1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fb_helper.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_scdc_helper.h>
44 #include <drm/drm_vblank.h>
45
46 #include <nvif/push507c.h>
47
48 #include <nvif/class.h>
49 #include <nvif/cl0002.h>
50 #include <nvif/cl5070.h>
51 #include <nvif/cl507d.h>
52 #include <nvif/event.h>
53 #include <nvif/timer.h>
54
55 #include <nvhw/class/cl507c.h>
56 #include <nvhw/class/cl507d.h>
57 #include <nvhw/class/cl837d.h>
58 #include <nvhw/class/cl887d.h>
59 #include <nvhw/class/cl907d.h>
60 #include <nvhw/class/cl917d.h>
61
62 #include "nouveau_drv.h"
63 #include "nouveau_dma.h"
64 #include "nouveau_gem.h"
65 #include "nouveau_connector.h"
66 #include "nouveau_encoder.h"
67 #include "nouveau_fence.h"
68 #include "nouveau_fbcon.h"
69
70 #include <subdev/bios/dp.h>
71
72 /******************************************************************************
73 * EVO channel
74 *****************************************************************************/
75
76 static int
nv50_chan_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,struct nv50_chan * chan)77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
78 const s32 *oclass, u8 head, void *data, u32 size,
79 struct nv50_chan *chan)
80 {
81 struct nvif_sclass *sclass;
82 int ret, i, n;
83
84 chan->device = device;
85
86 ret = n = nvif_object_sclass_get(disp, &sclass);
87 if (ret < 0)
88 return ret;
89
90 while (oclass[0]) {
91 for (i = 0; i < n; i++) {
92 if (sclass[i].oclass == oclass[0]) {
93 ret = nvif_object_ctor(disp, "kmsChan", 0,
94 oclass[0], data, size,
95 &chan->user);
96 if (ret == 0)
97 nvif_object_map(&chan->user, NULL, 0);
98 nvif_object_sclass_put(&sclass);
99 return ret;
100 }
101 }
102 oclass++;
103 }
104
105 nvif_object_sclass_put(&sclass);
106 return -ENOSYS;
107 }
108
109 static void
nv50_chan_destroy(struct nv50_chan * chan)110 nv50_chan_destroy(struct nv50_chan *chan)
111 {
112 nvif_object_dtor(&chan->user);
113 }
114
115 /******************************************************************************
116 * DMA EVO channel
117 *****************************************************************************/
118
119 void
nv50_dmac_destroy(struct nv50_dmac * dmac)120 nv50_dmac_destroy(struct nv50_dmac *dmac)
121 {
122 nvif_object_dtor(&dmac->vram);
123 nvif_object_dtor(&dmac->sync);
124
125 nv50_chan_destroy(&dmac->base);
126
127 nvif_mem_dtor(&dmac->_push.mem);
128 }
129
130 static void
nv50_dmac_kick(struct nvif_push * push)131 nv50_dmac_kick(struct nvif_push *push)
132 {
133 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
134
135 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
136 if (dmac->put != dmac->cur) {
137 /* Push buffer fetches are not coherent with BAR1, we need to ensure
138 * writes have been flushed right through to VRAM before writing PUT.
139 */
140 if (dmac->push->mem.type & NVIF_MEM_VRAM) {
141 struct nvif_device *device = dmac->base.device;
142 nvif_wr32(&device->object, 0x070000, 0x00000001);
143 nvif_msec(device, 2000,
144 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
145 break;
146 );
147 }
148
149 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
150 dmac->put = dmac->cur;
151 }
152
153 push->bgn = push->cur;
154 }
155
156 static int
nv50_dmac_free(struct nv50_dmac * dmac)157 nv50_dmac_free(struct nv50_dmac *dmac)
158 {
159 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
160 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
161 return get - dmac->cur - 5;
162 return dmac->max - dmac->cur;
163 }
164
165 static int
nv50_dmac_wind(struct nv50_dmac * dmac)166 nv50_dmac_wind(struct nv50_dmac *dmac)
167 {
168 /* Wait for GET to depart from the beginning of the push buffer to
169 * prevent writing PUT == GET, which would be ignored by HW.
170 */
171 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
172 if (get == 0) {
173 /* Corner-case, HW idle, but non-committed work pending. */
174 if (dmac->put == 0)
175 nv50_dmac_kick(dmac->push);
176
177 if (nvif_msec(dmac->base.device, 2000,
178 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
179 break;
180 ) < 0)
181 return -ETIMEDOUT;
182 }
183
184 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
185 dmac->cur = 0;
186 return 0;
187 }
188
189 static int
nv50_dmac_wait(struct nvif_push * push,u32 size)190 nv50_dmac_wait(struct nvif_push *push, u32 size)
191 {
192 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
193 int free;
194
195 if (WARN_ON(size > dmac->max))
196 return -EINVAL;
197
198 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
199 if (dmac->cur + size >= dmac->max) {
200 int ret = nv50_dmac_wind(dmac);
201 if (ret)
202 return ret;
203
204 push->cur = dmac->_push.mem.object.map.ptr;
205 push->cur = push->cur + dmac->cur;
206 nv50_dmac_kick(push);
207 }
208
209 if (nvif_msec(dmac->base.device, 2000,
210 if ((free = nv50_dmac_free(dmac)) >= size)
211 break;
212 ) < 0) {
213 WARN_ON(1);
214 return -ETIMEDOUT;
215 }
216
217 push->bgn = dmac->_push.mem.object.map.ptr;
218 push->bgn = push->bgn + dmac->cur;
219 push->cur = push->bgn;
220 push->end = push->cur + free;
221 return 0;
222 }
223
224 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
225 static int nv50_dmac_vram_pushbuf = -1;
226 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
227
228 int
nv50_dmac_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,s64 syncbuf,struct nv50_dmac * dmac)229 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
230 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
231 struct nv50_dmac *dmac)
232 {
233 struct nouveau_cli *cli = (void *)device->object.client;
234 struct nv50_disp_core_channel_dma_v0 *args = data;
235 u8 type = NVIF_MEM_COHERENT;
236 int ret;
237
238 mutex_init(&dmac->lock);
239
240 /* Pascal added support for 47-bit physical addresses, but some
241 * parts of EVO still only accept 40-bit PAs.
242 *
243 * To avoid issues on systems with large amounts of RAM, and on
244 * systems where an IOMMU maps pages at a high address, we need
245 * to allocate push buffers in VRAM instead.
246 *
247 * This appears to match NVIDIA's behaviour on Pascal.
248 */
249 if ((nv50_dmac_vram_pushbuf > 0) ||
250 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
251 type |= NVIF_MEM_VRAM;
252
253 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
254 &dmac->_push.mem);
255 if (ret)
256 return ret;
257
258 dmac->ptr = dmac->_push.mem.object.map.ptr;
259 dmac->_push.wait = nv50_dmac_wait;
260 dmac->_push.kick = nv50_dmac_kick;
261 dmac->push = &dmac->_push;
262 dmac->push->bgn = dmac->_push.mem.object.map.ptr;
263 dmac->push->cur = dmac->push->bgn;
264 dmac->push->end = dmac->push->bgn;
265 dmac->max = 0x1000/4 - 1;
266
267 /* EVO channels are affected by a HW bug where the last 12 DWORDs
268 * of the push buffer aren't able to be used safely.
269 */
270 if (disp->oclass < GV100_DISP)
271 dmac->max -= 12;
272
273 args->pushbuf = nvif_handle(&dmac->_push.mem.object);
274
275 ret = nv50_chan_create(device, disp, oclass, head, data, size,
276 &dmac->base);
277 if (ret)
278 return ret;
279
280 if (syncbuf < 0)
281 return 0;
282
283 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
284 NV_DMA_IN_MEMORY,
285 &(struct nv_dma_v0) {
286 .target = NV_DMA_V0_TARGET_VRAM,
287 .access = NV_DMA_V0_ACCESS_RDWR,
288 .start = syncbuf + 0x0000,
289 .limit = syncbuf + 0x0fff,
290 }, sizeof(struct nv_dma_v0),
291 &dmac->sync);
292 if (ret)
293 return ret;
294
295 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
296 NV_DMA_IN_MEMORY,
297 &(struct nv_dma_v0) {
298 .target = NV_DMA_V0_TARGET_VRAM,
299 .access = NV_DMA_V0_ACCESS_RDWR,
300 .start = 0,
301 .limit = device->info.ram_user - 1,
302 }, sizeof(struct nv_dma_v0),
303 &dmac->vram);
304 if (ret)
305 return ret;
306
307 return ret;
308 }
309
310 /******************************************************************************
311 * Output path helpers
312 *****************************************************************************/
313 static void
nv50_outp_dump_caps(struct nouveau_drm * drm,struct nouveau_encoder * outp)314 nv50_outp_dump_caps(struct nouveau_drm *drm,
315 struct nouveau_encoder *outp)
316 {
317 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
318 outp->base.base.name, outp->caps.dp_interlace);
319 }
320
321 static void
nv50_outp_release(struct nouveau_encoder * nv_encoder)322 nv50_outp_release(struct nouveau_encoder *nv_encoder)
323 {
324 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
325 struct {
326 struct nv50_disp_mthd_v1 base;
327 } args = {
328 .base.version = 1,
329 .base.method = NV50_DISP_MTHD_V1_RELEASE,
330 .base.hasht = nv_encoder->dcb->hasht,
331 .base.hashm = nv_encoder->dcb->hashm,
332 };
333
334 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
335 nv_encoder->or = -1;
336 nv_encoder->link = 0;
337 }
338
339 static int
nv50_outp_acquire(struct nouveau_encoder * nv_encoder,bool hda)340 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
341 {
342 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
343 struct nv50_disp *disp = nv50_disp(drm->dev);
344 struct {
345 struct nv50_disp_mthd_v1 base;
346 struct nv50_disp_acquire_v0 info;
347 } args = {
348 .base.version = 1,
349 .base.method = NV50_DISP_MTHD_V1_ACQUIRE,
350 .base.hasht = nv_encoder->dcb->hasht,
351 .base.hashm = nv_encoder->dcb->hashm,
352 .info.hda = hda,
353 };
354 int ret;
355
356 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
357 if (ret) {
358 NV_ERROR(drm, "error acquiring output path: %d\n", ret);
359 return ret;
360 }
361
362 nv_encoder->or = args.info.or;
363 nv_encoder->link = args.info.link;
364 return 0;
365 }
366
367 static int
nv50_outp_atomic_check_view(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,struct drm_display_mode * native_mode)368 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
369 struct drm_crtc_state *crtc_state,
370 struct drm_connector_state *conn_state,
371 struct drm_display_mode *native_mode)
372 {
373 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
374 struct drm_display_mode *mode = &crtc_state->mode;
375 struct drm_connector *connector = conn_state->connector;
376 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
377 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
378
379 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
380 asyc->scaler.full = false;
381 if (!native_mode)
382 return 0;
383
384 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
385 switch (connector->connector_type) {
386 case DRM_MODE_CONNECTOR_LVDS:
387 case DRM_MODE_CONNECTOR_eDP:
388 /* Don't force scaler for EDID modes with
389 * same size as the native one (e.g. different
390 * refresh rate)
391 */
392 if (mode->hdisplay == native_mode->hdisplay &&
393 mode->vdisplay == native_mode->vdisplay &&
394 mode->type & DRM_MODE_TYPE_DRIVER)
395 break;
396 mode = native_mode;
397 asyc->scaler.full = true;
398 break;
399 default:
400 break;
401 }
402 } else {
403 mode = native_mode;
404 }
405
406 if (!drm_mode_equal(adjusted_mode, mode)) {
407 drm_mode_copy(adjusted_mode, mode);
408 crtc_state->mode_changed = true;
409 }
410
411 return 0;
412 }
413
414 static int
nv50_outp_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)415 nv50_outp_atomic_check(struct drm_encoder *encoder,
416 struct drm_crtc_state *crtc_state,
417 struct drm_connector_state *conn_state)
418 {
419 struct drm_connector *connector = conn_state->connector;
420 struct nouveau_connector *nv_connector = nouveau_connector(connector);
421 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
422 int ret;
423
424 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
425 nv_connector->native_mode);
426 if (ret)
427 return ret;
428
429 if (crtc_state->mode_changed || crtc_state->connectors_changed)
430 asyh->or.bpc = connector->display_info.bpc;
431
432 return 0;
433 }
434
