
3976
3977 ns = nvme_find_get_ns(ctrl, nsid);
3978 if (ns) {
3979 nvme_validate_ns(ns, &ids);
3980 nvme_put_ns(ns);
3981 return;
3982 }
3983
3984 switch (ids.csi) {
3985 case NVME_CSI_NVM:
3986 nvme_alloc_ns(ctrl, nsid, &ids);
3987 break;
3988 case NVME_CSI_ZNS:
3989 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3990 dev_warn(ctrl->device,
3991 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3992 nsid);
3993 break;
3994 }
3995 nvme_alloc_ns(ctrl, nsid, &ids);
3996 break;
3997 default:
3998 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3999 ids.csi, nsid);
4000 break;
4001 }
4002 }
4003
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4004 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4005 unsigned nsid)
4006 {
4007 struct nvme_ns *ns, *next;
4008 LIST_HEAD(rm_list);
4009
4010 down_write(&ctrl->namespaces_rwsem);
4011 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4012 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4013 list_move_tail(&ns->list, &rm_list);
4014 }
4015 up_write(&ctrl->namespaces_rwsem);
4016
4017 list_for_each_entry_safe(ns, next, &rm_list, list)
4018 nvme_ns_remove(ns);
4019
4020 }
4021
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4022 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4023 {
4024 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4025 __le32 *ns_list;
4026 u32 prev = 0;
4027 int ret = 0, i;
4028
4029 if (nvme_ctrl_limited_cns(ctrl))
4030 return -EOPNOTSUPP;
4031
4032 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4033 if (!ns_list)
4034 return -ENOMEM;
4035
4036 for (;;) {
4037 struct nvme_command cmd = {
4038 .identify.opcode = nvme_admin_identify,
4039 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4040 .identify.nsid = cpu_to_le32(prev),
4041 };
4042
4043 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4044 NVME_IDENTIFY_DATA_SIZE);
4045 if (ret)
4046 goto free;
4047
4048 for (i = 0; i < nr_entries; i++) {
4049 u32 nsid = le32_to_cpu(ns_list[i]);
4050
4051 if (!nsid) /* end of the list? */
4052 goto out;
4053 nvme_validate_or_alloc_ns(ctrl, nsid);
4054 while (++prev < nsid)
4055 nvme_ns_remove_by_nsid(ctrl, prev);
4056 }
4057 }
4058 out:
4059 nvme_remove_invalid_namespaces(ctrl, prev);
4060 free:
4061 kfree(ns_list);
4062 return ret;
4063 }
4064
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4065 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4066 {
4067 struct nvme_id_ctrl *id;
4068 u32 nn, i;
4069
4070 if (nvme_identify_ctrl(ctrl, &id))
4071 return;
4072 nn = le32_to_cpu(id->nn);
4073 kfree(id);
4074
4075 for (i = 1; i <= nn; i++)
4076 nvme_validate_or_alloc_ns(ctrl, i);
4077
4078 nvme_remove_invalid_namespaces(ctrl, nn);
4079 }
4080
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4081 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4082 {
4083 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4084 __le32 *log;
4085 int error;
4086
4087 log = kzalloc(log_size, GFP_KERNEL);
4088 if (!log)
4089 return;
4090
4091 /*
4092 * We need to read the log to clear the AEN, but we don't want to rely
4093 * on it for the changed namespace information as userspace could have
4094 * raced with us in reading the log page, which could cause us to miss
4095 * updates.
4096 */
4097 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4098 NVME_CSI_NVM, log, log_size, 0);
4099 if (error)
4100 dev_warn(ctrl->device,
4101 "reading changed ns log failed: %d\n", error);
4102
4103 kfree(log);
4104 }
4105
nvme_scan_work(struct work_struct * work)4106 static void nvme_scan_work(struct work_struct *work)
4107 {
4108 struct nvme_ctrl *ctrl =
4109 container_of(work, struct nvme_ctrl, scan_work);
4110
4111 /* No tagset on a live ctrl means IO queues could not created */
4112 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4113 return;
4114
4115 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4116 dev_info(ctrl->device, "rescanning namespaces.\n");
4117 nvme_clear_changed_ns_log(ctrl);
4118 }
4119
4120 mutex_lock(&ctrl->scan_lock);
4121 if (nvme_scan_ns_list(ctrl) != 0)
4122 nvme_scan_ns_sequential(ctrl);
4123 mutex_unlock(&ctrl->scan_lock);
4124
4125 down_write(&ctrl->namespaces_rwsem);
4126 list_sort(NULL, &ctrl->namespaces, ns_cmp);
4127 up_write(&ctrl->namespaces_rwsem);
4128 }
4129
4130 /*
4131 * This function iterates the namespace list unlocked to allow recovery from
4132 * controller failure. It is up to the caller to ensure the namespace list is
4133 * not modified by scan work while this function is executing.
