1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include <nvif/push507c.h>
46
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/event.h>
50 #include <nvif/if0012.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nv50_display.h"
68
69 #include <subdev/bios/dp.h>
70
71 /******************************************************************************
72 * EVO channel
73 *****************************************************************************/
74
75 static int
nv50_chan_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,struct nv50_chan * chan)76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
77 const s32 *oclass, u8 head, void *data, u32 size,
78 struct nv50_chan *chan)
79 {
80 struct nvif_sclass *sclass;
81 int ret, i, n;
82
83 chan->device = device;
84
85 ret = n = nvif_object_sclass_get(disp, &sclass);
86 if (ret < 0)
87 return ret;
88
89 while (oclass[0]) {
90 for (i = 0; i < n; i++) {
91 if (sclass[i].oclass == oclass[0]) {
92 ret = nvif_object_ctor(disp, "kmsChan", 0,
93 oclass[0], data, size,
94 &chan->user);
95 if (ret == 0)
96 nvif_object_map(&chan->user, NULL, 0);
97 nvif_object_sclass_put(&sclass);
98 return ret;
99 }
100 }
101 oclass++;
102 }
103
104 nvif_object_sclass_put(&sclass);
105 return -ENOSYS;
106 }
107
108 static void
nv50_chan_destroy(struct nv50_chan * chan)109 nv50_chan_destroy(struct nv50_chan *chan)
110 {
111 nvif_object_dtor(&chan->user);
112 }
113
114 /******************************************************************************
115 * DMA EVO channel
116 *****************************************************************************/
117
118 void
nv50_dmac_destroy(struct nv50_dmac * dmac)119 nv50_dmac_destroy(struct nv50_dmac *dmac)
120 {
121 nvif_object_dtor(&dmac->vram);
122 nvif_object_dtor(&dmac->sync);
123
124 nv50_chan_destroy(&dmac->base);
125
126 nvif_mem_dtor(&dmac->_push.mem);
127 }
128
129 static void
nv50_dmac_kick(struct nvif_push * push)130 nv50_dmac_kick(struct nvif_push *push)
131 {
132 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
133
134 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
135 if (dmac->put != dmac->cur) {
136 /* Push buffer fetches are not coherent with BAR1, we need to ensure
137 * writes have been flushed right through to VRAM before writing PUT.
138 */
139 if (dmac->push->mem.type & NVIF_MEM_VRAM) {
140 struct nvif_device *device = dmac->base.device;
141 nvif_wr32(&device->object, 0x070000, 0x00000001);
142 nvif_msec(device, 2000,
143 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
144 break;
145 );
146 }
147
148 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
149 dmac->put = dmac->cur;
150 }
151
152 push->bgn = push->cur;
153 }
154
155 static int
nv50_dmac_free(struct nv50_dmac * dmac)156 nv50_dmac_free(struct nv50_dmac *dmac)
157 {
158 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
159 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
160 return get - dmac->cur - 5;
161 return dmac->max - dmac->cur;
162 }
163
164 static int
nv50_dmac_wind(struct nv50_dmac * dmac)165 nv50_dmac_wind(struct nv50_dmac *dmac)
166 {
167 /* Wait for GET to depart from the beginning of the push buffer to
168 * prevent writing PUT == GET, which would be ignored by HW.
169 */
170 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
171 if (get == 0) {
172 /* Corner-case, HW idle, but non-committed work pending. */
173 if (dmac->put == 0)
174 nv50_dmac_kick(dmac->push);
175
176 if (nvif_msec(dmac->base.device, 2000,
177 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
178 break;
179 ) < 0)
180 return -ETIMEDOUT;
181 }
182
183 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
184 dmac->cur = 0;
185 return 0;
186 }
187
188 static int
nv50_dmac_wait(struct nvif_push * push,u32 size)189 nv50_dmac_wait(struct nvif_push *push, u32 size)
190 {
191 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
192 int free;
193
194 if (WARN_ON(size > dmac->max))
195 return -EINVAL;
196
197 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
198 if (dmac->cur + size >= dmac->max) {
199 int ret = nv50_dmac_wind(dmac);
200 if (ret)
201 return ret;
202
203 push->cur = dmac->_push.mem.object.map.ptr;
204 push->cur = push->cur + dmac->cur;
205 nv50_dmac_kick(push);
206 }
207
208 if (nvif_msec(dmac->base.device, 2000,
209 if ((free = nv50_dmac_free(dmac)) >= size)
210 break;
211 ) < 0) {
212 WARN_ON(1);
213 return -ETIMEDOUT;
214 }
215
216 push->bgn = dmac->_push.mem.object.map.ptr;
217 push->bgn = push->bgn + dmac->cur;
218 push->cur = push->bgn;
219 push->end = push->cur + free;
220 return 0;
221 }
222
223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
224 static int nv50_dmac_vram_pushbuf = -1;
225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
226
227 int
nv50_dmac_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,s64 syncbuf,struct nv50_dmac * dmac)228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
229 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
230 struct nv50_dmac *dmac)
231 {
232 struct nouveau_cli *cli = (void *)device->object.client;
233 struct nvif_disp_chan_v0 *args = data;
234 u8 type = NVIF_MEM_COHERENT;
235 int ret;
236
237 mutex_init(&dmac->lock);
238
239 /* Pascal added support for 47-bit physical addresses, but some
240 * parts of EVO still only accept 40-bit PAs.
241 *
242 * To avoid issues on systems with large amounts of RAM, and on
243 * systems where an IOMMU maps pages at a high address, we need
244 * to allocate push buffers in VRAM instead.
245 *
246 * This appears to match NVIDIA's behaviour on Pascal.
247 */
248 if ((nv50_dmac_vram_pushbuf > 0) ||
249 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
250 type |= NVIF_MEM_VRAM;
251
252 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
253 &dmac->_push.mem);
254 if (ret)
255 return ret;
256
257 dmac->ptr = dmac->_push.mem.object.map.ptr;
258 dmac->_push.wait = nv50_dmac_wait;
259 dmac->_push.kick = nv50_dmac_kick;
260 dmac->push = &dmac->_push;
261 dmac->push->bgn = dmac->_push.mem.object.map.ptr;
262 dmac->push->cur = dmac->push->bgn;
263 dmac->push->end = dmac->push->bgn;
264 dmac->max = 0x1000/4 - 1;
265
266 /* EVO channels are affected by a HW bug where the last 12 DWORDs
267 * of the push buffer aren't able to be used safely.
268 */
269 if (disp->oclass < GV100_DISP)
270 dmac->max -= 12;
271
272 args->pushbuf = nvif_handle(&dmac->_push.mem.object);
273
274 ret = nv50_chan_create(device, disp, oclass, head, data, size,
275 &dmac->base);
276 if (ret)
277 return ret;
278
279 if (syncbuf < 0)
280 return 0;
281
282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
283 NV_DMA_IN_MEMORY,
284 &(struct nv_dma_v0) {
285 .target = NV_DMA_V0_TARGET_VRAM,
286 .access = NV_DMA_V0_ACCESS_RDWR,
287 .start = syncbuf + 0x0000,
288 .limit = syncbuf + 0x0fff,
289 }, sizeof(struct nv_dma_v0),
290 &dmac->sync);
291 if (ret)
292 return ret;
293
294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
295 NV_DMA_IN_MEMORY,
296 &(struct nv_dma_v0) {
297 .target = NV_DMA_V0_TARGET_VRAM,
298 .access = NV_DMA_V0_ACCESS_RDWR,
299 .start = 0,
300 .limit = device->info.ram_user - 1,
301 }, sizeof(struct nv_dma_v0),
302 &dmac->vram);
303 if (ret)
304 return ret;
305
306 return ret;
307 }
308
309 /******************************************************************************
310 * Output path helpers
311 *****************************************************************************/
312 static void
nv50_outp_dump_caps(struct nouveau_drm * drm,struct nouveau_encoder * outp)313 nv50_outp_dump_caps(struct nouveau_drm *drm,
314 struct nouveau_encoder *outp)
315 {
316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
317 outp->base.base.name, outp->caps.dp_interlace);
318 }
319
320 static int
nv50_outp_atomic_check_view(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,struct drm_display_mode * native_mode)321 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
322 struct drm_crtc_state *crtc_state,
323 struct drm_connector_state *conn_state,
324 struct drm_display_mode *native_mode)
325 {
326 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
327 struct drm_display_mode *mode = &crtc_state->mode;
328 struct drm_connector *connector = conn_state->connector;
329 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
330 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
331
332 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
333 asyc->scaler.full = false;
334 if (!native_mode)
335 return 0;
336
337 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
338 switch (connector->connector_type) {
339 case DRM_MODE_CONNECTOR_LVDS:
340 case DRM_MODE_CONNECTOR_eDP:
341 /* Don't force scaler for EDID modes with
342 * same size as the native one (e.g. different
343 * refresh rate)
344 */
345 if (mode->hdisplay == native_mode->hdisplay &&
346 mode->vdisplay == native_mode->vdisplay &&
347 mode->type & DRM_MODE_TYPE_DRIVER)
348 break;
349 mode = native_mode;
350 asyc->scaler.full = true;
351 break;
352 default:
353 break;
354 }
355 } else {
356 mode = native_mode;
357 }
358
359 if (!drm_mode_equal(adjusted_mode, mode)) {
360 drm_mode_copy(adjusted_mode, mode);
361 crtc_state->mode_changed = true;
362 }
363
364 return 0;
365 }
366
367 static void
nv50_outp_atomic_fix_depth(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state)368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
369 {
370 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
371 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
372 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
373 unsigned int max_rate, mode_rate;
374
375 switch (nv_encoder->dcb->type) {
376 case DCB_OUTPUT_DP:
377 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
378
379 /* we don't support more than 10 anyway */
380 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
381
382 /* reduce the bpc until it works out */
383 while (asyh->or.bpc > 6) {
384 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
385 if (mode_rate <= max_rate)
386 break;
387
388 asyh->or.bpc -= 2;
389 }
390 break;
391 default:
392 break;
393 }
394 }
395
396 static int
nv50_outp_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)397 nv50_outp_atomic_check(struct drm_encoder *encoder,
398 struct drm_crtc_state *crtc_state,
399 struct drm_connector_state *conn_state)
400 {
401 struct drm_connector *connector = conn_state->connector;
402 struct nouveau_connector *nv_connector = nouveau_connector(connector);
403 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
404 int ret;
405
406 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
407 nv_connector->native_mode);
408 if (ret)
409 return ret;
410
411 if (crtc_state->mode_changed || crtc_state->connectors_changed)
412 asyh->or.bpc = connector->display_info.bpc;
413
414 /* We might have to reduce the bpc */
415 nv50_outp_atomic_fix_depth(encoder, crtc_state);
416
417 return 0;
418 }
419
420 struct nouveau_connector *
nv50_outp_get_new_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
422 {
423 struct drm_connector *connector;
424 struct drm_connector_state *connector_state;
425 struct drm_encoder *encoder = to_drm_encoder(outp);
426 int i;
427
428 for_each_new_connector_in_state(state, connector, connector_state, i) {
429 if (connector_state->best_encoder == encoder)
430 return nouveau_connector(connector);
431 }
432
433 return NULL;
434 }
435
436 struct nouveau_connector *
nv50_outp_get_old_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
438 {
439 struct drm_connector *connector;
440 struct drm_connector_state *connector_state;
441 struct drm_encoder *encoder = to_drm_encoder(outp);