435 struct nouveau_connector *
nv50_outp_get_new_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)436 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
437 {
438 struct drm_connector *connector;
439 struct drm_connector_state *connector_state;
440 struct drm_encoder *encoder = to_drm_encoder(outp);
441 int i;
442
443 for_each_new_connector_in_state(state, connector, connector_state, i) {
444 if (connector_state->best_encoder == encoder)
445 return nouveau_connector(connector);
446 }
447
448 return NULL;
449 }
450
451 struct nouveau_connector *
nv50_outp_get_old_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)452 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
453 {
454 struct drm_connector *connector;
455 struct drm_connector_state *connector_state;
456 struct drm_encoder *encoder = to_drm_encoder(outp);
457 int i;
458
459 for_each_old_connector_in_state(state, connector, connector_state, i) {
460 if (connector_state->best_encoder == encoder)
461 return nouveau_connector(connector);
462 }
463
464 return NULL;
465 }
466
467 static struct nouveau_crtc *
nv50_outp_get_new_crtc(const struct drm_atomic_state * state,const struct nouveau_encoder * outp)468 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
469 {
470 struct drm_crtc *crtc;
471 struct drm_crtc_state *crtc_state;
472 const u32 mask = drm_encoder_mask(&outp->base.base);
473 int i;
474
475 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
476 if (crtc_state->encoder_mask & mask)
477 return nouveau_crtc(crtc);
478 }
479
480 return NULL;
481 }
482
483 /******************************************************************************
484 * DAC
485 *****************************************************************************/
486 static void
nv50_dac_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)487 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
488 {
489 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
490 struct nv50_core *core = nv50_disp(encoder->dev)->core;
491 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
492
493 core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
494 nv_encoder->crtc = NULL;
495 nv50_outp_release(nv_encoder);
496 }
497
498 static void
nv50_dac_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)499 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
500 {
501 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
502 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
503 struct nv50_head_atom *asyh =
504 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
505 struct nv50_core *core = nv50_disp(encoder->dev)->core;
506 u32 ctrl = 0;
507
508 switch (nv_crtc->index) {
509 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
510 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
511 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
512 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
513 default:
514 WARN_ON(1);
515 break;
516 }
517
518 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
519
520 nv50_outp_acquire(nv_encoder, false);
521
522 core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
523 asyh->or.depth = 0;
524
525 nv_encoder->crtc = &nv_crtc->base;
526 }
527
528 static enum drm_connector_status
nv50_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)529 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
530 {
531 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
532 struct nv50_disp *disp = nv50_disp(encoder->dev);
533 struct {
534 struct nv50_disp_mthd_v1 base;
535 struct nv50_disp_dac_load_v0 load;
536 } args = {
537 .base.version = 1,
538 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
539 .base.hasht = nv_encoder->dcb->hasht,
540 .base.hashm = nv_encoder->dcb->hashm,
541 };
542 int ret;
543
544 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
545 if (args.load.data == 0)
546 args.load.data = 340;
547
548 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
549 if (ret || !args.load.load)
550 return connector_status_disconnected;
551
552 return connector_status_connected;
553 }
554
555 static const struct drm_encoder_helper_funcs
556 nv50_dac_help = {
557 .atomic_check = nv50_outp_atomic_check,
558 .atomic_enable = nv50_dac_atomic_enable,
559 .atomic_disable = nv50_dac_atomic_disable,
560 .detect = nv50_dac_detect
561 };
562
563 static void
nv50_dac_destroy(struct drm_encoder * encoder)564 nv50_dac_destroy(struct drm_encoder *encoder)
565 {
566 drm_encoder_cleanup(encoder);
567 kfree(encoder);
568 }
569
570 static const struct drm_encoder_funcs
571 nv50_dac_func = {
572 .destroy = nv50_dac_destroy,
573 };
574
575 static int
nv50_dac_create(struct drm_connector * connector,struct dcb_output * dcbe)576 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
577 {
578 struct nouveau_drm *drm = nouveau_drm(connector->dev);
579 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
580 struct nvkm_i2c_bus *bus;
581 struct nouveau_encoder *nv_encoder;
582 struct drm_encoder *encoder;
583 int type = DRM_MODE_ENCODER_DAC;
584
585 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
586 if (!nv_encoder)
587 return -ENOMEM;
588 nv_encoder->dcb = dcbe;
589
590 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
591 if (bus)
592 nv_encoder->i2c = &bus->i2c;
593
594 encoder = to_drm_encoder(nv_encoder);
595 encoder->possible_crtcs = dcbe->heads;
596 encoder->possible_clones = 0;
597 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
598 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
599 drm_encoder_helper_add(encoder, &nv50_dac_help);
600
601 drm_connector_attach_encoder(connector, encoder);
602 return 0;
603 }
604
605 /*
606 * audio component binding for ELD notification
607 */
608 static void
nv50_audio_component_eld_notify(struct drm_audio_component * acomp,int port,int dev_id)609 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
610 int dev_id)
611 {
612 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
613 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
614 port, dev_id);
615 }
616
617 static int
nv50_audio_component_get_eld(struct device * kdev,int port,int dev_id,bool * enabled,unsigned char * buf,int max_bytes)618 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
619 bool *enabled, unsigned char *buf, int max_bytes)
620 {
621 struct drm_device *drm_dev = dev_get_drvdata(kdev);
622 struct nouveau_drm *drm = nouveau_drm(drm_dev);
623 struct drm_encoder *encoder;
624 struct nouveau_encoder *nv_encoder;
625 struct nouveau_crtc *nv_crtc;
626 int ret = 0;
627
628 *enabled = false;
629
630 mutex_lock(&drm->audio.lock);
631
632 drm_for_each_encoder(encoder, drm->dev) {
633 struct nouveau_connector *nv_connector = NULL;
634
635 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
636 continue; /* TODO */
637
638 nv_encoder = nouveau_encoder(encoder);
639 nv_connector = nouveau_connector(nv_encoder->audio.connector);
640 nv_crtc = nouveau_crtc(nv_encoder->crtc);
641
642 if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id)
643 continue;
644
645 *enabled = nv_encoder->audio.enabled;
646 if (*enabled) {
647 ret = drm_eld_size(nv_connector->base.eld);
648 memcpy(buf, nv_connector->base.eld,
649 min(max_bytes, ret));
650 }
651 break;
652 }
653
654 mutex_unlock(&drm->audio.lock);
655
656 return ret;
657 }
658
659 static const struct drm_audio_component_ops nv50_audio_component_ops = {
660 .get_eld = nv50_audio_component_get_eld,
661 };
662
663 static int
nv50_audio_component_bind(struct device * kdev,struct device * hda_kdev,void * data)664 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
665 void *data)
666 {
667 struct drm_device *drm_dev = dev_get_drvdata(kdev);
668 struct nouveau_drm *drm = nouveau_drm(drm_dev);
669 struct drm_audio_component *acomp = data;
670
671 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
672 return -ENOMEM;
673
674 drm_modeset_lock_all(drm_dev);
675 acomp->ops = &nv50_audio_component_ops;
676 acomp->dev = kdev;
677 drm->audio.component = acomp;
678 drm_modeset_unlock_all(drm_dev);
679 return 0;
680 }
681
682 static void
nv50_audio_component_unbind(struct device * kdev,struct device * hda_kdev,void * data)683 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
684 void *data)
685 {
686 struct drm_device *drm_dev = dev_get_drvdata(kdev);
687 struct nouveau_drm *drm = nouveau_drm(drm_dev);
688 struct drm_audio_component *acomp = data;
689
690 drm_modeset_lock_all(drm_dev);
691 drm->audio.component = NULL;
692 acomp->ops = NULL;
693 acomp->dev = NULL;
694 drm_modeset_unlock_all(drm_dev);
695 }
696
697 static const struct component_ops nv50_audio_component_bind_ops = {
698 .bind = nv50_audio_component_bind,
699 .unbind = nv50_audio_component_unbind,
700 };
701
702 static void
nv50_audio_component_init(struct nouveau_drm * drm)703 nv50_audio_component_init(struct nouveau_drm *drm)
704 {
705 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
706 return;
707
708 drm->audio.component_registered = true;
709 mutex_init(&drm->audio.lock);
710 }
711
712 static void
nv50_audio_component_fini(struct nouveau_drm * drm)713 nv50_audio_component_fini(struct nouveau_drm *drm)
714 {
715 if (!drm->audio.component_registered)
716 return;
717
718 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
719 drm->audio.component_registered = false;
720 mutex_destroy(&drm->audio.lock);
721 }
722
723 /******************************************************************************
724 * Audio
725 *****************************************************************************/
726 static void
nv50_audio_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)727 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
728 {
729 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
730 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
731 struct nv50_disp *disp = nv50_disp(encoder->dev);
732 struct {
733 struct nv50_disp_mthd_v1 base;
734 struct nv50_disp_sor_hda_eld_v0 eld;
735 } args = {
736 .base.version = 1,
737 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
738 .base.hasht = nv_encoder->dcb->hasht,
739 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
740 (0x0100 << nv_crtc->index),
741 };
742
743 mutex_lock(&drm->audio.lock);
744 if (nv_encoder->audio.enabled) {
745 nv_encoder->audio.enabled = false;
746 nv_encoder->audio.connector = NULL;
747 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
748 }
749 mutex_unlock(&drm->audio.lock);
750
751 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
752 nv_crtc->index);
753 }
754
755 static void
nv50_audio_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)756 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
757 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
758 struct drm_display_mode *mode)
759 {
760 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
761 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
762 struct nv50_disp *disp = nv50_disp(encoder->dev);
763 struct __packed {
764 struct {
765 struct nv50_disp_mthd_v1 mthd;
766 struct nv50_disp_sor_hda_eld_v0 eld;
767 } base;
768 u8 data[sizeof(nv_connector->base.eld)];
769 } args = {
770 .base.mthd.version = 1,
771 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
772 .base.mthd.hasht = nv_encoder->dcb->hasht,
773 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
774 (0x0100 << nv_crtc->index),
775 };
776
777 if (!drm_detect_monitor_audio(nv_connector->edid))
778 return;
779
780 mutex_lock(&drm->audio.lock);
781
782 memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
783
784 nvif_mthd(&disp->disp->object, 0, &args,
785 sizeof(args.base) + drm_eld_size(args.data));
786 nv_encoder->audio.enabled = true;
787 nv_encoder->audio.connector = &nv_connector->base;
788
789 mutex_unlock(&drm->audio.lock);
790
791 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
792 nv_crtc->index);
793 }
794