4134 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4135 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4136 {
4137 struct nvme_ns *ns, *next;
4138 LIST_HEAD(ns_list);
4139
4140 /*
4141 * make sure to requeue I/O to all namespaces as these
4142 * might result from the scan itself and must complete
4143 * for the scan_work to make progress
4144 */
4145 nvme_mpath_clear_ctrl_paths(ctrl);
4146
4147 /* prevent racing with ns scanning */
4148 flush_work(&ctrl->scan_work);
4149
4150 /*
4151 * The dead states indicates the controller was not gracefully
4152 * disconnected. In that case, we won't be able to flush any data while
4153 * removing the namespaces' disks; fail all the queues now to avoid
4154 * potentially having to clean up the failed sync later.
4155 */
4156 if (ctrl->state == NVME_CTRL_DEAD)
4157 nvme_kill_queues(ctrl);
4158
4159 /* this is a no-op when called from the controller reset handler */
4160 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4161
4162 down_write(&ctrl->namespaces_rwsem);
4163 list_splice_init(&ctrl->namespaces, &ns_list);
4164 up_write(&ctrl->namespaces_rwsem);
4165
4166 list_for_each_entry_safe(ns, next, &ns_list, list)
4167 nvme_ns_remove(ns);
4168 }
4169 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4170
nvme_class_uevent(struct device * dev,struct kobj_uevent_env * env)4171 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4172 {
4173 struct nvme_ctrl *ctrl =
4174 container_of(dev, struct nvme_ctrl, ctrl_device);
4175 struct nvmf_ctrl_options *opts = ctrl->opts;
4176 int ret;
4177
4178 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4179 if (ret)
4180 return ret;
4181
4182 if (opts) {
4183 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4184 if (ret)
4185 return ret;
4186
4187 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4188 opts->trsvcid ?: "none");
4189 if (ret)
4190 return ret;
4191
4192 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4193 opts->host_traddr ?: "none");
4194 }
4195 return ret;
4196 }
4197
nvme_aen_uevent(struct nvme_ctrl * ctrl)4198 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4199 {
4200 char *envp[2] = { NULL, NULL };
4201 u32 aen_result = ctrl->aen_result;
4202
4203 ctrl->aen_result = 0;
4204 if (!aen_result)
4205 return;
4206
4207 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4208 if (!envp[0])
4209 return;
4210 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4211 kfree(envp[0]);
4212 }
4213
nvme_async_event_work(struct work_struct * work)4214 static void nvme_async_event_work(struct work_struct *work)
4215 {
4216 struct nvme_ctrl *ctrl =
4217 container_of(work, struct nvme_ctrl, async_event_work);
4218
4219 nvme_aen_uevent(ctrl);
4220 ctrl->ops->submit_async_event(ctrl);
4221 }
4222
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4223 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4224 {
4225
4226 u32 csts;
4227
4228 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4229 return false;
4230
4231 if (csts == ~0)
4232 return false;
4233
4234 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4235 }
4236
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4237 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4238 {
4239 struct nvme_fw_slot_info_log *log;
4240
4241 log = kmalloc(sizeof(*log), GFP_KERNEL);
4242 if (!log)
4243 return;
4244
4245 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4246 log, sizeof(*log), 0))
4247 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4248 kfree(log);
4249 }
4250
nvme_fw_act_work(struct work_struct * work)4251 static void nvme_fw_act_work(struct work_struct *work)
4252 {
4253 struct nvme_ctrl *ctrl = container_of(work,
4254 struct nvme_ctrl, fw_act_work);
4255 unsigned long fw_act_timeout;
4256
4257 if (ctrl->mtfa)
4258 fw_act_timeout = jiffies +
4259 msecs_to_jiffies(ctrl->mtfa * 100);
4260 else
4261 fw_act_timeout = jiffies +
4262 msecs_to_jiffies(admin_timeout * 1000);
4263
4264 nvme_stop_queues(ctrl);
4265 while (nvme_ctrl_pp_status(ctrl)) {
4266 if (time_after(jiffies, fw_act_timeout)) {
4267 dev_warn(ctrl->device,
4268 "Fw activation timeout, reset controller\n");
4269 nvme_try_sched_reset(ctrl);
4270 return;
4271 }
4272 msleep(100);
4273 }
4274
4275 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4276 return;
4277
4278 nvme_start_queues(ctrl);
4279 /* read FW slot information to clear the AER */
4280 nvme_get_fw_slot_info(ctrl);
4281 }
4282
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4283 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4284 {
4285 u32 aer_notice_type = (result & 0xff00) >> 8;
4286
4287 trace_nvme_async_event(ctrl, aer_notice_type);
4288
4289 switch (aer_notice_type) {
4290 case NVME_AER_NOTICE_NS_CHANGED:
4291 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4292 nvme_queue_scan(ctrl);
4293 break;
4294 case NVME_AER_NOTICE_FW_ACT_STARTING:
4295 /*
4296 * We are (ab)using the RESETTING state to prevent subsequent
4297 * recovery actions from interfering with the controller's
4298 * firmware activation.
