1 /*
2 * Copyright 2007 Dave Airlied
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24 /*
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
28 */
29
30 #include <linux/dma-mapping.h>
31 #include <drm/ttm/ttm_tt.h>
32
33 #include "nouveau_drv.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46
47 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
48 struct ttm_resource *reg);
49 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
50
51 /*
52 * NV10-NV40 tiling helpers
53 */
54
55 static void
nv10_bo_update_tile_region(struct drm_device * dev,struct nouveau_drm_tile * reg,u32 addr,u32 size,u32 pitch,u32 flags)56 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
57 u32 addr, u32 size, u32 pitch, u32 flags)
58 {
59 struct nouveau_drm *drm = nouveau_drm(dev);
60 int i = reg - drm->tile.reg;
61 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
62 struct nvkm_fb_tile *tile = &fb->tile.region[i];
63
64 nouveau_fence_unref(®->fence);
65
66 if (tile->pitch)
67 nvkm_fb_tile_fini(fb, i, tile);
68
69 if (pitch)
70 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
71
72 nvkm_fb_tile_prog(fb, i, tile);
73 }
74
75 static struct nouveau_drm_tile *
nv10_bo_get_tile_region(struct drm_device * dev,int i)76 nv10_bo_get_tile_region(struct drm_device *dev, int i)
77 {
78 struct nouveau_drm *drm = nouveau_drm(dev);
79 struct nouveau_drm_tile *tile = &drm->tile.reg[i];
80
81 spin_lock(&drm->tile.lock);
82
83 if (!tile->used &&
84 (!tile->fence || nouveau_fence_done(tile->fence)))
85 tile->used = true;
86 else
87 tile = NULL;
88
89 spin_unlock(&drm->tile.lock);
90 return tile;
91 }
92
93 static void
nv10_bo_put_tile_region(struct drm_device * dev,struct nouveau_drm_tile * tile,struct dma_fence * fence)94 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
95 struct dma_fence *fence)
96 {
97 struct nouveau_drm *drm = nouveau_drm(dev);
98
99 if (tile) {
100 spin_lock(&drm->tile.lock);
101 tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
102 tile->used = false;
103 spin_unlock(&drm->tile.lock);
104 }
105 }
106
107 static struct nouveau_drm_tile *
nv10_bo_set_tiling(struct drm_device * dev,u32 addr,u32 size,u32 pitch,u32 zeta)108 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
109 u32 size, u32 pitch, u32 zeta)
110 {
111 struct nouveau_drm *drm = nouveau_drm(dev);
112 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
113 struct nouveau_drm_tile *tile, *found = NULL;
114 int i;
115
116 for (i = 0; i < fb->tile.regions; i++) {
117 tile = nv10_bo_get_tile_region(dev, i);
118
119 if (pitch && !found) {
120 found = tile;
121 continue;
122
123 } else if (tile && fb->tile.region[i].pitch) {
124 /* Kill an unused tile region. */
125 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
126 }
127
128 nv10_bo_put_tile_region(dev, tile, NULL);
129 }
130
131 if (found)
132 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
133 return found;
134 }
135
136 static void
nouveau_bo_del_ttm(struct ttm_buffer_object * bo)137 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
138 {
139 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
140 struct drm_device *dev = drm->dev;
141 struct nouveau_bo *nvbo = nouveau_bo(bo);
142
143 WARN_ON(nvbo->bo.pin_count > 0);
144 nouveau_bo_del_io_reserve_lru(bo);
145 nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
146
147 /*
148 * If nouveau_bo_new() allocated this buffer, the GEM object was never
149 * initialized, so don't attempt to release it.
150 */
151 if (bo->base.dev)
152 drm_gem_object_release(&bo->base);
153 else
154 dma_resv_fini(&bo->base._resv);
155
156 kfree(nvbo);
157 }
158
159 static inline u64
roundup_64(u64 x,u32 y)160 roundup_64(u64 x, u32 y)
161 {
162 x += y - 1;
163 do_div(x, y);
164 return x * y;
165 }
166
167 static void
nouveau_bo_fixup_align(struct nouveau_bo * nvbo,int * align,u64 * size)168 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
169 {
170 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
171 struct nvif_device *device = &drm->client.device;
172
173 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
174 if (nvbo->mode) {
175 if (device->info.chipset >= 0x40) {
176 *align = 65536;
177 *size = roundup_64(*size, 64 * nvbo->mode);
178
179 } else if (device->info.chipset >= 0x30) {
180 *align = 32768;
181 *size = roundup_64(*size, 64 * nvbo->mode);
182
183 } else if (device->info.chipset >= 0x20) {
184 *align = 16384;
185 *size = roundup_64(*size, 64 * nvbo->mode);
186
187 } else if (device->info.chipset >= 0x10) {
188 *align = 16384;
189 *size = roundup_64(*size, 32 * nvbo->mode);
190 }
191 }
192 } else {
193 *size = roundup_64(*size, (1 << nvbo->page));
194 *align = max((1 << nvbo->page), *align);
195 }
196
197 *size = roundup_64(*size, PAGE_SIZE);
198 }
199
200 struct nouveau_bo *
nouveau_bo_alloc(struct nouveau_cli * cli,u64 * size,int * align,u32 domain,u32 tile_mode,u32 tile_flags,bool internal)201 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
202 u32 tile_mode, u32 tile_flags, bool internal)
203 {
204 struct nouveau_drm *drm = cli->drm;
205 struct nouveau_bo *nvbo;
206 struct nvif_mmu *mmu = &cli->mmu;
207 struct nvif_vmm *vmm = &nouveau_cli_vmm(cli)->vmm;
208 int i, pi = -1;
209
210 if (!*size) {
211 NV_WARN(drm, "skipped size %016llx\n", *size);
212 return ERR_PTR(-EINVAL);
213 }
214
215 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
216 if (!nvbo)
217 return ERR_PTR(-ENOMEM);
218
219 INIT_LIST_HEAD(&nvbo->head);
220 INIT_LIST_HEAD(&nvbo->entry);
221 INIT_LIST_HEAD(&nvbo->vma_list);
222 nvbo->bo.bdev = &drm->ttm.bdev;
223
224 /* This is confusing, and doesn't actually mean we want an uncached
225 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
226 * into in nouveau_gem_new().