442 int i;
443
444 for_each_old_connector_in_state(state, connector, connector_state, i) {
445 if (connector_state->best_encoder == encoder)
446 return nouveau_connector(connector);
447 }
448
449 return NULL;
450 }
451
452 static struct nouveau_crtc *
nv50_outp_get_new_crtc(const struct drm_atomic_state * state,const struct nouveau_encoder * outp)453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
454 {
455 struct drm_crtc *crtc;
456 struct drm_crtc_state *crtc_state;
457 const u32 mask = drm_encoder_mask(&outp->base.base);
458 int i;
459
460 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
461 if (crtc_state->encoder_mask & mask)
462 return nouveau_crtc(crtc);
463 }
464
465 return NULL;
466 }
467
468 /******************************************************************************
469 * DAC
470 *****************************************************************************/
471 static void
nv50_dac_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
473 {
474 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
475 struct nv50_core *core = nv50_disp(encoder->dev)->core;
476 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
477
478 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
479 nv_encoder->crtc = NULL;
480 nvif_outp_release(&nv_encoder->outp);
481 }
482
483 static void
nv50_dac_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)484 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
485 {
486 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
487 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
488 struct nv50_head_atom *asyh =
489 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
490 struct nv50_core *core = nv50_disp(encoder->dev)->core;
491 u32 ctrl = 0;
492
493 switch (nv_crtc->index) {
494 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
495 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
496 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
497 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
498 default:
499 WARN_ON(1);
500 break;
501 }
502
503 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
504
505 nvif_outp_acquire_rgb_crt(&nv_encoder->outp);
506
507 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
508 asyh->or.depth = 0;
509
510 nv_encoder->crtc = &nv_crtc->base;
511 }
512
513 static enum drm_connector_status
nv50_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
515 {
516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
517 u32 loadval;
518 int ret;
519
520 loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
521 if (loadval == 0)
522 loadval = 340;
523
524 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
525 if (ret <= 0)
526 return connector_status_disconnected;
527
528 return connector_status_connected;
529 }
530
531 static const struct drm_encoder_helper_funcs
532 nv50_dac_help = {
533 .atomic_check = nv50_outp_atomic_check,
534 .atomic_enable = nv50_dac_atomic_enable,
535 .atomic_disable = nv50_dac_atomic_disable,
536 .detect = nv50_dac_detect
537 };
538
539 static void
nv50_dac_destroy(struct drm_encoder * encoder)540 nv50_dac_destroy(struct drm_encoder *encoder)
541 {
542 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
543
544 nvif_outp_dtor(&nv_encoder->outp);
545
546 drm_encoder_cleanup(encoder);
547 kfree(encoder);
548 }
549
550 static const struct drm_encoder_funcs
551 nv50_dac_func = {
552 .destroy = nv50_dac_destroy,
553 };
554
555 static int
nv50_dac_create(struct drm_connector * connector,struct dcb_output * dcbe)556 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
557 {
558 struct nouveau_drm *drm = nouveau_drm(connector->dev);
559 struct nv50_disp *disp = nv50_disp(connector->dev);
560 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
561 struct nvkm_i2c_bus *bus;
562 struct nouveau_encoder *nv_encoder;
563 struct drm_encoder *encoder;
564 int type = DRM_MODE_ENCODER_DAC;
565
566 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
567 if (!nv_encoder)
568 return -ENOMEM;
569 nv_encoder->dcb = dcbe;
570
571 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
572 if (bus)
573 nv_encoder->i2c = &bus->i2c;
574
575 encoder = to_drm_encoder(nv_encoder);
576 encoder->possible_crtcs = dcbe->heads;
577 encoder->possible_clones = 0;
578 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
579 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
580 drm_encoder_helper_add(encoder, &nv50_dac_help);
581
582 drm_connector_attach_encoder(connector, encoder);
583 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
584 }
585
586 /*
587 * audio component binding for ELD notification
588 */
589 static void
nv50_audio_component_eld_notify(struct drm_audio_component * acomp,int port,int dev_id)590 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
591 int dev_id)
592 {
593 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
594 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
595 port, dev_id);
596 }
597
598 static int
nv50_audio_component_get_eld(struct device * kdev,int port,int dev_id,bool * enabled,unsigned char * buf,int max_bytes)599 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
600 bool *enabled, unsigned char *buf, int max_bytes)
601 {
602 struct drm_device *drm_dev = dev_get_drvdata(kdev);
603 struct nouveau_drm *drm = nouveau_drm(drm_dev);
604 struct drm_encoder *encoder;
605 struct nouveau_encoder *nv_encoder;
606 struct nouveau_crtc *nv_crtc;
607 int ret = 0;
608
609 *enabled = false;
610
611 mutex_lock(&drm->audio.lock);
612
613 drm_for_each_encoder(encoder, drm->dev) {
614 struct nouveau_connector *nv_connector = NULL;
615
616 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
617 continue; /* TODO */
618
619 nv_encoder = nouveau_encoder(encoder);
620 nv_connector = nouveau_connector(nv_encoder->audio.connector);
621 nv_crtc = nouveau_crtc(nv_encoder->crtc);
622
623 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
624 continue;
625
626 *enabled = nv_encoder->audio.enabled;
627 if (*enabled) {
628 ret = drm_eld_size(nv_connector->base.eld);
629 memcpy(buf, nv_connector->base.eld,
630 min(max_bytes, ret));
631 }
632 break;
633 }
634
635 mutex_unlock(&drm->audio.lock);
636
637 return ret;
638 }
639
640 static const struct drm_audio_component_ops nv50_audio_component_ops = {
641 .get_eld = nv50_audio_component_get_eld,
642 };
643
644 static int
nv50_audio_component_bind(struct device * kdev,struct device * hda_kdev,void * data)645 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
646 void *data)
647 {
648 struct drm_device *drm_dev = dev_get_drvdata(kdev);
649 struct nouveau_drm *drm = nouveau_drm(drm_dev);
650 struct drm_audio_component *acomp = data;
651
652 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
653 return -ENOMEM;
654
655 drm_modeset_lock_all(drm_dev);
656 acomp->ops = &nv50_audio_component_ops;
657 acomp->dev = kdev;
658 drm->audio.component = acomp;
659 drm_modeset_unlock_all(drm_dev);
660 return 0;
661 }
662
663 static void
nv50_audio_component_unbind(struct device * kdev,struct device * hda_kdev,void * data)664 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
665 void *data)
666 {
667 struct drm_device *drm_dev = dev_get_drvdata(kdev);
668 struct nouveau_drm *drm = nouveau_drm(drm_dev);
669 struct drm_audio_component *acomp = data;
670
671 drm_modeset_lock_all(drm_dev);
672 drm->audio.component = NULL;
673 acomp->ops = NULL;
674 acomp->dev = NULL;
675 drm_modeset_unlock_all(drm_dev);
676 }
677
678 static const struct component_ops nv50_audio_component_bind_ops = {
679 .bind = nv50_audio_component_bind,
680 .unbind = nv50_audio_component_unbind,
681 };
682
683 static void
nv50_audio_component_init(struct nouveau_drm * drm)684 nv50_audio_component_init(struct nouveau_drm *drm)
685 {
686 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
687 return;
688
689 drm->audio.component_registered = true;
690 mutex_init(&drm->audio.lock);
691 }
692
693 static void
nv50_audio_component_fini(struct nouveau_drm * drm)694 nv50_audio_component_fini(struct nouveau_drm *drm)
695 {
696 if (!drm->audio.component_registered)
697 return;
698
699 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
700 drm->audio.component_registered = false;
701 mutex_destroy(&drm->audio.lock);
702 }
703
704 /******************************************************************************
705 * Audio
706 *****************************************************************************/
707 static bool
nv50_audio_supported(struct drm_encoder * encoder)708 nv50_audio_supported(struct drm_encoder *encoder)
709 {
710 struct nv50_disp *disp = nv50_disp(encoder->dev);
711
712 if (disp->disp->object.oclass <= GT200_DISP ||
713 disp->disp->object.oclass == GT206_DISP)
714 return false;
715
716 return true;
717 }
718
719 static void
nv50_audio_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)720 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
721 {
722 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
723 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
724 struct nvif_outp *outp = &nv_encoder->outp;
725
726 if (!nv50_audio_supported(encoder))
727 return;
728
729 mutex_lock(&drm->audio.lock);
730 if (nv_encoder->audio.enabled) {
731 nv_encoder->audio.enabled = false;
732 nv_encoder->audio.connector = NULL;
733 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
734 }
735 mutex_unlock(&drm->audio.lock);
736
737 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
738 }
739
740 static void
nv50_audio_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)741 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
742 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
743 struct drm_display_mode *mode)
744 {
745 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
746 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
747 struct nvif_outp *outp = &nv_encoder->outp;
748
749 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid))
750 return;
751
752 mutex_lock(&drm->audio.lock);
753
754 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
755 drm_eld_size(nv_connector->base.eld));
756 nv_encoder->audio.enabled = true;
757 nv_encoder->audio.connector = &nv_connector->base;
758
759 mutex_unlock(&drm->audio.lock);
760
761 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
762 }
763
764 /******************************************************************************
765 * HDMI
766 *****************************************************************************/
767 static void
nv50_hdmi_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode,bool hda)768 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
769 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
770 struct drm_display_mode *mode, bool hda)
771 {
772 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
773 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
774 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
775 union hdmi_infoframe infoframe = { 0 };
776 const u8 rekey = 56; /* binary driver, and tegra, constant */
777 u8 scdc = 0;
778 u32 max_ac_packet;
779 struct {
780 struct nvif_outp_infoframe_v0 infoframe;
781 u8 data[17];
782 } args = { 0 };
783 int ret, size;
784
785 max_ac_packet = mode->htotal - mode->hdisplay;
786 max_ac_packet -= rekey;
787 max_ac_packet -= 18; /* constant from tegra */
788 max_ac_packet /= 32;
789
790 if (hdmi->scdc.scrambling.supported) {
791 const bool high_tmds_clock_ratio = mode->clock > 340000;
792
793 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
794 if (ret < 0) {
795 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
796 return;
797 }
798