795 /******************************************************************************
796 * HDMI
797 *****************************************************************************/
798 static void
nv50_hdmi_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)799 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
800 {
801 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
802 struct nv50_disp *disp = nv50_disp(encoder->dev);
803 struct {
804 struct nv50_disp_mthd_v1 base;
805 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
806 } args = {
807 .base.version = 1,
808 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
809 .base.hasht = nv_encoder->dcb->hasht,
810 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
811 (0x0100 << nv_crtc->index),
812 };
813
814 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
815 }
816
817 static void
nv50_hdmi_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)818 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
819 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
820 struct drm_display_mode *mode)
821 {
822 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
823 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
824 struct nv50_disp *disp = nv50_disp(encoder->dev);
825 struct {
826 struct nv50_disp_mthd_v1 base;
827 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
828 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
829 } args = {
830 .base.version = 1,
831 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
832 .base.hasht = nv_encoder->dcb->hasht,
833 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
834 (0x0100 << nv_crtc->index),
835 .pwr.state = 1,
836 .pwr.rekey = 56, /* binary driver, and tegra, constant */
837 };
838 struct drm_hdmi_info *hdmi;
839 u32 max_ac_packet;
840 union hdmi_infoframe avi_frame;
841 union hdmi_infoframe vendor_frame;
842 bool high_tmds_clock_ratio = false, scrambling = false;
843 u8 config;
844 int ret;
845 int size;
846
847 if (!drm_detect_hdmi_monitor(nv_connector->edid))
848 return;
849
850 hdmi = &nv_connector->base.display_info.hdmi;
851
852 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
853 &nv_connector->base, mode);
854 if (!ret) {
855 /* We have an AVI InfoFrame, populate it to the display */
856 args.pwr.avi_infoframe_length
857 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
858 }
859
860 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
861 &nv_connector->base, mode);
862 if (!ret) {
863 /* We have a Vendor InfoFrame, populate it to the display */
864 args.pwr.vendor_infoframe_length
865 = hdmi_infoframe_pack(&vendor_frame,
866 args.infoframes
867 + args.pwr.avi_infoframe_length,
868 17);
869 }
870
871 max_ac_packet = mode->htotal - mode->hdisplay;
872 max_ac_packet -= args.pwr.rekey;
873 max_ac_packet -= 18; /* constant from tegra */
874 args.pwr.max_ac_packet = max_ac_packet / 32;
875
876 if (hdmi->scdc.scrambling.supported) {
877 high_tmds_clock_ratio = mode->clock > 340000;
878 scrambling = high_tmds_clock_ratio ||
879 hdmi->scdc.scrambling.low_rates;
880 }
881
882 args.pwr.scdc =
883 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
884 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
885
886 size = sizeof(args.base)
887 + sizeof(args.pwr)
888 + args.pwr.avi_infoframe_length
889 + args.pwr.vendor_infoframe_length;
890 nvif_mthd(&disp->disp->object, 0, &args, size);
891
892 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
893
894 /* If SCDC is supported by the downstream monitor, update
895 * divider / scrambling settings to what we programmed above.
896 */
897 if (!hdmi->scdc.scrambling.supported)
898 return;
899
900 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
901 if (ret < 0) {
902 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
903 return;
904 }
905 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
906 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
907 config |= SCDC_SCRAMBLING_ENABLE * scrambling;
908 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
909 if (ret < 0)
910 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
911 config, ret);
912 }
913
914 /******************************************************************************
915 * MST
916 *****************************************************************************/
917 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
918 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
919 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
920
921 struct nv50_mstc {
922 struct nv50_mstm *mstm;
923 struct drm_dp_mst_port *port;
924 struct drm_connector connector;
925
926 struct drm_display_mode *native;
927 struct edid *edid;
928 };
929
930 struct nv50_msto {
931 struct drm_encoder encoder;
932
933 /* head is statically assigned on msto creation */
934 struct nv50_head *head;
935 struct nv50_mstc *mstc;
936 bool disabled;
937 };
938
nv50_real_outp(struct drm_encoder * encoder)939 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
940 {
941 struct nv50_msto *msto;
942
943 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
944 return nouveau_encoder(encoder);
945
946 msto = nv50_msto(encoder);
947 if (!msto->mstc)
948 return NULL;
949 return msto->mstc->mstm->outp;
950 }
951
952 static struct drm_dp_payload *
nv50_msto_payload(struct nv50_msto * msto)953 nv50_msto_payload(struct nv50_msto *msto)
954 {
955 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
956 struct nv50_mstc *mstc = msto->mstc;
957 struct nv50_mstm *mstm = mstc->mstm;
958 int vcpi = mstc->port->vcpi.vcpi, i;
959
960 WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
961
962 NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
963 for (i = 0; i < mstm->mgr.max_payloads; i++) {
964 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
965 NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
966 mstm->outp->base.base.name, i, payload->vcpi,
967 payload->start_slot, payload->num_slots);
968 }
969
970 for (i = 0; i < mstm->mgr.max_payloads; i++) {
971 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
972 if (payload->vcpi == vcpi)
973 return payload;
974 }
975
976 return NULL;
977 }
978
979 static void
nv50_msto_cleanup(struct nv50_msto * msto)980 nv50_msto_cleanup(struct nv50_msto *msto)
981 {
982 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
983 struct nv50_mstc *mstc = msto->mstc;
984 struct nv50_mstm *mstm = mstc->mstm;
985
986 if (!msto->disabled)
987 return;
988
989 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
990
991 drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
992
993 msto->mstc = NULL;
994 msto->disabled = false;
995 }
996
997 static void
nv50_msto_prepare(struct nv50_msto * msto)998 nv50_msto_prepare(struct nv50_msto *msto)
999 {
1000 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
1001 struct nv50_mstc *mstc = msto->mstc;
1002 struct nv50_mstm *mstm = mstc->mstm;
1003 struct {
1004 struct nv50_disp_mthd_v1 base;
1005 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
1006 } args = {
1007 .base.version = 1,
1008 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
1009 .base.hasht = mstm->outp->dcb->hasht,
1010 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
1011 (0x0100 << msto->head->base.index),
1012 };
1013
1014 mutex_lock(&mstm->mgr.payload_lock);
1015
1016 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
1017 if (mstc->port->vcpi.vcpi > 0) {
1018 struct drm_dp_payload *payload = nv50_msto_payload(msto);
1019 if (payload) {
1020 args.vcpi.start_slot = payload->start_slot;
1021 args.vcpi.num_slots = payload->num_slots;
1022 args.vcpi.pbn = mstc->port->vcpi.pbn;
1023 args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
1024 }
1025 }
1026
1027 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
1028 msto->encoder.name, msto->head->base.base.name,
1029 args.vcpi.start_slot, args.vcpi.num_slots,
1030 args.vcpi.pbn, args.vcpi.aligned_pbn);
1031
1032 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
1033 mutex_unlock(&mstm->mgr.payload_lock);
1034 }
1035
1036 static int
nv50_msto_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1037 nv50_msto_atomic_check(struct drm_encoder *encoder,
1038 struct drm_crtc_state *crtc_state,
1039 struct drm_connector_state *conn_state)
1040 {
1041 struct drm_atomic_state *state = crtc_state->state;
1042 struct drm_connector *connector = conn_state->connector;
1043 struct nv50_mstc *mstc = nv50_mstc(connector);
1044 struct nv50_mstm *mstm = mstc->mstm;
1045 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1046 int slots;
1047 int ret;
1048
1049 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1050 mstc->native);
1051 if (ret)
1052 return ret;
1053
1054 if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
1055 return 0;
1056
1057 /*
1058 * When restoring duplicated states, we need to make sure that the bw
1059 * remains the same and avoid recalculating it, as the connector's bpc
1060 * may have changed after the state was duplicated
1061 */
1062 if (!state->duplicated) {
1063 const int clock = crtc_state->adjusted_mode.clock;
1064
1065 asyh->or.bpc = connector->display_info.bpc;
1066 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1067 false);
1068 }
1069
1070 slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port,
1071 asyh->dp.pbn, 0);
1072 if (slots < 0)
1073 return slots;
1074
1075 asyh->dp.tu = slots;
1076
1077 return 0;
1078 }
1079
1080 static u8
nv50_dp_bpc_to_depth(unsigned int bpc)1081 nv50_dp_bpc_to_depth(unsigned int bpc)
1082 {
1083 switch (bpc) {
1084 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1085 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1086 case 10:
1087 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1088 }
1089 }
1090
1091 static void
nv50_msto_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1092 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1093 {
1094 struct nv50_msto *msto = nv50_msto(encoder);
1095 struct nv50_head *head = msto->head;
1096 struct nv50_head_atom *asyh =
1097 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1098 struct nv50_mstc *mstc = NULL;
1099 struct nv50_mstm *mstm = NULL;
1100 struct drm_connector *connector;
1101 struct drm_connector_list_iter conn_iter;
1102 u8 proto;
1103 bool r;
1104
1105 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1106 drm_for_each_connector_iter(connector, &conn_iter) {
1107 if (connector->state->best_encoder == &msto->encoder) {
1108 mstc = nv50_mstc(connector);
1109 mstm = mstc->mstm;
1110 break;
1111 }
1112 }
1113 drm_connector_list_iter_end(&conn_iter);
1114
1115 if (WARN_ON(!mstc))
1116 return;
1117
1118 r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, asyh->dp.pbn, asyh->dp.tu);
1119 if (!r)
1120 DRM_DEBUG_KMS("Failed to allocate VCPI\n");
1121
1122 if (!mstm->links++)
1123 nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1124
1125 if (mstm->outp->link & 1)
1126 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1127 else
1128 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1129
1130 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1131 nv50_dp_bpc_to_depth(asyh->or.bpc));
1132
1133 msto->mstc = mstc;
1134 mstm->modified = true;
1135 }
1136
1137 static void
nv50_msto_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1138 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1139 {
1140 struct nv50_msto *msto = nv50_msto(encoder);
1141 struct nv50_mstc *mstc = msto->mstc;
1142 struct nv50_mstm *mstm = mstc->mstm;
1143
1144 drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
1145
1146 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1147 mstm->modified = true;
1148 if (!--mstm->links)
1149 mstm->disabled = true;
1150 msto->disabled = true;
1151 }
1152
1153 static const struct drm_encoder_helper_funcs
1154 nv50_msto_help = {
1155 .atomic_disable = nv50_msto_atomic_disable,
