1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
10
nvmet_bdev_set_limits(struct block_device * bdev,struct nvme_id_ns * id)11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12 {
13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14 /* Number of logical blocks per physical block. */
15 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16 /* Logical blocks per physical block, 0's based. */
17 const __le16 lpp0b = to0based(lpp);
18
19 /*
20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 * NAWUPF, and NACWU are defined for this namespace and should be
22 * used by the host for this namespace instead of the AWUN, AWUPF,
23 * and ACWU fields in the Identify Controller data structure. If
24 * any of these fields are zero that means that the corresponding
25 * field from the identify controller data structure should be used.
26 */
27 id->nsfeat |= 1 << 1;
28 id->nawun = lpp0b;
29 id->nawupf = lpp0b;
30 id->nacwu = lpp0b;
31
32 /*
33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 * NOWS are defined for this namespace and should be used by
35 * the host for I/O optimization.
36 */
37 id->nsfeat |= 1 << 4;
38 /* NPWG = Namespace Preferred Write Granularity. 0's based */
39 id->npwg = lpp0b;
40 /* NPWA = Namespace Preferred Write Alignment. 0's based */
41 id->npwa = id->npwg;
42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44 /* NPDG = Namespace Preferred Deallocate Alignment */
45 id->npda = id->npdg;
46 /* NOWS = Namespace Optimal Write Size */
47 id->nows = to0based(ql->io_opt / ql->logical_block_size);
48 }
49
nvmet_bdev_ns_enable_integrity(struct nvmet_ns * ns)50 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
51 {
52 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
53
54 if (bi) {
55 ns->metadata_size = bi->tuple_size;
56 if (bi->profile == &t10_pi_type1_crc)
57 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
58 else if (bi->profile == &t10_pi_type3_crc)
59 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
60 else
61 /* Unsupported metadata type */
62 ns->metadata_size = 0;
63 }
64 }
65
nvmet_bdev_ns_enable(struct nvmet_ns * ns)66 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
67 {
68 int ret;
69
70 ns->bdev = blkdev_get_by_path(ns->device_path,
71 FMODE_READ | FMODE_WRITE, NULL);
72 if (IS_ERR(ns->bdev)) {
73 ret = PTR_ERR(ns->bdev);
74 if (ret != -ENOTBLK) {
75 pr_err("failed to open block device %s: (%ld)\n",
76 ns->device_path, PTR_ERR(ns->bdev));
77 }
78 ns->bdev = NULL;
79 return ret;
80 }
81 ns->size = i_size_read(ns->bdev->bd_inode);
82 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
83
84 ns->pi_type = 0;
85 ns->metadata_size = 0;
86 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
87 nvmet_bdev_ns_enable_integrity(ns);
88
89 return 0;
90 }
91
nvmet_bdev_ns_disable(struct nvmet_ns * ns)92 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
93 {
94 if (ns->bdev) {
95 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
96 ns->bdev = NULL;
97 }
98 }
99
nvmet_bdev_ns_revalidate(struct nvmet_ns * ns)100 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
101 {
102 ns->size = i_size_read(ns->bdev->bd_inode);
103 }
104
blk_to_nvme_status(struct nvmet_req * req,blk_status_t blk_sts)105 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
106 {
107 u16 status = NVME_SC_SUCCESS;
108
109 if (likely(blk_sts == BLK_STS_OK))
110 return status;
111 /*
112 * Right now there exists M : 1 mapping between block layer error
113 * to the NVMe status code (see nvme_error_status()). For consistency,
114 * when we reverse map we use most appropriate NVMe Status code from
115 * the group of the NVMe staus codes used in the nvme_error_status().