799 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
800 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
801 scdc |= SCDC_SCRAMBLING_ENABLE;
802 if (high_tmds_clock_ratio)
803 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
804
805 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
806 if (ret < 0)
807 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
808 scdc, ret);
809 }
810
811 ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true,
812 max_ac_packet, rekey, scdc, hda);
813 if (ret)
814 return;
815
816 /* AVI InfoFrame. */
817 args.infoframe.version = 0;
818 args.infoframe.head = nv_crtc->index;
819
820 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
821 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
822 HDMI_QUANTIZATION_RANGE_FULL);
823
824 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
825 } else {
826 size = 0;
827 }
828
829 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
830
831 /* Vendor InfoFrame. */
832 memset(&args.data, 0, sizeof(args.data));
833 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
834 &nv_connector->base, mode))
835 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
836 else
837 size = 0;
838
839 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
840
841 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
842 }
843
844 /******************************************************************************
845 * MST
846 *****************************************************************************/
847 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
848 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
849 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
850
851 struct nv50_mstc {
852 struct nv50_mstm *mstm;
853 struct drm_dp_mst_port *port;
854 struct drm_connector connector;
855
856 struct drm_display_mode *native;
857 struct edid *edid;
858 };
859
860 struct nv50_msto {
861 struct drm_encoder encoder;
862
863 /* head is statically assigned on msto creation */
864 struct nv50_head *head;
865 struct nv50_mstc *mstc;
866 bool disabled;
867 bool enabled;
868 };
869
nv50_real_outp(struct drm_encoder * encoder)870 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
871 {
872 struct nv50_msto *msto;
873
874 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
875 return nouveau_encoder(encoder);
876
877 msto = nv50_msto(encoder);
878 if (!msto->mstc)
879 return NULL;
880 return msto->mstc->mstm->outp;
881 }
882
883 static void
nv50_msto_cleanup(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct drm_dp_mst_topology_mgr * mgr,struct nv50_msto * msto)884 nv50_msto_cleanup(struct drm_atomic_state *state,
885 struct drm_dp_mst_topology_state *mst_state,
886 struct drm_dp_mst_topology_mgr *mgr,
887 struct nv50_msto *msto)
888 {
889 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
890 struct drm_dp_mst_atomic_payload *payload =
891 drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
892
893 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
894
895 if (msto->disabled) {
896 msto->mstc = NULL;
897 msto->disabled = false;
898 } else if (msto->enabled) {
899 drm_dp_add_payload_part2(mgr, state, payload);
900 msto->enabled = false;
901 }
902 }
903
904 static void
nv50_msto_prepare(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct drm_dp_mst_topology_mgr * mgr,struct nv50_msto * msto)905 nv50_msto_prepare(struct drm_atomic_state *state,
906 struct drm_dp_mst_topology_state *mst_state,
907 struct drm_dp_mst_topology_mgr *mgr,
908 struct nv50_msto *msto)
909 {
910 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
911 struct nv50_mstc *mstc = msto->mstc;
912 struct nv50_mstm *mstm = mstc->mstm;
913 struct drm_dp_mst_topology_state *old_mst_state;
914 struct drm_dp_mst_atomic_payload *payload, *old_payload;
915
916 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
917
918 old_mst_state = drm_atomic_get_old_mst_topology_state(state, mgr);
919
920 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
921 old_payload = drm_atomic_get_mst_payload_state(old_mst_state, mstc->port);
922
923 // TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
924 if (msto->disabled) {
925 drm_dp_remove_payload(mgr, mst_state, old_payload, payload);
926
927 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
928 } else {
929 if (msto->enabled)
930 drm_dp_add_payload_part1(mgr, mst_state, payload);
931
932 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
933 payload->vc_start_slot, payload->time_slots,
934 payload->pbn, payload->time_slots * mst_state->pbn_div);
935 }
936 }
937
938 static int
nv50_msto_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)939 nv50_msto_atomic_check(struct drm_encoder *encoder,
940 struct drm_crtc_state *crtc_state,
941 struct drm_connector_state *conn_state)
942 {
943 struct drm_atomic_state *state = crtc_state->state;
944 struct drm_connector *connector = conn_state->connector;
945 struct drm_dp_mst_topology_state *mst_state;
946 struct nv50_mstc *mstc = nv50_mstc(connector);
947 struct nv50_mstm *mstm = mstc->mstm;
948 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
949 int slots;
950 int ret;
951
952 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
953 mstc->native);
954 if (ret)
955 return ret;
956
957 if (!drm_atomic_crtc_needs_modeset(crtc_state))
958 return 0;
959
960 /*
961 * When restoring duplicated states, we need to make sure that the bw
962 * remains the same and avoid recalculating it, as the connector's bpc
963 * may have changed after the state was duplicated
964 */
965 if (!state->duplicated) {
966 const int clock = crtc_state->adjusted_mode.clock;
967
968 asyh->or.bpc = connector->display_info.bpc;
969 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
970 false);
971 }
972
973 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
974 if (IS_ERR(mst_state))
975 return PTR_ERR(mst_state);
976
977 if (!mst_state->pbn_div) {
978 struct nouveau_encoder *outp = mstc->mstm->outp;
979
980 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
981 outp->dp.link_bw, outp->dp.link_nr);
982 }
983
984 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
985 if (slots < 0)
986 return slots;
987
988 asyh->dp.tu = slots;
989
990 return 0;
991 }
992
993 static u8
nv50_dp_bpc_to_depth(unsigned int bpc)994 nv50_dp_bpc_to_depth(unsigned int bpc)
995 {
996 switch (bpc) {
997 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
998 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
999 case 10:
1000 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1001 }
1002 }
1003
1004 static void
nv50_msto_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1005 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1006 {
1007 struct nv50_msto *msto = nv50_msto(encoder);
1008 struct nv50_head *head = msto->head;
1009 struct nv50_head_atom *asyh =
1010 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1011 struct nv50_mstc *mstc = NULL;
1012 struct nv50_mstm *mstm = NULL;
1013 struct drm_connector *connector;
1014 struct drm_connector_list_iter conn_iter;
1015 u8 proto;
1016
1017 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1018 drm_for_each_connector_iter(connector, &conn_iter) {
1019 if (connector->state->best_encoder == &msto->encoder) {
1020 mstc = nv50_mstc(connector);
1021 mstm = mstc->mstm;
1022 break;
1023 }
1024 }
1025 drm_connector_list_iter_end(&conn_iter);
1026
1027 if (WARN_ON(!mstc))
1028 return;
1029
1030 if (!mstm->links++) {
1031 /*XXX: MST audio. */
1032 nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true);
1033 }
1034
1035 if (mstm->outp->outp.or.link & 1)
1036 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1037 else
1038 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1039
1040 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1041 nv50_dp_bpc_to_depth(asyh->or.bpc));
1042
1043 msto->mstc = mstc;
1044 msto->enabled = true;
1045 mstm->modified = true;
1046 }
1047
1048 static void
nv50_msto_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1049 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1050 {
1051 struct nv50_msto *msto = nv50_msto(encoder);
1052 struct nv50_mstc *mstc = msto->mstc;
1053 struct nv50_mstm *mstm = mstc->mstm;
1054
1055 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1056 mstm->modified = true;
1057 if (!--mstm->links)
1058 mstm->disabled = true;
1059 msto->disabled = true;
1060 }
1061
1062 static const struct drm_encoder_helper_funcs
1063 nv50_msto_help = {
1064 .atomic_disable = nv50_msto_atomic_disable,
1065 .atomic_enable = nv50_msto_atomic_enable,
1066 .atomic_check = nv50_msto_atomic_check,
1067 };
1068
1069 static void
nv50_msto_destroy(struct drm_encoder * encoder)1070 nv50_msto_destroy(struct drm_encoder *encoder)
1071 {
1072 struct nv50_msto *msto = nv50_msto(encoder);
1073 drm_encoder_cleanup(&msto->encoder);
1074 kfree(msto);
1075 }
1076
1077 static const struct drm_encoder_funcs
1078 nv50_msto = {
1079 .destroy = nv50_msto_destroy,
1080 };
1081
1082 static struct nv50_msto *
nv50_msto_new(struct drm_device * dev,struct nv50_head * head,int id)1083 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1084 {
1085 struct nv50_msto *msto;
1086 int ret;
1087
1088 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1089 if (!msto)
1090 return ERR_PTR(-ENOMEM);
1091
1092 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1093 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1094 if (ret) {
1095 kfree(msto);
1096 return ERR_PTR(ret);
1097 }
1098
1099 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1100 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1101 msto->head = head;
1102 return msto;
1103 }
1104
1105 static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector * connector,struct drm_atomic_state * state)1106 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1107 struct drm_atomic_state *state)
1108 {
1109 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1110 connector);
1111 struct nv50_mstc *mstc = nv50_mstc(connector);
1112 struct drm_crtc *crtc = connector_state->crtc;
1113
1114 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1115 return NULL;
1116
1117 return &nv50_head(crtc)->msto->encoder;
1118 }
1119
1120 static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1121 nv50_mstc_mode_valid(struct drm_connector *connector,
1122 struct drm_display_mode *mode)
1123 {
1124 struct nv50_mstc *mstc = nv50_mstc(connector);
1125 struct nouveau_encoder *outp = mstc->mstm->outp;
1126
1127 /* TODO: calculate the PBN from the dotclock and validate against the
1128 * MSTB's max possible PBN
1129 */
1130
1131 return nv50_dp_mode_valid(outp, mode, NULL);
1132 }
1133
1134 static int
nv50_mstc_get_modes(struct drm_connector * connector)1135 nv50_mstc_get_modes(struct drm_connector *connector)
1136 {
1137 struct nv50_mstc *mstc = nv50_mstc(connector);
1138 int ret = 0;
1139
1140 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1141 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1142 if (mstc->edid)
1143 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1144
1145 /*
1146 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1147 * to 8 to save bandwidth on the topology. In the future, we'll want
1148 * to properly fix this by dynamically selecting the highest possible
1149 * bpc that would fit in the topology
1150 */
1151 if (connector->display_info.bpc)
1152 connector->display_info.bpc =
1153 clamp(connector->display_info.bpc, 6U, 8U);
1154 else
1155 connector->display_info.bpc = 8;
1156
1157 if (mstc->native)
1158 drm_mode_destroy(mstc->connector.dev, mstc->native);
1159 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1160 return ret;