1156 .atomic_enable = nv50_msto_atomic_enable,
1157 .atomic_check = nv50_msto_atomic_check,
1158 };
1159
1160 static void
nv50_msto_destroy(struct drm_encoder * encoder)1161 nv50_msto_destroy(struct drm_encoder *encoder)
1162 {
1163 struct nv50_msto *msto = nv50_msto(encoder);
1164 drm_encoder_cleanup(&msto->encoder);
1165 kfree(msto);
1166 }
1167
1168 static const struct drm_encoder_funcs
1169 nv50_msto = {
1170 .destroy = nv50_msto_destroy,
1171 };
1172
1173 static struct nv50_msto *
nv50_msto_new(struct drm_device * dev,struct nv50_head * head,int id)1174 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1175 {
1176 struct nv50_msto *msto;
1177 int ret;
1178
1179 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1180 if (!msto)
1181 return ERR_PTR(-ENOMEM);
1182
1183 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1184 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1185 if (ret) {
1186 kfree(msto);
1187 return ERR_PTR(ret);
1188 }
1189
1190 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1191 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1192 msto->head = head;
1193 return msto;
1194 }
1195
1196 static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector * connector,struct drm_atomic_state * state)1197 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1198 struct drm_atomic_state *state)
1199 {
1200 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1201 connector);
1202 struct nv50_mstc *mstc = nv50_mstc(connector);
1203 struct drm_crtc *crtc = connector_state->crtc;
1204
1205 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1206 return NULL;
1207
1208 return &nv50_head(crtc)->msto->encoder;
1209 }
1210
1211 static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1212 nv50_mstc_mode_valid(struct drm_connector *connector,
1213 struct drm_display_mode *mode)
1214 {
1215 struct nv50_mstc *mstc = nv50_mstc(connector);
1216 struct nouveau_encoder *outp = mstc->mstm->outp;
1217
1218 /* TODO: calculate the PBN from the dotclock and validate against the
1219 * MSTB's max possible PBN
1220 */
1221
1222 return nv50_dp_mode_valid(connector, outp, mode, NULL);
1223 }
1224
1225 static int
nv50_mstc_get_modes(struct drm_connector * connector)1226 nv50_mstc_get_modes(struct drm_connector *connector)
1227 {
1228 struct nv50_mstc *mstc = nv50_mstc(connector);
1229 int ret = 0;
1230
1231 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1232 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1233 if (mstc->edid)
1234 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1235
1236 /*
1237 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1238 * to 8 to save bandwidth on the topology. In the future, we'll want
1239 * to properly fix this by dynamically selecting the highest possible
1240 * bpc that would fit in the topology
1241 */
1242 if (connector->display_info.bpc)
1243 connector->display_info.bpc =
1244 clamp(connector->display_info.bpc, 6U, 8U);
1245 else
1246 connector->display_info.bpc = 8;
1247
1248 if (mstc->native)
1249 drm_mode_destroy(mstc->connector.dev, mstc->native);
1250 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1251 return ret;
1252 }
1253
1254 static int
nv50_mstc_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)1255 nv50_mstc_atomic_check(struct drm_connector *connector,
1256 struct drm_atomic_state *state)
1257 {
1258 struct nv50_mstc *mstc = nv50_mstc(connector);
1259 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1260 struct drm_connector_state *new_conn_state =
1261 drm_atomic_get_new_connector_state(state, connector);
1262 struct drm_connector_state *old_conn_state =
1263 drm_atomic_get_old_connector_state(state, connector);
1264 struct drm_crtc_state *crtc_state;
1265 struct drm_crtc *new_crtc = new_conn_state->crtc;
1266
1267 if (!old_conn_state->crtc)
1268 return 0;
1269
1270 /* We only want to free VCPI if this state disables the CRTC on this
1271 * connector
1272 */
1273 if (new_crtc) {
1274 crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
1275
1276 if (!crtc_state ||
1277 !drm_atomic_crtc_needs_modeset(crtc_state) ||
1278 crtc_state->enable)
1279 return 0;
1280 }
1281
1282 return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
1283 }
1284
1285 static int
nv50_mstc_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1286 nv50_mstc_detect(struct drm_connector *connector,
1287 struct drm_modeset_acquire_ctx *ctx, bool force)
1288 {
1289 struct nv50_mstc *mstc = nv50_mstc(connector);
1290 int ret;
1291
1292 if (drm_connector_is_unregistered(connector))
1293 return connector_status_disconnected;
1294
1295 ret = pm_runtime_get_sync(connector->dev->dev);
1296 if (ret < 0 && ret != -EACCES) {
1297 pm_runtime_put_autosuspend(connector->dev->dev);
1298 return connector_status_disconnected;
1299 }
1300
1301 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1302 mstc->port);
1303 if (ret != connector_status_connected)
1304 goto out;
1305
1306 out:
1307 pm_runtime_mark_last_busy(connector->dev->dev);
1308 pm_runtime_put_autosuspend(connector->dev->dev);
1309 return ret;
1310 }
1311
1312 static const struct drm_connector_helper_funcs
1313 nv50_mstc_help = {
1314 .get_modes = nv50_mstc_get_modes,
1315 .mode_valid = nv50_mstc_mode_valid,
1316 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1317 .atomic_check = nv50_mstc_atomic_check,
1318 .detect_ctx = nv50_mstc_detect,
1319 };
1320
1321 static void
nv50_mstc_destroy(struct drm_connector * connector)1322 nv50_mstc_destroy(struct drm_connector *connector)
1323 {
1324 struct nv50_mstc *mstc = nv50_mstc(connector);
1325
1326 drm_connector_cleanup(&mstc->connector);
1327 drm_dp_mst_put_port_malloc(mstc->port);
1328
1329 kfree(mstc);
1330 }
1331
1332 static const struct drm_connector_funcs
1333 nv50_mstc = {
1334 .reset = nouveau_conn_reset,
1335 .fill_modes = drm_helper_probe_single_connector_modes,
1336 .destroy = nv50_mstc_destroy,
1337 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1338 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1339 .atomic_set_property = nouveau_conn_atomic_set_property,
1340 .atomic_get_property = nouveau_conn_atomic_get_property,
1341 };
1342
1343 static int
nv50_mstc_new(struct nv50_mstm * mstm,struct drm_dp_mst_port * port,const char * path,struct nv50_mstc ** pmstc)1344 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1345 const char *path, struct nv50_mstc **pmstc)
1346 {
1347 struct drm_device *dev = mstm->outp->base.base.dev;
1348 struct drm_crtc *crtc;
1349 struct nv50_mstc *mstc;
1350 int ret;
1351
1352 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1353 return -ENOMEM;
1354 mstc->mstm = mstm;
1355 mstc->port = port;
1356
1357 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1358 DRM_MODE_CONNECTOR_DisplayPort);
1359 if (ret) {
1360 kfree(*pmstc);
1361 *pmstc = NULL;
1362 return ret;
1363 }
1364
1365 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1366
1367 mstc->connector.funcs->reset(&mstc->connector);
1368 nouveau_conn_attach_properties(&mstc->connector);
1369
1370 drm_for_each_crtc(crtc, dev) {
1371 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1372 continue;
1373
1374 drm_connector_attach_encoder(&mstc->connector,
1375 &nv50_head(crtc)->msto->encoder);
1376 }
1377
1378 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1379 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1380 drm_connector_set_path_property(&mstc->connector, path);
1381 drm_dp_mst_get_port_malloc(port);
1382 return 0;
1383 }
1384
1385 static void
nv50_mstm_cleanup(struct nv50_mstm * mstm)1386 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1387 {
1388 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1389 struct drm_encoder *encoder;
1390 int ret;
1391
1392 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1393 ret = drm_dp_check_act_status(&mstm->mgr);
1394
1395 ret = drm_dp_update_payload_part2(&mstm->mgr);
1396
1397 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1398 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1399 struct nv50_msto *msto = nv50_msto(encoder);
1400 struct nv50_mstc *mstc = msto->mstc;
1401 if (mstc && mstc->mstm == mstm)
1402 nv50_msto_cleanup(msto);
1403 }
1404 }
1405
1406 mstm->modified = false;
1407 }
1408
1409 static void
nv50_mstm_prepare(struct nv50_mstm * mstm)1410 nv50_mstm_prepare(struct nv50_mstm *mstm)
1411 {
1412 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1413 struct drm_encoder *encoder;
1414 int ret;
1415
1416 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1417 ret = drm_dp_update_payload_part1(&mstm->mgr);
1418
1419 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1420 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1421 struct nv50_msto *msto = nv50_msto(encoder);
1422 struct nv50_mstc *mstc = msto->mstc;
1423 if (mstc && mstc->mstm == mstm)
1424 nv50_msto_prepare(msto);
1425 }
1426 }
1427
1428 if (mstm->disabled) {
1429 if (!mstm->links)
1430 nv50_outp_release(mstm->outp);
1431 mstm->disabled = false;
1432 }
1433 }
1434
1435 static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr * mgr,struct drm_dp_mst_port * port,const char * path)1436 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1437 struct drm_dp_mst_port *port, const char *path)
1438 {
1439 struct nv50_mstm *mstm = nv50_mstm(mgr);
1440 struct nv50_mstc *mstc;
1441 int ret;
1442
1443 ret = nv50_mstc_new(mstm, port, path, &mstc);
1444 if (ret)
1445 return NULL;
1446
1447 return &mstc->connector;
1448 }
1449
1450 static const struct drm_dp_mst_topology_cbs
1451 nv50_mstm = {
1452 .add_connector = nv50_mstm_add_connector,
1453 };
1454
1455 bool
nv50_mstm_service(struct nouveau_drm * drm,struct nouveau_connector * nv_connector,struct nv50_mstm * mstm)1456 nv50_mstm_service(struct nouveau_drm *drm,
1457 struct nouveau_connector *nv_connector,
1458 struct nv50_mstm *mstm)
1459 {
1460 struct drm_dp_aux *aux = &nv_connector->aux;
1461 bool handled = true, ret = true;
1462 int rc;
1463 u8 esi[8] = {};
1464
1465 while (handled) {
1466 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1467 if (rc != 8) {
1468 ret = false;
1469 break;
1470 }
1471
1472 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1473 if (!handled)
1474 break;
1475
1476 rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1477 3);
1478 if (rc != 3) {
1479 ret = false;
1480 break;
1481 }
1482 }
1483
1484 if (!ret)
1485 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1486 nv_connector->base.name, rc);
1487
1488 return ret;
1489 }
1490
1491 void
nv50_mstm_remove(struct nv50_mstm * mstm)1492 nv50_mstm_remove(struct nv50_mstm *mstm)
1493 {
1494 mstm->is_mst = false;
1495 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1496 }
1497
1498 static int
nv50_mstm_enable(struct nv50_mstm * mstm,int state)1499 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1500 {
1501 struct nouveau_encoder *outp = mstm->outp;
1502 struct {
1503 struct nv50_disp_mthd_v1 base;
1504 struct nv50_disp_sor_dp_mst_link_v0 mst;
1505 } args = {
1506 .base.version = 1,
1507 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1508 .base.hasht = outp->dcb->hasht,
1509 .base.hashm = outp->dcb->hashm,
1510 .mst.state = state,
1511 };
1512 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1513 struct nvif_object *disp = &drm->display->disp.object;
1514
1515 return nvif_mthd(disp, 0, &args, sizeof(args));
1516 }
1517
1518 int
nv50_mstm_detect(struct nouveau_encoder * outp)1519 nv50_mstm_detect(struct nouveau_encoder *outp)
1520 {
1521 struct nv50_mstm *mstm = outp->dp.mstm;
1522 struct drm_dp_aux *aux;
1523 int ret;
1524
1525 if (!mstm || !mstm->can_mst)
1526 return 0;
1527
1528 aux = mstm->mgr.aux;
1529
1530 /* Clear any leftover MST state we didn't set ourselves by first
1531 * disabling MST if it was already enabled
1532 */
1533 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1534 if (ret < 0)
