1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3 * inode.c - NTFS kernel inode handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 */
7
8 #include <linux/buffer_head.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/mount.h>
12 #include <linux/mutex.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/slab.h>
16 #include <linux/log2.h>
17
18 #include "aops.h"
19 #include "attrib.h"
20 #include "bitmap.h"
21 #include "dir.h"
22 #include "debug.h"
23 #include "inode.h"
24 #include "lcnalloc.h"
25 #include "malloc.h"
26 #include "mft.h"
27 #include "time.h"
28 #include "ntfs.h"
29
30 /**
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @data: data which is being tested with
34 *
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @data.
37 *
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
40 *
41 * Return 1 if the attributes match and 0 if not.
42 *
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44 * allowed to sleep.
45 */
ntfs_test_inode(struct inode * vi,void * data)46 int ntfs_test_inode(struct inode *vi, void *data)
47 {
48 ntfs_attr *na = (ntfs_attr *)data;
49 ntfs_inode *ni;
50
51 if (vi->i_ino != na->mft_no)
52 return 0;
53 ni = NTFS_I(vi);
54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 if (likely(!NInoAttr(ni))) {
56 /* If not looking for a normal inode this is a mismatch. */
57 if (unlikely(na->type != AT_UNUSED))
58 return 0;
59 } else {
60 /* A fake inode describing an attribute. */
61 if (ni->type != na->type)
62 return 0;
63 if (ni->name_len != na->name_len)
64 return 0;
65 if (na->name_len && memcmp(ni->name, na->name,
66 na->name_len * sizeof(ntfschar)))
67 return 0;
68 }
69 /* Match! */
70 return 1;
71 }
72
73 /**
74 * ntfs_init_locked_inode - initialize an inode
75 * @vi: vfs inode to initialize
76 * @data: data which to initialize @vi to
77 *
78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79 * order to enable ntfs_test_inode() to do its work.
80 *
81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82 * In that case, @na->name and @na->name_len should be set to NULL and 0,
83 * respectively. Although that is not strictly necessary as
84 * ntfs_read_locked_inode() will fill them in later.
85 *
86 * Return 0 on success and -errno on error.
87 *
88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
90 */
ntfs_init_locked_inode(struct inode * vi,void * data)91 static int ntfs_init_locked_inode(struct inode *vi, void *data)
92 {
93 ntfs_attr *na = (ntfs_attr *)data;
94 ntfs_inode *ni = NTFS_I(vi);
95
96 vi->i_ino = na->mft_no;
97
98 ni->type = na->type;
99 if (na->type == AT_INDEX_ALLOCATION)
100 NInoSetMstProtected(ni);
101
102 ni->name = na->name;
103 ni->name_len = na->name_len;
104
105 /* If initializing a normal inode, we are done. */
106 if (likely(na->type == AT_UNUSED)) {
107 BUG_ON(na->name);
108 BUG_ON(na->name_len);
109 return 0;
110 }
111
112 /* It is a fake inode. */
113 NInoSetAttr(ni);
114
115 /*
116 * We have I30 global constant as an optimization as it is the name
117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 * allocation but that is ok. And most attributes are unnamed anyway,
119 * thus the fraction of named attributes with name != I30 is actually
120 * absolutely tiny.
121 */
122 if (na->name_len && na->name != I30) {
123 unsigned int i;
124
125 BUG_ON(!na->name);
126 i = na->name_len * sizeof(ntfschar);
127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
128 if (!ni->name)
129 return -ENOMEM;
130 memcpy(ni->name, na->name, i);
131 ni->name[na->name_len] = 0;
132 }
133 return 0;
134 }
135
136 static int ntfs_read_locked_inode(struct inode *vi);
137 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138 static int ntfs_read_locked_index_inode(struct inode *base_vi,
139 struct inode *vi);
140
141 /**
142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143 * @sb: super block of mounted volume
144 * @mft_no: mft record number / inode number to obtain
145 *
146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147 * file or directory).
148 *
149 * If the inode is in the cache, it is just returned with an increased
150 * reference count. Otherwise, a new struct inode is allocated and initialized,
151 * and finally ntfs_read_locked_inode() is called to read in the inode and
152 * fill in the remainder of the inode structure.
153 *
154 * Return the struct inode on success. Check the return value with IS_ERR() and
155 * if true, the function failed and the error code is obtained from PTR_ERR().
156 */
ntfs_iget(struct super_block * sb,unsigned long mft_no)157 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
158 {
159 struct inode *vi;
160 int err;
161 ntfs_attr na;
162
163 na.mft_no = mft_no;
164 na.type = AT_UNUSED;
165 na.name = NULL;
166 na.name_len = 0;
167
168 vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 ntfs_init_locked_inode, &na);
170 if (unlikely(!vi))
171 return ERR_PTR(-ENOMEM);
172
173 err = 0;
174
175 /* If this is a freshly allocated inode, need to read it now. */
176 if (vi->i_state & I_NEW) {
177 err = ntfs_read_locked_inode(vi);
178 unlock_new_inode(vi);
179 }
180 /*
181 * There is no point in keeping bad inodes around if the failure was
182 * due to ENOMEM. We want to be able to retry again later.
183 */
184 if (unlikely(err == -ENOMEM)) {
185 iput(vi);
186 vi = ERR_PTR(err);
187 }
188 return vi;
189 }
190
191 /**
192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193 * @base_vi: vfs base inode containing the attribute
194 * @type: attribute type
195 * @name: Unicode name of the attribute (NULL if unnamed)
196 * @name_len: length of @name in Unicode characters (0 if unnamed)
197 *
198 * Obtain the (fake) struct inode corresponding to the attribute specified by
199 * @type, @name, and @name_len, which is present in the base mft record
200 * specified by the vfs inode @base_vi.
201 *
202 * If the attribute inode is in the cache, it is just returned with an
203 * increased reference count. Otherwise, a new struct inode is allocated and
204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205 * attribute and fill in the inode structure.
206 *
207 * Note, for index allocation attributes, you need to use ntfs_index_iget()
208 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
209 *
210 * Return the struct inode of the attribute inode on success. Check the return
211 * value with IS_ERR() and if true, the function failed and the error code is
212 * obtained from PTR_ERR().
213 */
ntfs_attr_iget(struct inode * base_vi,ATTR_TYPE type,ntfschar * name,u32 name_len)214 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 ntfschar *name, u32 name_len)
216 {
217 struct inode *vi;
218 int err;
219 ntfs_attr na;
220
221 /* Make sure no one calls ntfs_attr_iget() for indices. */
222 BUG_ON(type == AT_INDEX_ALLOCATION);
223
224 na.mft_no = base_vi->i_ino;
225 na.type = type;
226 na.name = name;
227 na.name_len = name_len;
228
229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 ntfs_init_locked_inode, &na);
231 if (unlikely(!vi))
232 return ERR_PTR(-ENOMEM);
233
234 err = 0;
235
236 /* If this is a freshly allocated inode, need to read it now. */
237 if (vi->i_state & I_NEW) {
238 err = ntfs_read_locked_attr_inode(base_vi, vi);
239 unlock_new_inode(vi);
240 }
241 /*
242 * There is no point in keeping bad attribute inodes around. This also
243 * simplifies things in that we never need to check for bad attribute
244 * inodes elsewhere.
245 */
246 if (unlikely(err)) {
247 iput(vi);
248 vi = ERR_PTR(err);
249 }
250 return vi;
251 }
252
253 /**
254 * ntfs_index_iget - obtain a struct inode corresponding to an index
255 * @base_vi: vfs base inode containing the index related attributes
256 * @name: Unicode name of the index
257 * @name_len: length of @name in Unicode characters
258 *
259 * Obtain the (fake) struct inode corresponding to the index specified by @name
260 * and @name_len, which is present in the base mft record specified by the vfs
261 * inode @base_vi.
262 *
263 * If the index inode is in the cache, it is just returned with an increased
264 * reference count. Otherwise, a new struct inode is allocated and
265 * initialized, and finally ntfs_read_locked_index_inode() is called to read
266 * the index related attributes and fill in the inode structure.
267 *
268 * Return the struct inode of the index inode on success. Check the return
269 * value with IS_ERR() and if true, the function failed and the error code is
270 * obtained from PTR_ERR().
271 */
ntfs_index_iget(struct inode * base_vi,ntfschar * name,u32 name_len)272 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
273 u32 name_len)
274 {
275 struct inode *vi;
276 int err;
277 ntfs_attr na;
278
279 na.mft_no = base_vi->i_ino;
280 na.type = AT_INDEX_ALLOCATION;
281 na.name = name;
282 na.name_len = name_len;
283
284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 ntfs_init_locked_inode, &na);
286 if (unlikely(!vi))
287 return ERR_PTR(-ENOMEM);
288
289 err = 0;
290
291 /* If this is a freshly allocated inode, need to read it now. */
292 if (vi->i_state & I_NEW) {
293 err = ntfs_read_locked_index_inode(base_vi, vi);
294 unlock_new_inode(vi);
295 }
296 /*
297 * There is no point in keeping bad index inodes around. This also
298 * simplifies things in that we never need to check for bad index
299 * inodes elsewhere.
300 */
301 if (unlikely(err)) {
302 iput(vi);
303 vi = ERR_PTR(err);
304 }
305 return vi;
306 }
307
ntfs_alloc_big_inode(struct super_block * sb)308 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
309 {
310 ntfs_inode *ni;
311
312 ntfs_debug("Entering.");
313 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
314 if (likely(ni != NULL)) {
315 ni->state = 0;
316 return VFS_I(ni);
317 }
318 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
319 return NULL;
320 }
321
ntfs_free_big_inode(struct inode * inode)322 void ntfs_free_big_inode(struct inode *inode)
323 {
324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
325 }
326
ntfs_alloc_extent_inode(void)327 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
328 {
329 ntfs_inode *ni;
330
331 ntfs_debug("Entering.");
332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 if (likely(ni != NULL)) {
334 ni->state = 0;
335 return ni;
336 }
337 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
338 return NULL;
339 }
340
ntfs_destroy_extent_inode(ntfs_inode * ni)341 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
342 {
343 ntfs_debug("Entering.");
344 BUG_ON(ni->page);
345 if (!atomic_dec_and_test(&ni->count))
346 BUG();
347 kmem_cache_free(ntfs_inode_cache, ni);
348 }
349
350 /*
351 * The attribute runlist lock has separate locking rules from the
352 * normal runlist lock, so split the two lock-classes:
353 */
354 static struct lock_class_key attr_list_rl_lock_class;
355
356 /**
357 * __ntfs_init_inode - initialize ntfs specific part of an inode
358 * @sb: super block of mounted volume
359 * @ni: freshly allocated ntfs inode which to initialize
360 *
361 * Initialize an ntfs inode to defaults.
362 *
363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364 * untouched. Make sure to initialize them elsewhere.
365 *
366 * Return zero on success and -ENOMEM on error.
367 */
__ntfs_init_inode(struct super_block * sb,ntfs_inode * ni)368 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
369 {
370 ntfs_debug("Entering.");
371 rwlock_init(&ni->size_lock);
372 ni->initialized_size = ni->allocated_size = 0;
373 ni->seq_no = 0;
374 atomic_set(&ni->count, 1);
375 ni->vol = NTFS_SB(sb);
376 ntfs_init_runlist(&ni->runlist);
377 mutex_init(&ni->mrec_lock);
378 ni->page = NULL;
379 ni->page_ofs = 0;
380 ni->attr_list_size = 0;
381 ni->attr_list = NULL;
382 ntfs_init_runlist(&ni->attr_list_rl);
383 lockdep_set_class(&ni->attr_list_rl.lock,
384 &attr_list_rl_lock_class);
385 ni->itype.index.block_size = 0;
386 ni->itype.index.vcn_size = 0;
387 ni->itype.index.collation_rule = 0;
388 ni->itype.index.block_size_bits = 0;
389 ni->itype.index.vcn_size_bits = 0;
390 mutex_init(&ni->extent_lock);
391 ni->nr_extents = 0;
392 ni->ext.base_ntfs_ino = NULL;
393 }
394
395 /*
396 * Extent inodes get MFT-mapped in a nested way, while the base inode
397 * is still mapped. Teach this nesting to the lock validator by creating
398 * a separate class for nested inode's mrec_lock's:
399 */
400 static struct lock_class_key extent_inode_mrec_lock_key;
401
ntfs_new_extent_inode(struct super_block * sb,unsigned long mft_no)402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
404 {
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
406
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
411 ni->mft_no = mft_no;
412 ni->type = AT_UNUSED;
413 ni->name = NULL;
414 ni->name_len = 0;
415 }
416 return ni;
417 }
418
419 /**
420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421 * @ctx: initialized attribute search context
422 *
423 * Search all file name attributes in the inode described by the attribute
424 * search context @ctx and check if any of the names are in the $Extend system
425 * directory.
426 *
427 * Return values:
428 * 1: file is in $Extend directory
429 * 0: file is not in $Extend directory
430 * -errno: failed to determine if the file is in the $Extend directory
431 */
ntfs_is_extended_system_file(ntfs_attr_search_ctx * ctx)432 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
433 {
434 int nr_links, err;
435
436 /* Restart search. */
437 ntfs_attr_reinit_search_ctx(ctx);
438
439 /* Get number of hard links. */
440 nr_links = le16_to_cpu(ctx->mrec->link_count);
441
442 /* Loop through all hard links. */
443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 ctx))) {
445 FILE_NAME_ATTR *file_name_attr;
446 ATTR_RECORD *attr = ctx->attr;
447 u8 *p, *p2;
448
449 nr_links--;
450 /*
451 * Maximum sanity checking as we are called on an inode that
452 * we suspect might be corrupt.