1161 }
1162
1163 static int
nv50_mstc_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)1164 nv50_mstc_atomic_check(struct drm_connector *connector,
1165 struct drm_atomic_state *state)
1166 {
1167 struct nv50_mstc *mstc = nv50_mstc(connector);
1168 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1169
1170 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1171 }
1172
1173 static int
nv50_mstc_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1174 nv50_mstc_detect(struct drm_connector *connector,
1175 struct drm_modeset_acquire_ctx *ctx, bool force)
1176 {
1177 struct nv50_mstc *mstc = nv50_mstc(connector);
1178 int ret;
1179
1180 if (drm_connector_is_unregistered(connector))
1181 return connector_status_disconnected;
1182
1183 ret = pm_runtime_get_sync(connector->dev->dev);
1184 if (ret < 0 && ret != -EACCES) {
1185 pm_runtime_put_autosuspend(connector->dev->dev);
1186 return connector_status_disconnected;
1187 }
1188
1189 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1190 mstc->port);
1191 if (ret != connector_status_connected)
1192 goto out;
1193
1194 out:
1195 pm_runtime_mark_last_busy(connector->dev->dev);
1196 pm_runtime_put_autosuspend(connector->dev->dev);
1197 return ret;
1198 }
1199
1200 static const struct drm_connector_helper_funcs
1201 nv50_mstc_help = {
1202 .get_modes = nv50_mstc_get_modes,
1203 .mode_valid = nv50_mstc_mode_valid,
1204 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1205 .atomic_check = nv50_mstc_atomic_check,
1206 .detect_ctx = nv50_mstc_detect,
1207 };
1208
1209 static void
nv50_mstc_destroy(struct drm_connector * connector)1210 nv50_mstc_destroy(struct drm_connector *connector)
1211 {
1212 struct nv50_mstc *mstc = nv50_mstc(connector);
1213
1214 drm_connector_cleanup(&mstc->connector);
1215 drm_dp_mst_put_port_malloc(mstc->port);
1216
1217 kfree(mstc);
1218 }
1219
1220 static const struct drm_connector_funcs
1221 nv50_mstc = {
1222 .reset = nouveau_conn_reset,
1223 .fill_modes = drm_helper_probe_single_connector_modes,
1224 .destroy = nv50_mstc_destroy,
1225 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1226 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1227 .atomic_set_property = nouveau_conn_atomic_set_property,
1228 .atomic_get_property = nouveau_conn_atomic_get_property,
1229 };
1230
1231 static int
nv50_mstc_new(struct nv50_mstm * mstm,struct drm_dp_mst_port * port,const char * path,struct nv50_mstc ** pmstc)1232 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1233 const char *path, struct nv50_mstc **pmstc)
1234 {
1235 struct drm_device *dev = mstm->outp->base.base.dev;
1236 struct drm_crtc *crtc;
1237 struct nv50_mstc *mstc;
1238 int ret;
1239
1240 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1241 return -ENOMEM;
1242 mstc->mstm = mstm;
1243 mstc->port = port;
1244
1245 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1246 DRM_MODE_CONNECTOR_DisplayPort);
1247 if (ret) {
1248 kfree(*pmstc);
1249 *pmstc = NULL;
1250 return ret;
1251 }
1252
1253 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1254
1255 mstc->connector.funcs->reset(&mstc->connector);
1256 nouveau_conn_attach_properties(&mstc->connector);
1257
1258 drm_for_each_crtc(crtc, dev) {
1259 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1260 continue;
1261
1262 drm_connector_attach_encoder(&mstc->connector,
1263 &nv50_head(crtc)->msto->encoder);
1264 }
1265
1266 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1267 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1268 drm_connector_set_path_property(&mstc->connector, path);
1269 drm_dp_mst_get_port_malloc(port);
1270 return 0;
1271 }
1272
1273 static void
nv50_mstm_cleanup(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct nv50_mstm * mstm)1274 nv50_mstm_cleanup(struct drm_atomic_state *state,
1275 struct drm_dp_mst_topology_state *mst_state,
1276 struct nv50_mstm *mstm)
1277 {
1278 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1279 struct drm_encoder *encoder;
1280
1281 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1282 drm_dp_check_act_status(&mstm->mgr);
1283
1284 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1285 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1286 struct nv50_msto *msto = nv50_msto(encoder);
1287 struct nv50_mstc *mstc = msto->mstc;
1288 if (mstc && mstc->mstm == mstm)
1289 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1290 }
1291 }
1292
1293 mstm->modified = false;
1294 }
1295
1296 static void
nv50_mstm_prepare(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct nv50_mstm * mstm)1297 nv50_mstm_prepare(struct drm_atomic_state *state,
1298 struct drm_dp_mst_topology_state *mst_state,
1299 struct nv50_mstm *mstm)
1300 {
1301 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1302 struct drm_encoder *encoder;
1303
1304 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1305
1306 /* Disable payloads first */
1307 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1308 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1309 struct nv50_msto *msto = nv50_msto(encoder);
1310 struct nv50_mstc *mstc = msto->mstc;
1311 if (mstc && mstc->mstm == mstm && msto->disabled)
1312 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1313 }
1314 }
1315
1316 /* Add payloads for new heads, while also updating the start slots of any unmodified (but
1317 * active) heads that may have had their VC slots shifted left after the previous step
1318 */
1319 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1320 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1321 struct nv50_msto *msto = nv50_msto(encoder);
1322 struct nv50_mstc *mstc = msto->mstc;
1323 if (mstc && mstc->mstm == mstm && !msto->disabled)
1324 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1325 }
1326 }
1327
1328 if (mstm->disabled) {
1329 if (!mstm->links)
1330 nvif_outp_release(&mstm->outp->outp);
1331 mstm->disabled = false;
1332 }
1333 }
1334
1335 static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr * mgr,struct drm_dp_mst_port * port,const char * path)1336 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1337 struct drm_dp_mst_port *port, const char *path)
1338 {
1339 struct nv50_mstm *mstm = nv50_mstm(mgr);
1340 struct nv50_mstc *mstc;
1341 int ret;
1342
1343 ret = nv50_mstc_new(mstm, port, path, &mstc);
1344 if (ret)
1345 return NULL;
1346
1347 return &mstc->connector;
1348 }
1349
1350 static const struct drm_dp_mst_topology_cbs
1351 nv50_mstm = {
1352 .add_connector = nv50_mstm_add_connector,
1353 };
1354
1355 bool
nv50_mstm_service(struct nouveau_drm * drm,struct nouveau_connector * nv_connector,struct nv50_mstm * mstm)1356 nv50_mstm_service(struct nouveau_drm *drm,
1357 struct nouveau_connector *nv_connector,
1358 struct nv50_mstm *mstm)
1359 {
1360 struct drm_dp_aux *aux = &nv_connector->aux;
1361 bool handled = true, ret = true;
1362 int rc;
1363 u8 esi[8] = {};
1364
1365 while (handled) {
1366 u8 ack[8] = {};
1367
1368 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1369 if (rc != 8) {
1370 ret = false;
1371 break;
1372 }
1373
1374 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
1375 if (!handled)
1376 break;
1377
1378 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
1379
1380 if (rc != 1) {
1381 ret = false;
1382 break;
1383 }
1384
1385 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
1386 }
1387
1388 if (!ret)
1389 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1390 nv_connector->base.name, rc);
1391
1392 return ret;
1393 }
1394
1395 void
nv50_mstm_remove(struct nv50_mstm * mstm)1396 nv50_mstm_remove(struct nv50_mstm *mstm)
1397 {
1398 mstm->is_mst = false;
1399 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1400 }
1401
1402 int
nv50_mstm_detect(struct nouveau_encoder * outp)1403 nv50_mstm_detect(struct nouveau_encoder *outp)
1404 {
1405 struct nv50_mstm *mstm = outp->dp.mstm;
1406 struct drm_dp_aux *aux;
1407 int ret;
1408
1409 if (!mstm || !mstm->can_mst)
1410 return 0;
1411
1412 aux = mstm->mgr.aux;
1413
1414 /* Clear any leftover MST state we didn't set ourselves by first
1415 * disabling MST if it was already enabled
1416 */
1417 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1418 if (ret < 0)
1419 return ret;
1420
1421 /* And start enabling */
1422 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1423 if (ret)
1424 return ret;
1425
1426 mstm->is_mst = true;
1427 return 1;
1428 }
1429
1430 static void
nv50_mstm_fini(struct nouveau_encoder * outp)1431 nv50_mstm_fini(struct nouveau_encoder *outp)
1432 {
1433 struct nv50_mstm *mstm = outp->dp.mstm;
1434
1435 if (!mstm)
1436 return;
1437
1438 /* Don't change the MST state of this connector until we've finished
1439 * resuming, since we can't safely grab hpd_irq_lock in our resume
1440 * path to protect mstm->is_mst without potentially deadlocking
1441 */
1442 mutex_lock(&outp->dp.hpd_irq_lock);
1443 mstm->suspended = true;
1444 mutex_unlock(&outp->dp.hpd_irq_lock);
1445
1446 if (mstm->is_mst)
1447 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1448 }
1449
1450 static void
nv50_mstm_init(struct nouveau_encoder * outp,bool runtime)1451 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1452 {
1453 struct nv50_mstm *mstm = outp->dp.mstm;
1454 int ret = 0;
1455
1456 if (!mstm)
1457 return;
1458
1459 if (mstm->is_mst) {
1460 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1461 if (ret == -1)
1462 nv50_mstm_remove(mstm);
1463 }
1464
1465 mutex_lock(&outp->dp.hpd_irq_lock);
1466 mstm->suspended = false;
1467 mutex_unlock(&outp->dp.hpd_irq_lock);
1468
1469 if (ret == -1)
1470 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1471 }
1472
1473 static void
nv50_mstm_del(struct nv50_mstm ** pmstm)1474 nv50_mstm_del(struct nv50_mstm **pmstm)
1475 {
1476 struct nv50_mstm *mstm = *pmstm;
1477 if (mstm) {
1478 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1479 kfree(*pmstm);
1480 *pmstm = NULL;
1481 }
1482 }
1483
1484 static int
nv50_mstm_new(struct nouveau_encoder * outp,struct drm_dp_aux * aux,int aux_max,int conn_base_id,struct nv50_mstm ** pmstm)1485 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1486 int conn_base_id, struct nv50_mstm **pmstm)
1487 {
1488 const int max_payloads = hweight8(outp->dcb->heads);
1489 struct drm_device *dev = outp->base.base.dev;
1490 struct nv50_mstm *mstm;
1491 int ret;
1492
1493 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1494 return -ENOMEM;
1495 mstm->outp = outp;
1496 mstm->mgr.cbs = &nv50_mstm;
1497
1498 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1499 max_payloads, conn_base_id);
1500 if (ret)
1501 return ret;
1502
1503 return 0;
1504 }
1505
1506 /******************************************************************************
1507 * SOR
1508 *****************************************************************************/
1509 static void
nv50_sor_update(struct nouveau_encoder * nv_encoder,u8 head,struct nv50_head_atom * asyh,u8 proto,u8 depth)1510 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1511 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1512 {
1513 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1514 struct nv50_core *core = disp->core;
1515
1516 if (!asyh) {
1517 nv_encoder->ctrl &= ~BIT(head);
1518 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1519 nv_encoder->ctrl = 0;
1520 } else {
1521 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1522 nv_encoder->ctrl |= BIT(head);
1523 asyh->or.depth = depth;
1524 }
1525
1526 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1527 }
1528
1529 /* TODO: Should we extend this to PWM-only backlights?