4299 */
4300 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4301 queue_work(nvme_wq, &ctrl->fw_act_work);
4302 break;
4303 #ifdef CONFIG_NVME_MULTIPATH
4304 case NVME_AER_NOTICE_ANA:
4305 if (!ctrl->ana_log_buf)
4306 break;
4307 queue_work(nvme_wq, &ctrl->ana_work);
4308 break;
4309 #endif
4310 case NVME_AER_NOTICE_DISC_CHANGED:
4311 ctrl->aen_result = result;
4312 break;
4313 default:
4314 dev_warn(ctrl->device, "async event result %08x\n", result);
4315 }
4316 }
4317
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4318 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4319 volatile union nvme_result *res)
4320 {
4321 u32 result = le32_to_cpu(res->u32);
4322 u32 aer_type = result & 0x07;
4323
4324 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4325 return;
4326
4327 switch (aer_type) {
4328 case NVME_AER_NOTICE:
4329 nvme_handle_aen_notice(ctrl, result);
4330 break;
4331 case NVME_AER_ERROR:
4332 case NVME_AER_SMART:
4333 case NVME_AER_CSS:
4334 case NVME_AER_VS:
4335 trace_nvme_async_event(ctrl, aer_type);
4336 ctrl->aen_result = result;
4337 break;
4338 default:
4339 break;
4340 }
4341 queue_work(nvme_wq, &ctrl->async_event_work);
4342 }
4343 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4344
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4345 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4346 {
4347 nvme_mpath_stop(ctrl);
4348 nvme_stop_keep_alive(ctrl);
4349 flush_work(&ctrl->async_event_work);
4350 cancel_work_sync(&ctrl->fw_act_work);
4351 }
4352 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4353
nvme_start_ctrl(struct nvme_ctrl * ctrl)4354 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4355 {
4356 nvme_start_keep_alive(ctrl);
4357
4358 nvme_enable_aen(ctrl);
4359
4360 if (ctrl->queue_count > 1) {
4361 nvme_queue_scan(ctrl);
4362 nvme_start_queues(ctrl);
4363 }
4364 }
4365 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4366
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4367 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4368 {
4369 nvme_fault_inject_fini(&ctrl->fault_inject);
4370 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4371 cdev_device_del(&ctrl->cdev, ctrl->device);
4372 nvme_put_ctrl(ctrl);
4373 }
4374 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4375
nvme_free_cels(struct nvme_ctrl * ctrl)4376 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4377 {
4378 struct nvme_effects_log *cel;
4379 unsigned long i;
4380
4381 xa_for_each (&ctrl->cels, i, cel) {
4382 xa_erase(&ctrl->cels, i);
4383 kfree(cel);
4384 }
4385
4386 xa_destroy(&ctrl->cels);
4387 }
4388
nvme_free_ctrl(struct device * dev)4389 static void nvme_free_ctrl(struct device *dev)
4390 {
4391 struct nvme_ctrl *ctrl =
4392 container_of(dev, struct nvme_ctrl, ctrl_device);
4393 struct nvme_subsystem *subsys = ctrl->subsys;
4394
4395 if (!subsys || ctrl->instance != subsys->instance)
4396 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4397
4398 nvme_free_cels(ctrl);
4399 nvme_mpath_uninit(ctrl);
4400 __free_page(ctrl->discard_page);
4401
4402 if (subsys) {
4403 mutex_lock(&nvme_subsystems_lock);
4404 list_del(&ctrl->subsys_entry);
4405 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4406 mutex_unlock(&nvme_subsystems_lock);
4407 }
4408
4409 ctrl->ops->free_ctrl(ctrl);
4410
4411 if (subsys)
4412 nvme_put_subsystem(subsys);
4413 }
4414
4415 /*
4416 * Initialize a NVMe controller structures. This needs to be called during
4417 * earliest initialization so that we have the initialized structured around
4418 * during probing.