453 */
454 p = (u8*)attr + le32_to_cpu(attr->length);
455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 le32_to_cpu(ctx->mrec->bytes_in_use)) {
457 err_corrupt_attr:
458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 "attribute. You should run chkdsk.");
460 return -EIO;
461 }
462 if (attr->non_resident) {
463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 "name. You should run chkdsk.");
465 return -EIO;
466 }
467 if (attr->flags) {
468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 "invalid flags. You should run "
470 "chkdsk.");
471 return -EIO;
472 }
473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 "name. You should run chkdsk.");
476 return -EIO;
477 }
478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 le16_to_cpu(attr->data.resident.value_offset));
480 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
481 if (p2 < (u8*)attr || p2 > p)
482 goto err_corrupt_attr;
483 /* This attribute is ok, but is it in the $Extend directory? */
484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 return 1; /* YES, it's an extended system file. */
486 }
487 if (unlikely(err != -ENOENT))
488 return err;
489 if (unlikely(nr_links)) {
490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 "doesn't match number of name attributes. You "
492 "should run chkdsk.");
493 return -EIO;
494 }
495 return 0; /* NO, it is not an extended system file. */
496 }
497
498 /**
499 * ntfs_read_locked_inode - read an inode from its device
500 * @vi: inode to read
501 *
502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503 * described by @vi into memory from the device.
504 *
505 * The only fields in @vi that we need to/can look at when the function is
506 * called are i_sb, pointing to the mounted device's super block, and i_ino,
507 * the number of the inode to load.
508 *
509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510 * for reading and sets up the necessary @vi fields as well as initializing
511 * the ntfs inode.
512 *
513 * Q: What locks are held when the function is called?
514 * A: i_state has I_NEW set, hence the inode is locked, also
515 * i_count is set to 1, so it is not going to go away
516 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
517 * is allowed to write to them. We should of course be honouring them but
518 * we need to do that using the IS_* macros defined in include/linux/fs.h.
519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 *
521 * Return 0 on success and -errno on error. In the error case, the inode will
522 * have had make_bad_inode() executed on it.
523 */
ntfs_read_locked_inode(struct inode * vi)524 static int ntfs_read_locked_inode(struct inode *vi)
525 {
526 ntfs_volume *vol = NTFS_SB(vi->i_sb);
527 ntfs_inode *ni;
528 struct inode *bvi;
529 MFT_RECORD *m;
530 ATTR_RECORD *a;
531 STANDARD_INFORMATION *si;
532 ntfs_attr_search_ctx *ctx;
533 int err = 0;
534
535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
536
537 /* Setup the generic vfs inode parts now. */
538 vi->i_uid = vol->uid;
539 vi->i_gid = vol->gid;
540 vi->i_mode = 0;
541
542 /*
543 * Initialize the ntfs specific part of @vi special casing
544 * FILE_MFT which we need to do at mount time.
545 */
546 if (vi->i_ino != FILE_MFT)
547 ntfs_init_big_inode(vi);
548 ni = NTFS_I(vi);
549
550 m = map_mft_record(ni);
551 if (IS_ERR(m)) {
552 err = PTR_ERR(m);
553 goto err_out;
554 }
555 ctx = ntfs_attr_get_search_ctx(ni, m);
556 if (!ctx) {
557 err = -ENOMEM;
558 goto unm_err_out;
559 }
560
561 if (!(m->flags & MFT_RECORD_IN_USE)) {
562 ntfs_error(vi->i_sb, "Inode is not in use!");
563 goto unm_err_out;
564 }
565 if (m->base_mft_record) {
566 ntfs_error(vi->i_sb, "Inode is an extent inode!");
567 goto unm_err_out;
568 }
569
570 /* Transfer information from mft record into vfs and ntfs inodes. */
571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
572
573 /*
574 * FIXME: Keep in mind that link_count is two for files which have both
575 * a long file name and a short file name as separate entries, so if
576 * we are hiding short file names this will be too high. Either we need
577 * to account for the short file names by subtracting them or we need
578 * to make sure we delete files even though i_nlink is not zero which
579 * might be tricky due to vfs interactions. Need to think about this
580 * some more when implementing the unlink command.
581 */
582 set_nlink(vi, le16_to_cpu(m->link_count));
583 /*
584 * FIXME: Reparse points can have the directory bit set even though
585 * they would be S_IFLNK. Need to deal with this further below when we
586 * implement reparse points / symbolic links but it will do for now.
587 * Also if not a directory, it could be something else, rather than
588 * a regular file. But again, will do for now.
589 */
590 /* Everyone gets all permissions. */
591 vi->i_mode |= S_IRWXUGO;
592 /* If read-only, no one gets write permissions. */
593 if (IS_RDONLY(vi))
594 vi->i_mode &= ~S_IWUGO;
595 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 vi->i_mode |= S_IFDIR;
597 /*
598 * Apply the directory permissions mask set in the mount
599 * options.
600 */
601 vi->i_mode &= ~vol->dmask;
602 /* Things break without this kludge! */
603 if (vi->i_nlink > 1)
604 set_nlink(vi, 1);
605 } else {
606 vi->i_mode |= S_IFREG;
607 /* Apply the file permissions mask set in the mount options. */
608 vi->i_mode &= ~vol->fmask;
609 }
610 /*
611 * Find the standard information attribute in the mft record. At this
612 * stage we haven't setup the attribute list stuff yet, so this could
613 * in fact fail if the standard information is in an extent record, but
614 * I don't think this actually ever happens.
615 */
616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
617 ctx);
618 if (unlikely(err)) {
619 if (err == -ENOENT) {
620 /*
621 * TODO: We should be performing a hot fix here (if the
622 * recover mount option is set) by creating a new
623 * attribute.
624 */
625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
626 "is missing.");
627 }
628 goto unm_err_out;
629 }
630 a = ctx->attr;
631 /* Get the standard information attribute value. */
632 si = (STANDARD_INFORMATION*)((u8*)a +
633 le16_to_cpu(a->data.resident.value_offset));
634
635 /* Transfer information from the standard information into vi. */
636 /*
637 * Note: The i_?times do not quite map perfectly onto the NTFS times,
638 * but they are close enough, and in the end it doesn't really matter
639 * that much...
640 */
641 /*
642 * mtime is the last change of the data within the file. Not changed
643 * when only metadata is changed, e.g. a rename doesn't affect mtime.
644 */
645 vi->i_mtime = ntfs2utc(si->last_data_change_time);
646 /*
647 * ctime is the last change of the metadata of the file. This obviously
648 * always changes, when mtime is changed. ctime can be changed on its
649 * own, mtime is then not changed, e.g. when a file is renamed.
650 */
651 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
652 /*
653 * Last access to the data within the file. Not changed during a rename
654 * for example but changed whenever the file is written to.
655 */
656 vi->i_atime = ntfs2utc(si->last_access_time);
657
658 /* Find the attribute list attribute if present. */
659 ntfs_attr_reinit_search_ctx(ctx);
660 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
661 if (err) {
662 if (unlikely(err != -ENOENT)) {
663 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
664 "attribute.");
665 goto unm_err_out;
666 }
667 } else /* if (!err) */ {
668 if (vi->i_ino == FILE_MFT)
669 goto skip_attr_list_load;
670 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
671 NInoSetAttrList(ni);
672 a = ctx->attr;
673 if (a->flags & ATTR_COMPRESSION_MASK) {
674 ntfs_error(vi->i_sb, "Attribute list attribute is "
675 "compressed.");
676 goto unm_err_out;
677 }
678 if (a->flags & ATTR_IS_ENCRYPTED ||
679 a->flags & ATTR_IS_SPARSE) {
680 if (a->non_resident) {
681 ntfs_error(vi->i_sb, "Non-resident attribute "
682 "list attribute is encrypted/"
683 "sparse.");
684 goto unm_err_out;
685 }
686 ntfs_warning(vi->i_sb, "Resident attribute list "
687 "attribute in inode 0x%lx is marked "
688 "encrypted/sparse which is not true. "
689 "However, Windows allows this and "
690 "chkdsk does not detect or correct it "
691 "so we will just ignore the invalid "
692 "flags and pretend they are not set.",
693 vi->i_ino);
694 }
695 /* Now allocate memory for the attribute list. */
696 ni->attr_list_size = (u32)ntfs_attr_size(a);
697 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
698 if (!ni->attr_list) {
699 ntfs_error(vi->i_sb, "Not enough memory to allocate "
700 "buffer for attribute list.");
701 err = -ENOMEM;
702 goto unm_err_out;
703 }
704 if (a->non_resident) {
705 NInoSetAttrListNonResident(ni);
706 if (a->data.non_resident.lowest_vcn) {
707 ntfs_error(vi->i_sb, "Attribute list has non "
708 "zero lowest_vcn.");
709 goto unm_err_out;
710 }
711 /*
712 * Setup the runlist. No need for locking as we have
713 * exclusive access to the inode at this time.
714 */
715 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
716 a, NULL);
717 if (IS_ERR(ni->attr_list_rl.rl)) {
718 err = PTR_ERR(ni->attr_list_rl.rl);
719 ni->attr_list_rl.rl = NULL;
720 ntfs_error(vi->i_sb, "Mapping pairs "
721 "decompression failed.");
722 goto unm_err_out;
723 }
724 /* Now load the attribute list. */
725 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
726 ni->attr_list, ni->attr_list_size,
727 sle64_to_cpu(a->data.non_resident.
728 initialized_size)))) {
729 ntfs_error(vi->i_sb, "Failed to load "
730 "attribute list attribute.");
731 goto unm_err_out;
732 }
733 } else /* if (!a->non_resident) */ {
734 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
735 + le32_to_cpu(
736 a->data.resident.value_length) >
737 (u8*)ctx->mrec + vol->mft_record_size) {
738 ntfs_error(vi->i_sb, "Corrupt attribute list "
739 "in inode.");
740 goto unm_err_out;
741 }
742 /* Now copy the attribute list. */
743 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
744 a->data.resident.value_offset),
745 le32_to_cpu(
746 a->data.resident.value_length));
747 }
748 }
749 skip_attr_list_load:
750 /*
751 * If an attribute list is present we now have the attribute list value
752 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
753 */
754 if (S_ISDIR(vi->i_mode)) {
755 loff_t bvi_size;
756 ntfs_inode *bni;
757 INDEX_ROOT *ir;
758 u8 *ir_end, *index_end;
759
760 /* It is a directory, find index root attribute. */
761 ntfs_attr_reinit_search_ctx(ctx);
762 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
763 0, NULL, 0, ctx);
764 if (unlikely(err)) {
765 if (err == -ENOENT) {
766 // FIXME: File is corrupt! Hot-fix with empty
767 // index root attribute if recovery option is
768 // set.
769 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
770 "is missing.");
771 }
772 goto unm_err_out;
773 }
774 a = ctx->attr;
775 /* Set up the state. */
776 if (unlikely(a->non_resident)) {
777 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
778 "resident.");
779 goto unm_err_out;
780 }
781 /* Ensure the attribute name is placed before the value. */
782 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
783 le16_to_cpu(a->data.resident.value_offset)))) {
784 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
785 "placed after the attribute value.");
786 goto unm_err_out;
787 }
788 /*
789 * Compressed/encrypted index root just means that the newly
790 * created files in that directory should be created compressed/
791 * encrypted. However index root cannot be both compressed and
792 * encrypted.
