1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44 #define NVME_MAX_KB_SZ 4096
45 #define NVME_MAX_SEGS 127
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 "Use SGLs when average request segment size is larger or equal to "
63 "this size. Use 0 to disable SGLs.");
64
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 .set = io_queue_depth_set,
70 .get = param_get_uint,
71 };
72
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76
io_queue_count_set(const char * val,const struct kernel_param * kp)77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 unsigned int n;
80 int ret;
81
82 ret = kstrtouint(val, 10, &n);
83 if (ret != 0 || n > num_possible_cpus())
84 return -EINVAL;
85 return param_set_uint(val, kp);
86 }
87
88 static const struct kernel_param_ops io_queue_count_ops = {
89 .set = io_queue_count_set,
90 .get = param_get_uint,
91 };
92
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 "Number of queues to use for writes. If not set, reads and writes "
97 "will share a queue set.");
98
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106
107 struct nvme_dev;
108 struct nvme_queue;
109
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112
113 /*
114 * Represents an NVM Express device. Each nvme_dev is a PCI function.
115 */
116 struct nvme_dev {
117 struct nvme_queue *queues;
118 struct blk_mq_tag_set tagset;
119 struct blk_mq_tag_set admin_tagset;
120 u32 __iomem *dbs;
121 struct device *dev;
122 struct dma_pool *prp_page_pool;
123 struct dma_pool *prp_small_pool;
124 unsigned online_queues;
125 unsigned max_qid;
126 unsigned io_queues[HCTX_MAX_TYPES];
127 unsigned int num_vecs;
128 u32 q_depth;
129 int io_sqes;
130 u32 db_stride;
131 void __iomem *bar;
132 unsigned long bar_mapped_size;
133 struct work_struct remove_work;
134 struct mutex shutdown_lock;
135 bool subsystem;
136 u64 cmb_size;
137 bool cmb_use_sqes;
138 u32 cmbsz;
139 u32 cmbloc;
140 struct nvme_ctrl ctrl;
141 u32 last_ps;
142 bool hmb;
143
144 mempool_t *iod_mempool;
145
146 /* shadow doorbell buffer support: */
147 u32 *dbbuf_dbs;
148 dma_addr_t dbbuf_dbs_dma_addr;
149 u32 *dbbuf_eis;
150 dma_addr_t dbbuf_eis_dma_addr;
151
152 /* host memory buffer support: */
153 u64 host_mem_size;
154 u32 nr_host_mem_descs;
155 dma_addr_t host_mem_descs_dma;
156 struct nvme_host_mem_buf_desc *host_mem_descs;
157 void **host_mem_desc_bufs;
158 unsigned int nr_allocated_queues;
159 unsigned int nr_write_queues;
160 unsigned int nr_poll_queues;
161
162 bool attrs_added;
163 };
164
io_queue_depth_set(const char * val,const struct kernel_param * kp)165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 NVME_PCI_MAX_QUEUE_SIZE);
169 }
170
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 return qid * 2 * stride;
174 }
175
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 return (qid * 2 + 1) * stride;
179 }
180
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190 struct nvme_queue {
191 struct nvme_dev *dev;
192 spinlock_t sq_lock;
193 void *sq_cmds;
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 struct nvme_completion *cqes;
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
199 u32 __iomem *q_db;
200 u32 q_depth;
201 u16 cq_vector;
202 u16 sq_tail;
203 u16 last_sq_tail;
204 u16 cq_head;
205 u16 qid;
206 u8 cq_phase;
207 u8 sqes;
208 unsigned long flags;
209 #define NVMEQ_ENABLED 0
210 #define NVMEQ_SQ_CMB 1
211 #define NVMEQ_DELETE_ERROR 2
212 #define NVMEQ_POLLED 3
213 u32 *dbbuf_sq_db;
214 u32 *dbbuf_cq_db;
215 u32 *dbbuf_sq_ei;
216 u32 *dbbuf_cq_ei;
217 struct completion delete_done;
218 };
219
220 /*
221 * The nvme_iod describes the data in an I/O.
222 *
223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224 * to the actual struct scatterlist.
225 */
226 struct nvme_iod {
227 struct nvme_request req;
228 struct nvme_command cmd;
229 bool use_sgl;
230 bool aborted;
231 s8 nr_allocations; /* PRP list pool allocations. 0 means small
232 pool in use */
233 unsigned int dma_len; /* length of single DMA segment mapping */
234 dma_addr_t first_dma;
235 dma_addr_t meta_dma;
236 struct sg_table sgt;
237 };
238
nvme_dbbuf_size(struct nvme_dev * dev)239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 unsigned int mem_size = nvme_dbbuf_size(dev);
247
248 if (dev->dbbuf_dbs) {
249 /*
250 * Clear the dbbuf memory so the driver doesn't observe stale
251 * values from the previous instantiation.