4419 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4420 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4421 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4422 {
4423 int ret;
4424
4425 ctrl->state = NVME_CTRL_NEW;
4426 spin_lock_init(&ctrl->lock);
4427 mutex_init(&ctrl->scan_lock);
4428 INIT_LIST_HEAD(&ctrl->namespaces);
4429 xa_init(&ctrl->cels);
4430 init_rwsem(&ctrl->namespaces_rwsem);
4431 ctrl->dev = dev;
4432 ctrl->ops = ops;
4433 ctrl->quirks = quirks;
4434 ctrl->numa_node = NUMA_NO_NODE;
4435 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4436 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4437 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4438 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4439 init_waitqueue_head(&ctrl->state_wq);
4440
4441 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4442 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4443 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4444
4445 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4446 PAGE_SIZE);
4447 ctrl->discard_page = alloc_page(GFP_KERNEL);
4448 if (!ctrl->discard_page) {
4449 ret = -ENOMEM;
4450 goto out;
4451 }
4452
4453 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4454 if (ret < 0)
4455 goto out;
4456 ctrl->instance = ret;
4457
4458 device_initialize(&ctrl->ctrl_device);
4459 ctrl->device = &ctrl->ctrl_device;
4460 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4461 ctrl->device->class = nvme_class;
4462 ctrl->device->parent = ctrl->dev;
4463 ctrl->device->groups = nvme_dev_attr_groups;
4464 ctrl->device->release = nvme_free_ctrl;
4465 dev_set_drvdata(ctrl->device, ctrl);
4466 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4467 if (ret)
4468 goto out_release_instance;
4469
4470 nvme_get_ctrl(ctrl);
4471 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4472 ctrl->cdev.owner = ops->module;
4473 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4474 if (ret)
4475 goto out_free_name;
4476
4477 /*
4478 * Initialize latency tolerance controls. The sysfs files won't
4479 * be visible to userspace unless the device actually supports APST.
4480 */
4481 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4482 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4483 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4484
4485 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4486
4487 return 0;
4488 out_free_name:
4489 nvme_put_ctrl(ctrl);
4490 kfree_const(ctrl->device->kobj.name);
4491 out_release_instance:
4492 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4493 out:
4494 if (ctrl->discard_page)
4495 __free_page(ctrl->discard_page);
4496 return ret;
4497 }
4498 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4499
4500 /**
4501 * nvme_kill_queues(): Ends all namespace queues
4502 * @ctrl: the dead controller that needs to end
4503 *
4504 * Call this function when the driver determines it is unable to get the
4505 * controller in a state capable of servicing IO.
4506 */
nvme_kill_queues(struct nvme_ctrl * ctrl)4507 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4508 {
4509 struct nvme_ns *ns;
4510
4511 down_read(&ctrl->namespaces_rwsem);
4512
4513 /* Forcibly unquiesce queues to avoid blocking dispatch */
4514 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4515 blk_mq_unquiesce_queue(ctrl->admin_q);
4516
4517 list_for_each_entry(ns, &ctrl->namespaces, list)
4518 nvme_set_queue_dying(ns);
4519
4520 up_read(&ctrl->namespaces_rwsem);
4521 }
4522 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4523
nvme_unfreeze(struct nvme_ctrl * ctrl)4524 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4525 {
4526 struct nvme_ns *ns;
4527
4528 down_read(&ctrl->namespaces_rwsem);
4529 list_for_each_entry(ns, &ctrl->namespaces, list)
4530 blk_mq_unfreeze_queue(ns->queue);
4531 up_read(&ctrl->namespaces_rwsem);
4532 }
4533 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4534
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4535 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4536 {
4537 struct nvme_ns *ns;
4538
4539 down_read(&ctrl->namespaces_rwsem);
4540 list_for_each_entry(ns, &ctrl->namespaces, list) {
4541 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4542 if (timeout <= 0)
4543 break;
4544 }
4545 up_read(&ctrl->namespaces_rwsem);
4546 return timeout;
4547 }
4548 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4549
nvme_wait_freeze(struct nvme_ctrl * ctrl)4550 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4551 {
4552 struct nvme_ns *ns;
4553
4554 down_read(&ctrl->namespaces_rwsem);
4555 list_for_each_entry(ns, &ctrl->namespaces, list)
4556 blk_mq_freeze_queue_wait(ns->queue);
4557 up_read(&ctrl->namespaces_rwsem);
4558 }
4559 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4560
nvme_start_freeze(struct nvme_ctrl * ctrl)4561 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4562 {
4563 struct nvme_ns *ns;
4564
4565 down_read(&ctrl->namespaces_rwsem);
4566 list_for_each_entry(ns, &ctrl->namespaces, list)