227 */
228 if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
229 /* Determine if we can get a cache-coherent map, forcing
230 * uncached mapping if we can't.
231 */
232 if (!nouveau_drm_use_coherent_gpu_mapping(drm))
233 nvbo->force_coherent = true;
234 }
235
236 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
237 if (!nouveau_cli_uvmm(cli) || internal) {
238 /* for BO noVM allocs, don't assign kinds */
239 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
240 nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
241 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
242 kfree(nvbo);
243 return ERR_PTR(-EINVAL);
244 }
245
246 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
247 } else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
248 nvbo->kind = (tile_flags & 0x00007f00) >> 8;
249 nvbo->comp = (tile_flags & 0x00030000) >> 16;
250 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
251 kfree(nvbo);
252 return ERR_PTR(-EINVAL);
253 }
254 } else {
255 nvbo->zeta = (tile_flags & 0x00000007);
256 }
257 nvbo->mode = tile_mode;
258
259 /* Determine the desirable target GPU page size for the buffer. */
260 for (i = 0; i < vmm->page_nr; i++) {
261 /* Because we cannot currently allow VMM maps to fail
262 * during buffer migration, we need to determine page
263 * size for the buffer up-front, and pre-allocate its
264 * page tables.
265 *
266 * Skip page sizes that can't support needed domains.
267 */
268 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
269 (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
270 continue;
271 if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
272 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
273 continue;
274
275 /* Select this page size if it's the first that supports
276 * the potential memory domains, or when it's compatible
277 * with the requested compression settings.
278 */
279 if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
280 pi = i;
281
282 /* Stop once the buffer is larger than the current page size. */
283 if (*size >= 1ULL << vmm->page[i].shift)
284 break;
285 }
286
287 if (WARN_ON(pi < 0)) {
288 kfree(nvbo);
289 return ERR_PTR(-EINVAL);
290 }
291
292 /* Disable compression if suitable settings couldn't be found. */
293 if (nvbo->comp && !vmm->page[pi].comp) {
294 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
295 nvbo->kind = mmu->kind[nvbo->kind];
296 nvbo->comp = 0;
297 }
298 nvbo->page = vmm->page[pi].shift;
299 } else {
300 /* reject other tile flags when in VM mode. */
301 if (tile_mode)
302 return ERR_PTR(-EINVAL);
303 if (tile_flags & ~NOUVEAU_GEM_TILE_NONCONTIG)
304 return ERR_PTR(-EINVAL);
305
306 /* Determine the desirable target GPU page size for the buffer. */
307 for (i = 0; i < vmm->page_nr; i++) {
308 /* Because we cannot currently allow VMM maps to fail
309 * during buffer migration, we need to determine page
310 * size for the buffer up-front, and pre-allocate its
311 * page tables.
312 *
313 * Skip page sizes that can't support needed domains.
314 */
315 if ((domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
316 continue;
317 if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
318 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
319 continue;
320
321 if (pi < 0)
322 pi = i;
323 /* Stop once the buffer is larger than the current page size. */
324 if (*size >= 1ULL << vmm->page[i].shift)
325 break;
326 }
327 if (WARN_ON(pi < 0)) {
328 kfree(nvbo);
329 return ERR_PTR(-EINVAL);
330 }
331 nvbo->page = vmm->page[pi].shift;
332 }
333
334 nouveau_bo_fixup_align(nvbo, align, size);
335
336 return nvbo;
337 }
338
339 int
nouveau_bo_init(struct nouveau_bo * nvbo,u64 size,int align,u32 domain,struct sg_table * sg,struct dma_resv * robj)340 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
341 struct sg_table *sg, struct dma_resv *robj)
342 {
343 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
344 int ret;
345 struct ttm_operation_ctx ctx = {
346 .interruptible = false,
347 .no_wait_gpu = false,
348 .resv = robj,
349 };
350
351 nouveau_bo_placement_set(nvbo, domain, 0);
352 INIT_LIST_HEAD(&nvbo->io_reserve_lru);
353
354 ret = ttm_bo_init_reserved(nvbo->bo.bdev, &nvbo->bo, type,
355 &nvbo->placement, align >> PAGE_SHIFT, &ctx,
356 sg, robj, nouveau_bo_del_ttm);
357 if (ret) {
358 /* ttm will call nouveau_bo_del_ttm if it fails.. */
359 return ret;
360 }
361
362 if (!robj)
363 ttm_bo_unreserve(&nvbo->bo);
364
365 return 0;
366 }
367
368 int
nouveau_bo_new(struct nouveau_cli * cli,u64 size,int align,uint32_t domain,uint32_t tile_mode,uint32_t tile_flags,struct sg_table * sg,struct dma_resv * robj,struct nouveau_bo ** pnvbo)369 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
370 uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
371 struct sg_table *sg, struct dma_resv *robj,
372 struct nouveau_bo **pnvbo)
373 {
374 struct nouveau_bo *nvbo;
375 int ret;
376
377 nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
378 tile_flags, true);
379 if (IS_ERR(nvbo))
380 return PTR_ERR(nvbo);
381
382 nvbo->bo.base.size = size;
383 dma_resv_init(&nvbo->bo.base._resv);
384 drm_vma_node_reset(&nvbo->bo.base.vma_node);
385
386 /* This must be called before ttm_bo_init_reserved(). Subsequent
387 * bo_move() callbacks might already iterate the GEMs GPUVA list.