793 */
794 if (a->flags & ATTR_COMPRESSION_MASK)
795 NInoSetCompressed(ni);
796 if (a->flags & ATTR_IS_ENCRYPTED) {
797 if (a->flags & ATTR_COMPRESSION_MASK) {
798 ntfs_error(vi->i_sb, "Found encrypted and "
799 "compressed attribute.");
800 goto unm_err_out;
801 }
802 NInoSetEncrypted(ni);
803 }
804 if (a->flags & ATTR_IS_SPARSE)
805 NInoSetSparse(ni);
806 ir = (INDEX_ROOT*)((u8*)a +
807 le16_to_cpu(a->data.resident.value_offset));
808 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
809 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
810 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
811 "corrupt.");
812 goto unm_err_out;
813 }
814 index_end = (u8*)&ir->index +
815 le32_to_cpu(ir->index.index_length);
816 if (index_end > ir_end) {
817 ntfs_error(vi->i_sb, "Directory index is corrupt.");
818 goto unm_err_out;
819 }
820 if (ir->type != AT_FILE_NAME) {
821 ntfs_error(vi->i_sb, "Indexed attribute is not "
822 "$FILE_NAME.");
823 goto unm_err_out;
824 }
825 if (ir->collation_rule != COLLATION_FILE_NAME) {
826 ntfs_error(vi->i_sb, "Index collation rule is not "
827 "COLLATION_FILE_NAME.");
828 goto unm_err_out;
829 }
830 ni->itype.index.collation_rule = ir->collation_rule;
831 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
832 if (ni->itype.index.block_size &
833 (ni->itype.index.block_size - 1)) {
834 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
835 "power of two.",
836 ni->itype.index.block_size);
837 goto unm_err_out;
838 }
839 if (ni->itype.index.block_size > PAGE_SIZE) {
840 ntfs_error(vi->i_sb, "Index block size (%u) > "
841 "PAGE_SIZE (%ld) is not "
842 "supported. Sorry.",
843 ni->itype.index.block_size,
844 PAGE_SIZE);
845 err = -EOPNOTSUPP;
846 goto unm_err_out;
847 }
848 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
849 ntfs_error(vi->i_sb, "Index block size (%u) < "
850 "NTFS_BLOCK_SIZE (%i) is not "
851 "supported. Sorry.",
852 ni->itype.index.block_size,
853 NTFS_BLOCK_SIZE);
854 err = -EOPNOTSUPP;
855 goto unm_err_out;
856 }
857 ni->itype.index.block_size_bits =
858 ffs(ni->itype.index.block_size) - 1;
859 /* Determine the size of a vcn in the directory index. */
860 if (vol->cluster_size <= ni->itype.index.block_size) {
861 ni->itype.index.vcn_size = vol->cluster_size;
862 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
863 } else {
864 ni->itype.index.vcn_size = vol->sector_size;
865 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
866 }
867
868 /* Setup the index allocation attribute, even if not present. */
869 NInoSetMstProtected(ni);
870 ni->type = AT_INDEX_ALLOCATION;
871 ni->name = I30;
872 ni->name_len = 4;
873
874 if (!(ir->index.flags & LARGE_INDEX)) {
875 /* No index allocation. */
876 vi->i_size = ni->initialized_size =
877 ni->allocated_size = 0;
878 /* We are done with the mft record, so we release it. */
879 ntfs_attr_put_search_ctx(ctx);
880 unmap_mft_record(ni);
881 m = NULL;
882 ctx = NULL;
883 goto skip_large_dir_stuff;
884 } /* LARGE_INDEX: Index allocation present. Setup state. */
885 NInoSetIndexAllocPresent(ni);
886 /* Find index allocation attribute. */
887 ntfs_attr_reinit_search_ctx(ctx);
888 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
889 CASE_SENSITIVE, 0, NULL, 0, ctx);
890 if (unlikely(err)) {
891 if (err == -ENOENT)
892 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
893 "attribute is not present but "
894 "$INDEX_ROOT indicated it is.");
895 else
896 ntfs_error(vi->i_sb, "Failed to lookup "
897 "$INDEX_ALLOCATION "
898 "attribute.");
899 goto unm_err_out;
900 }
901 a = ctx->attr;
902 if (!a->non_resident) {
903 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
904 "is resident.");
905 goto unm_err_out;
906 }
907 /*
908 * Ensure the attribute name is placed before the mapping pairs
909 * array.
910 */
911 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
912 le16_to_cpu(
913 a->data.non_resident.mapping_pairs_offset)))) {
914 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
915 "is placed after the mapping pairs "
916 "array.");
917 goto unm_err_out;
918 }
919 if (a->flags & ATTR_IS_ENCRYPTED) {
920 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
921 "is encrypted.");
922 goto unm_err_out;
923 }
924 if (a->flags & ATTR_IS_SPARSE) {
925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
926 "is sparse.");
927 goto unm_err_out;
928 }
929 if (a->flags & ATTR_COMPRESSION_MASK) {
930 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
931 "is compressed.");
932 goto unm_err_out;
933 }
934 if (a->data.non_resident.lowest_vcn) {
935 ntfs_error(vi->i_sb, "First extent of "
936 "$INDEX_ALLOCATION attribute has non "
937 "zero lowest_vcn.");
938 goto unm_err_out;
939 }
940 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
941 ni->initialized_size = sle64_to_cpu(
942 a->data.non_resident.initialized_size);
943 ni->allocated_size = sle64_to_cpu(
944 a->data.non_resident.allocated_size);
945 /*
946 * We are done with the mft record, so we release it. Otherwise
947 * we would deadlock in ntfs_attr_iget().
948 */
949 ntfs_attr_put_search_ctx(ctx);
950 unmap_mft_record(ni);
951 m = NULL;
952 ctx = NULL;
953 /* Get the index bitmap attribute inode. */
954 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
955 if (IS_ERR(bvi)) {
956 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
957 err = PTR_ERR(bvi);
958 goto unm_err_out;
959 }
960 bni = NTFS_I(bvi);
961 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
962 NInoSparse(bni)) {
963 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
964 "and/or encrypted and/or sparse.");
965 goto iput_unm_err_out;
966 }
967 /* Consistency check bitmap size vs. index allocation size. */
968 bvi_size = i_size_read(bvi);
969 if ((bvi_size << 3) < (vi->i_size >>
970 ni->itype.index.block_size_bits)) {
971 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
972 "for index allocation (0x%llx).",
973 bvi_size << 3, vi->i_size);
974 goto iput_unm_err_out;
975 }
976 /* No longer need the bitmap attribute inode. */
977 iput(bvi);
978 skip_large_dir_stuff:
979 /* Setup the operations for this inode. */
980 vi->i_op = &ntfs_dir_inode_ops;
981 vi->i_fop = &ntfs_dir_ops;
982 vi->i_mapping->a_ops = &ntfs_mst_aops;
983 } else {
984 /* It is a file. */
985 ntfs_attr_reinit_search_ctx(ctx);
986
987 /* Setup the data attribute, even if not present. */
988 ni->type = AT_DATA;
989 ni->name = NULL;
990 ni->name_len = 0;
991
992 /* Find first extent of the unnamed data attribute. */
993 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
994 if (unlikely(err)) {
995 vi->i_size = ni->initialized_size =
996 ni->allocated_size = 0;
997 if (err != -ENOENT) {
998 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
999 "attribute.");
1000 goto unm_err_out;
1001 }
1002 /*
1003 * FILE_Secure does not have an unnamed $DATA
1004 * attribute, so we special case it here.
1005 */
1006 if (vi->i_ino == FILE_Secure)
1007 goto no_data_attr_special_case;
1008 /*
1009 * Most if not all the system files in the $Extend
1010 * system directory do not have unnamed data
1011 * attributes so we need to check if the parent
1012 * directory of the file is FILE_Extend and if it is
1013 * ignore this error. To do this we need to get the
1014 * name of this inode from the mft record as the name
1015 * contains the back reference to the parent directory.
1016 */
1017 if (ntfs_is_extended_system_file(ctx) > 0)
1018 goto no_data_attr_special_case;
1019 // FIXME: File is corrupt! Hot-fix with empty data
1020 // attribute if recovery option is set.
1021 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1022 goto unm_err_out;
1023 }
1024 a = ctx->attr;
1025 /* Setup the state. */
1026 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1027 if (a->flags & ATTR_COMPRESSION_MASK) {
1028 NInoSetCompressed(ni);
1029 if (vol->cluster_size > 4096) {
1030 ntfs_error(vi->i_sb, "Found "
1031 "compressed data but "
1032 "compression is "
1033 "disabled due to "
1034 "cluster size (%i) > "
1035 "4kiB.",
1036 vol->cluster_size);
1037 goto unm_err_out;
1038 }
1039 if ((a->flags & ATTR_COMPRESSION_MASK)
1040 != ATTR_IS_COMPRESSED) {
1041 ntfs_error(vi->i_sb, "Found unknown "
1042 "compression method "
1043 "or corrupt file.");
1044 goto unm_err_out;
1045 }
1046 }
1047 if (a->flags & ATTR_IS_SPARSE)
1048 NInoSetSparse(ni);
1049 }
1050 if (a->flags & ATTR_IS_ENCRYPTED) {
1051 if (NInoCompressed(ni)) {
1052 ntfs_error(vi->i_sb, "Found encrypted and "
1053 "compressed data.");
1054 goto unm_err_out;
1055 }
1056 NInoSetEncrypted(ni);
1057 }
1058 if (a->non_resident) {
1059 NInoSetNonResident(ni);
1060 if (NInoCompressed(ni) || NInoSparse(ni)) {
1061 if (NInoCompressed(ni) && a->data.non_resident.
1062 compression_unit != 4) {
1063 ntfs_error(vi->i_sb, "Found "
1064 "non-standard "
1065 "compression unit (%u "
1066 "instead of 4). "
1067 "Cannot handle this.",
1068 a->data.non_resident.
1069 compression_unit);
1070 err = -EOPNOTSUPP;
1071 goto unm_err_out;
1072 }
1073 if (a->data.non_resident.compression_unit) {
1074 ni->itype.compressed.block_size = 1U <<
1075 (a->data.non_resident.
1076 compression_unit +
1077 vol->cluster_size_bits);
1078 ni->itype.compressed.block_size_bits =
1079 ffs(ni->itype.
1080 compressed.
1081 block_size) - 1;
1082 ni->itype.compressed.block_clusters =
1083 1U << a->data.
1084 non_resident.
1085 compression_unit;
1086 } else {
1087 ni->itype.compressed.block_size = 0;
1088 ni->itype.compressed.block_size_bits =
1089 0;
1090 ni->itype.compressed.block_clusters =
1091 0;
1092 }
1093 ni->itype.compressed.size = sle64_to_cpu(
1094 a->data.non_resident.
1095 compressed_size);
1096 }
1097 if (a->data.non_resident.lowest_vcn) {
1098 ntfs_error(vi->i_sb, "First extent of $DATA "
1099 "attribute has non zero "
1100 "lowest_vcn.");
1101 goto unm_err_out;
1102 }
1103 vi->i_size = sle64_to_cpu(
1104 a->data.non_resident.data_size);
1105 ni->initialized_size = sle64_to_cpu(
1106 a->data.non_resident.initialized_size);
1107 ni->allocated_size = sle64_to_cpu(
1108 a->data.non_resident.allocated_size);
1109 } else { /* Resident attribute. */
1110 vi->i_size = ni->initialized_size = le32_to_cpu(
1111 a->data.resident.value_length);
1112 ni->allocated_size = le32_to_cpu(a->length) -
1113 le16_to_cpu(
1114 a->data.resident.value_offset);
1115 if (vi->i_size > ni->allocated_size) {
1116 ntfs_error(vi->i_sb, "Resident data attribute "
1117 "is corrupt (size exceeds "
1118 "allocation).");
1119 goto unm_err_out;
1120 }
1121 }
1122 no_data_attr_special_case:
1123 /* We are done with the mft record, so we release it. */
1124 ntfs_attr_put_search_ctx(ctx);
1125 unmap_mft_record(ni);
1126 m = NULL;
1127 ctx = NULL;
1128 /* Setup the operations for this inode. */
1129 vi->i_op = &ntfs_file_inode_ops;
1130 vi->i_fop = &ntfs_file_ops;
1131 vi->i_mapping->a_ops = &ntfs_normal_aops;
1132 if (NInoMstProtected(ni))
1133 vi->i_mapping->a_ops = &ntfs_mst_aops;
1134 else if (NInoCompressed(ni))
1135 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1136 }
1137 /*
1138 * The number of 512-byte blocks used on disk (for stat). This is in so
1139 * far inaccurate as it doesn't account for any named streams or other
1140 * special non-resident attributes, but that is how Windows works, too,
1141 * so we are at least consistent with Windows, if not entirely
1142 * consistent with the Linux Way. Doing it the Linux Way would cause a
1143 * significant slowdown as it would involve iterating over all
1144 * attributes in the mft record and adding the allocated/compressed
1145 * sizes of all non-resident attributes present to give us the Linux
1146 * correct size that should go into i_blocks (after division by 512).
1147 */
1148 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1149 vi->i_blocks = ni->itype.compressed.size >> 9;
1150 else
1151 vi->i_blocks = ni->allocated_size >> 9;
1152 ntfs_debug("Done.");
1153 return 0;
1154 iput_unm_err_out:
1155 iput(bvi);
1156 unm_err_out:
1157 if (!err)
1158 err = -EIO;
1159 if (ctx)
1160 ntfs_attr_put_search_ctx(ctx);
1161 if (m)
1162 unmap_mft_record(ni);
1163 err_out:
1164 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1165 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1166 make_bad_inode(vi);
1167 if (err != -EOPNOTSUPP && err != -ENOMEM)
1168 NVolSetErrors(vol);
1169 return err;
1170 }
1171
1172 /**
1173 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1174 * @base_vi: base inode
1175 * @vi: attribute inode to read
1176 *
1177 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1178 * attribute inode described by @vi into memory from the base mft record
1179 * described by @base_ni.
1180 *
1181 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1182 * reading and looks up the attribute described by @vi before setting up the
1183 * necessary fields in @vi as well as initializing the ntfs inode.
1184 *
1185 * Q: What locks are held when the function is called?
1186 * A: i_state has I_NEW set, hence the inode is locked, also
1187 * i_count is set to 1, so it is not going to go away
1188 *
1189 * Return 0 on success and -errno on error. In the error case, the inode will
1190 * have had make_bad_inode() executed on it.
1191 *
1192 * Note this cannot be called for AT_INDEX_ALLOCATION.
1193 */
ntfs_read_locked_attr_inode(struct inode * base_vi,struct inode * vi)1194 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1195 {
1196 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1197 ntfs_inode *ni, *base_ni;
1198 MFT_RECORD *m;
1199 ATTR_RECORD *a;
1200 ntfs_attr_search_ctx *ctx;
1201 int err = 0;
1202
1203 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1204
1205 ntfs_init_big_inode(vi);
1206
1207 ni = NTFS_I(vi);
1208 base_ni = NTFS_I(base_vi);
1209
1210 /* Just mirror the values from the base inode. */
1211 vi->i_uid = base_vi->i_uid;
1212 vi->i_gid = base_vi->i_gid;
1213 set_nlink(vi, base_vi->i_nlink);
1214 vi->i_mtime = base_vi->i_mtime;
1215 vi->i_ctime = base_vi->i_ctime;
1216 vi->i_atime = base_vi->i_atime;
1217 vi->i_generation = ni->seq_no = base_ni->seq_no;
1218
1219 /* Set inode type to zero but preserve permissions. */
1220 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1221
1222 m = map_mft_record(base_ni);
1223 if (IS_ERR(m)) {
1224 err = PTR_ERR(m);
1225 goto err_out;
1226 }
1227 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1228 if (!ctx) {
1229 err = -ENOMEM;
1230 goto unm_err_out;
1231 }
1232 /* Find the attribute. */
1233 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1234 CASE_SENSITIVE, 0, NULL, 0, ctx);
1235 if (unlikely(err))
1236 goto unm_err_out;
1237 a = ctx->attr;
1238 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1239 if (a->flags & ATTR_COMPRESSION_MASK) {
1240 NInoSetCompressed(ni);
1241 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1242 ni->name_len)) {
1243 ntfs_error(vi->i_sb, "Found compressed "
1244 "non-data or named data "
1245 "attribute. Please report "
1246 "you saw this message to "
1247 "linux-ntfs-dev@lists."
