1 /*
2 * Copyright 2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
5 * Copyright 2007-2009 Stuart Bennett
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 #include <drm/drm_crtc_helper.h>
28 #include <drm/drm_fourcc.h>
29
30 #include "nouveau_drv.h"
31 #include "nouveau_reg.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_connector.h"
34 #include "nouveau_crtc.h"
35 #include "hw.h"
36 #include "nvreg.h"
37
38 #include <drm/i2c/sil164.h>
39
40 #include <subdev/i2c.h>
41
42 #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \
43 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \
44 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
45 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \
46 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \
47 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
48
is_fpc_off(uint32_t fpc)49 static inline bool is_fpc_off(uint32_t fpc)
50 {
51 return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
52 FP_TG_CONTROL_OFF);
53 }
54
nv04_dfp_get_bound_head(struct drm_device * dev,struct dcb_output * dcbent)55 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent)
56 {
57 /* special case of nv_read_tmds to find crtc associated with an output.
58 * this does not give a correct answer for off-chip dvi, but there's no
59 * use for such an answer anyway
60 */
61 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
62
63 NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
64 NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
65 return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
66 }
67
nv04_dfp_bind_head(struct drm_device * dev,struct dcb_output * dcbent,int head,bool dl)68 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent,
69 int head, bool dl)
70 {
71 /* The BIOS scripts don't do this for us, sadly
72 * Luckily we do know the values ;-)
73 *
74 * head < 0 indicates we wish to force a setting with the overrideval
75 * (for VT restore etc.)
76 */
77
78 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
79 uint8_t tmds04 = 0x80;
80
81 if (head != ramdac)
82 tmds04 = 0x88;
83
84 if (dcbent->type == DCB_OUTPUT_LVDS)
85 tmds04 |= 0x01;
86
87 nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
88
89 if (dl) /* dual link */
90 nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
91 }
92
nv04_dfp_disable(struct drm_device * dev,int head)93 void nv04_dfp_disable(struct drm_device *dev, int head)
94 {
95 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
96
97 if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
98 FP_TG_CONTROL_ON) {
99 /* digital remnants must be cleaned before new crtc
100 * values programmed. delay is time for the vga stuff
101 * to realise it's in control again
102 */
103 NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
104 FP_TG_CONTROL_OFF);
105 msleep(50);
106 }
107 /* don't inadvertently turn it on when state written later */
108 crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
109 crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
110 ~NV_CIO_CRE_LCD_ROUTE_MASK;
111 }
112
nv04_dfp_update_fp_control(struct drm_encoder * encoder,int mode)113 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
114 {
115 struct drm_device *dev = encoder->dev;
116 struct drm_crtc *crtc;
117 struct nouveau_crtc *nv_crtc;
118 uint32_t *fpc;
119
120 if (mode == DRM_MODE_DPMS_ON) {
121 nv_crtc = nouveau_crtc(encoder->crtc);
122 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
123
124 if (is_fpc_off(*fpc)) {
125 /* using saved value is ok, as (is_digital && dpms_on &&
126 * fp_control==OFF) is (at present) *only* true when
127 * fpc's most recent change was by below "off" code
128 */
129 *fpc = nv_crtc->dpms_saved_fp_control;
130 }
131
132 nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
133 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
134 } else {
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 nv_crtc = nouveau_crtc(crtc);
137 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
138
139 nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
140 if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
141 nv_crtc->dpms_saved_fp_control = *fpc;
142 /* cut the FP output */
143 *fpc &= ~FP_TG_CONTROL_ON;
144 *fpc |= FP_TG_CONTROL_OFF;
145 NVWriteRAMDAC(dev, nv_crtc->index,
146 NV_PRAMDAC_FP_TG_CONTROL, *fpc);
147 }
148 }
149 }
150 }
151
get_tmds_slave(struct drm_encoder * encoder)152 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
153 {
154 struct drm_device *dev = encoder->dev;
155 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
156 struct drm_encoder *slave;
157
158 if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
159 return NULL;
160
161 /* Some BIOSes (e.g. the one in a Quadro FX1000) report several
162 * TMDS transmitters at the same I2C address, in the same I2C
163 * bus. This can still work because in that case one of them is
164 * always hard-wired to a reasonable configuration using straps,
165 * and the other one needs to be programmed.