388 */
389 drm_gem_gpuva_init(&nvbo->bo.base);
390
391 ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
392 if (ret)
393 return ret;
394
395 *pnvbo = nvbo;
396 return 0;
397 }
398
399 static void
set_placement_list(struct ttm_place * pl,unsigned * n,uint32_t domain)400 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
401 {
402 *n = 0;
403
404 if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
405 pl[*n].mem_type = TTM_PL_VRAM;
406 pl[*n].flags = 0;
407 (*n)++;
408 }
409 if (domain & NOUVEAU_GEM_DOMAIN_GART) {
410 pl[*n].mem_type = TTM_PL_TT;
411 pl[*n].flags = 0;
412 (*n)++;
413 }
414 if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
415 pl[*n].mem_type = TTM_PL_SYSTEM;
416 pl[(*n)++].flags = 0;
417 }
418 }
419
420 static void
set_placement_range(struct nouveau_bo * nvbo,uint32_t domain)421 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
422 {
423 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
424 u64 vram_size = drm->client.device.info.ram_size;
425 unsigned i, fpfn, lpfn;
426
427 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
428 nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
429 nvbo->bo.base.size < vram_size / 4) {
430 /*
431 * Make sure that the color and depth buffers are handled
432 * by independent memory controller units. Up to a 9x
433 * speed up when alpha-blending and depth-test are enabled
434 * at the same time.
435 */
436 if (nvbo->zeta) {
437 fpfn = (vram_size / 2) >> PAGE_SHIFT;
438 lpfn = ~0;
439 } else {
440 fpfn = 0;
441 lpfn = (vram_size / 2) >> PAGE_SHIFT;
442 }
443 for (i = 0; i < nvbo->placement.num_placement; ++i) {
444 nvbo->placements[i].fpfn = fpfn;
445 nvbo->placements[i].lpfn = lpfn;
446 }
447 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
448 nvbo->busy_placements[i].fpfn = fpfn;
449 nvbo->busy_placements[i].lpfn = lpfn;
450 }
451 }
452 }
453
454 void
nouveau_bo_placement_set(struct nouveau_bo * nvbo,uint32_t domain,uint32_t busy)455 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
456 uint32_t busy)
457 {
458 struct ttm_placement *pl = &nvbo->placement;
459
460 pl->placement = nvbo->placements;
461 set_placement_list(nvbo->placements, &pl->num_placement, domain);
462
463 pl->busy_placement = nvbo->busy_placements;
464 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
465 domain | busy);
466
467 set_placement_range(nvbo, domain);
468 }
469
470 int
nouveau_bo_pin(struct nouveau_bo * nvbo,uint32_t domain,bool contig)471 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
472 {
473 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
474 struct ttm_buffer_object *bo = &nvbo->bo;
475 bool force = false, evict = false;
476 int ret;
477
478 ret = ttm_bo_reserve(bo, false, false, NULL);
479 if (ret)
480 return ret;
481
482 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
483 domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
484 if (!nvbo->contig) {
485 nvbo->contig = true;
486 force = true;
487 evict = true;
488 }
489 }
490
491 if (nvbo->bo.pin_count) {
492 bool error = evict;
493
494 switch (bo->resource->mem_type) {
495 case TTM_PL_VRAM:
496 error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
497 break;
498 case TTM_PL_TT:
499 error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
500 break;
501 default:
502 break;
503 }
504
505 if (error) {
506 NV_ERROR(drm, "bo %p pinned elsewhere: "
507 "0x%08x vs 0x%08x\n", bo,
508 bo->resource->mem_type, domain);
509 ret = -EBUSY;
510 }
511 ttm_bo_pin(&nvbo->bo);
512 goto out;
513 }
514
515 if (evict) {
516 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
517 ret = nouveau_bo_validate(nvbo, false, false);
518 if (ret)
519 goto out;
520 }
521
522 nouveau_bo_placement_set(nvbo, domain, 0);
523 ret = nouveau_bo_validate(nvbo, false, false);
524 if (ret)
525 goto out;
526
527 ttm_bo_pin(&nvbo->bo);
528
529 switch (bo->resource->mem_type) {
530 case TTM_PL_VRAM:
531 drm->gem.vram_available -= bo->base.size;
532 break;
533 case TTM_PL_TT:
534 drm->gem.gart_available -= bo->base.size;
535 break;
536 default:
537 break;
538 }
539
540 out:
541 if (force && ret)
542 nvbo->contig = false;
543 ttm_bo_unreserve(bo);
544 return ret;
545 }
546
547 int
nouveau_bo_unpin(struct nouveau_bo * nvbo)548 nouveau_bo_unpin(struct nouveau_bo *nvbo)
549 {
550 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
551 struct ttm_buffer_object *bo = &nvbo->bo;
552 int ret;
553
554 ret = ttm_bo_reserve(bo, false, false, NULL);
555 if (ret)
556 return ret;
557
558 ttm_bo_unpin(&nvbo->bo);
559 if (!nvbo->bo.pin_count) {