1248 "sourceforge.net");
1249 goto unm_err_out;
1250 }
1251 if (vol->cluster_size > 4096) {
1252 ntfs_error(vi->i_sb, "Found compressed "
1253 "attribute but compression is "
1254 "disabled due to cluster size "
1255 "(%i) > 4kiB.",
1256 vol->cluster_size);
1257 goto unm_err_out;
1258 }
1259 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1260 ATTR_IS_COMPRESSED) {
1261 ntfs_error(vi->i_sb, "Found unknown "
1262 "compression method.");
1263 goto unm_err_out;
1264 }
1265 }
1266 /*
1267 * The compressed/sparse flag set in an index root just means
1268 * to compress all files.
1269 */
1270 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1271 ntfs_error(vi->i_sb, "Found mst protected attribute "
1272 "but the attribute is %s. Please "
1273 "report you saw this message to "
1274 "linux-ntfs-dev@lists.sourceforge.net",
1275 NInoCompressed(ni) ? "compressed" :
1276 "sparse");
1277 goto unm_err_out;
1278 }
1279 if (a->flags & ATTR_IS_SPARSE)
1280 NInoSetSparse(ni);
1281 }
1282 if (a->flags & ATTR_IS_ENCRYPTED) {
1283 if (NInoCompressed(ni)) {
1284 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1285 "data.");
1286 goto unm_err_out;
1287 }
1288 /*
1289 * The encryption flag set in an index root just means to
1290 * encrypt all files.
1291 */
1292 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1293 ntfs_error(vi->i_sb, "Found mst protected attribute "
1294 "but the attribute is encrypted. "
1295 "Please report you saw this message "
1296 "to linux-ntfs-dev@lists.sourceforge."
1297 "net");
1298 goto unm_err_out;
1299 }
1300 if (ni->type != AT_DATA) {
1301 ntfs_error(vi->i_sb, "Found encrypted non-data "
1302 "attribute.");
1303 goto unm_err_out;
1304 }
1305 NInoSetEncrypted(ni);
1306 }
1307 if (!a->non_resident) {
1308 /* Ensure the attribute name is placed before the value. */
1309 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1310 le16_to_cpu(a->data.resident.value_offset)))) {
1311 ntfs_error(vol->sb, "Attribute name is placed after "
1312 "the attribute value.");
1313 goto unm_err_out;
1314 }
1315 if (NInoMstProtected(ni)) {
1316 ntfs_error(vi->i_sb, "Found mst protected attribute "
1317 "but the attribute is resident. "
1318 "Please report you saw this message to "
1319 "linux-ntfs-dev@lists.sourceforge.net");
1320 goto unm_err_out;
1321 }
1322 vi->i_size = ni->initialized_size = le32_to_cpu(
1323 a->data.resident.value_length);
1324 ni->allocated_size = le32_to_cpu(a->length) -
1325 le16_to_cpu(a->data.resident.value_offset);
1326 if (vi->i_size > ni->allocated_size) {
1327 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1328 "(size exceeds allocation).");
1329 goto unm_err_out;
1330 }
1331 } else {
1332 NInoSetNonResident(ni);
1333 /*
1334 * Ensure the attribute name is placed before the mapping pairs
1335 * array.
1336 */
1337 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1338 le16_to_cpu(
1339 a->data.non_resident.mapping_pairs_offset)))) {
1340 ntfs_error(vol->sb, "Attribute name is placed after "
1341 "the mapping pairs array.");
1342 goto unm_err_out;
1343 }
1344 if (NInoCompressed(ni) || NInoSparse(ni)) {
1345 if (NInoCompressed(ni) && a->data.non_resident.
1346 compression_unit != 4) {
1347 ntfs_error(vi->i_sb, "Found non-standard "
1348 "compression unit (%u instead "
1349 "of 4). Cannot handle this.",
1350 a->data.non_resident.
1351 compression_unit);
1352 err = -EOPNOTSUPP;
1353 goto unm_err_out;
1354 }
1355 if (a->data.non_resident.compression_unit) {
1356 ni->itype.compressed.block_size = 1U <<
1357 (a->data.non_resident.
1358 compression_unit +
1359 vol->cluster_size_bits);
1360 ni->itype.compressed.block_size_bits =
1361 ffs(ni->itype.compressed.
1362 block_size) - 1;
1363 ni->itype.compressed.block_clusters = 1U <<
1364 a->data.non_resident.
1365 compression_unit;
1366 } else {
1367 ni->itype.compressed.block_size = 0;
1368 ni->itype.compressed.block_size_bits = 0;
1369 ni->itype.compressed.block_clusters = 0;
1370 }
1371 ni->itype.compressed.size = sle64_to_cpu(
1372 a->data.non_resident.compressed_size);
1373 }
1374 if (a->data.non_resident.lowest_vcn) {
1375 ntfs_error(vi->i_sb, "First extent of attribute has "
1376 "non-zero lowest_vcn.");
1377 goto unm_err_out;
1378 }
1379 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1380 ni->initialized_size = sle64_to_cpu(
1381 a->data.non_resident.initialized_size);
1382 ni->allocated_size = sle64_to_cpu(
1383 a->data.non_resident.allocated_size);
1384 }
1385 vi->i_mapping->a_ops = &ntfs_normal_aops;
1386 if (NInoMstProtected(ni))
1387 vi->i_mapping->a_ops = &ntfs_mst_aops;
1388 else if (NInoCompressed(ni))
1389 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1390 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1391 vi->i_blocks = ni->itype.compressed.size >> 9;
1392 else
1393 vi->i_blocks = ni->allocated_size >> 9;
1394 /*
1395 * Make sure the base inode does not go away and attach it to the
1396 * attribute inode.
1397 */
1398 igrab(base_vi);
1399 ni->ext.base_ntfs_ino = base_ni;
1400 ni->nr_extents = -1;
1401
1402 ntfs_attr_put_search_ctx(ctx);
1403 unmap_mft_record(base_ni);
1404
1405 ntfs_debug("Done.");
1406 return 0;
1407
1408 unm_err_out:
1409 if (!err)
1410 err = -EIO;
1411 if (ctx)
1412 ntfs_attr_put_search_ctx(ctx);
1413 unmap_mft_record(base_ni);
1414 err_out:
1415 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1416 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1417 "Marking corrupt inode and base inode 0x%lx as bad. "
1418 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1419 base_vi->i_ino);
1420 make_bad_inode(vi);
1421 if (err != -ENOMEM)
1422 NVolSetErrors(vol);
1423 return err;
1424 }
1425
1426 /**
1427 * ntfs_read_locked_index_inode - read an index inode from its base inode
1428 * @base_vi: base inode
1429 * @vi: index inode to read
1430 *
1431 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1432 * index inode described by @vi into memory from the base mft record described
1433 * by @base_ni.
1434 *
1435 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1436 * reading and looks up the attributes relating to the index described by @vi
1437 * before setting up the necessary fields in @vi as well as initializing the
1438 * ntfs inode.
1439 *
1440 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1441 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1442 * are setup like directory inodes since directories are a special case of
1443 * indices ao they need to be treated in much the same way. Most importantly,
1444 * for small indices the index allocation attribute might not actually exist.
1445 * However, the index root attribute always exists but this does not need to
1446 * have an inode associated with it and this is why we define a new inode type
1447 * index. Also, like for directories, we need to have an attribute inode for
1448 * the bitmap attribute corresponding to the index allocation attribute and we
1449 * can store this in the appropriate field of the inode, just like we do for
1450 * normal directory inodes.
1451 *
1452 * Q: What locks are held when the function is called?
1453 * A: i_state has I_NEW set, hence the inode is locked, also
1454 * i_count is set to 1, so it is not going to go away
1455 *
1456 * Return 0 on success and -errno on error. In the error case, the inode will
1457 * have had make_bad_inode() executed on it.
1458 */
ntfs_read_locked_index_inode(struct inode * base_vi,struct inode * vi)1459 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1460 {
1461 loff_t bvi_size;
1462 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1463 ntfs_inode *ni, *base_ni, *bni;
1464 struct inode *bvi;
1465 MFT_RECORD *m;
1466 ATTR_RECORD *a;
1467 ntfs_attr_search_ctx *ctx;
1468 INDEX_ROOT *ir;
1469 u8 *ir_end, *index_end;
1470 int err = 0;
1471
1472 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1473 ntfs_init_big_inode(vi);
1474 ni = NTFS_I(vi);
1475 base_ni = NTFS_I(base_vi);
1476 /* Just mirror the values from the base inode. */
1477 vi->i_uid = base_vi->i_uid;
1478 vi->i_gid = base_vi->i_gid;
1479 set_nlink(vi, base_vi->i_nlink);
1480 vi->i_mtime = base_vi->i_mtime;
1481 vi->i_ctime = base_vi->i_ctime;
1482 vi->i_atime = base_vi->i_atime;
1483 vi->i_generation = ni->seq_no = base_ni->seq_no;
1484 /* Set inode type to zero but preserve permissions. */
1485 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1486 /* Map the mft record for the base inode. */
1487 m = map_mft_record(base_ni);
1488 if (IS_ERR(m)) {
1489 err = PTR_ERR(m);
1490 goto err_out;
1491 }
1492 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1493 if (!ctx) {
1494 err = -ENOMEM;
1495 goto unm_err_out;
1496 }
1497 /* Find the index root attribute. */
1498 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1499 CASE_SENSITIVE, 0, NULL, 0, ctx);
1500 if (unlikely(err)) {
1501 if (err == -ENOENT)
1502 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1503 "missing.");
1504 goto unm_err_out;
1505 }
1506 a = ctx->attr;
1507 /* Set up the state. */
1508 if (unlikely(a->non_resident)) {
1509 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1510 goto unm_err_out;
1511 }
1512 /* Ensure the attribute name is placed before the value. */
1513 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1514 le16_to_cpu(a->data.resident.value_offset)))) {
1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1516 "after the attribute value.");
1517 goto unm_err_out;
1518 }
1519 /*
1520 * Compressed/encrypted/sparse index root is not allowed, except for
1521 * directories of course but those are not dealt with here.
1522 */
1523 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1524 ATTR_IS_SPARSE)) {
1525 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1526 "root attribute.");
1527 goto unm_err_out;
1528 }
1529 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1530 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1531 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1532 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1533 goto unm_err_out;
1534 }
1535 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1536 if (index_end > ir_end) {
1537 ntfs_error(vi->i_sb, "Index is corrupt.");
1538 goto unm_err_out;
1539 }
1540 if (ir->type) {
1541 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1542 le32_to_cpu(ir->type));
1543 goto unm_err_out;
1544 }
1545 ni->itype.index.collation_rule = ir->collation_rule;
1546 ntfs_debug("Index collation rule is 0x%x.",
1547 le32_to_cpu(ir->collation_rule));
1548 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1549 if (!is_power_of_2(ni->itype.index.block_size)) {
1550 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1551 "two.", ni->itype.index.block_size);
1552 goto unm_err_out;
1553 }
1554 if (ni->itype.index.block_size > PAGE_SIZE) {
1555 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1556 "(%ld) is not supported. Sorry.",
1557 ni->itype.index.block_size, PAGE_SIZE);
1558 err = -EOPNOTSUPP;
1559 goto unm_err_out;
1560 }
1561 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1562 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1563 "(%i) is not supported. Sorry.",
1564 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1565 err = -EOPNOTSUPP;
1566 goto unm_err_out;
1567 }
1568 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1569 /* Determine the size of a vcn in the index. */
1570 if (vol->cluster_size <= ni->itype.index.block_size) {
1571 ni->itype.index.vcn_size = vol->cluster_size;
1572 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1573 } else {
1574 ni->itype.index.vcn_size = vol->sector_size;
1575 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1576 }
1577 /* Check for presence of index allocation attribute. */
1578 if (!(ir->index.flags & LARGE_INDEX)) {
1579 /* No index allocation. */
1580 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1581 /* We are done with the mft record, so we release it. */
1582 ntfs_attr_put_search_ctx(ctx);
1583 unmap_mft_record(base_ni);
1584 m = NULL;
1585 ctx = NULL;
1586 goto skip_large_index_stuff;
1587 } /* LARGE_INDEX: Index allocation present. Setup state. */
1588 NInoSetIndexAllocPresent(ni);
1589 /* Find index allocation attribute. */
1590 ntfs_attr_reinit_search_ctx(ctx);
1591 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1592 CASE_SENSITIVE, 0, NULL, 0, ctx);
1593 if (unlikely(err)) {
1594 if (err == -ENOENT)
1595 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1596 "not present but $INDEX_ROOT "
1597 "indicated it is.");
1598 else
1599 ntfs_error(vi->i_sb, "Failed to lookup "
1600 "$INDEX_ALLOCATION attribute.");
1601 goto unm_err_out;
1602 }
1603 a = ctx->attr;
1604 if (!a->non_resident) {
1605 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1606 "resident.");
1607 goto unm_err_out;
1608 }
1609 /*
1610 * Ensure the attribute name is placed before the mapping pairs array.
