1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/highmem.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/hash.h>
10 #include <linux/sort.h>
11 #include <linux/io.h>
12 #include <linux/nd.h>
13 #include "nd-core.h"
14 #include "nd.h"
15 
16 /*
17  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
18  * irrelevant.
19  */
20 #include <linux/io-64-nonatomic-hi-lo.h>
21 
22 static DEFINE_IDA(region_ida);
23 static DEFINE_PER_CPU(int, flush_idx);
24 
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 		struct nd_region_data *ndrd)
27 {
28 	int i, j;
29 
30 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 		struct resource *res = &nvdimm->flush_wpq[i];
34 		unsigned long pfn = PHYS_PFN(res->start);
35 		void __iomem *flush_page;
36 
37 		/* check if flush hints share a page */
38 		for (j = 0; j < i; j++) {
39 			struct resource *res_j = &nvdimm->flush_wpq[j];
40 			unsigned long pfn_j = PHYS_PFN(res_j->start);
41 
42 			if (pfn == pfn_j)
43 				break;
44 		}
45 
46 		if (j < i)
47 			flush_page = (void __iomem *) ((unsigned long)
48 					ndrd_get_flush_wpq(ndrd, dimm, j)
49 					& PAGE_MASK);
50 		else
51 			flush_page = devm_nvdimm_ioremap(dev,
52 					PFN_PHYS(pfn), PAGE_SIZE);
53 		if (!flush_page)
54 			return -ENXIO;
55 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 				+ (res->start & ~PAGE_MASK));
57 	}
58 
59 	return 0;
60 }
61 
nd_region_activate(struct nd_region * nd_region)62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 	int i, j, num_flush = 0;
65 	struct nd_region_data *ndrd;
66 	struct device *dev = &nd_region->dev;
67 	size_t flush_data_size = sizeof(void *);
68 
69 	nvdimm_bus_lock(&nd_region->dev);
70 	for (i = 0; i < nd_region->ndr_mappings; i++) {
71 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
73 
74 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 			nvdimm_bus_unlock(&nd_region->dev);
76 			return -EBUSY;
77 		}
78 
79 		/* at least one null hint slot per-dimm for the "no-hint" case */
80 		flush_data_size += sizeof(void *);
81 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 		if (!nvdimm->num_flush)
83 			continue;
84 		flush_data_size += nvdimm->num_flush * sizeof(void *);
85 	}
86 	nvdimm_bus_unlock(&nd_region->dev);
87 
88 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 	if (!ndrd)
90 		return -ENOMEM;
91 	dev_set_drvdata(dev, ndrd);
92 
93 	if (!num_flush)
94 		return 0;
95 
96 	ndrd->hints_shift = ilog2(num_flush);
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	/*
107 	 * Clear out entries that are duplicates. This should prevent the
108 	 * extra flushings.
109 	 */
110 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 		/* ignore if NULL already */
112 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 			continue;
114 
115 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 			    ndrd_get_flush_wpq(ndrd, j, 0))
118 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 	}
120 
121 	return 0;
122 }
123 
nd_region_release(struct device * dev)124 static void nd_region_release(struct device *dev)
125 {
126 	struct nd_region *nd_region = to_nd_region(dev);
127 	u16 i;
128 
129 	for (i = 0; i < nd_region->ndr_mappings; i++) {
130 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
132 
133 		put_device(&nvdimm->dev);
134 	}
135 	free_percpu(nd_region->lane);
136 	ida_simple_remove(&region_ida, nd_region->id);
137 	if (is_nd_blk(dev))
138 		kfree(to_nd_blk_region(dev));
139 	else
140 		kfree(nd_region);
141 }
142 
143 static struct device_type nd_blk_device_type = {
144 	.name = "nd_blk",
145 	.release = nd_region_release,
146 };
147 
148 static struct device_type nd_pmem_device_type = {
149 	.name = "nd_pmem",
150 	.release = nd_region_release,
151 };
152 
153 static struct device_type nd_volatile_device_type = {
154 	.name = "nd_volatile",
155 	.release = nd_region_release,
156 };
157 
is_nd_pmem(struct device * dev)158 bool is_nd_pmem(struct device *dev)
159 {
160 	return dev ? dev->type == &nd_pmem_device_type : false;
161 }
162 
is_nd_blk(struct device * dev)163 bool is_nd_blk(struct device *dev)
164 {
165 	return dev ? dev->type == &nd_blk_device_type : false;
166 }
167 
is_nd_volatile(struct device * dev)168 bool is_nd_volatile(struct device *dev)
169 {
170 	return dev ? dev->type == &nd_volatile_device_type : false;
171 }
172 
to_nd_region(struct device * dev)173 struct nd_region *to_nd_region(struct device *dev)
174 {
175 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
176 
177 	WARN_ON(dev->type->release != nd_region_release);
178 	return nd_region;
179 }
180 EXPORT_SYMBOL_GPL(to_nd_region);
181 
nd_region_dev(struct nd_region * nd_region)182 struct device *nd_region_dev(struct nd_region *nd_region)
183 {
184 	if (!nd_region)
185 		return NULL;
186 	return &nd_region->dev;
187 }
188 EXPORT_SYMBOL_GPL(nd_region_dev);
189 
to_nd_blk_region(struct device * dev)190 struct nd_blk_region *to_nd_blk_region(struct device *dev)
191 {
192 	struct nd_region *nd_region = to_nd_region(dev);
193 
194 	WARN_ON(!is_nd_blk(dev));
195 	return container_of(nd_region, struct nd_blk_region, nd_region);
196 }
197 EXPORT_SYMBOL_GPL(to_nd_blk_region);
198 
nd_region_provider_data(struct nd_region * nd_region)199 void *nd_region_provider_data(struct nd_region *nd_region)
200 {
201 	return nd_region->provider_data;
202 }
203 EXPORT_SYMBOL_GPL(nd_region_provider_data);
204 
nd_blk_region_provider_data(struct nd_blk_region * ndbr)205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
206 {
207 	return ndbr->blk_provider_data;
208 }
209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
210 
nd_blk_region_set_provider_data(struct nd_blk_region * ndbr,void * data)211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
212 {
213 	ndbr->blk_provider_data = data;
214 }
215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
216 
217 /**
218  * nd_region_to_nstype() - region to an integer namespace type
219  * @nd_region: region-device to interrogate
220  *
221  * This is the 'nstype' attribute of a region as well, an input to the
222  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
223  * namespace devices with namespace drivers.