560 switch (bo->resource->mem_type) {
561 case TTM_PL_VRAM:
562 drm->gem.vram_available += bo->base.size;
563 break;
564 case TTM_PL_TT:
565 drm->gem.gart_available += bo->base.size;
566 break;
567 default:
568 break;
569 }
570 }
571
572 ttm_bo_unreserve(bo);
573 return 0;
574 }
575
576 int
nouveau_bo_map(struct nouveau_bo * nvbo)577 nouveau_bo_map(struct nouveau_bo *nvbo)
578 {
579 int ret;
580
581 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
582 if (ret)
583 return ret;
584
585 ret = ttm_bo_kmap(&nvbo->bo, 0, PFN_UP(nvbo->bo.base.size), &nvbo->kmap);
586
587 ttm_bo_unreserve(&nvbo->bo);
588 return ret;
589 }
590
591 void
nouveau_bo_unmap(struct nouveau_bo * nvbo)592 nouveau_bo_unmap(struct nouveau_bo *nvbo)
593 {
594 if (!nvbo)
595 return;
596
597 ttm_bo_kunmap(&nvbo->kmap);
598 }
599
600 void
nouveau_bo_sync_for_device(struct nouveau_bo * nvbo)601 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
602 {
603 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
604 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
605 int i, j;
606
607 if (!ttm_dma || !ttm_dma->dma_address)
608 return;
609 if (!ttm_dma->pages) {
610 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
611 return;
612 }
613
614 /* Don't waste time looping if the object is coherent */
615 if (nvbo->force_coherent)
616 return;
617
618 i = 0;
619 while (i < ttm_dma->num_pages) {
620 struct page *p = ttm_dma->pages[i];
621 size_t num_pages = 1;
622
623 for (j = i + 1; j < ttm_dma->num_pages; ++j) {
624 if (++p != ttm_dma->pages[j])
625 break;
626
627 ++num_pages;
628 }
629 dma_sync_single_for_device(drm->dev->dev,
630 ttm_dma->dma_address[i],
631 num_pages * PAGE_SIZE, DMA_TO_DEVICE);
632 i += num_pages;
633 }
634 }
635
636 void
nouveau_bo_sync_for_cpu(struct nouveau_bo * nvbo)637 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
638 {
639 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
640 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
641 int i, j;
642
643 if (!ttm_dma || !ttm_dma->dma_address)
644 return;
645 if (!ttm_dma->pages) {
646 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
647 return;
648 }
649
650 /* Don't waste time looping if the object is coherent */
651 if (nvbo->force_coherent)
652 return;
653
654 i = 0;
655 while (i < ttm_dma->num_pages) {
656 struct page *p = ttm_dma->pages[i];
657 size_t num_pages = 1;
658
659 for (j = i + 1; j < ttm_dma->num_pages; ++j) {
660 if (++p != ttm_dma->pages[j])
661 break;
662
663 ++num_pages;
664 }
665
666 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
667 num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
668 i += num_pages;
669 }
670 }
671
nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object * bo)672 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
673 {
674 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
675 struct nouveau_bo *nvbo = nouveau_bo(bo);
676
677 mutex_lock(&drm->ttm.io_reserve_mutex);
678 list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
679 mutex_unlock(&drm->ttm.io_reserve_mutex);
680 }
681
nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object * bo)682 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
683 {
684 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
685 struct nouveau_bo *nvbo = nouveau_bo(bo);
686
687 mutex_lock(&drm->ttm.io_reserve_mutex);
688 list_del_init(&nvbo->io_reserve_lru);
689 mutex_unlock(&drm->ttm.io_reserve_mutex);
690 }
691
692 int
nouveau_bo_validate(struct nouveau_bo * nvbo,bool interruptible,bool no_wait_gpu)693 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
694 bool no_wait_gpu)
695 {
696 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
697 int ret;
698
699 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
700 if (ret)
701 return ret;
702
703 nouveau_bo_sync_for_device(nvbo);
704
705 return 0;
706 }
707
708 void
nouveau_bo_wr16(struct nouveau_bo * nvbo,unsigned index,u16 val)709 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
710 {
711 bool is_iomem;
712 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
713
714 mem += index;
715
716 if (is_iomem)
717 iowrite16_native(val, (void __force __iomem *)mem);
718 else
719 *mem = val;
720 }
721
722 u32
nouveau_bo_rd32(struct nouveau_bo * nvbo,unsigned index)723 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
724 {
725 bool is_iomem;
726 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
727
728 mem += index;
729
730 if (is_iomem)
731 return ioread32_native((void __force __iomem *)mem);
732 else
733 return *mem;
734 }
735
736 void