1611 */
1612 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1613 le16_to_cpu(
1614 a->data.non_resident.mapping_pairs_offset)))) {
1615 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1616 "placed after the mapping pairs array.");
1617 goto unm_err_out;
1618 }
1619 if (a->flags & ATTR_IS_ENCRYPTED) {
1620 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1621 "encrypted.");
1622 goto unm_err_out;
1623 }
1624 if (a->flags & ATTR_IS_SPARSE) {
1625 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1626 goto unm_err_out;
1627 }
1628 if (a->flags & ATTR_COMPRESSION_MASK) {
1629 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1630 "compressed.");
1631 goto unm_err_out;
1632 }
1633 if (a->data.non_resident.lowest_vcn) {
1634 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1635 "attribute has non zero lowest_vcn.");
1636 goto unm_err_out;
1637 }
1638 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1639 ni->initialized_size = sle64_to_cpu(
1640 a->data.non_resident.initialized_size);
1641 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1642 /*
1643 * We are done with the mft record, so we release it. Otherwise
1644 * we would deadlock in ntfs_attr_iget().
1645 */
1646 ntfs_attr_put_search_ctx(ctx);
1647 unmap_mft_record(base_ni);
1648 m = NULL;
1649 ctx = NULL;
1650 /* Get the index bitmap attribute inode. */
1651 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1652 if (IS_ERR(bvi)) {
1653 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1654 err = PTR_ERR(bvi);
1655 goto unm_err_out;
1656 }
1657 bni = NTFS_I(bvi);
1658 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1659 NInoSparse(bni)) {
1660 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1661 "encrypted and/or sparse.");
1662 goto iput_unm_err_out;
1663 }
1664 /* Consistency check bitmap size vs. index allocation size. */
1665 bvi_size = i_size_read(bvi);
1666 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1667 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1668 "index allocation (0x%llx).", bvi_size << 3,
1669 vi->i_size);
1670 goto iput_unm_err_out;
1671 }
1672 iput(bvi);
1673 skip_large_index_stuff:
1674 /* Setup the operations for this index inode. */
1675 vi->i_mapping->a_ops = &ntfs_mst_aops;
1676 vi->i_blocks = ni->allocated_size >> 9;
1677 /*
1678 * Make sure the base inode doesn't go away and attach it to the
1679 * index inode.
1680 */
1681 igrab(base_vi);
1682 ni->ext.base_ntfs_ino = base_ni;
1683 ni->nr_extents = -1;
1684
1685 ntfs_debug("Done.");
1686 return 0;
1687 iput_unm_err_out:
1688 iput(bvi);
1689 unm_err_out:
1690 if (!err)
1691 err = -EIO;
1692 if (ctx)
1693 ntfs_attr_put_search_ctx(ctx);
1694 if (m)
1695 unmap_mft_record(base_ni);
1696 err_out:
1697 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1698 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1699 ni->name_len);
1700 make_bad_inode(vi);
1701 if (err != -EOPNOTSUPP && err != -ENOMEM)
1702 NVolSetErrors(vol);
1703 return err;
1704 }
1705
1706 /*
1707 * The MFT inode has special locking, so teach the lock validator
1708 * about this by splitting off the locking rules of the MFT from
1709 * the locking rules of other inodes. The MFT inode can never be
1710 * accessed from the VFS side (or even internally), only by the
1711 * map_mft functions.
1712 */
1713 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1714
1715 /**
1716 * ntfs_read_inode_mount - special read_inode for mount time use only
1717 * @vi: inode to read
1718 *
1719 * Read inode FILE_MFT at mount time, only called with super_block lock
1720 * held from within the read_super() code path.
1721 *
1722 * This function exists because when it is called the page cache for $MFT/$DATA
1723 * is not initialized and hence we cannot get at the contents of mft records
1724 * by calling map_mft_record*().
1725 *
1726 * Further it needs to cope with the circular references problem, i.e. cannot
1727 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1728 * we do not know where the other extent mft records are yet and again, because
1729 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1730 * attribute list is actually present in $MFT inode.
1731 *
1732 * We solve these problems by starting with the $DATA attribute before anything
1733 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1734 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1735 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1736 * sufficient information for the next step to complete.
1737 *
1738 * This should work but there are two possible pit falls (see inline comments
1739 * below), but only time will tell if they are real pits or just smoke...
1740 */
ntfs_read_inode_mount(struct inode * vi)1741 int ntfs_read_inode_mount(struct inode *vi)
1742 {
1743 VCN next_vcn, last_vcn, highest_vcn;
1744 s64 block;
1745 struct super_block *sb = vi->i_sb;
1746 ntfs_volume *vol = NTFS_SB(sb);
1747 struct buffer_head *bh;
1748 ntfs_inode *ni;
1749 MFT_RECORD *m = NULL;
1750 ATTR_RECORD *a;
1751 ntfs_attr_search_ctx *ctx;
1752 unsigned int i, nr_blocks;
1753 int err;
1754
1755 ntfs_debug("Entering.");
1756
1757 /* Initialize the ntfs specific part of @vi. */
1758 ntfs_init_big_inode(vi);
1759
1760 ni = NTFS_I(vi);
1761
1762 /* Setup the data attribute. It is special as it is mst protected. */
1763 NInoSetNonResident(ni);
1764 NInoSetMstProtected(ni);
1765 NInoSetSparseDisabled(ni);
1766 ni->type = AT_DATA;
1767 ni->name = NULL;
1768 ni->name_len = 0;
1769 /*
1770 * This sets up our little cheat allowing us to reuse the async read io
1771 * completion handler for directories.
1772 */
1773 ni->itype.index.block_size = vol->mft_record_size;
1774 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1775
1776 /* Very important! Needed to be able to call map_mft_record*(). */
1777 vol->mft_ino = vi;
1778
1779 /* Allocate enough memory to read the first mft record. */
1780 if (vol->mft_record_size > 64 * 1024) {
1781 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1782 vol->mft_record_size);
1783 goto err_out;
1784 }
1785 i = vol->mft_record_size;
1786 if (i < sb->s_blocksize)
1787 i = sb->s_blocksize;
1788 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1789 if (!m) {
1790 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1791 goto err_out;
1792 }
1793
1794 /* Determine the first block of the $MFT/$DATA attribute. */
1795 block = vol->mft_lcn << vol->cluster_size_bits >>
1796 sb->s_blocksize_bits;
1797 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1798 if (!nr_blocks)
1799 nr_blocks = 1;
1800
1801 /* Load $MFT/$DATA's first mft record. */
1802 for (i = 0; i < nr_blocks; i++) {
1803 bh = sb_bread(sb, block++);
1804 if (!bh) {
1805 ntfs_error(sb, "Device read failed.");
1806 goto err_out;
1807 }
1808 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1809 sb->s_blocksize);
1810 brelse(bh);
1811 }
1812
1813 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1814 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1815 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1816 goto err_out;
1817 }
1818
1819 /* Apply the mst fixups. */
1820 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1821 /* FIXME: Try to use the $MFTMirr now. */
1822 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1823 goto err_out;
1824 }
1825
1826 /* Need this to sanity check attribute list references to $MFT. */
1827 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1828
1829 /* Provides readpage() for map_mft_record(). */
1830 vi->i_mapping->a_ops = &ntfs_mst_aops;
1831
1832 ctx = ntfs_attr_get_search_ctx(ni, m);
1833 if (!ctx) {
1834 err = -ENOMEM;
1835 goto err_out;
1836 }
1837
1838 /* Find the attribute list attribute if present. */
1839 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1840 if (err) {
1841 if (unlikely(err != -ENOENT)) {
1842 ntfs_error(sb, "Failed to lookup attribute list "
1843 "attribute. You should run chkdsk.");
1844 goto put_err_out;
1845 }
1846 } else /* if (!err) */ {
1847 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1848 u8 *al_end;
1849 static const char *es = " Not allowed. $MFT is corrupt. "
1850 "You should run chkdsk.";
1851
1852 ntfs_debug("Attribute list attribute found in $MFT.");
1853 NInoSetAttrList(ni);
1854 a = ctx->attr;
1855 if (a->flags & ATTR_COMPRESSION_MASK) {
1856 ntfs_error(sb, "Attribute list attribute is "
1857 "compressed.%s", es);
1858 goto put_err_out;
1859 }
1860 if (a->flags & ATTR_IS_ENCRYPTED ||
1861 a->flags & ATTR_IS_SPARSE) {
1862 if (a->non_resident) {
1863 ntfs_error(sb, "Non-resident attribute list "
1864 "attribute is encrypted/"
1865 "sparse.%s", es);
1866 goto put_err_out;
1867 }
1868 ntfs_warning(sb, "Resident attribute list attribute "
1869 "in $MFT system file is marked "
1870 "encrypted/sparse which is not true. "
1871 "However, Windows allows this and "
1872 "chkdsk does not detect or correct it "
1873 "so we will just ignore the invalid "
1874 "flags and pretend they are not set.");
1875 }
1876 /* Now allocate memory for the attribute list. */
1877 ni->attr_list_size = (u32)ntfs_attr_size(a);
1878 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1879 if (!ni->attr_list) {
1880 ntfs_error(sb, "Not enough memory to allocate buffer "
1881 "for attribute list.");
1882 goto put_err_out;
1883 }
1884 if (a->non_resident) {
1885 NInoSetAttrListNonResident(ni);
1886 if (a->data.non_resident.lowest_vcn) {
1887 ntfs_error(sb, "Attribute list has non zero "
1888 "lowest_vcn. $MFT is corrupt. "
1889 "You should run chkdsk.");
1890 goto put_err_out;
1891 }
1892 /* Setup the runlist. */
1893 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1894 a, NULL);
1895 if (IS_ERR(ni->attr_list_rl.rl)) {
1896 err = PTR_ERR(ni->attr_list_rl.rl);
1897 ni->attr_list_rl.rl = NULL;
1898 ntfs_error(sb, "Mapping pairs decompression "
1899 "failed with error code %i.",
1900 -err);
1901 goto put_err_out;
1902 }
1903 /* Now load the attribute list. */
1904 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1905 ni->attr_list, ni->attr_list_size,
1906 sle64_to_cpu(a->data.
1907 non_resident.initialized_size)))) {
1908 ntfs_error(sb, "Failed to load attribute list "
1909 "attribute with error code %i.",
1910 -err);
1911 goto put_err_out;
1912 }
1913 } else /* if (!ctx.attr->non_resident) */ {
1914 if ((u8*)a + le16_to_cpu(
1915 a->data.resident.value_offset) +
1916 le32_to_cpu(
1917 a->data.resident.value_length) >
1918 (u8*)ctx->mrec + vol->mft_record_size) {
1919 ntfs_error(sb, "Corrupt attribute list "
1920 "attribute.");
1921 goto put_err_out;
1922 }
1923 /* Now copy the attribute list. */
1924 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1925 a->data.resident.value_offset),
1926 le32_to_cpu(
1927 a->data.resident.value_length));
1928 }
1929 /* The attribute list is now setup in memory. */
1930 /*
1931 * FIXME: I don't know if this case is actually possible.
1932 * According to logic it is not possible but I have seen too
1933 * many weird things in MS software to rely on logic... Thus we
1934 * perform a manual search and make sure the first $MFT/$DATA
1935 * extent is in the base inode. If it is not we abort with an
1936 * error and if we ever see a report of this error we will need
1937 * to do some magic in order to have the necessary mft record
1938 * loaded and in the right place in the page cache. But
1939 * hopefully logic will prevail and this never happens...
1940 */
1941 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1942 al_end = (u8*)al_entry + ni->attr_list_size;
1943 for (;; al_entry = next_al_entry) {
1944 /* Out of bounds check. */
1945 if ((u8*)al_entry < ni->attr_list ||
1946 (u8*)al_entry > al_end)
1947 goto em_put_err_out;
1948 /* Catch the end of the attribute list. */
1949 if ((u8*)al_entry == al_end)
1950 goto em_put_err_out;
1951 if (!al_entry->length)
1952 goto em_put_err_out;
1953 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1954 le16_to_cpu(al_entry->length) > al_end)
1955 goto em_put_err_out;
1956 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1957 le16_to_cpu(al_entry->length));
1958 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1959 goto em_put_err_out;
1960 if (AT_DATA != al_entry->type)
1961 continue;
1962 /* We want an unnamed attribute. */
1963 if (al_entry->name_length)
1964 goto em_put_err_out;
1965 /* Want the first entry, i.e. lowest_vcn == 0. */
1966 if (al_entry->lowest_vcn)
1967 goto em_put_err_out;
1968 /* First entry has to be in the base mft record. */
1969 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1970 /* MFT references do not match, logic fails. */
1971 ntfs_error(sb, "BUG: The first $DATA extent "
1972 "of $MFT is not in the base "
1973 "mft record. Please report "
1974 "you saw this message to "
1975 "linux-ntfs-dev@lists."