224  */
nd_region_to_nstype(struct nd_region * nd_region)225 int nd_region_to_nstype(struct nd_region *nd_region)
226 {
227 	if (is_memory(&nd_region->dev)) {
228 		u16 i, alias;
229 
230 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
231 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
232 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
233 
234 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
235 				alias++;
236 		}
237 		if (alias)
238 			return ND_DEVICE_NAMESPACE_PMEM;
239 		else
240 			return ND_DEVICE_NAMESPACE_IO;
241 	} else if (is_nd_blk(&nd_region->dev)) {
242 		return ND_DEVICE_NAMESPACE_BLK;
243 	}
244 
245 	return 0;
246 }
247 EXPORT_SYMBOL(nd_region_to_nstype);
248 
size_show(struct device * dev,struct device_attribute * attr,char * buf)249 static ssize_t size_show(struct device *dev,
250 		struct device_attribute *attr, char *buf)
251 {
252 	struct nd_region *nd_region = to_nd_region(dev);
253 	unsigned long long size = 0;
254 
255 	if (is_memory(dev)) {
256 		size = nd_region->ndr_size;
257 	} else if (nd_region->ndr_mappings == 1) {
258 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
259 
260 		size = nd_mapping->size;
261 	}
262 
263 	return sprintf(buf, "%llu\n", size);
264 }
265 static DEVICE_ATTR_RO(size);
266 
deep_flush_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t deep_flush_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct nd_region *nd_region = to_nd_region(dev);
271 
272 	/*
273 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
274 	 * not visible.
275 	 */
276 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
277 }
278 
deep_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
280 		const char *buf, size_t len)
281 {
282 	bool flush;
283 	int rc = strtobool(buf, &flush);
284 	struct nd_region *nd_region = to_nd_region(dev);
285 
286 	if (rc)
287 		return rc;
288 	if (!flush)
289 		return -EINVAL;
290 	rc = nvdimm_flush(nd_region, NULL);
291 	if (rc)
292 		return rc;
293 
294 	return len;
295 }
296 static DEVICE_ATTR_RW(deep_flush);
297 
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)298 static ssize_t mappings_show(struct device *dev,
299 		struct device_attribute *attr, char *buf)
300 {
301 	struct nd_region *nd_region = to_nd_region(dev);
302 
303 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
304 }
305 static DEVICE_ATTR_RO(mappings);
306 
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)307 static ssize_t nstype_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct nd_region *nd_region = to_nd_region(dev);
311 
312 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
313 }
314 static DEVICE_ATTR_RO(nstype);
315 
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t set_cookie_show(struct device *dev,
317 		struct device_attribute *attr, char *buf)
318 {
319 	struct nd_region *nd_region = to_nd_region(dev);
320 	struct nd_interleave_set *nd_set = nd_region->nd_set;
321 	ssize_t rc = 0;
322 
323 	if (is_memory(dev) && nd_set)
324 		/* pass, should be precluded by region_visible */;
325 	else
326 		return -ENXIO;
327 
328 	/*
329 	 * The cookie to show depends on which specification of the
330 	 * labels we are using. If there are not labels then default to
331 	 * the v1.1 namespace label cookie definition. To read all this
332 	 * data we need to wait for probing to settle.