166 *
167 * I don't think there's a way to know which is which, even the
168 * blob programs the one exposed via I2C for *both* heads, so
169 * let's do the same.
170 */
171 list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
172 struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb;
173
174 if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) &&
175 slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
176 return slave;
177 }
178
179 return NULL;
180 }
181
nv04_dfp_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)182 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
183 const struct drm_display_mode *mode,
184 struct drm_display_mode *adjusted_mode)
185 {
186 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
187 struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);
188
189 if (!nv_connector->native_mode ||
190 nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
191 mode->hdisplay > nv_connector->native_mode->hdisplay ||
192 mode->vdisplay > nv_connector->native_mode->vdisplay) {
193 nv_encoder->mode = *adjusted_mode;
194
195 } else {
196 nv_encoder->mode = *nv_connector->native_mode;
197 adjusted_mode->clock = nv_connector->native_mode->clock;
198 }
199
200 return true;
201 }
202
nv04_dfp_prepare_sel_clk(struct drm_device * dev,struct nouveau_encoder * nv_encoder,int head)203 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
204 struct nouveau_encoder *nv_encoder, int head)
205 {
206 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
207 uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000;
208
209 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
210 return;
211
212 /* SEL_CLK is only used on the primary ramdac
213 * It toggles spread spectrum PLL output and sets the bindings of PLLs
214 * to heads on digital outputs
215 */
216 if (head)
217 state->sel_clk |= bits1618;
218 else
219 state->sel_clk &= ~bits1618;
220
221 /* nv30:
222 * bit 0 NVClk spread spectrum on/off
223 * bit 2 MemClk spread spectrum on/off
224 * bit 4 PixClk1 spread spectrum on/off toggle
225 * bit 6 PixClk2 spread spectrum on/off toggle
226 *
227 * nv40 (observations from bios behaviour and mmio traces):
228 * bits 4&6 as for nv30
229 * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6;
230 * maybe a different spread mode
231 * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
232 * The logic behind turning spread spectrum on/off in the first place,
233 * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
234 * entry has the necessary info)
235 */
236 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) {
237 int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1;
238
239 state->sel_clk &= ~0xf0;
240 state->sel_clk |= (head ? 0x40 : 0x10) << shift;
241 }
242 }
243
nv04_dfp_prepare(struct drm_encoder * encoder)244 static void nv04_dfp_prepare(struct drm_encoder *encoder)
245 {
246 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
247 const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
248 struct drm_device *dev = encoder->dev;
249 int head = nouveau_crtc(encoder->crtc)->index;
250 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
251 uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
252 uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
253
254 helper->dpms(encoder, DRM_MODE_DPMS_OFF);
255
256 nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
257
258 *cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
259
260 if (nv_two_heads(dev)) {
261 if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
262 *cr_lcd |= head ? 0x0 : 0x8;
263 else {
264 *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
265 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
266 *cr_lcd |= 0x30;
267 if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
268 /* avoid being connected to both crtcs */
269 *cr_lcd_oth &= ~0x30;
270 NVWriteVgaCrtc(dev, head ^ 1,
271 NV_CIO_CRE_LCD__INDEX,
272 *cr_lcd_oth);
273 }
274 }
275 }
276 }
277
278
nv04_dfp_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)279 static void nv04_dfp_mode_set(struct drm_encoder *encoder,
280 struct drm_display_mode *mode,
281 struct drm_display_mode *adjusted_mode)
282 {
283 struct drm_device *dev = encoder->dev;
284 struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
285 struct nouveau_drm *drm = nouveau_drm(dev);
286 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
287 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
288 struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
289 struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
290 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
291 struct drm_display_mode *output_mode = &nv_encoder->mode;
292 struct drm_connector *connector = &nv_connector->base;
293 const struct drm_framebuffer *fb = encoder->crtc->primary->fb;
294 uint32_t mode_ratio, panel_ratio;
295
296 NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index);
297 drm_mode_debug_printmodeline(output_mode);
298
299 /* Initialize the FP registers in this CRTC. */