1976 "sourceforge.net");
1977 goto put_err_out;
1978 } else {
1979 /* Sequence numbers must match. */
1980 if (MSEQNO_LE(al_entry->mft_reference) !=
1981 ni->seq_no)
1982 goto em_put_err_out;
1983 /* Got it. All is ok. We can stop now. */
1984 break;
1985 }
1986 }
1987 }
1988
1989 ntfs_attr_reinit_search_ctx(ctx);
1990
1991 /* Now load all attribute extents. */
1992 a = NULL;
1993 next_vcn = last_vcn = highest_vcn = 0;
1994 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1995 ctx))) {
1996 runlist_element *nrl;
1997
1998 /* Cache the current attribute. */
1999 a = ctx->attr;
2000 /* $MFT must be non-resident. */
2001 if (!a->non_resident) {
2002 ntfs_error(sb, "$MFT must be non-resident but a "
2003 "resident extent was found. $MFT is "
2004 "corrupt. Run chkdsk.");
2005 goto put_err_out;
2006 }
2007 /* $MFT must be uncompressed and unencrypted. */
2008 if (a->flags & ATTR_COMPRESSION_MASK ||
2009 a->flags & ATTR_IS_ENCRYPTED ||
2010 a->flags & ATTR_IS_SPARSE) {
2011 ntfs_error(sb, "$MFT must be uncompressed, "
2012 "non-sparse, and unencrypted but a "
2013 "compressed/sparse/encrypted extent "
2014 "was found. $MFT is corrupt. Run "
2015 "chkdsk.");
2016 goto put_err_out;
2017 }
2018 /*
2019 * Decompress the mapping pairs array of this extent and merge
2020 * the result into the existing runlist. No need for locking
2021 * as we have exclusive access to the inode at this time and we
2022 * are a mount in progress task, too.
2023 */
2024 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2025 if (IS_ERR(nrl)) {
2026 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2027 "failed with error code %ld. $MFT is "
2028 "corrupt.", PTR_ERR(nrl));
2029 goto put_err_out;
2030 }
2031 ni->runlist.rl = nrl;
2032
2033 /* Are we in the first extent? */
2034 if (!next_vcn) {
2035 if (a->data.non_resident.lowest_vcn) {
2036 ntfs_error(sb, "First extent of $DATA "
2037 "attribute has non zero "
2038 "lowest_vcn. $MFT is corrupt. "
2039 "You should run chkdsk.");
2040 goto put_err_out;
2041 }
2042 /* Get the last vcn in the $DATA attribute. */
2043 last_vcn = sle64_to_cpu(
2044 a->data.non_resident.allocated_size)
2045 >> vol->cluster_size_bits;
2046 /* Fill in the inode size. */
2047 vi->i_size = sle64_to_cpu(
2048 a->data.non_resident.data_size);
2049 ni->initialized_size = sle64_to_cpu(
2050 a->data.non_resident.initialized_size);
2051 ni->allocated_size = sle64_to_cpu(
2052 a->data.non_resident.allocated_size);
2053 /*
2054 * Verify the number of mft records does not exceed
2055 * 2^32 - 1.
2056 */
2057 if ((vi->i_size >> vol->mft_record_size_bits) >=
2058 (1ULL << 32)) {
2059 ntfs_error(sb, "$MFT is too big! Aborting.");
2060 goto put_err_out;
2061 }
2062 /*
2063 * We have got the first extent of the runlist for
2064 * $MFT which means it is now relatively safe to call
2065 * the normal ntfs_read_inode() function.
2066 * Complete reading the inode, this will actually
2067 * re-read the mft record for $MFT, this time entering
2068 * it into the page cache with which we complete the
2069 * kick start of the volume. It should be safe to do
2070 * this now as the first extent of $MFT/$DATA is
2071 * already known and we would hope that we don't need
2072 * further extents in order to find the other
2073 * attributes belonging to $MFT. Only time will tell if
2074 * this is really the case. If not we will have to play
2075 * magic at this point, possibly duplicating a lot of
2076 * ntfs_read_inode() at this point. We will need to
2077 * ensure we do enough of its work to be able to call
2078 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2079 * hope this never happens...
2080 */
2081 ntfs_read_locked_inode(vi);
2082 if (is_bad_inode(vi)) {
2083 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2084 "failed. BUG or corrupt $MFT. "
2085 "Run chkdsk and if no errors "
2086 "are found, please report you "
2087 "saw this message to "
2088 "linux-ntfs-dev@lists."
2089 "sourceforge.net");
2090 ntfs_attr_put_search_ctx(ctx);
2091 /* Revert to the safe super operations. */
2092 ntfs_free(m);
2093 return -1;
2094 }
2095 /*
2096 * Re-initialize some specifics about $MFT's inode as
2097 * ntfs_read_inode() will have set up the default ones.
2098 */
2099 /* Set uid and gid to root. */
2100 vi->i_uid = GLOBAL_ROOT_UID;
2101 vi->i_gid = GLOBAL_ROOT_GID;
2102 /* Regular file. No access for anyone. */
2103 vi->i_mode = S_IFREG;
2104 /* No VFS initiated operations allowed for $MFT. */
2105 vi->i_op = &ntfs_empty_inode_ops;
2106 vi->i_fop = &ntfs_empty_file_ops;
2107 }
2108
2109 /* Get the lowest vcn for the next extent. */
2110 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2111 next_vcn = highest_vcn + 1;
2112
2113 /* Only one extent or error, which we catch below. */
2114 if (next_vcn <= 0)
2115 break;
2116
2117 /* Avoid endless loops due to corruption. */
2118 if (next_vcn < sle64_to_cpu(
2119 a->data.non_resident.lowest_vcn)) {
2120 ntfs_error(sb, "$MFT has corrupt attribute list "
2121 "attribute. Run chkdsk.");
2122 goto put_err_out;
2123 }
2124 }
2125 if (err != -ENOENT) {
2126 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2127 "$MFT is corrupt. Run chkdsk.");
2128 goto put_err_out;
2129 }
2130 if (!a) {
2131 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2132 "corrupt. Run chkdsk.");
2133 goto put_err_out;
2134 }
2135 if (highest_vcn && highest_vcn != last_vcn - 1) {
2136 ntfs_error(sb, "Failed to load the complete runlist for "
2137 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2138 "Run chkdsk.");
2139 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2140 (unsigned long long)highest_vcn,
2141 (unsigned long long)last_vcn - 1);
2142 goto put_err_out;
2143 }
2144 ntfs_attr_put_search_ctx(ctx);
2145 ntfs_debug("Done.");
2146 ntfs_free(m);
2147
2148 /*
2149 * Split the locking rules of the MFT inode from the
2150 * locking rules of other inodes:
2151 */
2152 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2153 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2154
2155 return 0;
2156
2157 em_put_err_out:
2158 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2159 "attribute list. $MFT is corrupt. Run chkdsk.");
2160 put_err_out:
2161 ntfs_attr_put_search_ctx(ctx);
2162 err_out:
2163 ntfs_error(sb, "Failed. Marking inode as bad.");
2164 make_bad_inode(vi);
2165 ntfs_free(m);
2166 return -1;
2167 }
2168
__ntfs_clear_inode(ntfs_inode * ni)2169 static void __ntfs_clear_inode(ntfs_inode *ni)
2170 {
2171 /* Free all alocated memory. */
2172 down_write(&ni->runlist.lock);
2173 if (ni->runlist.rl) {
2174 ntfs_free(ni->runlist.rl);
2175 ni->runlist.rl = NULL;
2176 }
2177 up_write(&ni->runlist.lock);
2178
2179 if (ni->attr_list) {
2180 ntfs_free(ni->attr_list);
2181 ni->attr_list = NULL;
2182 }
2183
2184 down_write(&ni->attr_list_rl.lock);
2185 if (ni->attr_list_rl.rl) {
2186 ntfs_free(ni->attr_list_rl.rl);
2187 ni->attr_list_rl.rl = NULL;
2188 }
2189 up_write(&ni->attr_list_rl.lock);
2190
2191 if (ni->name_len && ni->name != I30) {
2192 /* Catch bugs... */
2193 BUG_ON(!ni->name);
2194 kfree(ni->name);
2195 }
2196 }
2197
ntfs_clear_extent_inode(ntfs_inode * ni)2198 void ntfs_clear_extent_inode(ntfs_inode *ni)
2199 {
2200 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2201
2202 BUG_ON(NInoAttr(ni));
2203 BUG_ON(ni->nr_extents != -1);
2204
2205 #ifdef NTFS_RW
2206 if (NInoDirty(ni)) {
2207 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2208 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2209 "Losing data! This is a BUG!!!");
2210 // FIXME: Do something!!!
2211 }
2212 #endif /* NTFS_RW */
2213
2214 __ntfs_clear_inode(ni);
2215
2216 /* Bye, bye... */
2217 ntfs_destroy_extent_inode(ni);
2218 }
2219
2220 /**
2221 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2222 * @vi: vfs inode pending annihilation
2223 *
2224 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2225 * is called, which deallocates all memory belonging to the NTFS specific part
2226 * of the inode and returns.
2227 *
2228 * If the MFT record is dirty, we commit it before doing anything else.
2229 */
ntfs_evict_big_inode(struct inode * vi)2230 void ntfs_evict_big_inode(struct inode *vi)
2231 {
2232 ntfs_inode *ni = NTFS_I(vi);
2233
2234 truncate_inode_pages_final(&vi->i_data);
2235 clear_inode(vi);
2236
2237 #ifdef NTFS_RW
2238 if (NInoDirty(ni)) {
2239 bool was_bad = (is_bad_inode(vi));
2240
2241 /* Committing the inode also commits all extent inodes. */
2242 ntfs_commit_inode(vi);
2243
2244 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2245 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2246 "0x%lx. Losing data!", vi->i_ino);
2247 // FIXME: Do something!!!
2248 }
2249 }
2250 #endif /* NTFS_RW */
2251
2252 /* No need to lock at this stage as no one else has a reference. */
2253 if (ni->nr_extents > 0) {
2254 int i;
2255
2256 for (i = 0; i < ni->nr_extents; i++)
2257 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2258 kfree(ni->ext.extent_ntfs_inos);
2259 }
2260
2261 __ntfs_clear_inode(ni);
2262
2263 if (NInoAttr(ni)) {
2264 /* Release the base inode if we are holding it. */
2265 if (ni->nr_extents == -1) {
2266 iput(VFS_I(ni->ext.base_ntfs_ino));
2267 ni->nr_extents = 0;
2268 ni->ext.base_ntfs_ino = NULL;
2269 }
2270 }
2271 BUG_ON(ni->page);
2272 if (!atomic_dec_and_test(&ni->count))
2273 BUG();
2274 return;
2275 }
2276
2277 /**
2278 * ntfs_show_options - show mount options in /proc/mounts
2279 * @sf: seq_file in which to write our mount options
2280 * @root: root of the mounted tree whose mount options to display
2281 *
2282 * Called by the VFS once for each mounted ntfs volume when someone reads
2283 * /proc/mounts in order to display the NTFS specific mount options of each
2284 * mount. The mount options of fs specified by @root are written to the seq file
2285 * @sf and success is returned.
2286 */
ntfs_show_options(struct seq_file * sf,struct dentry * root)2287 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2288 {
2289 ntfs_volume *vol = NTFS_SB(root->d_sb);
2290 int i;
2291
2292 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2293 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2294 if (vol->fmask == vol->dmask)
2295 seq_printf(sf, ",umask=0%o", vol->fmask);
2296 else {
2297 seq_printf(sf, ",fmask=0%o", vol->fmask);
2298 seq_printf(sf, ",dmask=0%o", vol->dmask);
2299 }
2300 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2301 if (NVolCaseSensitive(vol))
2302 seq_printf(sf, ",case_sensitive");
2303 if (NVolShowSystemFiles(vol))
2304 seq_printf(sf, ",show_sys_files");
2305 if (!NVolSparseEnabled(vol))
2306 seq_printf(sf, ",disable_sparse");
2307 for (i = 0; on_errors_arr[i].val; i++) {
2308 if (on_errors_arr[i].val & vol->on_errors)
2309 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2310 }
2311 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2312 return 0;
2313 }
2314
2315 #ifdef NTFS_RW
2316
2317 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2318 "chkdsk.";
2319
2320 /**
2321 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2322 * @vi: inode for which the i_size was changed
2323 *
2324 * We only support i_size changes for normal files at present, i.e. not
2325 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2326 * below.
2327 *
2328 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2329 * that the change is allowed.
2330 *
2331 * This implies for us that @vi is a file inode rather than a directory, index,
2332 * or attribute inode as well as that @vi is a base inode.
2333 *
2334 * Returns 0 on success or -errno on error.
2335 *
2336 * Called with ->i_mutex held.
2337 */
ntfs_truncate(struct inode * vi)2338 int ntfs_truncate(struct inode *vi)
2339 {
2340 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2341 VCN highest_vcn;
2342 unsigned long flags;
2343 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2344 ntfs_volume *vol = ni->vol;
2345 ntfs_attr_search_ctx *ctx;
2346 MFT_RECORD *m;
2347 ATTR_RECORD *a;
2348 const char *te = " Leaving file length out of sync with i_size.";
2349 int err, mp_size, size_change, alloc_change;
2350 u32 attr_len;
2351
2352 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2353 BUG_ON(NInoAttr(ni));
2354 BUG_ON(S_ISDIR(vi->i_mode));
2355 BUG_ON(NInoMstProtected(ni));
2356 BUG_ON(ni->nr_extents < 0);
2357 retry_truncate:
2358 /*
2359 * Lock the runlist for writing and map the mft record to ensure it is
2360 * safe to mess with the attribute runlist and sizes.