333 	 */
334 	nd_device_lock(dev);
335 	nvdimm_bus_lock(dev);
336 	wait_nvdimm_bus_probe_idle(dev);
337 	if (nd_region->ndr_mappings) {
338 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
339 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
340 
341 		if (ndd) {
342 			struct nd_namespace_index *nsindex;
343 
344 			nsindex = to_namespace_index(ndd, ndd->ns_current);
345 			rc = sprintf(buf, "%#llx\n",
346 					nd_region_interleave_set_cookie(nd_region,
347 						nsindex));
348 		}
349 	}
350 	nvdimm_bus_unlock(dev);
351 	nd_device_unlock(dev);
352 
353 	if (rc)
354 		return rc;
355 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
356 }
357 static DEVICE_ATTR_RO(set_cookie);
358 
nd_region_available_dpa(struct nd_region * nd_region)359 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
360 {
361 	resource_size_t blk_max_overlap = 0, available, overlap;
362 	int i;
363 
364 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
365 
366  retry:
367 	available = 0;
368 	overlap = blk_max_overlap;
369 	for (i = 0; i < nd_region->ndr_mappings; i++) {
370 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
371 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
372 
373 		/* if a dimm is disabled the available capacity is zero */
374 		if (!ndd)
375 			return 0;
376 
377 		if (is_memory(&nd_region->dev)) {
378 			available += nd_pmem_available_dpa(nd_region,
379 					nd_mapping, &overlap);
380 			if (overlap > blk_max_overlap) {
381 				blk_max_overlap = overlap;
382 				goto retry;
383 			}
384 		} else if (is_nd_blk(&nd_region->dev))
385 			available += nd_blk_available_dpa(nd_region);
386 	}
387 
388 	return available;
389 }
390 
nd_region_allocatable_dpa(struct nd_region * nd_region)391 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
392 {
393 	resource_size_t available = 0;
394 	int i;
395 
396 	if (is_memory(&nd_region->dev))
397 		available = PHYS_ADDR_MAX;
398 
399 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
400 	for (i = 0; i < nd_region->ndr_mappings; i++) {
401 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
402 
403 		if (is_memory(&nd_region->dev))
404 			available = min(available,
405 					nd_pmem_max_contiguous_dpa(nd_region,
406 								   nd_mapping));
407 		else if (is_nd_blk(&nd_region->dev))
408 			available += nd_blk_available_dpa(nd_region);
409 	}
410 	if (is_memory(&nd_region->dev))
411 		return available * nd_region->ndr_mappings;
412 	return available;
413 }
414 
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)415 static ssize_t available_size_show(struct device *dev,
416 		struct device_attribute *attr, char *buf)
417 {
418 	struct nd_region *nd_region = to_nd_region(dev);
419 	unsigned long long available = 0;
420 
421 	/*
422 	 * Flush in-flight updates and grab a snapshot of the available
423 	 * size.  Of course, this value is potentially invalidated the
424 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
425 	 * problem to not race itself.
426 	 */
427 	nd_device_lock(dev);
428 	nvdimm_bus_lock(dev);
429 	wait_nvdimm_bus_probe_idle(dev);
430 	available = nd_region_available_dpa(nd_region);
431 	nvdimm_bus_unlock(dev);
432 	nd_device_unlock(dev);
433 
434 	return sprintf(buf, "%llu\n", available);
435 }
436 static DEVICE_ATTR_RO(available_size);
437 
max_available_extent_show(struct device * dev,struct device_attribute * attr,char * buf)438 static ssize_t max_available_extent_show(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	struct nd_region *nd_region = to_nd_region(dev);
442 	unsigned long long available = 0;
443 
444 	nd_device_lock(dev);
445 	nvdimm_bus_lock(dev);
446 	wait_nvdimm_bus_probe_idle(dev);
447 	available = nd_region_allocatable_dpa(nd_region);
448 	nvdimm_bus_unlock(dev);
449 	nd_device_unlock(dev);
450 
451 	return sprintf(buf, "%llu\n", available);
452 }
453 static DEVICE_ATTR_RO(max_available_extent);
454 
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)455 static ssize_t init_namespaces_show(struct device *dev,
456 		struct device_attribute *attr, char *buf)
457 {
458 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
459 	ssize_t rc;
460 
461 	nvdimm_bus_lock(dev);
462 	if (ndrd)
463 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
464 	else
465 		rc = -ENXIO;
466 	nvdimm_bus_unlock(dev);
467 
468 	return rc;
469 }
470 static DEVICE_ATTR_RO(init_namespaces);
471 
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)472 static ssize_t namespace_seed_show(struct device *dev,
473 		struct device_attribute *attr, char *buf)
474 {
475 	struct nd_region *nd_region = to_nd_region(dev);
476 	ssize_t rc;
477 
478 	nvdimm_bus_lock(dev);
479 	if (nd_region->ns_seed)