nouveau_bo_wr32(struct nouveau_bo * nvbo,unsigned index,u32 val)737 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
738 {
739 bool is_iomem;
740 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
741
742 mem += index;
743
744 if (is_iomem)
745 iowrite32_native(val, (void __force __iomem *)mem);
746 else
747 *mem = val;
748 }
749
750 static struct ttm_tt *
nouveau_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)751 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
752 {
753 #if IS_ENABLED(CONFIG_AGP)
754 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
755
756 if (drm->agp.bridge) {
757 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
758 }
759 #endif
760
761 return nouveau_sgdma_create_ttm(bo, page_flags);
762 }
763
764 static int
nouveau_ttm_tt_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * reg)765 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
766 struct ttm_resource *reg)
767 {
768 #if IS_ENABLED(CONFIG_AGP)
769 struct nouveau_drm *drm = nouveau_bdev(bdev);
770 #endif
771 if (!reg)
772 return -EINVAL;
773 #if IS_ENABLED(CONFIG_AGP)
774 if (drm->agp.bridge)
775 return ttm_agp_bind(ttm, reg);
776 #endif
777 return nouveau_sgdma_bind(bdev, ttm, reg);
778 }
779
780 static void
nouveau_ttm_tt_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)781 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
782 {
783 #if IS_ENABLED(CONFIG_AGP)
784 struct nouveau_drm *drm = nouveau_bdev(bdev);
785
786 if (drm->agp.bridge) {
787 ttm_agp_unbind(ttm);
788 return;
789 }
790 #endif
791 nouveau_sgdma_unbind(bdev, ttm);
792 }
793
794 static void
nouveau_bo_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * pl)795 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
796 {
797 struct nouveau_bo *nvbo = nouveau_bo(bo);
798
799 switch (bo->resource->mem_type) {
800 case TTM_PL_VRAM:
801 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
802 NOUVEAU_GEM_DOMAIN_CPU);
803 break;
804 default:
805 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
806 break;
807 }
808
809 *pl = nvbo->placement;
810 }
811
812 static int
nouveau_bo_move_prep(struct nouveau_drm * drm,struct ttm_buffer_object * bo,struct ttm_resource * reg)813 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
814 struct ttm_resource *reg)
815 {
816 struct nouveau_mem *old_mem = nouveau_mem(bo->resource);
817 struct nouveau_mem *new_mem = nouveau_mem(reg);
818 struct nvif_vmm *vmm = &drm->client.vmm.vmm;
819 int ret;
820
821 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
822 old_mem->mem.size, &old_mem->vma[0]);
823 if (ret)
824 return ret;
825
826 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
827 new_mem->mem.size, &old_mem->vma[1]);
828 if (ret)
829 goto done;
830
831 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
832 if (ret)
833 goto done;
834
835 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
836 done:
837 if (ret) {
838 nvif_vmm_put(vmm, &old_mem->vma[1]);
839 nvif_vmm_put(vmm, &old_mem->vma[0]);
840 }
841 return 0;
842 }
843
844 static int
nouveau_bo_move_m2mf(struct ttm_buffer_object * bo,int evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_reg)845 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
846 struct ttm_operation_ctx *ctx,
847 struct ttm_resource *new_reg)
848 {
849 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
850 struct nouveau_channel *chan = drm->ttm.chan;
851 struct nouveau_cli *cli = (void *)chan->user.client;
852 struct nouveau_fence *fence;
853 int ret;
854
855 /* create temporary vmas for the transfer and attach them to the
856 * old nvkm_mem node, these will get cleaned up after ttm has
857 * destroyed the ttm_resource
858 */
859 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
860 ret = nouveau_bo_move_prep(drm, bo, new_reg);
861 if (ret)
862 return ret;
863 }
864
865 if (drm_drv_uses_atomic_modeset(drm->dev))
866 mutex_lock(&cli->mutex);
867 else
868 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
869
870 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
871 if (ret)
872 goto out_unlock;
873
874 ret = drm->ttm.move(chan, bo, bo->resource, new_reg);
875 if (ret)
876 goto out_unlock;
877
878 ret = nouveau_fence_new(&fence, chan);
879 if (ret)
880 goto out_unlock;
881
882 /* TODO: figure out a better solution here
883 *
884 * wait on the fence here explicitly as going through
885 * ttm_bo_move_accel_cleanup somehow doesn't seem to do it.
886 *
887 * Without this the operation can timeout and we'll fallback to a
888 * software copy, which might take several minutes to finish.