2361 */
2362 down_write(&ni->runlist.lock);
2363 if (!NInoAttr(ni))
2364 base_ni = ni;
2365 else
2366 base_ni = ni->ext.base_ntfs_ino;
2367 m = map_mft_record(base_ni);
2368 if (IS_ERR(m)) {
2369 err = PTR_ERR(m);
2370 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2371 "(error code %d).%s", vi->i_ino, err, te);
2372 ctx = NULL;
2373 m = NULL;
2374 goto old_bad_out;
2375 }
2376 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2377 if (unlikely(!ctx)) {
2378 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2379 "inode 0x%lx (not enough memory).%s",
2380 vi->i_ino, te);
2381 err = -ENOMEM;
2382 goto old_bad_out;
2383 }
2384 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2385 CASE_SENSITIVE, 0, NULL, 0, ctx);
2386 if (unlikely(err)) {
2387 if (err == -ENOENT) {
2388 ntfs_error(vi->i_sb, "Open attribute is missing from "
2389 "mft record. Inode 0x%lx is corrupt. "
2390 "Run chkdsk.%s", vi->i_ino, te);
2391 err = -EIO;
2392 } else
2393 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2394 "inode 0x%lx (error code %d).%s",
2395 vi->i_ino, err, te);
2396 goto old_bad_out;
2397 }
2398 m = ctx->mrec;
2399 a = ctx->attr;
2400 /*
2401 * The i_size of the vfs inode is the new size for the attribute value.
2402 */
2403 new_size = i_size_read(vi);
2404 /* The current size of the attribute value is the old size. */
2405 old_size = ntfs_attr_size(a);
2406 /* Calculate the new allocated size. */
2407 if (NInoNonResident(ni))
2408 new_alloc_size = (new_size + vol->cluster_size - 1) &
2409 ~(s64)vol->cluster_size_mask;
2410 else
2411 new_alloc_size = (new_size + 7) & ~7;
2412 /* The current allocated size is the old allocated size. */
2413 read_lock_irqsave(&ni->size_lock, flags);
2414 old_alloc_size = ni->allocated_size;
2415 read_unlock_irqrestore(&ni->size_lock, flags);
2416 /*
2417 * The change in the file size. This will be 0 if no change, >0 if the
2418 * size is growing, and <0 if the size is shrinking.
2419 */
2420 size_change = -1;
2421 if (new_size - old_size >= 0) {
2422 size_change = 1;
2423 if (new_size == old_size)
2424 size_change = 0;
2425 }
2426 /* As above for the allocated size. */
2427 alloc_change = -1;
2428 if (new_alloc_size - old_alloc_size >= 0) {
2429 alloc_change = 1;
2430 if (new_alloc_size == old_alloc_size)
2431 alloc_change = 0;
2432 }
2433 /*
2434 * If neither the size nor the allocation are being changed there is
2435 * nothing to do.
2436 */
2437 if (!size_change && !alloc_change)
2438 goto unm_done;
2439 /* If the size is changing, check if new size is allowed in $AttrDef. */
2440 if (size_change) {
2441 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2442 if (unlikely(err)) {
2443 if (err == -ERANGE) {
2444 ntfs_error(vol->sb, "Truncate would cause the "
2445 "inode 0x%lx to %simum size "
2446 "for its attribute type "
2447 "(0x%x). Aborting truncate.",
2448 vi->i_ino,
2449 new_size > old_size ? "exceed "
2450 "the max" : "go under the min",
2451 le32_to_cpu(ni->type));
2452 err = -EFBIG;
2453 } else {
2454 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2455 "attribute type 0x%x. "
2456 "Aborting truncate.",
2457 vi->i_ino,
2458 le32_to_cpu(ni->type));
2459 err = -EIO;
2460 }
2461 /* Reset the vfs inode size to the old size. */
2462 i_size_write(vi, old_size);
2463 goto err_out;
2464 }
2465 }
2466 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2467 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2468 "supported yet for %s files, ignoring.",
2469 NInoCompressed(ni) ? "compressed" :
2470 "encrypted");
2471 err = -EOPNOTSUPP;
2472 goto bad_out;
2473 }
2474 if (a->non_resident)
2475 goto do_non_resident_truncate;
2476 BUG_ON(NInoNonResident(ni));
2477 /* Resize the attribute record to best fit the new attribute size. */
2478 if (new_size < vol->mft_record_size &&
2479 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2480 /* The resize succeeded! */
2481 flush_dcache_mft_record_page(ctx->ntfs_ino);
2482 mark_mft_record_dirty(ctx->ntfs_ino);
2483 write_lock_irqsave(&ni->size_lock, flags);
2484 /* Update the sizes in the ntfs inode and all is done. */
2485 ni->allocated_size = le32_to_cpu(a->length) -
2486 le16_to_cpu(a->data.resident.value_offset);
2487 /*
2488 * Note ntfs_resident_attr_value_resize() has already done any
2489 * necessary data clearing in the attribute record. When the
2490 * file is being shrunk vmtruncate() will already have cleared
2491 * the top part of the last partial page, i.e. since this is
2492 * the resident case this is the page with index 0. However,
2493 * when the file is being expanded, the page cache page data
2494 * between the old data_size, i.e. old_size, and the new_size
2495 * has not been zeroed. Fortunately, we do not need to zero it
2496 * either since on one hand it will either already be zero due
2497 * to both readpage and writepage clearing partial page data
2498 * beyond i_size in which case there is nothing to do or in the
2499 * case of the file being mmap()ped at the same time, POSIX
2500 * specifies that the behaviour is unspecified thus we do not
2501 * have to do anything. This means that in our implementation
2502 * in the rare case that the file is mmap()ped and a write
2503 * occurred into the mmap()ped region just beyond the file size
2504 * and writepage has not yet been called to write out the page
2505 * (which would clear the area beyond the file size) and we now
2506 * extend the file size to incorporate this dirty region
2507 * outside the file size, a write of the page would result in
2508 * this data being written to disk instead of being cleared.
2509 * Given both POSIX and the Linux mmap(2) man page specify that
2510 * this corner case is undefined, we choose to leave it like
2511 * that as this is much simpler for us as we cannot lock the
2512 * relevant page now since we are holding too many ntfs locks
2513 * which would result in a lock reversal deadlock.
2514 */
2515 ni->initialized_size = new_size;
2516 write_unlock_irqrestore(&ni->size_lock, flags);
2517 goto unm_done;
2518 }
2519 /* If the above resize failed, this must be an attribute extension. */
2520 BUG_ON(size_change < 0);
2521 /*
2522 * We have to drop all the locks so we can call
2523 * ntfs_attr_make_non_resident(). This could be optimised by try-
2524 * locking the first page cache page and only if that fails dropping
2525 * the locks, locking the page, and redoing all the locking and
2526 * lookups. While this would be a huge optimisation, it is not worth
2527 * it as this is definitely a slow code path as it only ever can happen
2528 * once for any given file.
2529 */
2530 ntfs_attr_put_search_ctx(ctx);
2531 unmap_mft_record(base_ni);
2532 up_write(&ni->runlist.lock);
2533 /*
2534 * Not enough space in the mft record, try to make the attribute
2535 * non-resident and if successful restart the truncation process.
2536 */
2537 err = ntfs_attr_make_non_resident(ni, old_size);
2538 if (likely(!err))
2539 goto retry_truncate;
2540 /*
2541 * Could not make non-resident. If this is due to this not being
2542 * permitted for this attribute type or there not being enough space,
2543 * try to make other attributes non-resident. Otherwise fail.
2544 */
2545 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2546 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2547 "type 0x%x, because the conversion from "
2548 "resident to non-resident attribute failed "
2549 "with error code %i.", vi->i_ino,
2550 (unsigned)le32_to_cpu(ni->type), err);
2551 if (err != -ENOMEM)
2552 err = -EIO;
2553 goto conv_err_out;
2554 }
2555 /* TODO: Not implemented from here, abort. */
2556 if (err == -ENOSPC)
2557 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2558 "disk for the non-resident attribute value. "
2559 "This case is not implemented yet.");
2560 else /* if (err == -EPERM) */
2561 ntfs_error(vol->sb, "This attribute type may not be "
2562 "non-resident. This case is not implemented "
2563 "yet.");
2564 err = -EOPNOTSUPP;
2565 goto conv_err_out;
2566 #if 0
2567 // TODO: Attempt to make other attributes non-resident.
2568 if (!err)
2569 goto do_resident_extend;
2570 /*
2571 * Both the attribute list attribute and the standard information
2572 * attribute must remain in the base inode. Thus, if this is one of
2573 * these attributes, we have to try to move other attributes out into
2574 * extent mft records instead.
2575 */
2576 if (ni->type == AT_ATTRIBUTE_LIST ||
2577 ni->type == AT_STANDARD_INFORMATION) {
2578 // TODO: Attempt to move other attributes into extent mft
2579 // records.
2580 err = -EOPNOTSUPP;
2581 if (!err)
2582 goto do_resident_extend;
2583 goto err_out;
2584 }
2585 // TODO: Attempt to move this attribute to an extent mft record, but
2586 // only if it is not already the only attribute in an mft record in
2587 // which case there would be nothing to gain.
2588 err = -EOPNOTSUPP;
2589 if (!err)
2590 goto do_resident_extend;
2591 /* There is nothing we can do to make enough space. )-: */
2592 goto err_out;
2593 #endif
2594 do_non_resident_truncate:
2595 BUG_ON(!NInoNonResident(ni));
2596 if (alloc_change < 0) {
2597 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2598 if (highest_vcn > 0 &&
2599 old_alloc_size >> vol->cluster_size_bits >
2600 highest_vcn + 1) {
2601 /*
2602 * This attribute has multiple extents. Not yet
2603 * supported.
2604 */
2605 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2606 "attribute type 0x%x, because the "
2607 "attribute is highly fragmented (it "
2608 "consists of multiple extents) and "
2609 "this case is not implemented yet.",
2610 vi->i_ino,
2611 (unsigned)le32_to_cpu(ni->type));
2612 err = -EOPNOTSUPP;
2613 goto bad_out;
2614 }
2615 }
2616 /*
2617 * If the size is shrinking, need to reduce the initialized_size and
2618 * the data_size before reducing the allocation.
2619 */
2620 if (size_change < 0) {
2621 /*
2622 * Make the valid size smaller (i_size is already up-to-date).
2623 */
2624 write_lock_irqsave(&ni->size_lock, flags);
2625 if (new_size < ni->initialized_size) {
2626 ni->initialized_size = new_size;
2627 a->data.non_resident.initialized_size =
2628 cpu_to_sle64(new_size);
2629 }
2630 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2631 write_unlock_irqrestore(&ni->size_lock, flags);
2632 flush_dcache_mft_record_page(ctx->ntfs_ino);
2633 mark_mft_record_dirty(ctx->ntfs_ino);
2634 /* If the allocated size is not changing, we are done. */
2635 if (!alloc_change)
2636 goto unm_done;
2637 /*
2638 * If the size is shrinking it makes no sense for the
2639 * allocation to be growing.
2640 */
2641 BUG_ON(alloc_change > 0);
2642 } else /* if (size_change >= 0) */ {
2643 /*
2644 * The file size is growing or staying the same but the
2645 * allocation can be shrinking, growing or staying the same.
2646 */
2647 if (alloc_change > 0) {
2648 /*
2649 * We need to extend the allocation and possibly update
2650 * the data size. If we are updating the data size,
2651 * since we are not touching the initialized_size we do
2652 * not need to worry about the actual data on disk.
2653 * And as far as the page cache is concerned, there
2654 * will be no pages beyond the old data size and any
2655 * partial region in the last page between the old and
2656 * new data size (or the end of the page if the new
2657 * data size is outside the page) does not need to be
2658 * modified as explained above for the resident
2659 * attribute truncate case. To do this, we simply drop
2660 * the locks we hold and leave all the work to our
2661 * friendly helper ntfs_attr_extend_allocation().
2662 */
2663 ntfs_attr_put_search_ctx(ctx);
2664 unmap_mft_record(base_ni);
2665 up_write(&ni->runlist.lock);
2666 err = ntfs_attr_extend_allocation(ni, new_size,
2667 size_change > 0 ? new_size : -1, -1);
2668 /*
2669 * ntfs_attr_extend_allocation() will have done error
2670 * output already.
2671 */
2672 goto done;
2673 }
2674 if (!alloc_change)
2675 goto alloc_done;
2676 }
2677 /* alloc_change < 0 */
2678 /* Free the clusters. */
2679 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2680 vol->cluster_size_bits, -1, ctx);
2681 m = ctx->mrec;
2682 a = ctx->attr;
2683 if (unlikely(nr_freed < 0)) {
2684 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2685 "%lli). Unmount and run chkdsk to recover "
2686 "the lost cluster(s).", (long long)nr_freed);
2687 NVolSetErrors(vol);
2688 nr_freed = 0;
2689 }
2690 /* Truncate the runlist. */
2691 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2692 new_alloc_size >> vol->cluster_size_bits);
2693 /*
2694 * If the runlist truncation failed and/or the search context is no
2695 * longer valid, we cannot resize the attribute record or build the
2696 * mapping pairs array thus we mark the inode bad so that no access to
2697 * the freed clusters can happen.
2698 */
2699 if (unlikely(err || IS_ERR(m))) {
2700 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2701 IS_ERR(m) ?
2702 "restore attribute search context" :
2703 "truncate attribute runlist",
2704 IS_ERR(m) ? PTR_ERR(m) : err, es);
2705 err = -EIO;
2706 goto bad_out;
2707 }
2708 /* Get the size for the shrunk mapping pairs array for the runlist. */
2709 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2710 if (unlikely(mp_size <= 0)) {
2711 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2712 "attribute type 0x%x, because determining the "
2713 "size for the mapping pairs failed with error "
2714 "code %i.%s", vi->i_ino,
2715 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2716 err = -EIO;
2717 goto bad_out;
2718 }
2719 /*
2720 * Shrink the attribute record for the new mapping pairs array. Note,
2721 * this cannot fail since we are making the attribute smaller thus by
2722 * definition there is enough space to do so.