480 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
481 	else
482 		rc = sprintf(buf, "\n");
483 	nvdimm_bus_unlock(dev);
484 	return rc;
485 }
486 static DEVICE_ATTR_RO(namespace_seed);
487 
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)488 static ssize_t btt_seed_show(struct device *dev,
489 		struct device_attribute *attr, char *buf)
490 {
491 	struct nd_region *nd_region = to_nd_region(dev);
492 	ssize_t rc;
493 
494 	nvdimm_bus_lock(dev);
495 	if (nd_region->btt_seed)
496 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
497 	else
498 		rc = sprintf(buf, "\n");
499 	nvdimm_bus_unlock(dev);
500 
501 	return rc;
502 }
503 static DEVICE_ATTR_RO(btt_seed);
504 
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)505 static ssize_t pfn_seed_show(struct device *dev,
506 		struct device_attribute *attr, char *buf)
507 {
508 	struct nd_region *nd_region = to_nd_region(dev);
509 	ssize_t rc;
510 
511 	nvdimm_bus_lock(dev);
512 	if (nd_region->pfn_seed)
513 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
514 	else
515 		rc = sprintf(buf, "\n");
516 	nvdimm_bus_unlock(dev);
517 
518 	return rc;
519 }
520 static DEVICE_ATTR_RO(pfn_seed);
521 
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)522 static ssize_t dax_seed_show(struct device *dev,
523 		struct device_attribute *attr, char *buf)
524 {
525 	struct nd_region *nd_region = to_nd_region(dev);
526 	ssize_t rc;
527 
528 	nvdimm_bus_lock(dev);
529 	if (nd_region->dax_seed)
530 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
531 	else
532 		rc = sprintf(buf, "\n");
533 	nvdimm_bus_unlock(dev);
534 
535 	return rc;
536 }
537 static DEVICE_ATTR_RO(dax_seed);
538 
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)539 static ssize_t read_only_show(struct device *dev,
540 		struct device_attribute *attr, char *buf)
541 {
542 	struct nd_region *nd_region = to_nd_region(dev);
543 
544 	return sprintf(buf, "%d\n", nd_region->ro);
545 }
546 
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)547 static ssize_t read_only_store(struct device *dev,
548 		struct device_attribute *attr, const char *buf, size_t len)
549 {
550 	bool ro;
551 	int rc = strtobool(buf, &ro);
552 	struct nd_region *nd_region = to_nd_region(dev);
553 
554 	if (rc)
555 		return rc;
556 
557 	nd_region->ro = ro;
558 	return len;
559 }
560 static DEVICE_ATTR_RW(read_only);
561 
region_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)562 static ssize_t region_badblocks_show(struct device *dev,
563 		struct device_attribute *attr, char *buf)
564 {
565 	struct nd_region *nd_region = to_nd_region(dev);
566 	ssize_t rc;
567 
568 	nd_device_lock(dev);
569 	if (dev->driver)
570 		rc = badblocks_show(&nd_region->bb, buf, 0);
571 	else
572 		rc = -ENXIO;
573 	nd_device_unlock(dev);
574 
575 	return rc;
576 }
577 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
578 
resource_show(struct device * dev,struct device_attribute * attr,char * buf)579 static ssize_t resource_show(struct device *dev,
580 		struct device_attribute *attr, char *buf)
581 {
582 	struct nd_region *nd_region = to_nd_region(dev);
583 
584 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
585 }
586 static DEVICE_ATTR_RO(resource);
587 
persistence_domain_show(struct device * dev,struct device_attribute * attr,char * buf)588 static ssize_t persistence_domain_show(struct device *dev,
589 		struct device_attribute *attr, char *buf)
590 {
591 	struct nd_region *nd_region = to_nd_region(dev);
592 
593 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
594 		return sprintf(buf, "cpu_cache\n");
595 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
596 		return sprintf(buf, "memory_controller\n");
597 	else
598 		return sprintf(buf, "\n");
599 }
600 static DEVICE_ATTR_RO(persistence_domain);
601 
602 static struct attribute *nd_region_attributes[] = {
603 	&dev_attr_size.attr,
604 	&dev_attr_nstype.attr,
605 	&dev_attr_mappings.attr,
606 	&dev_attr_btt_seed.attr,
607 	&dev_attr_pfn_seed.attr,
608 	&dev_attr_dax_seed.attr,
609 	&dev_attr_deep_flush.attr,
610 	&dev_attr_read_only.attr,
611 	&dev_attr_set_cookie.attr,
612 	&dev_attr_available_size.attr,
613 	&dev_attr_max_available_extent.attr,
614 	&dev_attr_namespace_seed.attr,
615 	&dev_attr_init_namespaces.attr,
616 	&dev_attr_badblocks.attr,
617 	&dev_attr_resource.attr,
618 	&dev_attr_persistence_domain.attr,
619 	NULL,
620 };
621 
region_visible(struct kobject * kobj,struct attribute * a,int n)622 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
623 {
624 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
625 	struct nd_region *nd_region = to_nd_region(dev);
626 	struct nd_interleave_set *nd_set = nd_region->nd_set;