252 */
253 memset(dev->dbbuf_dbs, 0, mem_size);
254 memset(dev->dbbuf_eis, 0, mem_size);
255 return 0;
256 }
257
258 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259 &dev->dbbuf_dbs_dma_addr,
260 GFP_KERNEL);
261 if (!dev->dbbuf_dbs)
262 return -ENOMEM;
263 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264 &dev->dbbuf_eis_dma_addr,
265 GFP_KERNEL);
266 if (!dev->dbbuf_eis) {
267 dma_free_coherent(dev->dev, mem_size,
268 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269 dev->dbbuf_dbs = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275
nvme_dbbuf_dma_free(struct nvme_dev * dev)276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278 unsigned int mem_size = nvme_dbbuf_size(dev);
279
280 if (dev->dbbuf_dbs) {
281 dma_free_coherent(dev->dev, mem_size,
282 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 dev->dbbuf_dbs = NULL;
284 }
285 if (dev->dbbuf_eis) {
286 dma_free_coherent(dev->dev, mem_size,
287 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288 dev->dbbuf_eis = NULL;
289 }
290 }
291
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293 struct nvme_queue *nvmeq, int qid)
294 {
295 if (!dev->dbbuf_dbs || !qid)
296 return;
297
298 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303
nvme_dbbuf_free(struct nvme_queue * nvmeq)304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306 if (!nvmeq->qid)
307 return;
308
309 nvmeq->dbbuf_sq_db = NULL;
310 nvmeq->dbbuf_cq_db = NULL;
311 nvmeq->dbbuf_sq_ei = NULL;
312 nvmeq->dbbuf_cq_ei = NULL;
313 }
314
nvme_dbbuf_set(struct nvme_dev * dev)315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317 struct nvme_command c = { };
318 unsigned int i;
319
320 if (!dev->dbbuf_dbs)
321 return;
322
323 c.dbbuf.opcode = nvme_admin_dbbuf;
324 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326
327 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329 /* Free memory and continue on */
330 nvme_dbbuf_dma_free(dev);
331
332 for (i = 1; i <= dev->online_queues; i++)
333 nvme_dbbuf_free(&dev->queues[i]);
334 }
335 }
336
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341
342 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,u32 * dbbuf_db,volatile u32 * dbbuf_ei)343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 volatile u32 *dbbuf_ei)
345 {
346 if (dbbuf_db) {
347 u16 old_value;
348
349 /*
350 * Ensure that the queue is written before updating
351 * the doorbell in memory
352 */
353 wmb();
354
355 old_value = *dbbuf_db;
356 *dbbuf_db = value;
357
358 /*
359 * Ensure that the doorbell is updated before reading the event
360 * index from memory. The controller needs to provide similar
361 * ordering to ensure the envent index is updated before reading
362 * the doorbell.
363 */
364 mb();
365
366 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 return false;
368 }
369
370 return true;
371 }
372
373 /*
374 * Will slightly overestimate the number of pages needed. This is OK
375 * as it only leads to a small amount of wasted memory for the lifetime of
376 * the I/O.
377 */
nvme_pci_npages_prp(void)378 static int nvme_pci_npages_prp(void)
379 {
380 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381 NVME_CTRL_PAGE_SIZE);
382 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384
385 /*
386 * Calculates the number of pages needed for the SGL segments. For example a 4k
387 * page can accommodate 256 SGL descriptors.
388 */
nvme_pci_npages_sgl(void)389 static int nvme_pci_npages_sgl(void)
390 {
391 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392 PAGE_SIZE);
393 }
394
nvme_pci_iod_alloc_size(void)395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398
399 return sizeof(__le64 *) * npages +
400 sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 unsigned int hctx_idx)
405 {
406 struct nvme_dev *dev = data;
407 struct nvme_queue *nvmeq = &dev->queues[0];
408
409 WARN_ON(hctx_idx != 0);
410 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411
412 hctx->driver_data = nvmeq;
413 return 0;
414 }
415
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417 unsigned int hctx_idx)
418 {
419 struct nvme_dev *dev = data;
420 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421
422 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423 hctx->driver_data = nvmeq;
424 return 0;
425 }
426
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
428 struct request *req, unsigned int hctx_idx,
429 unsigned int numa_node)
430 {
431 struct nvme_dev *dev = set->driver_data;
432 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433
434 nvme_req(req)->ctrl = &dev->ctrl;
435 nvme_req(req)->cmd = &iod->cmd;
436 return 0;
437 }
438
queue_irq_offset(struct nvme_dev * dev)439 static int queue_irq_offset(struct nvme_dev *dev)
440 {
441 /* if we have more than 1 vec, admin queue offsets us by 1 */
442 if (dev->num_vecs > 1)
443 return 1;
444
445 return 0;
446 }
447
nvme_pci_map_queues(struct blk_mq_tag_set * set)448 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
449 {
450 struct nvme_dev *dev = set->driver_data;
451 int i, qoff, offset;
452
453 offset = queue_irq_offset(dev);
454 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
455 struct blk_mq_queue_map *map = &set->map[i];
456
457 map->nr_queues = dev->io_queues[i];
458 if (!map->nr_queues) {
459 BUG_ON(i == HCTX_TYPE_DEFAULT);
460 continue;
461 }
462
463 /*
464 * The poll queue(s) doesn't have an IRQ (and hence IRQ
465 * affinity), so use the regular blk-mq cpu mapping
466 */
467 map->queue_offset = qoff;
468 if (i != HCTX_TYPE_POLL && offset)
469 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
470 else
471 blk_mq_map_queues(map);
472 qoff += map->nr_queues;
473 offset += map->nr_queues;
474 }
475 }
476
477 /*
478 * Write sq tail if we are asked to, or if the next command would wrap.