1535 return ret;
1536
1537 /* And start enabling */
1538 ret = nv50_mstm_enable(mstm, true);
1539 if (ret)
1540 return ret;
1541
1542 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1543 if (ret) {
1544 nv50_mstm_enable(mstm, false);
1545 return ret;
1546 }
1547
1548 mstm->is_mst = true;
1549 return 1;
1550 }
1551
1552 static void
nv50_mstm_fini(struct nouveau_encoder * outp)1553 nv50_mstm_fini(struct nouveau_encoder *outp)
1554 {
1555 struct nv50_mstm *mstm = outp->dp.mstm;
1556
1557 if (!mstm)
1558 return;
1559
1560 /* Don't change the MST state of this connector until we've finished
1561 * resuming, since we can't safely grab hpd_irq_lock in our resume
1562 * path to protect mstm->is_mst without potentially deadlocking
1563 */
1564 mutex_lock(&outp->dp.hpd_irq_lock);
1565 mstm->suspended = true;
1566 mutex_unlock(&outp->dp.hpd_irq_lock);
1567
1568 if (mstm->is_mst)
1569 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1570 }
1571
1572 static void
nv50_mstm_init(struct nouveau_encoder * outp,bool runtime)1573 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1574 {
1575 struct nv50_mstm *mstm = outp->dp.mstm;
1576 int ret = 0;
1577
1578 if (!mstm)
1579 return;
1580
1581 if (mstm->is_mst) {
1582 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1583 if (ret == -1)
1584 nv50_mstm_remove(mstm);
1585 }
1586
1587 mutex_lock(&outp->dp.hpd_irq_lock);
1588 mstm->suspended = false;
1589 mutex_unlock(&outp->dp.hpd_irq_lock);
1590
1591 if (ret == -1)
1592 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1593 }
1594
1595 static void
nv50_mstm_del(struct nv50_mstm ** pmstm)1596 nv50_mstm_del(struct nv50_mstm **pmstm)
1597 {
1598 struct nv50_mstm *mstm = *pmstm;
1599 if (mstm) {
1600 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1601 kfree(*pmstm);
1602 *pmstm = NULL;
1603 }
1604 }
1605
1606 static int
nv50_mstm_new(struct nouveau_encoder * outp,struct drm_dp_aux * aux,int aux_max,int conn_base_id,struct nv50_mstm ** pmstm)1607 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1608 int conn_base_id, struct nv50_mstm **pmstm)
1609 {
1610 const int max_payloads = hweight8(outp->dcb->heads);
1611 struct drm_device *dev = outp->base.base.dev;
1612 struct nv50_mstm *mstm;
1613 int ret;
1614
1615 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1616 return -ENOMEM;
1617 mstm->outp = outp;
1618 mstm->mgr.cbs = &nv50_mstm;
1619
1620 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1621 max_payloads, outp->dcb->dpconf.link_nr,
1622 drm_dp_bw_code_to_link_rate(outp->dcb->dpconf.link_bw),
1623 conn_base_id);
1624 if (ret)
1625 return ret;
1626
1627 return 0;
1628 }
1629
1630 /******************************************************************************
1631 * SOR
1632 *****************************************************************************/
1633 static void
nv50_sor_update(struct nouveau_encoder * nv_encoder,u8 head,struct nv50_head_atom * asyh,u8 proto,u8 depth)1634 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1635 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1636 {
1637 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1638 struct nv50_core *core = disp->core;
1639
1640 if (!asyh) {
1641 nv_encoder->ctrl &= ~BIT(head);
1642 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1643 nv_encoder->ctrl = 0;
1644 } else {
1645 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1646 nv_encoder->ctrl |= BIT(head);
1647 asyh->or.depth = depth;
1648 }
1649
1650 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1651 }
1652
1653 /* TODO: Should we extend this to PWM-only backlights?
1654 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1655 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1656 * fixed time delay from the vbios…
1657 */
1658 static void
nv50_sor_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1659 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1660 {
1661 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1662 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1663 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1664 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1665 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1666 struct nouveau_backlight *backlight = nv_connector->backlight;
1667 #endif
1668 struct drm_dp_aux *aux = &nv_connector->aux;
1669 int ret;
1670 u8 pwr;
1671
1672 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1673 if (backlight && backlight->uses_dpcd) {
1674 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1675 if (ret < 0)
1676 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1677 nv_connector->base.base.id, nv_connector->base.name, ret);
1678 }
1679 #endif
1680
1681 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1682 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1683
1684 if (ret == 0) {
1685 pwr &= ~DP_SET_POWER_MASK;
1686 pwr |= DP_SET_POWER_D3;
1687 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1688 }
1689 }
1690
1691 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1692 nv50_audio_disable(encoder, nv_crtc);
1693 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1694 nv50_outp_release(nv_encoder);
1695 nv_encoder->crtc = NULL;
1696 }
1697
1698 static void
nv50_sor_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1699 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1700 {
1701 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1702 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1703 struct nv50_head_atom *asyh =
1704 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1705 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1706 struct {
1707 struct nv50_disp_mthd_v1 base;
1708 struct nv50_disp_sor_lvds_script_v0 lvds;
1709 } lvds = {
1710 .base.version = 1,
1711 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1712 .base.hasht = nv_encoder->dcb->hasht,
1713 .base.hashm = nv_encoder->dcb->hashm,
1714 };
1715 struct nv50_disp *disp = nv50_disp(encoder->dev);
1716 struct drm_device *dev = encoder->dev;
1717 struct nouveau_drm *drm = nouveau_drm(dev);
1718 struct nouveau_connector *nv_connector;
1719 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1720 struct nouveau_backlight *backlight;
1721 #endif
1722 struct nvbios *bios = &drm->vbios;
1723 bool hda = false;
1724 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1725 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1726
1727 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1728 nv_encoder->crtc = &nv_crtc->base;
1729
1730 if ((disp->disp->object.oclass == GT214_DISP ||
1731 disp->disp->object.oclass >= GF110_DISP) &&
1732 drm_detect_monitor_audio(nv_connector->edid))
1733 hda = true;
1734 nv50_outp_acquire(nv_encoder, hda);
1735
1736 switch (nv_encoder->dcb->type) {
1737 case DCB_OUTPUT_TMDS:
1738 if (nv_encoder->link & 1) {
1739 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1740 /* Only enable dual-link if:
1741 * - Need to (i.e. rate > 165MHz)
1742 * - DCB says we can
1743 * - Not an HDMI monitor, since there's no dual-link
1744 * on HDMI.
1745 */
1746 if (mode->clock >= 165000 &&
1747 nv_encoder->dcb->duallink_possible &&
1748 !drm_detect_hdmi_monitor(nv_connector->edid))
1749 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1750 } else {
1751 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1752 }
1753
1754 nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1755 break;
1756 case DCB_OUTPUT_LVDS:
1757 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1758
1759 if (bios->fp_no_ddc) {
1760 if (bios->fp.dual_link)
1761 lvds.lvds.script |= 0x0100;
1762 if (bios->fp.if_is_24bit)
1763 lvds.lvds.script |= 0x0200;
1764 } else {
1765 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1766 if (((u8 *)nv_connector->edid)[121] == 2)
1767 lvds.lvds.script |= 0x0100;
1768 } else
1769 if (mode->clock >= bios->fp.duallink_transition_clk) {
1770 lvds.lvds.script |= 0x0100;
1771 }
1772
1773 if (lvds.lvds.script & 0x0100) {
1774 if (bios->fp.strapless_is_24bit & 2)
1775 lvds.lvds.script |= 0x0200;
1776 } else {
1777 if (bios->fp.strapless_is_24bit & 1)
1778 lvds.lvds.script |= 0x0200;
1779 }
1780
1781 if (asyh->or.bpc == 8)
1782 lvds.lvds.script |= 0x0200;
1783 }
1784
1785 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1786 break;
1787 case DCB_OUTPUT_DP:
1788 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1789
1790 if (nv_encoder->link & 1)
1791 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1792 else
1793 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1794
1795 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1796
1797 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1798 backlight = nv_connector->backlight;
1799 if (backlight && backlight->uses_dpcd)
1800 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1801 (u16)backlight->dev->props.brightness);
1802 #endif
1803
1804 break;
1805 default:
1806 BUG();
1807 break;
1808 }
1809
1810 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1811 }
1812
1813 static const struct drm_encoder_helper_funcs
1814 nv50_sor_help = {
1815 .atomic_check = nv50_outp_atomic_check,
1816 .atomic_enable = nv50_sor_atomic_enable,
1817 .atomic_disable = nv50_sor_atomic_disable,
1818 };
1819
1820 static void
nv50_sor_destroy(struct drm_encoder * encoder)1821 nv50_sor_destroy(struct drm_encoder *encoder)
1822 {
1823 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1824 nv50_mstm_del(&nv_encoder->dp.mstm);
1825 drm_encoder_cleanup(encoder);
1826
1827 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1828 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1829
1830 kfree(encoder);
1831 }
1832
1833 static const struct drm_encoder_funcs
1834 nv50_sor_func = {
1835 .destroy = nv50_sor_destroy,
1836 };
1837
nv50_has_mst(struct nouveau_drm * drm)1838 static bool nv50_has_mst(struct nouveau_drm *drm)
1839 {
1840 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1841 u32 data;
1842 u8 ver, hdr, cnt, len;
1843
1844 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1845 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1846 }
1847
1848 static int
nv50_sor_create(struct drm_connector * connector,struct dcb_output * dcbe)1849 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1850 {
1851 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1852 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1853 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1854 struct nouveau_encoder *nv_encoder;
1855 struct drm_encoder *encoder;
1856 struct nv50_disp *disp = nv50_disp(connector->dev);
1857 int type, ret;
1858
1859 switch (dcbe->type) {
1860 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1861 case DCB_OUTPUT_TMDS:
1862 case DCB_OUTPUT_DP:
1863 default:
1864 type = DRM_MODE_ENCODER_TMDS;
1865 break;
1866 }
1867
1868 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1869 if (!nv_encoder)
1870 return -ENOMEM;
1871 nv_encoder->dcb = dcbe;
1872 nv_encoder->update = nv50_sor_update;
1873
1874 encoder = to_drm_encoder(nv_encoder);
1875 encoder->possible_crtcs = dcbe->heads;
1876 encoder->possible_clones = 0;
1877 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1878 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1879 drm_encoder_helper_add(encoder, &nv50_sor_help);
1880
1881 drm_connector_attach_encoder(connector, encoder);
1882
1883 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1884 nv50_outp_dump_caps(drm, nv_encoder);
1885
1886 if (dcbe->type == DCB_OUTPUT_DP) {
1887 struct nvkm_i2c_aux *aux =
1888 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1889
1890 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1891
1892 if (aux) {
1893 if (disp->disp->object.oclass < GF110_DISP) {
1894 /* HW has no support for address-only
1895 * transactions, so we're required to
1896 * use custom I2C-over-AUX code.