1530 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1531 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1532 * fixed time delay from the vbios…
1533 */
1534 static void
nv50_sor_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1535 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1536 {
1537 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1538 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1539 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1540 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1541 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1542 struct nouveau_backlight *backlight = nv_connector->backlight;
1543 #endif
1544 struct drm_dp_aux *aux = &nv_connector->aux;
1545 int ret;
1546 u8 pwr;
1547
1548 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1549 if (backlight && backlight->uses_dpcd) {
1550 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1551 if (ret < 0)
1552 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1553 nv_connector->base.base.id, nv_connector->base.name, ret);
1554 }
1555 #endif
1556
1557 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1558 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1559
1560 if (ret == 0) {
1561 pwr &= ~DP_SET_POWER_MASK;
1562 pwr |= DP_SET_POWER_D3;
1563 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1564 }
1565 }
1566
1567 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1568 nv50_audio_disable(encoder, nv_crtc);
1569 nvif_outp_release(&nv_encoder->outp);
1570 nv_encoder->crtc = NULL;
1571 }
1572
1573 static void
nv50_sor_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1574 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1575 {
1576 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1577 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1578 struct nv50_head_atom *asyh =
1579 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1580 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1581 struct nv50_disp *disp = nv50_disp(encoder->dev);
1582 struct nvif_outp *outp = &nv_encoder->outp;
1583 struct drm_device *dev = encoder->dev;
1584 struct nouveau_drm *drm = nouveau_drm(dev);
1585 struct nouveau_connector *nv_connector;
1586 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1587 struct nouveau_backlight *backlight;
1588 #endif
1589 struct nvbios *bios = &drm->vbios;
1590 bool lvds_dual = false, lvds_8bpc = false, hda = false;
1591 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1592 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1593
1594 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1595 nv_encoder->crtc = &nv_crtc->base;
1596
1597 if ((disp->disp->object.oclass == GT214_DISP ||
1598 disp->disp->object.oclass >= GF110_DISP) &&
1599 drm_detect_monitor_audio(nv_connector->edid))
1600 hda = true;
1601
1602 switch (nv_encoder->dcb->type) {
1603 case DCB_OUTPUT_TMDS:
1604 if (disp->disp->object.oclass == NV50_DISP ||
1605 !drm_detect_hdmi_monitor(nv_connector->edid))
1606 nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false);
1607 else
1608 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1609
1610 if (nv_encoder->outp.or.link & 1) {
1611 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1612 /* Only enable dual-link if:
1613 * - Need to (i.e. rate > 165MHz)
1614 * - DCB says we can
1615 * - Not an HDMI monitor, since there's no dual-link
1616 * on HDMI.
1617 */
1618 if (mode->clock >= 165000 &&
1619 nv_encoder->dcb->duallink_possible &&
1620 !drm_detect_hdmi_monitor(nv_connector->edid))
1621 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1622 } else {
1623 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1624 }
1625 break;
1626 case DCB_OUTPUT_LVDS:
1627 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1628
1629 if (bios->fp_no_ddc) {
1630 lvds_dual = bios->fp.dual_link;
1631 lvds_8bpc = bios->fp.if_is_24bit;
1632 } else {
1633 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1634 if (((u8 *)nv_connector->edid)[121] == 2)
1635 lvds_dual = true;
1636 } else
1637 if (mode->clock >= bios->fp.duallink_transition_clk) {
1638 lvds_dual = true;
1639 }
1640
1641 if (lvds_dual) {
1642 if (bios->fp.strapless_is_24bit & 2)
1643 lvds_8bpc = true;
1644 } else {
1645 if (bios->fp.strapless_is_24bit & 1)
1646 lvds_8bpc = true;
1647 }
1648
1649 if (asyh->or.bpc == 8)
1650 lvds_8bpc = true;
1651 }
1652
1653 nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1654 break;
1655 case DCB_OUTPUT_DP:
1656 nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false);
1657 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1658
1659 if (nv_encoder->outp.or.link & 1)
1660 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1661 else
1662 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1663
1664 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1665
1666 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1667 backlight = nv_connector->backlight;
1668 if (backlight && backlight->uses_dpcd)
1669 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1670 (u16)backlight->dev->props.brightness);
1671 #endif
1672
1673 break;
1674 default:
1675 BUG();
1676 break;
1677 }
1678
1679 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1680 }
1681
1682 static const struct drm_encoder_helper_funcs
1683 nv50_sor_help = {
1684 .atomic_check = nv50_outp_atomic_check,
1685 .atomic_enable = nv50_sor_atomic_enable,
1686 .atomic_disable = nv50_sor_atomic_disable,
1687 };
1688
1689 static void
nv50_sor_destroy(struct drm_encoder * encoder)1690 nv50_sor_destroy(struct drm_encoder *encoder)
1691 {
1692 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1693
1694 nvif_outp_dtor(&nv_encoder->outp);
1695
1696 nv50_mstm_del(&nv_encoder->dp.mstm);
1697 drm_encoder_cleanup(encoder);
1698
1699 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1700 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1701
1702 kfree(encoder);
1703 }
1704
1705 static const struct drm_encoder_funcs
1706 nv50_sor_func = {
1707 .destroy = nv50_sor_destroy,
1708 };
1709
nv50_has_mst(struct nouveau_drm * drm)1710 bool nv50_has_mst(struct nouveau_drm *drm)
1711 {
1712 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1713 u32 data;
1714 u8 ver, hdr, cnt, len;
1715
1716 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1717 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1718 }
1719
1720 static int
nv50_sor_create(struct drm_connector * connector,struct dcb_output * dcbe)1721 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1722 {
1723 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1724 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1725 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1726 struct nouveau_encoder *nv_encoder;
1727 struct drm_encoder *encoder;
1728 struct nv50_disp *disp = nv50_disp(connector->dev);
1729 int type, ret;
1730
1731 switch (dcbe->type) {
1732 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1733 case DCB_OUTPUT_TMDS:
1734 case DCB_OUTPUT_DP:
1735 default:
1736 type = DRM_MODE_ENCODER_TMDS;
1737 break;
1738 }
1739
1740 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1741 if (!nv_encoder)
1742 return -ENOMEM;
1743 nv_encoder->dcb = dcbe;
1744 nv_encoder->update = nv50_sor_update;
1745
1746 encoder = to_drm_encoder(nv_encoder);
1747 encoder->possible_crtcs = dcbe->heads;
1748 encoder->possible_clones = 0;
1749 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1750 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1751 drm_encoder_helper_add(encoder, &nv50_sor_help);
1752
1753 drm_connector_attach_encoder(connector, encoder);
1754
1755 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1756 nv50_outp_dump_caps(drm, nv_encoder);
1757
1758 if (dcbe->type == DCB_OUTPUT_DP) {
1759 struct nvkm_i2c_aux *aux =
1760 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1761
1762 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1763
1764 if (aux) {
1765 if (disp->disp->object.oclass < GF110_DISP) {
1766 /* HW has no support for address-only
1767 * transactions, so we're required to
1768 * use custom I2C-over-AUX code.