116 */
117 switch (blk_sts) {
118 case BLK_STS_NOSPC:
119 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
120 req->error_loc = offsetof(struct nvme_rw_command, length);
121 break;
122 case BLK_STS_TARGET:
123 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
124 req->error_loc = offsetof(struct nvme_rw_command, slba);
125 break;
126 case BLK_STS_NOTSUPP:
127 req->error_loc = offsetof(struct nvme_common_command, opcode);
128 switch (req->cmd->common.opcode) {
129 case nvme_cmd_dsm:
130 case nvme_cmd_write_zeroes:
131 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
132 break;
133 default:
134 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
135 }
136 break;
137 case BLK_STS_MEDIUM:
138 status = NVME_SC_ACCESS_DENIED;
139 req->error_loc = offsetof(struct nvme_rw_command, nsid);
140 break;
141 case BLK_STS_IOERR:
142 default:
143 status = NVME_SC_INTERNAL | NVME_SC_DNR;
144 req->error_loc = offsetof(struct nvme_common_command, opcode);
145 }
146
147 switch (req->cmd->common.opcode) {
148 case nvme_cmd_read:
149 case nvme_cmd_write:
150 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
151 break;
152 case nvme_cmd_write_zeroes:
153 req->error_slba =
154 le64_to_cpu(req->cmd->write_zeroes.slba);
155 break;
156 default:
157 req->error_slba = 0;
158 }
159 return status;
160 }
161
nvmet_bio_done(struct bio * bio)162 static void nvmet_bio_done(struct bio *bio)
163 {
164 struct nvmet_req *req = bio->bi_private;
165
166 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
167 if (bio != &req->b.inline_bio)
168 bio_put(bio);
169 }
170
171 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)172 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
173 struct sg_mapping_iter *miter)
174 {
175 struct blk_integrity *bi;
176 struct bio_integrity_payload *bip;
177 struct block_device *bdev = req->ns->bdev;
178 int rc;
179 size_t resid, len;
180
181 bi = bdev_get_integrity(bdev);
182 if (unlikely(!bi)) {
183 pr_err("Unable to locate bio_integrity\n");
184 return -ENODEV;
185 }
186
187 bip = bio_integrity_alloc(bio, GFP_NOIO,
188 min_t(unsigned int, req->metadata_sg_cnt, BIO_MAX_PAGES));
189 if (IS_ERR(bip)) {
190 pr_err("Unable to allocate bio_integrity_payload\n");
191 return PTR_ERR(bip);
192 }
193
194 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
195 /* virtual start sector must be in integrity interval units */
196 bip_set_seed(bip, bio->bi_iter.bi_sector >>
197 (bi->interval_exp - SECTOR_SHIFT));
198
199 resid = bip->bip_iter.bi_size;
200 while (resid > 0 && sg_miter_next(miter)) {
201 len = min_t(size_t, miter->length, resid);
202 rc = bio_integrity_add_page(bio, miter->page, len,
203 offset_in_page(miter->addr));
204 if (unlikely(rc != len)) {
205 pr_err("bio_integrity_add_page() failed; %d\n", rc);
206 sg_miter_stop(miter);
207 return -ENOMEM;
208 }
209
210 resid -= len;
211 if (len < miter->length)
212 miter->consumed -= miter->length - len;
213 }
214 sg_miter_stop(miter);
215
216 return 0;
217 }
218 #else
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)219 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
220 struct sg_mapping_iter *miter)
221 {
222 return -EINVAL;
223 }
224 #endif /* CONFIG_BLK_DEV_INTEGRITY */
225
nvmet_bdev_execute_rw(struct nvmet_req * req)226 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
227 {
228 int sg_cnt = req->sg_cnt;
229 struct bio *bio;
230 struct scatterlist *sg;
231 struct blk_plug plug;
232 sector_t sector;
233 int op, i, rc;
234 struct sg_mapping_iter prot_miter;
235 unsigned int iter_flags;
236 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
237
238 if (!nvmet_check_transfer_len(req, total_len))
239 return;
240
241 if (!req->sg_cnt) {
242 nvmet_req_complete(req, 0);
243 return;
244 }
245
246 if (req->cmd->rw.opcode == nvme_cmd_write) {
247 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
248 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
249 op |= REQ_FUA;
250 iter_flags = SG_MITER_TO_SG;
251 } else {
252 op = REQ_OP_READ;
253 iter_flags = SG_MITER_FROM_SG;
254 }
255
256 if (is_pci_p2pdma_page(sg_page(req->sg)))
257 op |= REQ_NOMERGE;
258
259 sector = le64_to_cpu(req->cmd->rw.slba);
260 sector <<= (req->ns->blksize_shift - 9);
261
262 if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) {
263 bio = &req->b.inline_bio;
264 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
265 } else {
266 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
267 }
268 bio_set_dev(bio, req->ns->bdev);
269 bio->bi_iter.bi_sector = sector;
270 bio->bi_private = req;
271 bio->bi_end_io = nvmet_bio_done;
272 bio->bi_opf = op;
273
274 blk_start_plug(&plug);
275 if (req->metadata_len)
276 sg_miter_start(&prot_miter, req->metadata_sg,
277 req->metadata_sg_cnt, iter_flags);
278
279 for_each_sg(req->sg, sg, req->sg_cnt, i) {
280 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