1897 */
1898 nv_encoder->i2c = &aux->i2c;
1899 } else {
1900 nv_encoder->i2c = &nv_connector->aux.ddc;
1901 }
1902 nv_encoder->aux = aux;
1903 }
1904
1905 if (nv_connector->type != DCB_CONNECTOR_eDP &&
1906 nv50_has_mst(drm)) {
1907 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1908 16, nv_connector->base.base.id,
1909 &nv_encoder->dp.mstm);
1910 if (ret)
1911 return ret;
1912 }
1913 } else {
1914 struct nvkm_i2c_bus *bus =
1915 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1916 if (bus)
1917 nv_encoder->i2c = &bus->i2c;
1918 }
1919
1920 return 0;
1921 }
1922
1923 /******************************************************************************
1924 * PIOR
1925 *****************************************************************************/
1926 static int
nv50_pior_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1927 nv50_pior_atomic_check(struct drm_encoder *encoder,
1928 struct drm_crtc_state *crtc_state,
1929 struct drm_connector_state *conn_state)
1930 {
1931 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1932 if (ret)
1933 return ret;
1934 crtc_state->adjusted_mode.clock *= 2;
1935 return 0;
1936 }
1937
1938 static void
nv50_pior_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1939 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1940 {
1941 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1942 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1943 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1944
1945 core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1946 nv_encoder->crtc = NULL;
1947 nv50_outp_release(nv_encoder);
1948 }
1949
1950 static void
nv50_pior_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1951 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1952 {
1953 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1954 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1955 struct nv50_head_atom *asyh =
1956 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1957 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1958 u32 ctrl = 0;
1959
1960 switch (nv_crtc->index) {
1961 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1962 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1963 default:
1964 WARN_ON(1);
1965 break;
1966 }
1967
1968 nv50_outp_acquire(nv_encoder, false);
1969
1970 switch (asyh->or.bpc) {
1971 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1972 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1973 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1974 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1975 }
1976
1977 switch (nv_encoder->dcb->type) {
1978 case DCB_OUTPUT_TMDS:
1979 case DCB_OUTPUT_DP:
1980 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1981 break;
1982 default:
1983 BUG();
1984 break;
1985 }
1986
1987 core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
1988 nv_encoder->crtc = &nv_crtc->base;
1989 }
1990
1991 static const struct drm_encoder_helper_funcs
1992 nv50_pior_help = {
1993 .atomic_check = nv50_pior_atomic_check,
1994 .atomic_enable = nv50_pior_atomic_enable,
1995 .atomic_disable = nv50_pior_atomic_disable,
1996 };
1997
1998 static void
nv50_pior_destroy(struct drm_encoder * encoder)1999 nv50_pior_destroy(struct drm_encoder *encoder)
2000 {
2001 drm_encoder_cleanup(encoder);
2002 kfree(encoder);
2003 }
2004
2005 static const struct drm_encoder_funcs
2006 nv50_pior_func = {
2007 .destroy = nv50_pior_destroy,
2008 };
2009
2010 static int
nv50_pior_create(struct drm_connector * connector,struct dcb_output * dcbe)2011 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2012 {
2013 struct drm_device *dev = connector->dev;
2014 struct nouveau_drm *drm = nouveau_drm(dev);
2015 struct nv50_disp *disp = nv50_disp(dev);
2016 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
2017 struct nvkm_i2c_bus *bus = NULL;
2018 struct nvkm_i2c_aux *aux = NULL;
2019 struct i2c_adapter *ddc;
2020 struct nouveau_encoder *nv_encoder;
2021 struct drm_encoder *encoder;
2022 int type;
2023
2024 switch (dcbe->type) {
2025 case DCB_OUTPUT_TMDS:
2026 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2027 ddc = bus ? &bus->i2c : NULL;
2028 type = DRM_MODE_ENCODER_TMDS;
2029 break;
2030 case DCB_OUTPUT_DP:
2031 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2032 ddc = aux ? &aux->i2c : NULL;
2033 type = DRM_MODE_ENCODER_TMDS;
2034 break;
2035 default:
2036 return -ENODEV;
2037 }
2038
2039 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2040 if (!nv_encoder)
2041 return -ENOMEM;
2042 nv_encoder->dcb = dcbe;
2043 nv_encoder->i2c = ddc;
2044 nv_encoder->aux = aux;
2045
2046 encoder = to_drm_encoder(nv_encoder);
2047 encoder->possible_crtcs = dcbe->heads;
2048 encoder->possible_clones = 0;
2049 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2050 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2051 drm_encoder_helper_add(encoder, &nv50_pior_help);
2052
2053 drm_connector_attach_encoder(connector, encoder);
2054
2055 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2056 nv50_outp_dump_caps(drm, nv_encoder);
2057
2058 return 0;
2059 }
2060
2061 /******************************************************************************
2062 * Atomic
2063 *****************************************************************************/
2064
2065 static void
nv50_disp_atomic_commit_core(struct drm_atomic_state * state,u32 * interlock)2066 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2067 {
2068 struct nouveau_drm *drm = nouveau_drm(state->dev);
2069 struct nv50_disp *disp = nv50_disp(drm->dev);
2070 struct nv50_core *core = disp->core;
2071 struct nv50_mstm *mstm;
2072 struct drm_encoder *encoder;
2073
2074 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2075
2076 drm_for_each_encoder(encoder, drm->dev) {
2077 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2078 mstm = nouveau_encoder(encoder)->dp.mstm;
2079 if (mstm && mstm->modified)
2080 nv50_mstm_prepare(mstm);
2081 }
2082 }
2083
2084 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2085 core->func->update(core, interlock, true);
2086 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2087 disp->core->chan.base.device))
2088 NV_ERROR(drm, "core notifier timeout\n");
2089
2090 drm_for_each_encoder(encoder, drm->dev) {
2091 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2092 mstm = nouveau_encoder(encoder)->dp.mstm;
2093 if (mstm && mstm->modified)
2094 nv50_mstm_cleanup(mstm);
2095 }
2096 }
2097 }
2098
2099 static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state * state,u32 * interlock)2100 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2101 {
2102 struct drm_plane_state *new_plane_state;
2103 struct drm_plane *plane;
2104 int i;
2105
2106 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2107 struct nv50_wndw *wndw = nv50_wndw(plane);
2108 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2109 if (wndw->func->update)
2110 wndw->func->update(wndw, interlock);
2111 }
2112 }
2113 }
2114
2115 static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state * state)2116 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2117 {
2118 struct drm_device *dev = state->dev;
2119 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2120 struct drm_crtc *crtc;
2121 struct drm_plane_state *new_plane_state;
2122 struct drm_plane *plane;
2123 struct nouveau_drm *drm = nouveau_drm(dev);
2124 struct nv50_disp *disp = nv50_disp(dev);
2125 struct nv50_atom *atom = nv50_atom(state);
2126 struct nv50_core *core = disp->core;
2127 struct nv50_outp_atom *outp, *outt;
2128 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2129 int i;
2130 bool flushed = false;
2131
2132 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2133 nv50_crc_atomic_stop_reporting(state);
2134 drm_atomic_helper_wait_for_fences(dev, state, false);
2135 drm_atomic_helper_wait_for_dependencies(state);
2136 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2137 drm_atomic_helper_calc_timestamping_constants(state);
2138
2139 if (atom->lock_core)
2140 mutex_lock(&disp->mutex);
2141
2142 /* Disable head(s). */
2143 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2144 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2145 struct nv50_head *head = nv50_head(crtc);
2146
2147 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2148 asyh->clr.mask, asyh->set.mask);
2149
2150 if (old_crtc_state->active && !new_crtc_state->active) {
2151 pm_runtime_put_noidle(dev->dev);
2152 drm_crtc_vblank_off(crtc);
2153 }
2154
2155 if (asyh->clr.mask) {
2156 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2157 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2158 }
2159 }
2160
2161 /* Disable plane(s). */
2162 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2163 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2164 struct nv50_wndw *wndw = nv50_wndw(plane);
2165
2166 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2167 asyw->clr.mask, asyw->set.mask);
2168 if (!asyw->clr.mask)
2169 continue;
2170
2171 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2172 }
2173
2174 /* Disable output path(s). */
2175 list_for_each_entry(outp, &atom->outp, head) {
2176 const struct drm_encoder_helper_funcs *help;
2177 struct drm_encoder *encoder;
2178
2179 encoder = outp->encoder;
2180 help = encoder->helper_private;
2181
2182 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2183 outp->clr.mask, outp->set.mask);
2184
2185 if (outp->clr.mask) {
2186 help->atomic_disable(encoder, state);
2187 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2188 if (outp->flush_disable) {
2189 nv50_disp_atomic_commit_wndw(state, interlock);
2190 nv50_disp_atomic_commit_core(state, interlock);
2191 memset(interlock, 0x00, sizeof(interlock));
2192
2193 flushed = true;
2194 }
2195 }
2196 }
2197
2198 /* Flush disable. */
2199 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2200 if (atom->flush_disable) {
2201 nv50_disp_atomic_commit_wndw(state, interlock);
2202 nv50_disp_atomic_commit_core(state, interlock);
2203 memset(interlock, 0x00, sizeof(interlock));
2204
2205 flushed = true;
2206 }
2207 }
2208
2209 if (flushed)
2210 nv50_crc_atomic_release_notifier_contexts(state);
2211 nv50_crc_atomic_init_notifier_contexts(state);
2212
2213 /* Update output path(s). */
2214 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2215 const struct drm_encoder_helper_funcs *help;
2216 struct drm_encoder *encoder;
2217
2218 encoder = outp->encoder;
2219 help = encoder->helper_private;
2220
2221 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2222 outp->set.mask, outp->clr.mask);
2223
2224 if (outp->set.mask) {
2225 help->atomic_enable(encoder, state);
2226 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2227 }
2228
2229 list_del(&outp->head);
2230 kfree(outp);
2231 }
2232
2233 /* Update head(s). */
2234 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2235 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2236 struct nv50_head *head = nv50_head(crtc);
2237
2238 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2239 asyh->set.mask, asyh->clr.mask);
2240
2241 if (asyh->set.mask) {
2242 nv50_head_flush_set(head, asyh);
2243 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2244 }
2245
2246 if (new_crtc_state->active) {
2247 if (!old_crtc_state->active) {
2248 drm_crtc_vblank_on(crtc);
2249 pm_runtime_get_noresume(dev->dev);
2250 }
2251 if (new_crtc_state->event)
2252 drm_crtc_vblank_get(crtc);
2253 }
2254 }
2255
2256 /* Update window->head assignment.