889 */
890 nouveau_fence_wait(fence, false, false);
891 ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false,
892 new_reg);
893 nouveau_fence_unref(&fence);
894
895 out_unlock:
896 mutex_unlock(&cli->mutex);
897 return ret;
898 }
899
900 void
nouveau_bo_move_init(struct nouveau_drm * drm)901 nouveau_bo_move_init(struct nouveau_drm *drm)
902 {
903 static const struct _method_table {
904 const char *name;
905 int engine;
906 s32 oclass;
907 int (*exec)(struct nouveau_channel *,
908 struct ttm_buffer_object *,
909 struct ttm_resource *, struct ttm_resource *);
910 int (*init)(struct nouveau_channel *, u32 handle);
911 } _methods[] = {
912 { "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init },
913 { "GRCE", 0, 0xc7b5, nve0_bo_move_copy, nvc0_bo_move_init },
914 { "COPY", 4, 0xc6b5, nve0_bo_move_copy, nve0_bo_move_init },
915 { "GRCE", 0, 0xc6b5, nve0_bo_move_copy, nvc0_bo_move_init },
916 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
917 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
918 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
919 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
920 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
921 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
922 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
923 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
924 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
925 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
926 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
927 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
928 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
929 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
930 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
931 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
932 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
933 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
934 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
935 {},
936 };
937 const struct _method_table *mthd = _methods;
938 const char *name = "CPU";
939 int ret;
940
941 do {
942 struct nouveau_channel *chan;
943
944 if (mthd->engine)
945 chan = drm->cechan;
946 else
947 chan = drm->channel;
948 if (chan == NULL)
949 continue;
950
951 ret = nvif_object_ctor(&chan->user, "ttmBoMove",
952 mthd->oclass | (mthd->engine << 16),
953 mthd->oclass, NULL, 0,
954 &drm->ttm.copy);
955 if (ret == 0) {
956 ret = mthd->init(chan, drm->ttm.copy.handle);
957 if (ret) {
958 nvif_object_dtor(&drm->ttm.copy);
959 continue;
960 }
961
962 drm->ttm.move = mthd->exec;
963 drm->ttm.chan = chan;
964 name = mthd->name;
965 break;
966 }
967 } while ((++mthd)->exec);
968
969 NV_INFO(drm, "MM: using %s for buffer copies\n", name);
970 }
971
nouveau_bo_move_ntfy(struct ttm_buffer_object * bo,struct ttm_resource * new_reg)972 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo,
973 struct ttm_resource *new_reg)
974 {
975 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
976 struct nouveau_bo *nvbo = nouveau_bo(bo);
977 struct nouveau_vma *vma;
978 long ret;
979
980 /* ttm can now (stupidly) pass the driver bos it didn't create... */
981 if (bo->destroy != nouveau_bo_del_ttm)
982 return;
983
984 nouveau_bo_del_io_reserve_lru(bo);
985
986 if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
987 mem->mem.page == nvbo->page) {
988 list_for_each_entry(vma, &nvbo->vma_list, head) {
989 nouveau_vma_map(vma, mem);
990 }
991 nouveau_uvmm_bo_map_all(nvbo, mem);
992 } else {
993 list_for_each_entry(vma, &nvbo->vma_list, head) {
994 ret = dma_resv_wait_timeout(bo->base.resv,
995 DMA_RESV_USAGE_BOOKKEEP,
996 false, 15 * HZ);
997 WARN_ON(ret <= 0);
998 nouveau_vma_unmap(vma);
999 }
1000 nouveau_uvmm_bo_unmap_all(nvbo);
1001 }
1002
1003 if (new_reg)
1004 nvbo->offset = (new_reg->start << PAGE_SHIFT);
1005
1006 }
1007
1008 static int
nouveau_bo_vm_bind(struct ttm_buffer_object * bo,struct ttm_resource * new_reg,struct nouveau_drm_tile ** new_tile)1009 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
1010 struct nouveau_drm_tile **new_tile)
1011 {
1012 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1013 struct drm_device *dev = drm->dev;
1014 struct nouveau_bo *nvbo = nouveau_bo(bo);
1015 u64 offset = new_reg->start << PAGE_SHIFT;
1016
1017 *new_tile = NULL;
1018 if (new_reg->mem_type != TTM_PL_VRAM)
1019 return 0;
1020
1021 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1022 *new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size,
1023 nvbo->mode, nvbo->zeta);
1024 }
1025
1026 return 0;
1027 }
1028
1029 static void
nouveau_bo_vm_cleanup(struct ttm_buffer_object * bo,struct nouveau_drm_tile * new_tile,struct nouveau_drm_tile ** old_tile)1030 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1031 struct nouveau_drm_tile *new_tile,
1032 struct nouveau_drm_tile **old_tile)
1033 {
1034 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1035 struct drm_device *dev = drm->dev;
1036 struct dma_fence *fence;
1037 int ret;
1038
1039 ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE,
1040 &fence);
1041 if (ret)
1042 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE,
1043 false, MAX_SCHEDULE_TIMEOUT);
1044
1045 nv10_bo_put_tile_region(dev, *old_tile, fence);
1046 *old_tile = new_tile;
1047 }
1048
1049 static int
nouveau_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_reg,struct ttm_place * hop)1050 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1051 struct ttm_operation_ctx *ctx,
1052 struct ttm_resource *new_reg,
1053 struct ttm_place *hop)
1054 {
1055 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1056 struct nouveau_bo *nvbo = nouveau_bo(bo);
1057 struct ttm_resource *old_reg = bo->resource;
1058 struct nouveau_drm_tile *new_tile = NULL;
1059 int ret = 0;
1060
1061
1062 if (new_reg->mem_type == TTM_PL_TT) {
1063 ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
1064 if (ret)
1065 return ret;
1066 }
1067
1068 nouveau_bo_move_ntfy(bo, new_reg);