281 != sg->length) {
282 struct bio *prev = bio;
283
284 if (req->metadata_len) {
285 rc = nvmet_bdev_alloc_bip(req, bio,
286 &prot_miter);
287 if (unlikely(rc)) {
288 bio_io_error(bio);
289 return;
290 }
291 }
292
293 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
294 bio_set_dev(bio, req->ns->bdev);
295 bio->bi_iter.bi_sector = sector;
296 bio->bi_opf = op;
297
298 bio_chain(bio, prev);
299 submit_bio(prev);
300 }
301
302 sector += sg->length >> 9;
303 sg_cnt--;
304 }
305
306 if (req->metadata_len) {
307 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
308 if (unlikely(rc)) {
309 bio_io_error(bio);
310 return;
311 }
312 }
313
314 submit_bio(bio);
315 blk_finish_plug(&plug);
316 }
317
nvmet_bdev_execute_flush(struct nvmet_req * req)318 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
319 {
320 struct bio *bio = &req->b.inline_bio;
321
322 if (!nvmet_check_transfer_len(req, 0))
323 return;
324
325 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
326 bio_set_dev(bio, req->ns->bdev);
327 bio->bi_private = req;
328 bio->bi_end_io = nvmet_bio_done;
329 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
330
331 submit_bio(bio);
332 }
333
nvmet_bdev_flush(struct nvmet_req * req)334 u16 nvmet_bdev_flush(struct nvmet_req *req)
335 {
336 if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL))
337 return NVME_SC_INTERNAL | NVME_SC_DNR;
338 return 0;
339 }
340
nvmet_bdev_discard_range(struct nvmet_req * req,struct nvme_dsm_range * range,struct bio ** bio)341 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
342 struct nvme_dsm_range *range, struct bio **bio)
343 {
344 struct nvmet_ns *ns = req->ns;
345 int ret;
346
347 ret = __blkdev_issue_discard(ns->bdev,
348 le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
349 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
350 GFP_KERNEL, 0, bio);
351 if (ret && ret != -EOPNOTSUPP) {
352 req->error_slba = le64_to_cpu(range->slba);
353 return errno_to_nvme_status(req, ret);
354 }
355 return NVME_SC_SUCCESS;
356 }
357
nvmet_bdev_execute_discard(struct nvmet_req * req)358 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
359 {
360 struct nvme_dsm_range range;
361 struct bio *bio = NULL;
362 int i;
363 u16 status;
364
365 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
366 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
367 sizeof(range));
368 if (status)
369 break;
370
371 status = nvmet_bdev_discard_range(req, &range, &bio);
372 if (status)
373 break;
374 }
375
376 if (bio) {
377 bio->bi_private = req;
378 bio->bi_end_io = nvmet_bio_done;
379 if (status)
380 bio_io_error(bio);
381 else
382 submit_bio(bio);
383 } else {
384 nvmet_req_complete(req, status);
385 }
386 }
387
nvmet_bdev_execute_dsm(struct nvmet_req * req)388 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
389 {
390 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
391 return;
392
393 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
394 case NVME_DSMGMT_AD:
395 nvmet_bdev_execute_discard(req);
396 return;
397 case NVME_DSMGMT_IDR:
398 case NVME_DSMGMT_IDW:
399 default:
400 /* Not supported yet */
401 nvmet_req_complete(req, 0);
402 return;
403 }
404 }
405
nvmet_bdev_execute_write_zeroes(struct nvmet_req * req)406 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
407 {
408 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
409 struct bio *bio = NULL;
410 sector_t sector;
411 sector_t nr_sector;
412 int ret;
413
414 if (!nvmet_check_transfer_len(req, 0))
415 return;
416
417 sector = le64_to_cpu(write_zeroes->slba) <<
418 (req->ns->blksize_shift - 9);
419 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
420 (req->ns->blksize_shift - 9));
421
422 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
423 GFP_KERNEL, &bio, 0);
424 if (bio) {
425 bio->bi_private = req;
426 bio->bi_end_io = nvmet_bio_done;
427 submit_bio(bio);
428 } else {
429 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
430 }
431 }
432
nvmet_bdev_parse_io_cmd(struct nvmet_req * req)433 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
434 {
435 struct nvme_command *cmd = req->cmd;
436
437 switch (cmd->common.opcode) {
438 case nvme_cmd_read:
439 case nvme_cmd_write:
440 req->execute = nvmet_bdev_execute_rw;
441 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
442 req->metadata_len = nvmet_rw_metadata_len(req);
443 return 0;
444 case nvme_cmd_flush:
445 req->execute = nvmet_bdev_execute_flush;
446 return 0;
447 case nvme_cmd_dsm:
448 req->execute = nvmet_bdev_execute_dsm;
449 return 0;
450 case nvme_cmd_write_zeroes:
451 req->execute = nvmet_bdev_execute_write_zeroes;
452 return 0;
453 default:
454 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
455 req->sq->qid);
456 req->error_loc = offsetof(struct nvme_common_command, opcode);
457 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
458 }
459 }
460