1769 */
1770 nv_encoder->i2c = &aux->i2c;
1771 } else {
1772 nv_encoder->i2c = &nv_connector->aux.ddc;
1773 }
1774 nv_encoder->aux = aux;
1775 }
1776
1777 if (nv_connector->type != DCB_CONNECTOR_eDP &&
1778 nv50_has_mst(drm)) {
1779 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1780 16, nv_connector->base.base.id,
1781 &nv_encoder->dp.mstm);
1782 if (ret)
1783 return ret;
1784 }
1785 } else {
1786 struct nvkm_i2c_bus *bus =
1787 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1788 if (bus)
1789 nv_encoder->i2c = &bus->i2c;
1790 }
1791
1792 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1793 }
1794
1795 /******************************************************************************
1796 * PIOR
1797 *****************************************************************************/
1798 static int
nv50_pior_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1799 nv50_pior_atomic_check(struct drm_encoder *encoder,
1800 struct drm_crtc_state *crtc_state,
1801 struct drm_connector_state *conn_state)
1802 {
1803 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1804 if (ret)
1805 return ret;
1806 crtc_state->adjusted_mode.clock *= 2;
1807 return 0;
1808 }
1809
1810 static void
nv50_pior_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1811 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1812 {
1813 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1814 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1815 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1816
1817 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1818 nv_encoder->crtc = NULL;
1819 nvif_outp_release(&nv_encoder->outp);
1820 }
1821
1822 static void
nv50_pior_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1823 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1824 {
1825 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1826 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1827 struct nv50_head_atom *asyh =
1828 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1829 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1830 u32 ctrl = 0;
1831
1832 switch (nv_crtc->index) {
1833 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1834 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1835 default:
1836 WARN_ON(1);
1837 break;
1838 }
1839
1840 switch (asyh->or.bpc) {
1841 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1842 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1843 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1844 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1845 }
1846
1847 switch (nv_encoder->dcb->type) {
1848 case DCB_OUTPUT_TMDS:
1849 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1850 nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false);
1851 break;
1852 case DCB_OUTPUT_DP:
1853 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1854 nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false);
1855 break;
1856 default:
1857 BUG();
1858 break;
1859 }
1860
1861 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
1862 nv_encoder->crtc = &nv_crtc->base;
1863 }
1864
1865 static const struct drm_encoder_helper_funcs
1866 nv50_pior_help = {
1867 .atomic_check = nv50_pior_atomic_check,
1868 .atomic_enable = nv50_pior_atomic_enable,
1869 .atomic_disable = nv50_pior_atomic_disable,
1870 };
1871
1872 static void
nv50_pior_destroy(struct drm_encoder * encoder)1873 nv50_pior_destroy(struct drm_encoder *encoder)
1874 {
1875 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1876
1877 nvif_outp_dtor(&nv_encoder->outp);
1878
1879 drm_encoder_cleanup(encoder);
1880
1881 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1882 kfree(encoder);
1883 }
1884
1885 static const struct drm_encoder_funcs
1886 nv50_pior_func = {
1887 .destroy = nv50_pior_destroy,
1888 };
1889
1890 static int
nv50_pior_create(struct drm_connector * connector,struct dcb_output * dcbe)1891 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1892 {
1893 struct drm_device *dev = connector->dev;
1894 struct nouveau_drm *drm = nouveau_drm(dev);
1895 struct nv50_disp *disp = nv50_disp(dev);
1896 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1897 struct nvkm_i2c_bus *bus = NULL;
1898 struct nvkm_i2c_aux *aux = NULL;
1899 struct i2c_adapter *ddc;
1900 struct nouveau_encoder *nv_encoder;
1901 struct drm_encoder *encoder;
1902 int type;
1903
1904 switch (dcbe->type) {
1905 case DCB_OUTPUT_TMDS:
1906 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1907 ddc = bus ? &bus->i2c : NULL;
1908 type = DRM_MODE_ENCODER_TMDS;
1909 break;
1910 case DCB_OUTPUT_DP:
1911 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1912 ddc = aux ? &aux->i2c : NULL;
1913 type = DRM_MODE_ENCODER_TMDS;
1914 break;
1915 default:
1916 return -ENODEV;
1917 }
1918
1919 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1920 if (!nv_encoder)
1921 return -ENOMEM;
1922 nv_encoder->dcb = dcbe;
1923 nv_encoder->i2c = ddc;
1924 nv_encoder->aux = aux;
1925
1926 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1927
1928 encoder = to_drm_encoder(nv_encoder);
1929 encoder->possible_crtcs = dcbe->heads;
1930 encoder->possible_clones = 0;
1931 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1932 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1933 drm_encoder_helper_add(encoder, &nv50_pior_help);
1934
1935 drm_connector_attach_encoder(connector, encoder);
1936
1937 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1938 nv50_outp_dump_caps(drm, nv_encoder);
1939
1940 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1941 }
1942
1943 /******************************************************************************
1944 * Atomic
1945 *****************************************************************************/
1946
1947 static void
nv50_disp_atomic_commit_core(struct drm_atomic_state * state,u32 * interlock)1948 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1949 {
1950 struct drm_dp_mst_topology_mgr *mgr;
1951 struct drm_dp_mst_topology_state *mst_state;
1952 struct nouveau_drm *drm = nouveau_drm(state->dev);
1953 struct nv50_disp *disp = nv50_disp(drm->dev);
1954 struct nv50_core *core = disp->core;
1955 struct nv50_mstm *mstm;
1956 int i;
1957
1958 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1959
1960 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1961 mstm = nv50_mstm(mgr);
1962 if (mstm->modified)
1963 nv50_mstm_prepare(state, mst_state, mstm);
1964 }
1965
1966 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1967 core->func->update(core, interlock, true);
1968 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1969 disp->core->chan.base.device))
1970 NV_ERROR(drm, "core notifier timeout\n");
1971
1972 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1973 mstm = nv50_mstm(mgr);
1974 if (mstm->modified)
1975 nv50_mstm_cleanup(state, mst_state, mstm);
1976 }
1977 }
1978
1979 static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state * state,u32 * interlock)1980 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1981 {
1982 struct drm_plane_state *new_plane_state;
1983 struct drm_plane *plane;
1984 int i;
1985
1986 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1987 struct nv50_wndw *wndw = nv50_wndw(plane);
1988 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1989 if (wndw->func->update)
1990 wndw->func->update(wndw, interlock);
1991 }
1992 }
1993 }
1994
1995 static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state * state)1996 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1997 {
1998 struct drm_device *dev = state->dev;
1999 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2000 struct drm_crtc *crtc;
2001 struct drm_plane_state *new_plane_state;
2002 struct drm_plane *plane;
2003 struct nouveau_drm *drm = nouveau_drm(dev);
2004 struct nv50_disp *disp = nv50_disp(dev);
2005 struct nv50_atom *atom = nv50_atom(state);
2006 struct nv50_core *core = disp->core;
2007 struct nv50_outp_atom *outp, *outt;
2008 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2009 int i;
2010 bool flushed = false;
2011
2012 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2013 nv50_crc_atomic_stop_reporting(state);
2014 drm_atomic_helper_wait_for_fences(dev, state, false);
2015 drm_atomic_helper_wait_for_dependencies(state);
2016 drm_dp_mst_atomic_wait_for_dependencies(state);
2017 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2018 drm_atomic_helper_calc_timestamping_constants(state);
2019
2020 if (atom->lock_core)
2021 mutex_lock(&disp->mutex);
2022
2023 /* Disable head(s). */
2024 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2025 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2026 struct nv50_head *head = nv50_head(crtc);
2027
2028 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2029 asyh->clr.mask, asyh->set.mask);
2030
2031 if (old_crtc_state->active && !new_crtc_state->active) {
2032 pm_runtime_put_noidle(dev->dev);
2033 drm_crtc_vblank_off(crtc);
2034 }
2035
2036 if (asyh->clr.mask) {
2037 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2038 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2039 }
2040 }
2041
2042 /* Disable plane(s). */
2043 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2044 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2045 struct nv50_wndw *wndw = nv50_wndw(plane);
2046
2047 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2048 asyw->clr.mask, asyw->set.mask);
2049 if (!asyw->clr.mask)
2050 continue;
2051
2052 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2053 }
2054
2055 /* Disable output path(s). */
2056 list_for_each_entry(outp, &atom->outp, head) {
2057 const struct drm_encoder_helper_funcs *help;
2058 struct drm_encoder *encoder;
2059
2060 encoder = outp->encoder;
2061 help = encoder->helper_private;
2062
2063 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2064 outp->clr.mask, outp->set.mask);
2065
2066 if (outp->clr.mask) {
2067 help->atomic_disable(encoder, state);
2068 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2069 if (outp->flush_disable) {
2070 nv50_disp_atomic_commit_wndw(state, interlock);
2071 nv50_disp_atomic_commit_core(state, interlock);
2072 memset(interlock, 0x00, sizeof(interlock));
2073
2074 flushed = true;
2075 }
2076 }
2077 }
2078
2079 /* Flush disable. */
2080 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2081 if (atom->flush_disable) {
2082 nv50_disp_atomic_commit_wndw(state, interlock);
2083 nv50_disp_atomic_commit_core(state, interlock);
2084 memset(interlock, 0x00, sizeof(interlock));
2085
2086 flushed = true;
2087 }
2088 }
2089
2090 if (flushed)
2091 nv50_crc_atomic_release_notifier_contexts(state);
2092 nv50_crc_atomic_init_notifier_contexts(state);
2093
2094 /* Update output path(s). */
2095 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2096 const struct drm_encoder_helper_funcs *help;
2097 struct drm_encoder *encoder;
2098
2099 encoder = outp->encoder;
2100 help = encoder->helper_private;
2101
2102 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2103 outp->set.mask, outp->clr.mask);
2104
2105 if (outp->set.mask) {
2106 help->atomic_enable(encoder, state);
2107 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2108 }
2109
2110 list_del(&outp->head);
2111 kfree(outp);
2112 }
2113
2114 /* Update head(s). */
2115 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2116 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2117 struct nv50_head *head = nv50_head(crtc);
2118
2119 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2120 asyh->set.mask, asyh->clr.mask);
2121
2122 if (asyh->set.mask) {
2123 nv50_head_flush_set(head, asyh);
2124 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2125 }
2126
2127 if (new_crtc_state->active) {
2128 if (!old_crtc_state->active) {
2129 drm_crtc_vblank_on(crtc);
2130 pm_runtime_get_noresume(dev->dev);
2131 }
2132 if (new_crtc_state->event)
2133 drm_crtc_vblank_get(crtc);
2134 }
2135 }
2136
2137 /* Update window->head assignment.