1069 ret = ttm_bo_wait_ctx(bo, ctx);
1070 if (ret)
1071 goto out_ntfy;
1072
1073 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1074 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1075 if (ret)
1076 goto out_ntfy;
1077 }
1078
1079 /* Fake bo copy. */
1080 if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM &&
1081 !bo->ttm)) {
1082 ttm_bo_move_null(bo, new_reg);
1083 goto out;
1084 }
1085
1086 if (old_reg->mem_type == TTM_PL_SYSTEM &&
1087 new_reg->mem_type == TTM_PL_TT) {
1088 ttm_bo_move_null(bo, new_reg);
1089 goto out;
1090 }
1091
1092 if (old_reg->mem_type == TTM_PL_TT &&
1093 new_reg->mem_type == TTM_PL_SYSTEM) {
1094 nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1095 ttm_resource_free(bo, &bo->resource);
1096 ttm_bo_assign_mem(bo, new_reg);
1097 goto out;
1098 }
1099
1100 /* Hardware assisted copy. */
1101 if (drm->ttm.move) {
1102 if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1103 new_reg->mem_type == TTM_PL_VRAM) ||
1104 (old_reg->mem_type == TTM_PL_VRAM &&
1105 new_reg->mem_type == TTM_PL_SYSTEM)) {
1106 hop->fpfn = 0;
1107 hop->lpfn = 0;
1108 hop->mem_type = TTM_PL_TT;
1109 hop->flags = 0;
1110 return -EMULTIHOP;
1111 }
1112 ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1113 new_reg);
1114 } else
1115 ret = -ENODEV;
1116
1117 if (ret) {
1118 /* Fallback to software copy. */
1119 ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1120 }
1121
1122 out:
1123 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1124 if (ret)
1125 nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1126 else
1127 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1128 }
1129 out_ntfy:
1130 if (ret) {
1131 nouveau_bo_move_ntfy(bo, bo->resource);
1132 }
1133 return ret;
1134 }
1135
1136 static void
nouveau_ttm_io_mem_free_locked(struct nouveau_drm * drm,struct ttm_resource * reg)1137 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1138 struct ttm_resource *reg)
1139 {
1140 struct nouveau_mem *mem = nouveau_mem(reg);
1141
1142 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1143 switch (reg->mem_type) {
1144 case TTM_PL_TT:
1145 if (mem->kind)
1146 nvif_object_unmap_handle(&mem->mem.object);
1147 break;
1148 case TTM_PL_VRAM:
1149 nvif_object_unmap_handle(&mem->mem.object);
1150 break;
1151 default:
1152 break;
1153 }
1154 }
1155 }
1156
1157 static int
nouveau_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * reg)1158 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg)
1159 {
1160 struct nouveau_drm *drm = nouveau_bdev(bdev);
1161 struct nvkm_device *device = nvxx_device(&drm->client.device);
1162 struct nouveau_mem *mem = nouveau_mem(reg);
1163 struct nvif_mmu *mmu = &drm->client.mmu;
1164 int ret;
1165
1166 mutex_lock(&drm->ttm.io_reserve_mutex);
1167 retry:
1168 switch (reg->mem_type) {
1169 case TTM_PL_SYSTEM:
1170 /* System memory */
1171 ret = 0;
1172 goto out;
1173 case TTM_PL_TT:
1174 #if IS_ENABLED(CONFIG_AGP)
1175 if (drm->agp.bridge) {
1176 reg->bus.offset = (reg->start << PAGE_SHIFT) +
1177 drm->agp.base;
1178 reg->bus.is_iomem = !drm->agp.cma;
1179 reg->bus.caching = ttm_write_combined;
1180 }
1181 #endif
1182 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1183 !mem->kind) {
1184 /* untiled */
1185 ret = 0;
1186 break;
1187 }
1188 fallthrough; /* tiled memory */
1189 case TTM_PL_VRAM:
1190 reg->bus.offset = (reg->start << PAGE_SHIFT) +
1191 device->func->resource_addr(device, 1);
1192 reg->bus.is_iomem = true;
1193
1194 /* Some BARs do not support being ioremapped WC */
1195 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1196 mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1197 reg->bus.caching = ttm_uncached;
1198 else
1199 reg->bus.caching = ttm_write_combined;
1200
1201 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1202 union {
1203 struct nv50_mem_map_v0 nv50;
1204 struct gf100_mem_map_v0 gf100;
1205 } args;
1206 u64 handle, length;
1207 u32 argc = 0;
1208
1209 switch (mem->mem.object.oclass) {
1210 case NVIF_CLASS_MEM_NV50:
1211 args.nv50.version = 0;
1212 args.nv50.ro = 0;
1213 args.nv50.kind = mem->kind;
1214 args.nv50.comp = mem->comp;
1215 argc = sizeof(args.nv50);
1216 break;
1217 case NVIF_CLASS_MEM_GF100:
1218 args.gf100.version = 0;
1219 args.gf100.ro = 0;
1220 args.gf100.kind = mem->kind;
1221 argc = sizeof(args.gf100);
1222 break;
1223 default:
1224 WARN_ON(1);
1225 break;
1226 }
1227
1228 ret = nvif_object_map_handle(&mem->mem.object,
1229 &args, argc,
1230 &handle, &length);
1231 if (ret != 1) {
1232 if (WARN_ON(ret == 0))
1233 ret = -EINVAL;
1234 goto out;
1235 }
1236
1237 reg->bus.offset = handle;
1238 }
1239 ret = 0;
1240 break;
1241 default:
1242 ret = -EINVAL;
1243 }
1244
1245 out:
1246 if (ret == -ENOSPC) {
1247 struct nouveau_bo *nvbo;
1248
1249 nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1250 typeof(*nvbo),
1251 io_reserve_lru);
1252 if (nvbo) {
1253 list_del_init(&nvbo->io_reserve_lru);
1254 drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1255 bdev->dev_mapping);
1256 nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource);
1257 goto retry;
1258 }
1259
1260 }
1261 mutex_unlock(&drm->ttm.io_reserve_mutex);
1262 return ret;
1263 }
1264
1265 static void
nouveau_ttm_io_mem_free(struct ttm_device * bdev,struct ttm_resource * reg)1266 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg)
1267 {
1268 struct nouveau_drm *drm = nouveau_bdev(bdev);
1269
1270 mutex_lock(&drm->ttm.io_reserve_mutex);
1271 nouveau_ttm_io_mem_free_locked(drm, reg);
1272 mutex_unlock(&drm->ttm.io_reserve_mutex);
1273 }
1274
nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object * bo)1275 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1276 {
1277 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1278 struct nouveau_bo *nvbo = nouveau_bo(bo);
1279 struct nvkm_device *device = nvxx_device(&drm->client.device);
1280 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1281 int i, ret;
1282
1283 /* as long as the bo isn't in vram, and isn't tiled, we've got
1284 * nothing to do here.