2723 */
2724 attr_len = le32_to_cpu(a->length);
2725 err = ntfs_attr_record_resize(m, a, mp_size +
2726 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2727 BUG_ON(err);
2728 /*
2729 * Generate the mapping pairs array directly into the attribute record.
2730 */
2731 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2732 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2733 mp_size, ni->runlist.rl, 0, -1, NULL);
2734 if (unlikely(err)) {
2735 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2736 "attribute type 0x%x, because building the "
2737 "mapping pairs failed with error code %i.%s",
2738 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2739 err, es);
2740 err = -EIO;
2741 goto bad_out;
2742 }
2743 /* Update the allocated/compressed size as well as the highest vcn. */
2744 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2745 vol->cluster_size_bits) - 1);
2746 write_lock_irqsave(&ni->size_lock, flags);
2747 ni->allocated_size = new_alloc_size;
2748 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2749 if (NInoSparse(ni) || NInoCompressed(ni)) {
2750 if (nr_freed) {
2751 ni->itype.compressed.size -= nr_freed <<
2752 vol->cluster_size_bits;
2753 BUG_ON(ni->itype.compressed.size < 0);
2754 a->data.non_resident.compressed_size = cpu_to_sle64(
2755 ni->itype.compressed.size);
2756 vi->i_blocks = ni->itype.compressed.size >> 9;
2757 }
2758 } else
2759 vi->i_blocks = new_alloc_size >> 9;
2760 write_unlock_irqrestore(&ni->size_lock, flags);
2761 /*
2762 * We have shrunk the allocation. If this is a shrinking truncate we
2763 * have already dealt with the initialized_size and the data_size above
2764 * and we are done. If the truncate is only changing the allocation
2765 * and not the data_size, we are also done. If this is an extending
2766 * truncate, need to extend the data_size now which is ensured by the
2767 * fact that @size_change is positive.
2768 */
2769 alloc_done:
2770 /*
2771 * If the size is growing, need to update it now. If it is shrinking,
2772 * we have already updated it above (before the allocation change).
2773 */
2774 if (size_change > 0)
2775 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2776 /* Ensure the modified mft record is written out. */
2777 flush_dcache_mft_record_page(ctx->ntfs_ino);
2778 mark_mft_record_dirty(ctx->ntfs_ino);
2779 unm_done:
2780 ntfs_attr_put_search_ctx(ctx);
2781 unmap_mft_record(base_ni);
2782 up_write(&ni->runlist.lock);
2783 done:
2784 /* Update the mtime and ctime on the base inode. */
2785 /* normally ->truncate shouldn't update ctime or mtime,
2786 * but ntfs did before so it got a copy & paste version
2787 * of file_update_time. one day someone should fix this
2788 * for real.
2789 */
2790 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2791 struct timespec64 now = current_time(VFS_I(base_ni));
2792 int sync_it = 0;
2793
2794 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2795 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2796 sync_it = 1;
2797 VFS_I(base_ni)->i_mtime = now;
2798 VFS_I(base_ni)->i_ctime = now;
2799
2800 if (sync_it)
2801 mark_inode_dirty_sync(VFS_I(base_ni));
2802 }
2803
2804 if (likely(!err)) {
2805 NInoClearTruncateFailed(ni);
2806 ntfs_debug("Done.");
2807 }
2808 return err;
2809 old_bad_out:
2810 old_size = -1;
2811 bad_out:
2812 if (err != -ENOMEM && err != -EOPNOTSUPP)
2813 NVolSetErrors(vol);
2814 if (err != -EOPNOTSUPP)
2815 NInoSetTruncateFailed(ni);
2816 else if (old_size >= 0)
2817 i_size_write(vi, old_size);
2818 err_out:
2819 if (ctx)
2820 ntfs_attr_put_search_ctx(ctx);
2821 if (m)
2822 unmap_mft_record(base_ni);
2823 up_write(&ni->runlist.lock);
2824 out:
2825 ntfs_debug("Failed. Returning error code %i.", err);
2826 return err;
2827 conv_err_out:
2828 if (err != -ENOMEM && err != -EOPNOTSUPP)
2829 NVolSetErrors(vol);
2830 if (err != -EOPNOTSUPP)
2831 NInoSetTruncateFailed(ni);
2832 else
2833 i_size_write(vi, old_size);
2834 goto out;
2835 }
2836
2837 /**
2838 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2839 * @vi: inode for which the i_size was changed
2840 *
2841 * Wrapper for ntfs_truncate() that has no return value.
2842 *
2843 * See ntfs_truncate() description above for details.
2844 */
2845 #ifdef NTFS_RW
ntfs_truncate_vfs(struct inode * vi)2846 void ntfs_truncate_vfs(struct inode *vi) {
2847 ntfs_truncate(vi);
2848 }
2849 #endif
2850
2851 /**
2852 * ntfs_setattr - called from notify_change() when an attribute is being changed
2853 * @dentry: dentry whose attributes to change
2854 * @attr: structure describing the attributes and the changes
2855 *
2856 * We have to trap VFS attempts to truncate the file described by @dentry as
2857 * soon as possible, because we do not implement changes in i_size yet. So we
2858 * abort all i_size changes here.
2859 *
2860 * We also abort all changes of user, group, and mode as we do not implement
2861 * the NTFS ACLs yet.
2862 *
2863 * Called with ->i_mutex held.
2864 */
ntfs_setattr(struct dentry * dentry,struct iattr * attr)2865 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2866 {
2867 struct inode *vi = d_inode(dentry);
2868 int err;
2869 unsigned int ia_valid = attr->ia_valid;
2870
2871 err = setattr_prepare(dentry, attr);
2872 if (err)
2873 goto out;
2874 /* We do not support NTFS ACLs yet. */
2875 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2876 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2877 "supported yet, ignoring.");
2878 err = -EOPNOTSUPP;
2879 goto out;
2880 }
2881 if (ia_valid & ATTR_SIZE) {
2882 if (attr->ia_size != i_size_read(vi)) {
2883 ntfs_inode *ni = NTFS_I(vi);
2884 /*
2885 * FIXME: For now we do not support resizing of
2886 * compressed or encrypted files yet.
2887 */
2888 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2889 ntfs_warning(vi->i_sb, "Changes in inode size "
2890 "are not supported yet for "
2891 "%s files, ignoring.",
2892 NInoCompressed(ni) ?
2893 "compressed" : "encrypted");
2894 err = -EOPNOTSUPP;
2895 } else {
2896 truncate_setsize(vi, attr->ia_size);
2897 ntfs_truncate_vfs(vi);
2898 }
2899 if (err || ia_valid == ATTR_SIZE)
2900 goto out;
2901 } else {
2902 /*
2903 * We skipped the truncate but must still update
2904 * timestamps.
2905 */
2906 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2907 }
2908 }
2909 if (ia_valid & ATTR_ATIME)
2910 vi->i_atime = attr->ia_atime;
2911 if (ia_valid & ATTR_MTIME)
2912 vi->i_mtime = attr->ia_mtime;
2913 if (ia_valid & ATTR_CTIME)
2914 vi->i_ctime = attr->ia_ctime;
2915 mark_inode_dirty(vi);
2916 out:
2917 return err;
2918 }
2919
2920 /**
2921 * ntfs_write_inode - write out a dirty inode
2922 * @vi: inode to write out
2923 * @sync: if true, write out synchronously
2924 *
2925 * Write out a dirty inode to disk including any extent inodes if present.
2926 *
2927 * If @sync is true, commit the inode to disk and wait for io completion. This
2928 * is done using write_mft_record().
2929 *
2930 * If @sync is false, just schedule the write to happen but do not wait for i/o
2931 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2932 * marking the page (and in this case mft record) dirty but we do not implement
2933 * this yet as write_mft_record() largely ignores the @sync parameter and
2934 * always performs synchronous writes.
2935 *
2936 * Return 0 on success and -errno on error.
2937 */
__ntfs_write_inode(struct inode * vi,int sync)2938 int __ntfs_write_inode(struct inode *vi, int sync)
2939 {
2940 sle64 nt;
2941 ntfs_inode *ni = NTFS_I(vi);
2942 ntfs_attr_search_ctx *ctx;
2943 MFT_RECORD *m;
2944 STANDARD_INFORMATION *si;
2945 int err = 0;
2946 bool modified = false;
2947
2948 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2949 vi->i_ino);
2950 /*
2951 * Dirty attribute inodes are written via their real inodes so just
2952 * clean them here. Access time updates are taken care off when the
2953 * real inode is written.
2954 */
2955 if (NInoAttr(ni)) {
2956 NInoClearDirty(ni);
2957 ntfs_debug("Done.");
2958 return 0;
2959 }
2960 /* Map, pin, and lock the mft record belonging to the inode. */
2961 m = map_mft_record(ni);
2962 if (IS_ERR(m)) {
2963 err = PTR_ERR(m);
2964 goto err_out;
2965 }
2966 /* Update the access times in the standard information attribute. */
2967 ctx = ntfs_attr_get_search_ctx(ni, m);
2968 if (unlikely(!ctx)) {
2969 err = -ENOMEM;
2970 goto unm_err_out;
2971 }
2972 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2973 CASE_SENSITIVE, 0, NULL, 0, ctx);
2974 if (unlikely(err)) {
2975 ntfs_attr_put_search_ctx(ctx);
2976 goto unm_err_out;
2977 }
2978 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2979 le16_to_cpu(ctx->attr->data.resident.value_offset));
2980 /* Update the access times if they have changed. */
2981 nt = utc2ntfs(vi->i_mtime);
2982 if (si->last_data_change_time != nt) {
2983 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2984 "new = 0x%llx", vi->i_ino, (long long)
2985 sle64_to_cpu(si->last_data_change_time),
2986 (long long)sle64_to_cpu(nt));
2987 si->last_data_change_time = nt;
2988 modified = true;
2989 }
2990 nt = utc2ntfs(vi->i_ctime);
2991 if (si->last_mft_change_time != nt) {
2992 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2993 "new = 0x%llx", vi->i_ino, (long long)
2994 sle64_to_cpu(si->last_mft_change_time),
2995 (long long)sle64_to_cpu(nt));
2996 si->last_mft_change_time = nt;
2997 modified = true;
2998 }
2999 nt = utc2ntfs(vi->i_atime);
3000 if (si->last_access_time != nt) {
3001 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3002 "new = 0x%llx", vi->i_ino,
3003 (long long)sle64_to_cpu(si->last_access_time),
3004 (long long)sle64_to_cpu(nt));
3005 si->last_access_time = nt;
3006 modified = true;
3007 }
3008 /*
3009 * If we just modified the standard information attribute we need to
3010 * mark the mft record it is in dirty. We do this manually so that
3011 * mark_inode_dirty() is not called which would redirty the inode and
3012 * hence result in an infinite loop of trying to write the inode.
3013 * There is no need to mark the base inode nor the base mft record
3014 * dirty, since we are going to write this mft record below in any case
3015 * and the base mft record may actually not have been modified so it
3016 * might not need to be written out.
3017 * NOTE: It is not a problem when the inode for $MFT itself is being
3018 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3019 * on the $MFT inode and hence ntfs_write_inode() will not be
3020 * re-invoked because of it which in turn is ok since the dirtied mft
3021 * record will be cleaned and written out to disk below, i.e. before
3022 * this function returns.
3023 */
3024 if (modified) {
3025 flush_dcache_mft_record_page(ctx->ntfs_ino);
3026 if (!NInoTestSetDirty(ctx->ntfs_ino))
3027 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3028 ctx->ntfs_ino->page_ofs);
3029 }
3030 ntfs_attr_put_search_ctx(ctx);
3031 /* Now the access times are updated, write the base mft record. */
3032 if (NInoDirty(ni))
3033 err = write_mft_record(ni, m, sync);
3034 /* Write all attached extent mft records. */
3035 mutex_lock(&ni->extent_lock);
3036 if (ni->nr_extents > 0) {
3037 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3038 int i;
3039
3040 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3041 for (i = 0; i < ni->nr_extents; i++) {
3042 ntfs_inode *tni = extent_nis[i];
3043
3044 if (NInoDirty(tni)) {
3045 MFT_RECORD *tm = map_mft_record(tni);
3046 int ret;
3047
3048 if (IS_ERR(tm)) {
3049 if (!err || err == -ENOMEM)
3050 err = PTR_ERR(tm);
3051 continue;
3052 }
3053 ret = write_mft_record(tni, tm, sync);
3054 unmap_mft_record(tni);
3055 if (unlikely(ret)) {
3056 if (!err || err == -ENOMEM)
3057 err = ret;
3058 }
3059 }
3060 }
3061 }
3062 mutex_unlock(&ni->extent_lock);
3063 unmap_mft_record(ni);
3064 if (unlikely(err))
3065 goto err_out;
3066 ntfs_debug("Done.");
3067 return 0;
3068 unm_err_out:
3069 unmap_mft_record(ni);
3070 err_out:
3071 if (err == -ENOMEM) {
3072 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3073 "Marking the inode dirty again, so the VFS "
3074 "retries later.");
3075 mark_inode_dirty(vi);
3076 } else {
3077 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3078 NVolSetErrors(ni->vol);
3079 }
3080 return err;
3081 }
3082
3083 #endif /* NTFS_RW */
3084