4567 blk_freeze_queue_start(ns->queue);
4568 up_read(&ctrl->namespaces_rwsem);
4569 }
4570 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4571
nvme_stop_queues(struct nvme_ctrl * ctrl)4572 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4573 {
4574 struct nvme_ns *ns;
4575
4576 down_read(&ctrl->namespaces_rwsem);
4577 list_for_each_entry(ns, &ctrl->namespaces, list)
4578 blk_mq_quiesce_queue(ns->queue);
4579 up_read(&ctrl->namespaces_rwsem);
4580 }
4581 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4582
nvme_start_queues(struct nvme_ctrl * ctrl)4583 void nvme_start_queues(struct nvme_ctrl *ctrl)
4584 {
4585 struct nvme_ns *ns;
4586
4587 down_read(&ctrl->namespaces_rwsem);
4588 list_for_each_entry(ns, &ctrl->namespaces, list)
4589 blk_mq_unquiesce_queue(ns->queue);
4590 up_read(&ctrl->namespaces_rwsem);
4591 }
4592 EXPORT_SYMBOL_GPL(nvme_start_queues);
4593
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4594 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4595 {
4596 struct nvme_ns *ns;
4597
4598 down_read(&ctrl->namespaces_rwsem);
4599 list_for_each_entry(ns, &ctrl->namespaces, list)
4600 blk_sync_queue(ns->queue);
4601 up_read(&ctrl->namespaces_rwsem);
4602 }
4603 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4604
nvme_sync_queues(struct nvme_ctrl * ctrl)4605 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4606 {
4607 nvme_sync_io_queues(ctrl);
4608 if (ctrl->admin_q)
4609 blk_sync_queue(ctrl->admin_q);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4612
nvme_ctrl_from_file(struct file * file)4613 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4614 {
4615 if (file->f_op != &nvme_dev_fops)
4616 return NULL;
4617 return file->private_data;
4618 }
4619 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4620
4621 /*
4622 * Check we didn't inadvertently grow the command structure sizes:
4623 */
_nvme_check_size(void)4624 static inline void _nvme_check_size(void)
4625 {
4626 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4627 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4628 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4629 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4630 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4631 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4632 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4633 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4634 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4635 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4636 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4637 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4638 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4639 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4640 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4641 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4642 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4643 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4644 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4645 }
4646
4647
nvme_core_init(void)4648 static int __init nvme_core_init(void)
4649 {
4650 int result = -ENOMEM;
4651
4652 _nvme_check_size();
4653
4654 nvme_wq = alloc_workqueue("nvme-wq",
4655 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4656 if (!nvme_wq)
4657 goto out;
4658
4659 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4660 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4661 if (!nvme_reset_wq)
4662 goto destroy_wq;
4663
4664 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4665 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4666 if (!nvme_delete_wq)
4667 goto destroy_reset_wq;
4668
4669 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4670 if (result < 0)
4671 goto destroy_delete_wq;
4672
4673 nvme_class = class_create(THIS_MODULE, "nvme");
4674 if (IS_ERR(nvme_class)) {
4675 result = PTR_ERR(nvme_class);
4676 goto unregister_chrdev;
4677 }
4678 nvme_class->dev_uevent = nvme_class_uevent;
4679
4680 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4681 if (IS_ERR(nvme_subsys_class)) {
4682 result = PTR_ERR(nvme_subsys_class);
4683 goto destroy_class;
4684 }
4685 return 0;
4686
4687 destroy_class:
4688 class_destroy(nvme_class);
4689 unregister_chrdev:
4690 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4691 destroy_delete_wq:
4692 destroy_workqueue(nvme_delete_wq);
4693 destroy_reset_wq:
4694 destroy_workqueue(nvme_reset_wq);
4695 destroy_wq:
4696 destroy_workqueue(nvme_wq);
4697 out:
4698 return result;
4699 }
4700
nvme_core_exit(void)4701 static void __exit nvme_core_exit(void)
4702 {
4703 class_destroy(nvme_subsys_class);
4704 class_destroy(nvme_class);
4705 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4706 destroy_workqueue(nvme_delete_wq);
4707 destroy_workqueue(nvme_reset_wq);
4708 destroy_workqueue(nvme_wq);
4709 ida_destroy(&nvme_instance_ida);
4710 }
4711
4712 MODULE_LICENSE("GPL");
4713 MODULE_VERSION("1.0");
4714 module_init(nvme_core_init);
4715 module_exit(nvme_core_exit);
4716