2138 *
2139 * This has to happen in an update that's not interlocked with
2140 * any window channels to avoid hitting HW error checks.
2141 *
2142 *TODO: Proper handling of window ownership (Turing apparently
2143 * supports non-fixed mappings).
2144 */
2145 if (core->assign_windows) {
2146 core->func->wndw.owner(core);
2147 nv50_disp_atomic_commit_core(state, interlock);
2148 core->assign_windows = false;
2149 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2150 }
2151
2152 /* Finish updating head(s)...
2153 *
2154 * NVD is rather picky about both where window assignments can change,
2155 * *and* about certain core and window channel states matching.
2156 *
2157 * The EFI GOP driver on newer GPUs configures window channels with a
2158 * different output format to what we do, and the core channel update
2159 * in the assign_windows case above would result in a state mismatch.
2160 *
2161 * Delay some of the head update until after that point to workaround
2162 * the issue. This only affects the initial modeset.
2163 *
2164 * TODO: handle this better when adding flexible window mapping
2165 */
2166 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2167 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2168 struct nv50_head *head = nv50_head(crtc);
2169
2170 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2171 asyh->set.mask, asyh->clr.mask);
2172
2173 if (asyh->set.mask) {
2174 nv50_head_flush_set_wndw(head, asyh);
2175 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2176 }
2177 }
2178
2179 /* Update plane(s). */
2180 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2181 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2182 struct nv50_wndw *wndw = nv50_wndw(plane);
2183
2184 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2185 asyw->set.mask, asyw->clr.mask);
2186 if ( !asyw->set.mask &&
2187 (!asyw->clr.mask || atom->flush_disable))
2188 continue;
2189
2190 nv50_wndw_flush_set(wndw, interlock, asyw);
2191 }
2192
2193 /* Flush update. */
2194 nv50_disp_atomic_commit_wndw(state, interlock);
2195
2196 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2197 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2198 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2199 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2200 !atom->state.legacy_cursor_update)
2201 nv50_disp_atomic_commit_core(state, interlock);
2202 else
2203 disp->core->func->update(disp->core, interlock, false);
2204 }
2205
2206 if (atom->lock_core)
2207 mutex_unlock(&disp->mutex);
2208
2209 /* Wait for HW to signal completion. */
2210 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2211 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2212 struct nv50_wndw *wndw = nv50_wndw(plane);
2213 int ret = nv50_wndw_wait_armed(wndw, asyw);
2214 if (ret)
2215 NV_ERROR(drm, "%s: timeout\n", plane->name);
2216 }
2217
2218 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2219 if (new_crtc_state->event) {
2220 unsigned long flags;
2221 /* Get correct count/ts if racing with vblank irq */
2222 if (new_crtc_state->active)
2223 drm_crtc_accurate_vblank_count(crtc);
2224 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2225 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2226 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2227
2228 new_crtc_state->event = NULL;
2229 if (new_crtc_state->active)
2230 drm_crtc_vblank_put(crtc);
2231 }
2232 }
2233
2234 nv50_crc_atomic_start_reporting(state);
2235 if (!flushed)
2236 nv50_crc_atomic_release_notifier_contexts(state);
2237
2238 drm_atomic_helper_commit_hw_done(state);
2239 drm_atomic_helper_cleanup_planes(dev, state);
2240 drm_atomic_helper_commit_cleanup_done(state);
2241 drm_atomic_state_put(state);
2242
2243 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2244 pm_runtime_mark_last_busy(dev->dev);
2245 pm_runtime_put_autosuspend(dev->dev);
2246 }
2247
2248 static void
nv50_disp_atomic_commit_work(struct work_struct * work)2249 nv50_disp_atomic_commit_work(struct work_struct *work)
2250 {
2251 struct drm_atomic_state *state =
2252 container_of(work, typeof(*state), commit_work);
2253 nv50_disp_atomic_commit_tail(state);
2254 }
2255
2256 static int
nv50_disp_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)2257 nv50_disp_atomic_commit(struct drm_device *dev,
2258 struct drm_atomic_state *state, bool nonblock)
2259 {
2260 struct drm_plane_state *new_plane_state;
2261 struct drm_plane *plane;
2262 int ret, i;
2263
2264 ret = pm_runtime_get_sync(dev->dev);
2265 if (ret < 0 && ret != -EACCES) {
2266 pm_runtime_put_autosuspend(dev->dev);
2267 return ret;
2268 }
2269
2270 ret = drm_atomic_helper_setup_commit(state, nonblock);
2271 if (ret)
2272 goto done;
2273
2274 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2275
2276 ret = drm_atomic_helper_prepare_planes(dev, state);
2277 if (ret)
2278 goto done;
2279
2280 if (!nonblock) {
2281 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2282 if (ret)
2283 goto err_cleanup;
2284 }
2285
2286 ret = drm_atomic_helper_swap_state(state, true);
2287 if (ret)
2288 goto err_cleanup;
2289
2290 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2291 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2292 struct nv50_wndw *wndw = nv50_wndw(plane);
2293
2294 if (asyw->set.image)
2295 nv50_wndw_ntfy_enable(wndw, asyw);
2296 }
2297
2298 drm_atomic_state_get(state);
2299
2300 /*
2301 * Grab another RPM ref for the commit tail, which will release the
2302 * ref when it's finished
2303 */
2304 pm_runtime_get_noresume(dev->dev);
2305
2306 if (nonblock)
2307 queue_work(system_unbound_wq, &state->commit_work);
2308 else
2309 nv50_disp_atomic_commit_tail(state);
2310
2311 err_cleanup:
2312 if (ret)
2313 drm_atomic_helper_cleanup_planes(dev, state);
2314 done:
2315 pm_runtime_put_autosuspend(dev->dev);
2316 return ret;
2317 }
2318
2319 static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom * atom,struct drm_encoder * encoder)2320 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2321 {
2322 struct nv50_outp_atom *outp;
2323
2324 list_for_each_entry(outp, &atom->outp, head) {
2325 if (outp->encoder == encoder)
2326 return outp;
2327 }
2328
2329 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2330 if (!outp)
2331 return ERR_PTR(-ENOMEM);
2332
2333 list_add(&outp->head, &atom->outp);
2334 outp->encoder = encoder;
2335 return outp;
2336 }
2337
2338 static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom * atom,struct drm_connector_state * old_connector_state)2339 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2340 struct drm_connector_state *old_connector_state)
2341 {
2342 struct drm_encoder *encoder = old_connector_state->best_encoder;
2343 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2344 struct drm_crtc *crtc;
2345 struct nv50_outp_atom *outp;
2346
2347 if (!(crtc = old_connector_state->crtc))
2348 return 0;
2349
2350 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2351 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2352 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2353 outp = nv50_disp_outp_atomic_add(atom, encoder);
2354 if (IS_ERR(outp))
2355 return PTR_ERR(outp);
2356
2357 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2358 outp->flush_disable = true;
2359 atom->flush_disable = true;
2360 }
2361 outp->clr.ctrl = true;
2362 atom->lock_core = true;
2363 }
2364
2365 return 0;
2366 }
2367
2368 static int
nv50_disp_outp_atomic_check_set(struct nv50_atom * atom,struct drm_connector_state * connector_state)2369 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2370 struct drm_connector_state *connector_state)
2371 {
2372 struct drm_encoder *encoder = connector_state->best_encoder;
2373 struct drm_crtc_state *new_crtc_state;
2374 struct drm_crtc *crtc;
2375 struct nv50_outp_atom *outp;
2376
2377 if (!(crtc = connector_state->crtc))
2378 return 0;
2379
2380 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2381 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2382 outp = nv50_disp_outp_atomic_add(atom, encoder);
2383 if (IS_ERR(outp))
2384 return PTR_ERR(outp);
2385
2386 outp->set.ctrl = true;
2387 atom->lock_core = true;
2388 }
2389
2390 return 0;
2391 }
2392
2393 static int
nv50_disp_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)2394 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2395 {
2396 struct nv50_atom *atom = nv50_atom(state);
2397 struct nv50_core *core = nv50_disp(dev)->core;
2398 struct drm_connector_state *old_connector_state, *new_connector_state;
2399 struct drm_connector *connector;
2400 struct drm_crtc_state *new_crtc_state;
2401 struct drm_crtc *crtc;
2402 struct nv50_head *head;
2403 struct nv50_head_atom *asyh;
2404 int ret, i;
2405
2406 if (core->assign_windows && core->func->head->static_wndw_map) {
2407 drm_for_each_crtc(crtc, dev) {
2408 new_crtc_state = drm_atomic_get_crtc_state(state,
2409 crtc);
2410 if (IS_ERR(new_crtc_state))
2411 return PTR_ERR(new_crtc_state);
2412
2413 head = nv50_head(crtc);
2414 asyh = nv50_head_atom(new_crtc_state);
2415 core->func->head->static_wndw_map(head, asyh);
2416 }
2417 }
2418
2419 /* We need to handle colour management on a per-plane basis. */
2420 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2421 if (new_crtc_state->color_mgmt_changed) {
2422 ret = drm_atomic_add_affected_planes(state, crtc);
2423 if (ret)
2424 return ret;
2425 }
2426 }
2427
2428 ret = drm_atomic_helper_check(dev, state);
2429 if (ret)
2430 return ret;
2431
2432 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2433 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2434 if (ret)
2435 return ret;
2436
2437 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2438 if (ret)
2439 return ret;
2440 }
2441
2442 ret = drm_dp_mst_atomic_check(state);
2443 if (ret)
2444 return ret;
2445
2446 nv50_crc_atomic_check_outp(atom);
2447
2448 return 0;
2449 }
2450
2451 static void
nv50_disp_atomic_state_clear(struct drm_atomic_state * state)2452 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2453 {
2454 struct nv50_atom *atom = nv50_atom(state);
2455 struct nv50_outp_atom *outp, *outt;
2456
2457 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2458 list_del(&outp->head);
2459 kfree(outp);
2460 }
2461
2462 drm_atomic_state_default_clear(state);
2463 }
2464
2465 static void
nv50_disp_atomic_state_free(struct drm_atomic_state * state)2466 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2467 {
2468 struct nv50_atom *atom = nv50_atom(state);
2469 drm_atomic_state_default_release(&atom->state);
2470 kfree(atom);
2471 }
2472
2473 static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device * dev)2474 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2475 {