627 	int type = nd_region_to_nstype(nd_region);
628 
629 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
630 		return 0;
631 
632 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
633 		return 0;
634 
635 	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
636 		return 0;
637 
638 	if (a == &dev_attr_resource.attr) {
639 		if (is_memory(dev))
640 			return 0400;
641 		else
642 			return 0;
643 	}
644 
645 	if (a == &dev_attr_deep_flush.attr) {
646 		int has_flush = nvdimm_has_flush(nd_region);
647 
648 		if (has_flush == 1)
649 			return a->mode;
650 		else if (has_flush == 0)
651 			return 0444;
652 		else
653 			return 0;
654 	}
655 
656 	if (a == &dev_attr_persistence_domain.attr) {
657 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
658 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
659 			return 0;
660 		return a->mode;
661 	}
662 
663 	if (a != &dev_attr_set_cookie.attr
664 			&& a != &dev_attr_available_size.attr)
665 		return a->mode;
666 
667 	if ((type == ND_DEVICE_NAMESPACE_PMEM
668 				|| type == ND_DEVICE_NAMESPACE_BLK)
669 			&& a == &dev_attr_available_size.attr)
670 		return a->mode;
671 	else if (is_memory(dev) && nd_set)
672 		return a->mode;
673 
674 	return 0;
675 }
676 
677 struct attribute_group nd_region_attribute_group = {
678 	.attrs = nd_region_attributes,
679 	.is_visible = region_visible,
680 };
681 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
682 
nd_region_interleave_set_cookie(struct nd_region * nd_region,struct nd_namespace_index * nsindex)683 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
684 		struct nd_namespace_index *nsindex)
685 {
686 	struct nd_interleave_set *nd_set = nd_region->nd_set;
687 
688 	if (!nd_set)
689 		return 0;
690 
691 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
692 			&& __le16_to_cpu(nsindex->minor) == 1)
693 		return nd_set->cookie1;
694 	return nd_set->cookie2;
695 }
696 
nd_region_interleave_set_altcookie(struct nd_region * nd_region)697 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
698 {
699 	struct nd_interleave_set *nd_set = nd_region->nd_set;
700 
701 	if (nd_set)
702 		return nd_set->altcookie;
703 	return 0;
704 }
705 
nd_mapping_free_labels(struct nd_mapping * nd_mapping)706 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
707 {
708 	struct nd_label_ent *label_ent, *e;
709 
710 	lockdep_assert_held(&nd_mapping->lock);
711 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
712 		list_del(&label_ent->list);
713 		kfree(label_ent);
714 	}
715 }
716 
717 /*
718  * When a namespace is activated create new seeds for the next
719  * namespace, or namespace-personality to be configured.
720  */
nd_region_advance_seeds(struct nd_region * nd_region,struct device * dev)721 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
722 {
723 	nvdimm_bus_lock(dev);
724 	if (nd_region->ns_seed == dev) {
725 		nd_region_create_ns_seed(nd_region);
726 	} else if (is_nd_btt(dev)) {
727 		struct nd_btt *nd_btt = to_nd_btt(dev);
728 
729 		if (nd_region->btt_seed == dev)
730 			nd_region_create_btt_seed(nd_region);
731 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
732 			nd_region_create_ns_seed(nd_region);
733 	} else if (is_nd_pfn(dev)) {
734 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
735 
736 		if (nd_region->pfn_seed == dev)
737 			nd_region_create_pfn_seed(nd_region);
738 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
739 			nd_region_create_ns_seed(nd_region);
740 	} else if (is_nd_dax(dev)) {
741 		struct nd_dax *nd_dax = to_nd_dax(dev);
742 
743 		if (nd_region->dax_seed == dev)
744 			nd_region_create_dax_seed(nd_region);
745 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
746 			nd_region_create_ns_seed(nd_region);
747 	}
748 	nvdimm_bus_unlock(dev);
749 }
750 
mappingN(struct device * dev,char * buf,int n)751 static ssize_t mappingN(struct device *dev, char *buf, int n)
752 {
753 	struct nd_region *nd_region = to_nd_region(dev);
754 	struct nd_mapping *nd_mapping;
755 	struct nvdimm *nvdimm;
756 
757 	if (n >= nd_region->ndr_mappings)
758 		return -ENXIO;
759 	nd_mapping = &nd_region->mapping[n];
760 	nvdimm = nd_mapping->nvdimm;
761 
762 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
763 			nd_mapping->start, nd_mapping->size,
764 			nd_mapping->position);
765 }
766 
767 #define REGION_MAPPING(idx) \
768 static ssize_t mapping##idx##_show(struct device *dev,		\
769 		struct device_attribute *attr, char *buf)	\
770 {								\
771 	return mappingN(dev, buf, idx);				\
772 }								\
773 static DEVICE_ATTR_RO(mapping##idx)
774 
775 /*
776  * 32 should be enough for a while, even in the presence of socket
777  * interleave a 32-way interleave set is a degenerate case.