1285 */
1286 if (bo->resource->mem_type != TTM_PL_VRAM) {
1287 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1288 !nvbo->kind)
1289 return 0;
1290
1291 if (bo->resource->mem_type != TTM_PL_SYSTEM)
1292 return 0;
1293
1294 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1295
1296 } else {
1297 /* make sure bo is in mappable vram */
1298 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1299 bo->resource->start + PFN_UP(bo->resource->size) < mappable)
1300 return 0;
1301
1302 for (i = 0; i < nvbo->placement.num_placement; ++i) {
1303 nvbo->placements[i].fpfn = 0;
1304 nvbo->placements[i].lpfn = mappable;
1305 }
1306
1307 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1308 nvbo->busy_placements[i].fpfn = 0;
1309 nvbo->busy_placements[i].lpfn = mappable;
1310 }
1311
1312 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1313 }
1314
1315 ret = nouveau_bo_validate(nvbo, false, false);
1316 if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1317 return VM_FAULT_NOPAGE;
1318 else if (unlikely(ret))
1319 return VM_FAULT_SIGBUS;
1320
1321 ttm_bo_move_to_lru_tail_unlocked(bo);
1322 return 0;
1323 }
1324
1325 static int
nouveau_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1326 nouveau_ttm_tt_populate(struct ttm_device *bdev,
1327 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1328 {
1329 struct ttm_tt *ttm_dma = (void *)ttm;
1330 struct nouveau_drm *drm;
1331 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1332
1333 if (ttm_tt_is_populated(ttm))
1334 return 0;
1335
1336 if (slave && ttm->sg) {
1337 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address,
1338 ttm->num_pages);
1339 return 0;
1340 }
1341
1342 drm = nouveau_bdev(bdev);
1343
1344 return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1345 }
1346
1347 static void
nouveau_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1348 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev,
1349 struct ttm_tt *ttm)
1350 {
1351 struct nouveau_drm *drm;
1352 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1353
1354 if (slave)
1355 return;
1356
1357 nouveau_ttm_tt_unbind(bdev, ttm);
1358
1359 drm = nouveau_bdev(bdev);
1360
1361 return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1362 }
1363
1364 static void
nouveau_ttm_tt_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1365 nouveau_ttm_tt_destroy(struct ttm_device *bdev,
1366 struct ttm_tt *ttm)
1367 {
1368 #if IS_ENABLED(CONFIG_AGP)
1369 struct nouveau_drm *drm = nouveau_bdev(bdev);
1370 if (drm->agp.bridge) {
1371 ttm_agp_destroy(ttm);
1372 return;
1373 }
1374 #endif
1375 nouveau_sgdma_destroy(bdev, ttm);
1376 }
1377
1378 void
nouveau_bo_fence(struct nouveau_bo * nvbo,struct nouveau_fence * fence,bool exclusive)1379 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1380 {
1381 struct dma_resv *resv = nvbo->bo.base.resv;
1382
1383 if (!fence)
1384 return;
1385
1386 dma_resv_add_fence(resv, &fence->base, exclusive ?
1387 DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ);
1388 }
1389
1390 static void
nouveau_bo_delete_mem_notify(struct ttm_buffer_object * bo)1391 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1392 {
1393 nouveau_bo_move_ntfy(bo, NULL);
1394 }
1395
1396 struct ttm_device_funcs nouveau_bo_driver = {
1397 .ttm_tt_create = &nouveau_ttm_tt_create,
1398 .ttm_tt_populate = &nouveau_ttm_tt_populate,
1399 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1400 .ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1401 .eviction_valuable = ttm_bo_eviction_valuable,
1402 .evict_flags = nouveau_bo_evict_flags,
1403 .delete_mem_notify = nouveau_bo_delete_mem_notify,
1404 .move = nouveau_bo_move,
1405 .io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1406 .io_mem_free = &nouveau_ttm_io_mem_free,
1407 };
1408