300 regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
301 regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
302 if (!nv_gf4_disp_arch(dev) ||
303 (output_mode->hsync_start - output_mode->hdisplay) >=
304 drm->vbios.digital_min_front_porch)
305 regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
306 else
307 regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1;
308 regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
309 regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
310 regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
311 regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
312
313 regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
314 regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
315 regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
316 regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
317 regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
318 regp->fp_vert_regs[FP_VALID_START] = 0;
319 regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
320
321 /* bit26: a bit seen on some g7x, no as yet discernable purpose */
322 regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
323 (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
324 /* Deal with vsync/hsync polarity */
325 /* LVDS screens do set this, but modes with +ve syncs are very rare */
326 if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
327 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
328 if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
329 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
330 /* panel scaling first, as native would get set otherwise */
331 if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
332 nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */
333 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
334 else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
335 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
336 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
337 else /* gpu needs to scale */
338 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
339 if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
340 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
341 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
342 output_mode->clock > 165000)
343 regp->fp_control |= (2 << 24);
344 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
345 bool duallink = false, dummy;
346 if (nv_connector->edid &&
347 nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
348 duallink = (((u8 *)nv_connector->edid)[121] == 2);
349 } else {
350 nouveau_bios_parse_lvds_table(dev, output_mode->clock,
351 &duallink, &dummy);
352 }
353
354 if (duallink)
355 regp->fp_control |= (8 << 28);
356 } else
357 if (output_mode->clock > 165000)
358 regp->fp_control |= (8 << 28);
359
360 regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
361 NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
362 NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
363 NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
364 NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
365 NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
366 NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
367
368 /* We want automatic scaling */
369 regp->fp_debug_1 = 0;
370 /* This can override HTOTAL and VTOTAL */
371 regp->fp_debug_2 = 0;
372
373 /* Use 20.12 fixed point format to avoid floats */
374 mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
375 panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
376 /* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
377 * get treated the same as SCALE_FULLSCREEN */
378 if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
379 mode_ratio != panel_ratio) {
380 uint32_t diff, scale;
381 bool divide_by_2 = nv_gf4_disp_arch(dev);
382
383 if (mode_ratio < panel_ratio) {
384 /* vertical needs to expand to glass size (automatic)
385 * horizontal needs to be scaled at vertical scale factor
386 * to maintain aspect */
387
388 scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
389 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
390 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
391
392 /* restrict area of screen used, horizontally */
393 diff = output_mode->hdisplay -
394 output_mode->vdisplay * mode_ratio / (1 << 12);
395 regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
396 regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
397 }
398
399 if (mode_ratio > panel_ratio) {
400 /* horizontal needs to expand to glass size (automatic)
401 * vertical needs to be scaled at horizontal scale factor
402 * to maintain aspect */
403
404 scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
405 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
406 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
407
408 /* restrict area of screen used, vertically */
409 diff = output_mode->vdisplay -
410 (1 << 12) * output_mode->hdisplay / mode_ratio;
411 regp->fp_vert_regs[FP_VALID_START] += diff / 2;