778  */
779 REGION_MAPPING(0);
780 REGION_MAPPING(1);
781 REGION_MAPPING(2);
782 REGION_MAPPING(3);
783 REGION_MAPPING(4);
784 REGION_MAPPING(5);
785 REGION_MAPPING(6);
786 REGION_MAPPING(7);
787 REGION_MAPPING(8);
788 REGION_MAPPING(9);
789 REGION_MAPPING(10);
790 REGION_MAPPING(11);
791 REGION_MAPPING(12);
792 REGION_MAPPING(13);
793 REGION_MAPPING(14);
794 REGION_MAPPING(15);
795 REGION_MAPPING(16);
796 REGION_MAPPING(17);
797 REGION_MAPPING(18);
798 REGION_MAPPING(19);
799 REGION_MAPPING(20);
800 REGION_MAPPING(21);
801 REGION_MAPPING(22);
802 REGION_MAPPING(23);
803 REGION_MAPPING(24);
804 REGION_MAPPING(25);
805 REGION_MAPPING(26);
806 REGION_MAPPING(27);
807 REGION_MAPPING(28);
808 REGION_MAPPING(29);
809 REGION_MAPPING(30);
810 REGION_MAPPING(31);
811 
mapping_visible(struct kobject * kobj,struct attribute * a,int n)812 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
813 {
814 	struct device *dev = container_of(kobj, struct device, kobj);
815 	struct nd_region *nd_region = to_nd_region(dev);
816 
817 	if (n < nd_region->ndr_mappings)
818 		return a->mode;
819 	return 0;
820 }
821 
822 static struct attribute *mapping_attributes[] = {
823 	&dev_attr_mapping0.attr,
824 	&dev_attr_mapping1.attr,
825 	&dev_attr_mapping2.attr,
826 	&dev_attr_mapping3.attr,
827 	&dev_attr_mapping4.attr,
828 	&dev_attr_mapping5.attr,
829 	&dev_attr_mapping6.attr,
830 	&dev_attr_mapping7.attr,
831 	&dev_attr_mapping8.attr,
832 	&dev_attr_mapping9.attr,
833 	&dev_attr_mapping10.attr,
834 	&dev_attr_mapping11.attr,
835 	&dev_attr_mapping12.attr,
836 	&dev_attr_mapping13.attr,
837 	&dev_attr_mapping14.attr,
838 	&dev_attr_mapping15.attr,
839 	&dev_attr_mapping16.attr,
840 	&dev_attr_mapping17.attr,
841 	&dev_attr_mapping18.attr,
842 	&dev_attr_mapping19.attr,
843 	&dev_attr_mapping20.attr,
844 	&dev_attr_mapping21.attr,
845 	&dev_attr_mapping22.attr,
846 	&dev_attr_mapping23.attr,
847 	&dev_attr_mapping24.attr,
848 	&dev_attr_mapping25.attr,
849 	&dev_attr_mapping26.attr,
850 	&dev_attr_mapping27.attr,
851 	&dev_attr_mapping28.attr,
852 	&dev_attr_mapping29.attr,
853 	&dev_attr_mapping30.attr,
854 	&dev_attr_mapping31.attr,
855 	NULL,
856 };
857 
858 struct attribute_group nd_mapping_attribute_group = {
859 	.is_visible = mapping_visible,
860 	.attrs = mapping_attributes,
861 };
862 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
863 
nd_blk_region_init(struct nd_region * nd_region)864 int nd_blk_region_init(struct nd_region *nd_region)
865 {
866 	struct device *dev = &nd_region->dev;
867 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
868 
869 	if (!is_nd_blk(dev))
870 		return 0;
871 
872 	if (nd_region->ndr_mappings < 1) {
873 		dev_dbg(dev, "invalid BLK region\n");
874 		return -ENXIO;
875 	}
876 
877 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
878 }
879 
880 /**
881  * nd_region_acquire_lane - allocate and lock a lane
882  * @nd_region: region id and number of lanes possible
883  *
884  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
885  * We optimize for the common case where there are 256 lanes, one
886  * per-cpu.  For larger systems we need to lock to share lanes.  For now
887  * this implementation assumes the cost of maintaining an allocator for
888  * free lanes is on the order of the lock hold time, so it implements a
889  * static lane = cpu % num_lanes mapping.
890  *
891  * In the case of a BTT instance on top of a BLK namespace a lane may be
892  * acquired recursively.  We lock on the first instance.
893  *
894  * In the case of a BTT instance on top of PMEM, we only acquire a lane
895  * for the BTT metadata updates.