2257 *
2258 * This has to happen in an update that's not interlocked with
2259 * any window channels to avoid hitting HW error checks.
2260 *
2261 *TODO: Proper handling of window ownership (Turing apparently
2262 * supports non-fixed mappings).
2263 */
2264 if (core->assign_windows) {
2265 core->func->wndw.owner(core);
2266 nv50_disp_atomic_commit_core(state, interlock);
2267 core->assign_windows = false;
2268 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2269 }
2270
2271 /* Finish updating head(s)...
2272 *
2273 * NVD is rather picky about both where window assignments can change,
2274 * *and* about certain core and window channel states matching.
2275 *
2276 * The EFI GOP driver on newer GPUs configures window channels with a
2277 * different output format to what we do, and the core channel update
2278 * in the assign_windows case above would result in a state mismatch.
2279 *
2280 * Delay some of the head update until after that point to workaround
2281 * the issue. This only affects the initial modeset.
2282 *
2283 * TODO: handle this better when adding flexible window mapping
2284 */
2285 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2286 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2287 struct nv50_head *head = nv50_head(crtc);
2288
2289 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2290 asyh->set.mask, asyh->clr.mask);
2291
2292 if (asyh->set.mask) {
2293 nv50_head_flush_set_wndw(head, asyh);
2294 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2295 }
2296 }
2297
2298 /* Update plane(s). */
2299 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2300 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2301 struct nv50_wndw *wndw = nv50_wndw(plane);
2302
2303 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2304 asyw->set.mask, asyw->clr.mask);
2305 if ( !asyw->set.mask &&
2306 (!asyw->clr.mask || atom->flush_disable))
2307 continue;
2308
2309 nv50_wndw_flush_set(wndw, interlock, asyw);
2310 }
2311
2312 /* Flush update. */
2313 nv50_disp_atomic_commit_wndw(state, interlock);
2314
2315 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2316 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2317 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2318 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2319 !atom->state.legacy_cursor_update)
2320 nv50_disp_atomic_commit_core(state, interlock);
2321 else
2322 disp->core->func->update(disp->core, interlock, false);
2323 }
2324
2325 if (atom->lock_core)
2326 mutex_unlock(&disp->mutex);
2327
2328 /* Wait for HW to signal completion. */
2329 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2330 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2331 struct nv50_wndw *wndw = nv50_wndw(plane);
2332 int ret = nv50_wndw_wait_armed(wndw, asyw);
2333 if (ret)
2334 NV_ERROR(drm, "%s: timeout\n", plane->name);
2335 }
2336
2337 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2338 if (new_crtc_state->event) {
2339 unsigned long flags;
2340 /* Get correct count/ts if racing with vblank irq */
2341 if (new_crtc_state->active)
2342 drm_crtc_accurate_vblank_count(crtc);
2343 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2344 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2345 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2346
2347 new_crtc_state->event = NULL;
2348 if (new_crtc_state->active)
2349 drm_crtc_vblank_put(crtc);
2350 }
2351 }
2352
2353 nv50_crc_atomic_start_reporting(state);
2354 if (!flushed)
2355 nv50_crc_atomic_release_notifier_contexts(state);
2356
2357 drm_atomic_helper_commit_hw_done(state);
2358 drm_atomic_helper_cleanup_planes(dev, state);
2359 drm_atomic_helper_commit_cleanup_done(state);
2360 drm_atomic_state_put(state);
2361
2362 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2363 pm_runtime_mark_last_busy(dev->dev);
2364 pm_runtime_put_autosuspend(dev->dev);
2365 }
2366
2367 static void
nv50_disp_atomic_commit_work(struct work_struct * work)2368 nv50_disp_atomic_commit_work(struct work_struct *work)
2369 {
2370 struct drm_atomic_state *state =
2371 container_of(work, typeof(*state), commit_work);
2372 nv50_disp_atomic_commit_tail(state);
2373 }
2374
2375 static int
nv50_disp_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)2376 nv50_disp_atomic_commit(struct drm_device *dev,
2377 struct drm_atomic_state *state, bool nonblock)
2378 {
2379 struct drm_plane_state *new_plane_state;
2380 struct drm_plane *plane;
2381 int ret, i;
2382
2383 ret = pm_runtime_get_sync(dev->dev);
2384 if (ret < 0 && ret != -EACCES) {
2385 pm_runtime_put_autosuspend(dev->dev);
2386 return ret;
2387 }
2388
2389 ret = drm_atomic_helper_setup_commit(state, nonblock);
2390 if (ret)
2391 goto done;
2392
2393 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2394
2395 ret = drm_atomic_helper_prepare_planes(dev, state);
2396 if (ret)
2397 goto done;
2398
2399 if (!nonblock) {
2400 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2401 if (ret)
2402 goto err_cleanup;
2403 }
2404
2405 ret = drm_atomic_helper_swap_state(state, true);
2406 if (ret)
2407 goto err_cleanup;
2408
2409 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2410 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2411 struct nv50_wndw *wndw = nv50_wndw(plane);
2412
2413 if (asyw->set.image)
2414 nv50_wndw_ntfy_enable(wndw, asyw);
2415 }
2416
2417 drm_atomic_state_get(state);
2418
2419 /*
2420 * Grab another RPM ref for the commit tail, which will release the
2421 * ref when it's finished
2422 */
2423 pm_runtime_get_noresume(dev->dev);
2424
2425 if (nonblock)
2426 queue_work(system_unbound_wq, &state->commit_work);
2427 else
2428 nv50_disp_atomic_commit_tail(state);
2429
2430 err_cleanup:
2431 if (ret)
2432 drm_atomic_helper_cleanup_planes(dev, state);
2433 done:
2434 pm_runtime_put_autosuspend(dev->dev);
2435 return ret;
2436 }
2437
2438 static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom * atom,struct drm_encoder * encoder)2439 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2440 {
2441 struct nv50_outp_atom *outp;
2442
2443 list_for_each_entry(outp, &atom->outp, head) {
2444 if (outp->encoder == encoder)
2445 return outp;
2446 }
2447
2448 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2449 if (!outp)
2450 return ERR_PTR(-ENOMEM);
2451
2452 list_add(&outp->head, &atom->outp);
2453 outp->encoder = encoder;
2454 return outp;
2455 }
2456
2457 static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom * atom,struct drm_connector_state * old_connector_state)2458 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2459 struct drm_connector_state *old_connector_state)
2460 {
2461 struct drm_encoder *encoder = old_connector_state->best_encoder;
2462 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2463 struct drm_crtc *crtc;
2464 struct nv50_outp_atom *outp;
2465
2466 if (!(crtc = old_connector_state->crtc))
2467 return 0;
2468
2469 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2470 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2471 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2472 outp = nv50_disp_outp_atomic_add(atom, encoder);
2473 if (IS_ERR(outp))
2474 return PTR_ERR(outp);
2475
2476 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2477 outp->flush_disable = true;
2478 atom->flush_disable = true;
2479 }
2480 outp->clr.ctrl = true;
2481 atom->lock_core = true;
2482 }
2483
2484 return 0;
2485 }
2486
2487 static int
nv50_disp_outp_atomic_check_set(struct nv50_atom * atom,struct drm_connector_state * connector_state)2488 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2489 struct drm_connector_state *connector_state)
2490 {
2491 struct drm_encoder *encoder = connector_state->best_encoder;
2492 struct drm_crtc_state *new_crtc_state;
2493 struct drm_crtc *crtc;
2494 struct nv50_outp_atom *outp;
2495
2496 if (!(crtc = connector_state->crtc))
2497 return 0;
2498
2499 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2500 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2501 outp = nv50_disp_outp_atomic_add(atom, encoder);
2502 if (IS_ERR(outp))
2503 return PTR_ERR(outp);
2504
2505 outp->set.ctrl = true;
2506 atom->lock_core = true;
2507 }
2508
2509 return 0;
2510 }
2511
2512 static int
nv50_disp_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)2513 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2514 {
2515 struct nv50_atom *atom = nv50_atom(state);
2516 struct nv50_core *core = nv50_disp(dev)->core;
2517 struct drm_connector_state *old_connector_state, *new_connector_state;
2518 struct drm_connector *connector;
2519 struct drm_crtc_state *new_crtc_state;
2520 struct drm_crtc *crtc;
2521 struct nv50_head *head;
2522 struct nv50_head_atom *asyh;
2523 int ret, i;
2524
2525 if (core->assign_windows && core->func->head->static_wndw_map) {
2526 drm_for_each_crtc(crtc, dev) {
2527 new_crtc_state = drm_atomic_get_crtc_state(state,
2528 crtc);
2529 if (IS_ERR(new_crtc_state))
2530 return PTR_ERR(new_crtc_state);
2531
2532 head = nv50_head(crtc);
2533 asyh = nv50_head_atom(new_crtc_state);
2534 core->func->head->static_wndw_map(head, asyh);
2535 }
2536 }
2537
2538 /* We need to handle colour management on a per-plane basis. */
2539 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2540 if (new_crtc_state->color_mgmt_changed) {
2541 ret = drm_atomic_add_affected_planes(state, crtc);
2542 if (ret)
2543 return ret;
2544 }
2545 }
2546
2547 ret = drm_atomic_helper_check(dev, state);
2548 if (ret)
2549 return ret;
2550
2551 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2552 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2553 if (ret)
2554 return ret;
2555
2556 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2557 if (ret)
2558 return ret;
2559 }
2560
2561 ret = drm_dp_mst_atomic_check(state);
2562 if (ret)
2563 return ret;
2564
2565 nv50_crc_atomic_check_outp(atom);
2566
2567 return 0;
2568 }
2569
2570 static void
nv50_disp_atomic_state_clear(struct drm_atomic_state * state)2571 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2572 {
2573 struct nv50_atom *atom = nv50_atom(state);
2574 struct nv50_outp_atom *outp, *outt;
2575
2576 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2577 list_del(&outp->head);
2578 kfree(outp);
2579 }
2580
2581 drm_atomic_state_default_clear(state);
2582 }
2583
2584 static void
nv50_disp_atomic_state_free(struct drm_atomic_state * state)2585 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2586 {
2587 struct nv50_atom *atom = nv50_atom(state);
2588 drm_atomic_state_default_release(&atom->state);
2589 kfree(atom);
2590 }
2591
2592 static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device * dev)2593 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2594 {
2595 struct nv50_atom *atom;