2476 struct nv50_atom *atom;
2477 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2478 drm_atomic_state_init(dev, &atom->state) < 0) {
2479 kfree(atom);
2480 return NULL;
2481 }
2482 INIT_LIST_HEAD(&atom->outp);
2483 return &atom->state;
2484 }
2485
2486 static const struct drm_mode_config_funcs
2487 nv50_disp_func = {
2488 .fb_create = nouveau_user_framebuffer_create,
2489 .output_poll_changed = drm_fb_helper_output_poll_changed,
2490 .atomic_check = nv50_disp_atomic_check,
2491 .atomic_commit = nv50_disp_atomic_commit,
2492 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2493 .atomic_state_clear = nv50_disp_atomic_state_clear,
2494 .atomic_state_free = nv50_disp_atomic_state_free,
2495 };
2496
2497 static const struct drm_mode_config_helper_funcs
2498 nv50_disp_helper_func = {
2499 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2500 };
2501
2502 /******************************************************************************
2503 * Init
2504 *****************************************************************************/
2505
2506 static void
nv50_display_fini(struct drm_device * dev,bool runtime,bool suspend)2507 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2508 {
2509 struct nouveau_drm *drm = nouveau_drm(dev);
2510 struct drm_encoder *encoder;
2511
2512 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2513 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2514 nv50_mstm_fini(nouveau_encoder(encoder));
2515 }
2516
2517 if (!runtime)
2518 cancel_work_sync(&drm->hpd_work);
2519 }
2520
2521 static int
nv50_display_init(struct drm_device * dev,bool resume,bool runtime)2522 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2523 {
2524 struct nv50_core *core = nv50_disp(dev)->core;
2525 struct drm_encoder *encoder;
2526
2527 if (resume || runtime)
2528 core->func->init(core);
2529
2530 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2531 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2532 struct nouveau_encoder *nv_encoder =
2533 nouveau_encoder(encoder);
2534 nv50_mstm_init(nv_encoder, runtime);
2535 }
2536 }
2537
2538 return 0;
2539 }
2540
2541 static void
nv50_display_destroy(struct drm_device * dev)2542 nv50_display_destroy(struct drm_device *dev)
2543 {
2544 struct nv50_disp *disp = nv50_disp(dev);
2545
2546 nv50_audio_component_fini(nouveau_drm(dev));
2547
2548 nvif_object_unmap(&disp->caps);
2549 nvif_object_dtor(&disp->caps);
2550 nv50_core_del(&disp->core);
2551
2552 nouveau_bo_unmap(disp->sync);
2553 if (disp->sync)
2554 nouveau_bo_unpin(disp->sync);
2555 nouveau_bo_ref(NULL, &disp->sync);
2556
2557 nouveau_display(dev)->priv = NULL;
2558 kfree(disp);
2559 }
2560
2561 int
nv50_display_create(struct drm_device * dev)2562 nv50_display_create(struct drm_device *dev)
2563 {
2564 struct nvif_device *device = &nouveau_drm(dev)->client.device;
2565 struct nouveau_drm *drm = nouveau_drm(dev);
2566 struct dcb_table *dcb = &drm->vbios.dcb;
2567 struct drm_connector *connector, *tmp;
2568 struct nv50_disp *disp;
2569 struct dcb_output *dcbe;
2570 int crtcs, ret, i;
2571 bool has_mst = nv50_has_mst(drm);
2572
2573 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2574 if (!disp)
2575 return -ENOMEM;
2576
2577 mutex_init(&disp->mutex);
2578
2579 nouveau_display(dev)->priv = disp;
2580 nouveau_display(dev)->dtor = nv50_display_destroy;
2581 nouveau_display(dev)->init = nv50_display_init;
2582 nouveau_display(dev)->fini = nv50_display_fini;
2583 disp->disp = &nouveau_display(dev)->disp;
2584 dev->mode_config.funcs = &nv50_disp_func;
2585 dev->mode_config.helper_private = &nv50_disp_helper_func;
2586 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2587 dev->mode_config.normalize_zpos = true;
2588
2589 /* small shared memory area we use for notifiers and semaphores */
2590 ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2591 NOUVEAU_GEM_DOMAIN_VRAM,
2592 0, 0x0000, NULL, NULL, &disp->sync);
2593 if (!ret) {
2594 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2595 if (!ret) {
2596 ret = nouveau_bo_map(disp->sync);
2597 if (ret)
2598 nouveau_bo_unpin(disp->sync);
2599 }
2600 if (ret)
2601 nouveau_bo_ref(NULL, &disp->sync);
2602 }
2603
2604 if (ret)
2605 goto out;
2606
2607 /* allocate master evo channel */
2608 ret = nv50_core_new(drm, &disp->core);
2609 if (ret)
2610 goto out;
2611
2612 disp->core->func->init(disp->core);
2613 if (disp->core->func->caps_init) {
2614 ret = disp->core->func->caps_init(drm, disp);
2615 if (ret)
2616 goto out;
2617 }
2618
2619 /* Assign the correct format modifiers */
2620 if (disp->disp->object.oclass >= TU102_DISP)
2621 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2622 else
2623 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2624 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2625 else
2626 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2627
2628 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2629 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2630 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2631 * small page allocations in prepare_fb(). When this is implemented, we should also force
2632 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2633 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2634 * large pages.
2635 */
2636 if (disp->disp->object.oclass >= GM107_DISP) {
2637 dev->mode_config.cursor_width = 256;
2638 dev->mode_config.cursor_height = 256;
2639 } else if (disp->disp->object.oclass >= GK104_DISP) {
2640 dev->mode_config.cursor_width = 128;
2641 dev->mode_config.cursor_height = 128;
2642 } else {
2643 dev->mode_config.cursor_width = 64;
2644 dev->mode_config.cursor_height = 64;
2645 }
2646
2647 /* create crtc objects to represent the hw heads */
2648 if (disp->disp->object.oclass >= GV100_DISP)
2649 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2650 else
2651 if (disp->disp->object.oclass >= GF110_DISP)
2652 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2653 else
2654 crtcs = 0x3;
2655
2656 for (i = 0; i < fls(crtcs); i++) {
2657 struct nv50_head *head;
2658
2659 if (!(crtcs & (1 << i)))
2660 continue;
2661
2662 head = nv50_head_create(dev, i);
2663 if (IS_ERR(head)) {
2664 ret = PTR_ERR(head);
2665 goto out;
2666 }
2667
2668 if (has_mst) {
2669 head->msto = nv50_msto_new(dev, head, i);
2670 if (IS_ERR(head->msto)) {
2671 ret = PTR_ERR(head->msto);
2672 head->msto = NULL;
2673 goto out;
2674 }
2675
2676 /*
2677 * FIXME: This is a hack to workaround the following
2678 * issues:
2679 *
2680 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2681 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2682 *
2683 * Once these issues are closed, this should be
2684 * removed
2685 */
2686 head->msto->encoder.possible_crtcs = crtcs;
2687 }
2688 }
2689
2690 /* create encoder/connector objects based on VBIOS DCB table */
2691 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2692 connector = nouveau_connector_create(dev, dcbe);
2693 if (IS_ERR(connector))
2694 continue;
2695
2696 if (dcbe->location == DCB_LOC_ON_CHIP) {
2697 switch (dcbe->type) {
2698 case DCB_OUTPUT_TMDS:
2699 case DCB_OUTPUT_LVDS:
2700 case DCB_OUTPUT_DP:
2701 ret = nv50_sor_create(connector, dcbe);
2702 break;
2703 case DCB_OUTPUT_ANALOG:
2704 ret = nv50_dac_create(connector, dcbe);
2705 break;
2706 default:
2707 ret = -ENODEV;
2708 break;
2709 }
2710 } else {
2711 ret = nv50_pior_create(connector, dcbe);
2712 }
2713
2714 if (ret) {
2715 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2716 dcbe->location, dcbe->type,
2717 ffs(dcbe->or) - 1, ret);
2718 ret = 0;
2719 }
2720 }
2721
2722 /* cull any connectors we created that don't have an encoder */
2723 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2724 if (connector->possible_encoders)
2725 continue;
2726
2727 NV_WARN(drm, "%s has no encoders, removing\n",
2728 connector->name);
2729 connector->funcs->destroy(connector);
2730 }
2731
2732 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2733 dev->vblank_disable_immediate = true;
2734
2735 nv50_audio_component_init(drm);
2736
2737 out:
2738 if (ret)
2739 nv50_display_destroy(dev);
2740 return ret;
2741 }
2742
2743 /******************************************************************************
2744 * Format modifiers
2745 *****************************************************************************/
2746
2747 /****************************************************************
2748 * Log2(block height) ----------------------------+ *
2749 * Page Kind ----------------------------------+ | *
2750 * Gob Height/Page Kind Generation ------+ | | *
2751 * Sector layout -------+ | | | *
2752 * Compression ------+ | | | | */
2753 const u64 disp50xx_modifiers[] = { /* | | | | | */
2754 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2755 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2756 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2757 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2758 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2759 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2760 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2761 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2762 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2763 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2764 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2765 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2766 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2767 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2768 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2769 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2770 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2771 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2772 DRM_FORMAT_MOD_LINEAR,
2773 DRM_FORMAT_MOD_INVALID
2774 };
2775
2776 /****************************************************************
2777 * Log2(block height) ----------------------------+ *
2778 * Page Kind ----------------------------------+ | *
2779 * Gob Height/Page Kind Generation ------+ | | *
2780 * Sector layout -------+ | | | *
2781 * Compression ------+ | | | | */
2782 const u64 disp90xx_modifiers[] = { /* | | | | | */
2783 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2784 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2785 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2786 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2787 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2788 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2789 DRM_FORMAT_MOD_LINEAR,
2790 DRM_FORMAT_MOD_INVALID
2791 };
2792