896  */
nd_region_acquire_lane(struct nd_region * nd_region)897 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
898 {
899 	unsigned int cpu, lane;
900 
901 	cpu = get_cpu();
902 	if (nd_region->num_lanes < nr_cpu_ids) {
903 		struct nd_percpu_lane *ndl_lock, *ndl_count;
904 
905 		lane = cpu % nd_region->num_lanes;
906 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
907 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
908 		if (ndl_count->count++ == 0)
909 			spin_lock(&ndl_lock->lock);
910 	} else
911 		lane = cpu;
912 
913 	return lane;
914 }
915 EXPORT_SYMBOL(nd_region_acquire_lane);
916 
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)917 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
918 {
919 	if (nd_region->num_lanes < nr_cpu_ids) {
920 		unsigned int cpu = get_cpu();
921 		struct nd_percpu_lane *ndl_lock, *ndl_count;
922 
923 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
924 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
925 		if (--ndl_count->count == 0)
926 			spin_unlock(&ndl_lock->lock);
927 		put_cpu();
928 	}
929 	put_cpu();
930 }
931 EXPORT_SYMBOL(nd_region_release_lane);
932 
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,struct device_type * dev_type,const char * caller)933 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
934 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
935 		const char *caller)
936 {
937 	struct nd_region *nd_region;
938 	struct device *dev;
939 	void *region_buf;
940 	unsigned int i;
941 	int ro = 0;
942 
943 	for (i = 0; i < ndr_desc->num_mappings; i++) {
944 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
945 		struct nvdimm *nvdimm = mapping->nvdimm;
946 
947 		if ((mapping->start | mapping->size) % PAGE_SIZE) {
948 			dev_err(&nvdimm_bus->dev,
949 				"%s: %s mapping%d is not %ld aligned\n",
950 				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
951 			return NULL;
952 		}
953 
954 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
955 			ro = 1;
956 
957 		if (test_bit(NDD_NOBLK, &nvdimm->flags)
958 				&& dev_type == &nd_blk_device_type) {
959 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
960 					caller, dev_name(&nvdimm->dev), i);
961 			return NULL;
962 		}
963 	}
964 
965 	if (dev_type == &nd_blk_device_type) {
966 		struct nd_blk_region_desc *ndbr_desc;
967 		struct nd_blk_region *ndbr;
968 
969 		ndbr_desc = to_blk_region_desc(ndr_desc);
970 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
971 				* ndr_desc->num_mappings,
972 				GFP_KERNEL);
973 		if (ndbr) {
974 			nd_region = &ndbr->nd_region;
975 			ndbr->enable = ndbr_desc->enable;
976 			ndbr->do_io = ndbr_desc->do_io;
977 		}
978 		region_buf = ndbr;
979 	} else {
980 		nd_region = kzalloc(struct_size(nd_region, mapping,
981 						ndr_desc->num_mappings),
982 				    GFP_KERNEL);
983 		region_buf = nd_region;
984 	}
985 
986 	if (!region_buf)
987 		return NULL;
988 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
989 	if (nd_region->id < 0)
990 		goto err_id;
991 
992 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
993 	if (!nd_region->lane)
994 		goto err_percpu;
995 
996         for (i = 0; i < nr_cpu_ids; i++) {
997 		struct nd_percpu_lane *ndl;
998 
999 		ndl = per_cpu_ptr(nd_region->lane, i);
1000 		spin_lock_init(&ndl->lock);
1001 		ndl->count = 0;
1002 	}
1003 
1004 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1005 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1006 		struct nvdimm *nvdimm = mapping->nvdimm;
1007 
1008 		nd_region->mapping[i].nvdimm = nvdimm;
1009 		nd_region->mapping[i].start = mapping->start;
1010 		nd_region->mapping[i].size = mapping->size;
1011 		nd_region->mapping[i].position = mapping->position;
1012 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1013 		mutex_init(&nd_region->mapping[i].lock);
1014 
1015 		get_device(&nvdimm->dev);
1016 	}
1017 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1018 	nd_region->provider_data = ndr_desc->provider_data;
1019 	nd_region->nd_set = ndr_desc->nd_set;
1020 	nd_region->num_lanes = ndr_desc->num_lanes;
1021 	nd_region->flags = ndr_desc->flags;
1022 	nd_region->ro = ro;
1023 	nd_region->numa_node = ndr_desc->numa_node;
1024 	nd_region->target_node = ndr_desc->target_node;
1025 	ida_init(&nd_region->ns_ida);
1026 	ida_init(&nd_region->btt_ida);
1027 	ida_init(&nd_region->pfn_ida);
1028 	ida_init(&nd_region->dax_ida);
1029 	dev = &nd_region->dev;
1030 	dev_set_name(dev, "region%d", nd_region->id);
1031 	dev->parent = &nvdimm_bus->dev;
1032 	dev->type = dev_type;
1033 	dev->groups = ndr_desc->attr_groups;
1034 	dev->of_node = ndr_desc->of_node;
1035 	nd_region->ndr_size = resource_size(ndr_desc->res);
1036 	nd_region->ndr_start = ndr_desc->res->start;
1037 	if (ndr_desc->flush)
1038 		nd_region->flush = ndr_desc->flush;
1039 	else
1040 		nd_region->flush = NULL;
1041 
1042 	nd_device_register(dev);
1043 
1044 	return nd_region;
1045 
1046  err_percpu:
1047 	ida_simple_remove(&region_ida, nd_region->id);
1048  err_id:
1049 	kfree(region_buf);
1050 	return NULL;
1051 }
1052 
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1053 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1054 		struct nd_region_desc *ndr_desc)
1055 {
1056 	ndr_desc->num_lanes = ND_MAX_LANES;
1057 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1058 			__func__);
1059 }
1060 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1061 
nvdimm_blk_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1062 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1063 		struct nd_region_desc *ndr_desc)
1064 {
1065 	if (ndr_desc->num_mappings > 1)
1066 		return NULL;
1067 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1068 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1069 			__func__);
1070 }
1071 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1072 
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1073 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1074 		struct nd_region_desc *ndr_desc)
1075 {
1076 	ndr_desc->num_lanes = ND_MAX_LANES;
1077 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1078 			__func__);
1079 }
1080 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1081 
nvdimm_flush(struct nd_region * nd_region,struct bio * bio)1082 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1083 {
1084 	int rc = 0;
1085 
1086 	if (!nd_region->flush)
1087 		rc = generic_nvdimm_flush(nd_region);
1088 	else {
1089 		if (nd_region->flush(nd_region, bio))
1090 			rc = -EIO;
1091 	}
1092 
1093 	return rc;
1094 }
1095 /**
1096  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1097  * @nd_region: blk or interleaved pmem region
1098  */
generic_nvdimm_flush(struct nd_region * nd_region)1099 int generic_nvdimm_flush(struct nd_region *nd_region)
1100 {
1101 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1102 	int i, idx;
1103 
1104 	/*
1105 	 * Try to encourage some diversity in flush hint addresses
1106 	 * across cpus assuming a limited number of flush hints.