2596 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2597 drm_atomic_state_init(dev, &atom->state) < 0) {
2598 kfree(atom);
2599 return NULL;
2600 }
2601 INIT_LIST_HEAD(&atom->outp);
2602 return &atom->state;
2603 }
2604
2605 static const struct drm_mode_config_funcs
2606 nv50_disp_func = {
2607 .fb_create = nouveau_user_framebuffer_create,
2608 .output_poll_changed = nouveau_fbcon_output_poll_changed,
2609 .atomic_check = nv50_disp_atomic_check,
2610 .atomic_commit = nv50_disp_atomic_commit,
2611 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2612 .atomic_state_clear = nv50_disp_atomic_state_clear,
2613 .atomic_state_free = nv50_disp_atomic_state_free,
2614 };
2615
2616 /******************************************************************************
2617 * Init
2618 *****************************************************************************/
2619
2620 static void
nv50_display_fini(struct drm_device * dev,bool runtime,bool suspend)2621 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2622 {
2623 struct nouveau_drm *drm = nouveau_drm(dev);
2624 struct drm_encoder *encoder;
2625 struct drm_plane *plane;
2626
2627 drm_for_each_plane(plane, dev) {
2628 struct nv50_wndw *wndw = nv50_wndw(plane);
2629 if (plane->funcs != &nv50_wndw)
2630 continue;
2631 nv50_wndw_fini(wndw);
2632 }
2633
2634 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2635 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2636 nv50_mstm_fini(nouveau_encoder(encoder));
2637 }
2638
2639 if (!runtime)
2640 cancel_work_sync(&drm->hpd_work);
2641 }
2642
2643 static int
nv50_display_init(struct drm_device * dev,bool resume,bool runtime)2644 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2645 {
2646 struct nv50_core *core = nv50_disp(dev)->core;
2647 struct drm_encoder *encoder;
2648 struct drm_plane *plane;
2649
2650 if (resume || runtime)
2651 core->func->init(core);
2652
2653 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2654 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2655 struct nouveau_encoder *nv_encoder =
2656 nouveau_encoder(encoder);
2657 nv50_mstm_init(nv_encoder, runtime);
2658 }
2659 }
2660
2661 drm_for_each_plane(plane, dev) {
2662 struct nv50_wndw *wndw = nv50_wndw(plane);
2663 if (plane->funcs != &nv50_wndw)
2664 continue;
2665 nv50_wndw_init(wndw);
2666 }
2667
2668 return 0;
2669 }
2670
2671 static void
nv50_display_destroy(struct drm_device * dev)2672 nv50_display_destroy(struct drm_device *dev)
2673 {
2674 struct nv50_disp *disp = nv50_disp(dev);
2675
2676 nv50_audio_component_fini(nouveau_drm(dev));
2677
2678 nvif_object_unmap(&disp->caps);
2679 nvif_object_dtor(&disp->caps);
2680 nv50_core_del(&disp->core);
2681
2682 nouveau_bo_unmap(disp->sync);
2683 if (disp->sync)
2684 nouveau_bo_unpin(disp->sync);
2685 nouveau_bo_ref(NULL, &disp->sync);
2686
2687 nouveau_display(dev)->priv = NULL;
2688 kfree(disp);
2689 }
2690
2691 int
nv50_display_create(struct drm_device * dev)2692 nv50_display_create(struct drm_device *dev)
2693 {
2694 struct nvif_device *device = &nouveau_drm(dev)->client.device;
2695 struct nouveau_drm *drm = nouveau_drm(dev);
2696 struct dcb_table *dcb = &drm->vbios.dcb;
2697 struct drm_connector *connector, *tmp;
2698 struct nv50_disp *disp;
2699 struct dcb_output *dcbe;
2700 int crtcs, ret, i;
2701 bool has_mst = nv50_has_mst(drm);
2702
2703 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2704 if (!disp)
2705 return -ENOMEM;
2706
2707 mutex_init(&disp->mutex);
2708
2709 nouveau_display(dev)->priv = disp;
2710 nouveau_display(dev)->dtor = nv50_display_destroy;
2711 nouveau_display(dev)->init = nv50_display_init;
2712 nouveau_display(dev)->fini = nv50_display_fini;
2713 disp->disp = &nouveau_display(dev)->disp;
2714 dev->mode_config.funcs = &nv50_disp_func;
2715 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2716 dev->mode_config.normalize_zpos = true;
2717
2718 /* small shared memory area we use for notifiers and semaphores */
2719 ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2720 NOUVEAU_GEM_DOMAIN_VRAM,
2721 0, 0x0000, NULL, NULL, &disp->sync);
2722 if (!ret) {
2723 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2724 if (!ret) {
2725 ret = nouveau_bo_map(disp->sync);
2726 if (ret)
2727 nouveau_bo_unpin(disp->sync);
2728 }
2729 if (ret)
2730 nouveau_bo_ref(NULL, &disp->sync);
2731 }
2732
2733 if (ret)
2734 goto out;
2735
2736 /* allocate master evo channel */
2737 ret = nv50_core_new(drm, &disp->core);
2738 if (ret)
2739 goto out;
2740
2741 disp->core->func->init(disp->core);
2742 if (disp->core->func->caps_init) {
2743 ret = disp->core->func->caps_init(drm, disp);
2744 if (ret)
2745 goto out;
2746 }
2747
2748 /* Assign the correct format modifiers */
2749 if (disp->disp->object.oclass >= TU102_DISP)
2750 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2751 else
2752 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2753 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2754 else
2755 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2756
2757 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2758 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2759 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2760 * small page allocations in prepare_fb(). When this is implemented, we should also force
2761 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2762 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2763 * large pages.
2764 */
2765 if (disp->disp->object.oclass >= GM107_DISP) {
2766 dev->mode_config.cursor_width = 256;
2767 dev->mode_config.cursor_height = 256;
2768 } else if (disp->disp->object.oclass >= GK104_DISP) {
2769 dev->mode_config.cursor_width = 128;
2770 dev->mode_config.cursor_height = 128;
2771 } else {
2772 dev->mode_config.cursor_width = 64;
2773 dev->mode_config.cursor_height = 64;
2774 }
2775
2776 /* create crtc objects to represent the hw heads */
2777 if (disp->disp->object.oclass >= GV100_DISP)
2778 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2779 else
2780 if (disp->disp->object.oclass >= GF110_DISP)
2781 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2782 else
2783 crtcs = 0x3;
2784
2785 for (i = 0; i < fls(crtcs); i++) {
2786 struct nv50_head *head;
2787
2788 if (!(crtcs & (1 << i)))
2789 continue;
2790
2791 head = nv50_head_create(dev, i);
2792 if (IS_ERR(head)) {
2793 ret = PTR_ERR(head);
2794 goto out;
2795 }
2796
2797 if (has_mst) {
2798 head->msto = nv50_msto_new(dev, head, i);
2799 if (IS_ERR(head->msto)) {
2800 ret = PTR_ERR(head->msto);
2801 head->msto = NULL;
2802 goto out;
2803 }
2804
2805 /*
2806 * FIXME: This is a hack to workaround the following
2807 * issues:
2808 *
2809 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2810 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2811 *
2812 * Once these issues are closed, this should be
2813 * removed
2814 */
2815 head->msto->encoder.possible_crtcs = crtcs;
2816 }
2817 }
2818
2819 /* create encoder/connector objects based on VBIOS DCB table */
2820 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2821 connector = nouveau_connector_create(dev, dcbe);
2822 if (IS_ERR(connector))
2823 continue;
2824
2825 if (dcbe->location == DCB_LOC_ON_CHIP) {
2826 switch (dcbe->type) {
2827 case DCB_OUTPUT_TMDS:
2828 case DCB_OUTPUT_LVDS:
2829 case DCB_OUTPUT_DP:
2830 ret = nv50_sor_create(connector, dcbe);
2831 break;
2832 case DCB_OUTPUT_ANALOG:
2833 ret = nv50_dac_create(connector, dcbe);
2834 break;
2835 default:
2836 ret = -ENODEV;
2837 break;
2838 }
2839 } else {
2840 ret = nv50_pior_create(connector, dcbe);
2841 }
2842
2843 if (ret) {
2844 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2845 dcbe->location, dcbe->type,
2846 ffs(dcbe->or) - 1, ret);
2847 ret = 0;
2848 }
2849 }
2850
2851 /* cull any connectors we created that don't have an encoder */
2852 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2853 if (connector->possible_encoders)
2854 continue;
2855
2856 NV_WARN(drm, "%s has no encoders, removing\n",
2857 connector->name);
2858 connector->funcs->destroy(connector);
2859 }
2860
2861 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2862 dev->vblank_disable_immediate = true;
2863
2864 nv50_audio_component_init(drm);
2865
2866 out:
2867 if (ret)
2868 nv50_display_destroy(dev);
2869 return ret;
2870 }
2871
2872 /******************************************************************************
2873 * Format modifiers
2874 *****************************************************************************/
2875
2876 /****************************************************************
2877 * Log2(block height) ----------------------------+ *
2878 * Page Kind ----------------------------------+ | *
2879 * Gob Height/Page Kind Generation ------+ | | *
2880 * Sector layout -------+ | | | *
2881 * Compression ------+ | | | | */
2882 const u64 disp50xx_modifiers[] = { /* | | | | | */
2883 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2884 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2885 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2886 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2887 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2888 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2889 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2890 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2891 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2892 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2893 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2894 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2895 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2896 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2897 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2898 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2899 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2900 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2901 DRM_FORMAT_MOD_LINEAR,
2902 DRM_FORMAT_MOD_INVALID
2903 };
2904
2905 /****************************************************************
2906 * Log2(block height) ----------------------------+ *
2907 * Page Kind ----------------------------------+ | *
2908 * Gob Height/Page Kind Generation ------+ | | *
2909 * Sector layout -------+ | | | *
2910 * Compression ------+ | | | | */
2911 const u64 disp90xx_modifiers[] = { /* | | | | | */
2912 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2913 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2914 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2915 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2916 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2917 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2918 DRM_FORMAT_MOD_LINEAR,
2919 DRM_FORMAT_MOD_INVALID
2920 };
2921