412 regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
413 }
414 }
415
416 /* Output property. */
417 if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
418 (nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
419 fb->format->depth > connector->display_info.bpc * 3)) {
420 if (drm->client.device.info.chipset == 0x11)
421 regp->dither = savep->dither | 0x00010000;
422 else {
423 int i;
424 regp->dither = savep->dither | 0x00000001;
425 for (i = 0; i < 3; i++) {
426 regp->dither_regs[i] = 0xe4e4e4e4;
427 regp->dither_regs[i + 3] = 0x44444444;
428 }
429 }
430 } else {
431 if (drm->client.device.info.chipset != 0x11) {
432 /* reset them */
433 int i;
434 for (i = 0; i < 3; i++) {
435 regp->dither_regs[i] = savep->dither_regs[i];
436 regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
437 }
438 }
439 regp->dither = savep->dither;
440 }
441
442 regp->fp_margin_color = 0;
443 }
444
nv04_dfp_commit(struct drm_encoder * encoder)445 static void nv04_dfp_commit(struct drm_encoder *encoder)
446 {
447 struct drm_device *dev = encoder->dev;
448 struct nouveau_drm *drm = nouveau_drm(dev);
449 const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
450 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
451 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
452 struct dcb_output *dcbe = nv_encoder->dcb;
453 int head = nouveau_crtc(encoder->crtc)->index;
454 struct drm_encoder *slave_encoder;
455
456 if (dcbe->type == DCB_OUTPUT_TMDS)
457 run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
458 else if (dcbe->type == DCB_OUTPUT_LVDS)
459 call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
460
461 /* update fp_control state for any changes made by scripts,
462 * so correct value is written at DPMS on */
463 nv04_display(dev)->mode_reg.crtc_reg[head].fp_control =
464 NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
465
466 /* This could use refinement for flatpanels, but it should work this way */
467 if (drm->client.device.info.chipset < 0x44)
468 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
469 else
470 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
471
472 /* Init external transmitters */
473 slave_encoder = get_tmds_slave(encoder);
474 if (slave_encoder)
475 get_slave_funcs(slave_encoder)->mode_set(
476 slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
477
478 helper->dpms(encoder, DRM_MODE_DPMS_ON);
479
480 NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
481 nouveau_encoder_connector_get(nv_encoder)->base.name,
482 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
483 }
484
nv04_dfp_update_backlight(struct drm_encoder * encoder,int mode)485 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
486 {
487 #ifdef __powerpc__
488 struct drm_device *dev = encoder->dev;
489 struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
490
491 /* BIOS scripts usually take care of the backlight, thanks
492 * Apple for your consistency.
493 */
494 if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 ||
495 dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) {
496 if (mode == DRM_MODE_DPMS_ON) {
497 nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31);
498 nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1);
499 } else {
500 nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
501 nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0);
502 }
503 }
504 #endif
505 }
506
is_powersaving_dpms(int mode)507 static inline bool is_powersaving_dpms(int mode)
508 {
509 return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED;
510 }
511
nv04_lvds_dpms(struct drm_encoder * encoder,int mode)512 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
513 {
514 struct drm_device *dev = encoder->dev;
515 struct drm_crtc *crtc = encoder->crtc;
516 struct nouveau_drm *drm = nouveau_drm(dev);
517 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
518 bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
519
520 if (nv_encoder->last_dpms == mode)
521 return;
522 nv_encoder->last_dpms = mode;
523
524 NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n",
525 mode, nv_encoder->dcb->index);
526
527 if (was_powersaving && is_powersaving_dpms(mode))
528 return;
529
530 if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
531 /* when removing an output, crtc may not be set, but PANEL_OFF
532 * must still be run
533 */
534 int head = crtc ? nouveau_crtc(crtc)->index :
535 nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
536
537 if (mode == DRM_MODE_DPMS_ON) {
538 call_lvds_script(dev, nv_encoder->dcb, head,
539 LVDS_PANEL_ON, nv_encoder->mode.clock);
540 } else
541 /* pxclk of 0 is fine for PANEL_OFF, and for a
542 * disconnected LVDS encoder there is no native_mode
543 */
544 call_lvds_script(dev, nv_encoder->dcb, head,
545 LVDS_PANEL_OFF, 0);
546 }
547
548 nv04_dfp_update_backlight(encoder, mode);
549 nv04_dfp_update_fp_control(encoder, mode);
550
551 if (mode == DRM_MODE_DPMS_ON)
552 nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
553 else {
554 nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