1107 	 */
1108 	idx = this_cpu_read(flush_idx);
1109 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1110 
1111 	/*
1112 	 * The first wmb() is needed to 'sfence' all previous writes
1113 	 * such that they are architecturally visible for the platform
1114 	 * buffer flush.  Note that we've already arranged for pmem
1115 	 * writes to avoid the cache via memcpy_flushcache().  The final
1116 	 * wmb() ensures ordering for the NVDIMM flush write.
1117 	 */
1118 	wmb();
1119 	for (i = 0; i < nd_region->ndr_mappings; i++)
1120 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1121 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1122 	wmb();
1123 
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL_GPL(nvdimm_flush);
1127 
1128 /**
1129  * nvdimm_has_flush - determine write flushing requirements
1130  * @nd_region: blk or interleaved pmem region
1131  *
1132  * Returns 1 if writes require flushing
1133  * Returns 0 if writes do not require flushing
1134  * Returns -ENXIO if flushing capability can not be determined
1135  */
nvdimm_has_flush(struct nd_region * nd_region)1136 int nvdimm_has_flush(struct nd_region *nd_region)
1137 {
1138 	int i;
1139 
1140 	/* no nvdimm or pmem api == flushing capability unknown */
1141 	if (nd_region->ndr_mappings == 0
1142 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1143 		return -ENXIO;
1144 
1145 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1146 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1147 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1148 
1149 		/* flush hints present / available */
1150 		if (nvdimm->num_flush)
1151 			return 1;
1152 	}
1153 
1154 	/*
1155 	 * The platform defines dimm devices without hints, assume
1156 	 * platform persistence mechanism like ADR
1157 	 */
1158 	return 0;
1159 }
1160 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1161 
nvdimm_has_cache(struct nd_region * nd_region)1162 int nvdimm_has_cache(struct nd_region *nd_region)
1163 {
1164 	return is_nd_pmem(&nd_region->dev) &&
1165 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1166 }
1167 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1168 
is_nvdimm_sync(struct nd_region * nd_region)1169 bool is_nvdimm_sync(struct nd_region *nd_region)
1170 {
1171 	if (is_nd_volatile(&nd_region->dev))
1172 		return true;
1173 
1174 	return is_nd_pmem(&nd_region->dev) &&
1175 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1176 }
1177 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1178 
1179 struct conflict_context {
1180 	struct nd_region *nd_region;
1181 	resource_size_t start, size;
1182 };
1183 
region_conflict(struct device * dev,void * data)1184 static int region_conflict(struct device *dev, void *data)
1185 {
1186 	struct nd_region *nd_region;
1187 	struct conflict_context *ctx = data;
1188 	resource_size_t res_end, region_end, region_start;
1189 
1190 	if (!is_memory(dev))
1191 		return 0;
1192 
1193 	nd_region = to_nd_region(dev);
1194 	if (nd_region == ctx->nd_region)
1195 		return 0;
1196 
1197 	res_end = ctx->start + ctx->size;
1198 	region_start = nd_region->ndr_start;
1199 	region_end = region_start + nd_region->ndr_size;
1200 	if (ctx->start >= region_start && ctx->start < region_end)
1201 		return -EBUSY;
1202 	if (res_end > region_start && res_end <= region_end)
1203 		return -EBUSY;
1204 	return 0;
1205 }
1206 
nd_region_conflict(struct nd_region * nd_region,resource_size_t start,resource_size_t size)1207 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1208 		resource_size_t size)
1209 {
1210 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1211 	struct conflict_context ctx = {
1212 		.nd_region = nd_region,
1213 		.start = start,
1214 		.size = size,
1215 	};
1216 
1217 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1218 }
1219 
nd_region_devs_exit(void)1220 void __exit nd_region_devs_exit(void)
1221 {
1222 	ida_destroy(&region_ida);
1223 }
1224