555 nv04_display(dev)->mode_reg.sel_clk &= ~0xf0;
556 }
557 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
558 }
559
nv04_tmds_dpms(struct drm_encoder * encoder,int mode)560 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
561 {
562 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
563 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
564
565 if (nv_encoder->last_dpms == mode)
566 return;
567 nv_encoder->last_dpms = mode;
568
569 NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n",
570 mode, nv_encoder->dcb->index);
571
572 nv04_dfp_update_backlight(encoder, mode);
573 nv04_dfp_update_fp_control(encoder, mode);
574 }
575
nv04_dfp_save(struct drm_encoder * encoder)576 static void nv04_dfp_save(struct drm_encoder *encoder)
577 {
578 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
579 struct drm_device *dev = encoder->dev;
580
581 if (nv_two_heads(dev))
582 nv_encoder->restore.head =
583 nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
584 }
585
nv04_dfp_restore(struct drm_encoder * encoder)586 static void nv04_dfp_restore(struct drm_encoder *encoder)
587 {
588 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
589 struct drm_device *dev = encoder->dev;
590 int head = nv_encoder->restore.head;
591
592 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
593 struct nouveau_connector *connector =
594 nouveau_encoder_connector_get(nv_encoder);
595
596 if (connector && connector->native_mode)
597 call_lvds_script(dev, nv_encoder->dcb, head,
598 LVDS_PANEL_ON,
599 connector->native_mode->clock);
600
601 } else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
602 int clock = nouveau_hw_pllvals_to_clk
603 (&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals);
604
605 run_tmds_table(dev, nv_encoder->dcb, head, clock);
606 }
607
608 nv_encoder->last_dpms = NV_DPMS_CLEARED;
609 }
610
nv04_dfp_destroy(struct drm_encoder * encoder)611 static void nv04_dfp_destroy(struct drm_encoder *encoder)
612 {
613 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
614
615 if (get_slave_funcs(encoder))
616 get_slave_funcs(encoder)->destroy(encoder);
617
618 drm_encoder_cleanup(encoder);
619 kfree(nv_encoder);
620 }
621
nv04_tmds_slave_init(struct drm_encoder * encoder)622 static void nv04_tmds_slave_init(struct drm_encoder *encoder)
623 {
624 struct drm_device *dev = encoder->dev;
625 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
626 struct nouveau_drm *drm = nouveau_drm(dev);
627 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
628 struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI);
629 struct nvkm_i2c_bus_probe info[] = {
630 {
631 {
632 .type = "sil164",
633 .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
634 .platform_data = &(struct sil164_encoder_params) {
635 SIL164_INPUT_EDGE_RISING
636 }
637 }, 0
638 },
639 { }
640 };
641 int type;
642
643 if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder))
644 return;
645
646 type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL);
647 if (type < 0)
648 return;
649
650 drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
651 &bus->i2c, &info[type].dev);
652 }
653
654 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
655 .dpms = nv04_lvds_dpms,
656 .mode_fixup = nv04_dfp_mode_fixup,
657 .prepare = nv04_dfp_prepare,
658 .commit = nv04_dfp_commit,
659 .mode_set = nv04_dfp_mode_set,
660 .detect = NULL,
661 };
662
663 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
664 .dpms = nv04_tmds_dpms,
665 .mode_fixup = nv04_dfp_mode_fixup,
666 .prepare = nv04_dfp_prepare,
667 .commit = nv04_dfp_commit,
668 .mode_set = nv04_dfp_mode_set,
669 .detect = NULL,
670 };
671
672 static const struct drm_encoder_funcs nv04_dfp_funcs = {
673 .destroy = nv04_dfp_destroy,
674 };
675
676 int
nv04_dfp_create(struct drm_connector * connector,struct dcb_output * entry)677 nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry)
678 {
679 const struct drm_encoder_helper_funcs *helper;
680 struct nouveau_encoder *nv_encoder = NULL;
681 struct drm_encoder *encoder;
682 int type;
683
684 switch (entry->type) {
685 case DCB_OUTPUT_TMDS:
686 type = DRM_MODE_ENCODER_TMDS;
687 helper = &nv04_tmds_helper_funcs;
688 break;
689 case DCB_OUTPUT_LVDS:
690 type = DRM_MODE_ENCODER_LVDS;
691 helper = &nv04_lvds_helper_funcs;
692 break;
693 default:
694 return -EINVAL;
695 }
696
697 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
698 if (!nv_encoder)
699 return -ENOMEM;
700
701 nv_encoder->enc_save = nv04_dfp_save;
702 nv_encoder->enc_restore = nv04_dfp_restore;
703
704 encoder = to_drm_encoder(nv_encoder);
705
706 nv_encoder->dcb = entry;
707 nv_encoder->or = ffs(entry->or) - 1;
708
709 drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type, NULL);
710 drm_encoder_helper_add(encoder, helper);
711
712 encoder->possible_crtcs = entry->heads;
713 encoder->possible_clones = 0;
714
715 if (entry->type == DCB_OUTPUT_TMDS &&
716 entry->location != DCB_LOC_ON_CHIP)
717 nv04_tmds_slave_init(encoder);
718
719 drm_connector_attach_encoder(connector, encoder);
720 return 0;
721 }
722