479 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482 if (!write_sq) {
483 u16 next_tail = nvmeq->sq_tail + 1;
484
485 if (next_tail == nvmeq->q_depth)
486 next_tail = 0;
487 if (next_tail != nvmeq->last_sq_tail)
488 return;
489 }
490
491 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493 writel(nvmeq->sq_tail, nvmeq->q_db);
494 nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)497 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
498 struct nvme_command *cmd)
499 {
500 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
501 absolute_pointer(cmd), sizeof(*cmd));
502 if (++nvmeq->sq_tail == nvmeq->q_depth)
503 nvmeq->sq_tail = 0;
504 }
505
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)506 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
507 {
508 struct nvme_queue *nvmeq = hctx->driver_data;
509
510 spin_lock(&nvmeq->sq_lock);
511 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
512 nvme_write_sq_db(nvmeq, true);
513 spin_unlock(&nvmeq->sq_lock);
514 }
515
nvme_pci_iod_list(struct request * req)516 static void **nvme_pci_iod_list(struct request *req)
517 {
518 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
519 return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
520 }
521
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)522 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
523 {
524 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 int nseg = blk_rq_nr_phys_segments(req);
526 unsigned int avg_seg_size;
527
528 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
529
530 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
531 return false;
532 if (!nvmeq->qid)
533 return false;
534 if (!sgl_threshold || avg_seg_size < sgl_threshold)
535 return false;
536 return true;
537 }
538
nvme_free_prps(struct nvme_dev * dev,struct request * req)539 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
540 {
541 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 dma_addr_t dma_addr = iod->first_dma;
544 int i;
545
546 for (i = 0; i < iod->nr_allocations; i++) {
547 __le64 *prp_list = nvme_pci_iod_list(req)[i];
548 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
549
550 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
551 dma_addr = next_dma_addr;
552 }
553 }
554
nvme_free_sgls(struct nvme_dev * dev,struct request * req)555 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
556 {
557 const int last_sg = SGES_PER_PAGE - 1;
558 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559 dma_addr_t dma_addr = iod->first_dma;
560 int i;
561
562 for (i = 0; i < iod->nr_allocations; i++) {
563 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
564 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
565
566 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
567 dma_addr = next_dma_addr;
568 }
569 }
570
nvme_unmap_data(struct nvme_dev * dev,struct request * req)571 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
572 {
573 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
574
575 if (iod->dma_len) {
576 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
577 rq_dma_dir(req));
578 return;
579 }
580
581 WARN_ON_ONCE(!iod->sgt.nents);
582
583 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
584
585 if (iod->nr_allocations == 0)
586 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
587 iod->first_dma);
588 else if (iod->use_sgl)
589 nvme_free_sgls(dev, req);
590 else
591 nvme_free_prps(dev, req);
592 mempool_free(iod->sgt.sgl, dev->iod_mempool);
593 }
594
nvme_print_sgl(struct scatterlist * sgl,int nents)595 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
596 {
597 int i;
598 struct scatterlist *sg;
599
600 for_each_sg(sgl, sg, nents, i) {
601 dma_addr_t phys = sg_phys(sg);
602 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
603 "dma_address:%pad dma_length:%d\n",
604 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
605 sg_dma_len(sg));
606 }
607 }
608
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)609 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
610 struct request *req, struct nvme_rw_command *cmnd)
611 {
612 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
613 struct dma_pool *pool;
614 int length = blk_rq_payload_bytes(req);
615 struct scatterlist *sg = iod->sgt.sgl;
616 int dma_len = sg_dma_len(sg);
617 u64 dma_addr = sg_dma_address(sg);
618 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
619 __le64 *prp_list;
620 void **list = nvme_pci_iod_list(req);
621 dma_addr_t prp_dma;
622 int nprps, i;
623
624 length -= (NVME_CTRL_PAGE_SIZE - offset);
625 if (length <= 0) {
626 iod->first_dma = 0;
627 goto done;
628 }
629
630 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
631 if (dma_len) {
632 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
633 } else {
634 sg = sg_next(sg);
635 dma_addr = sg_dma_address(sg);
636 dma_len = sg_dma_len(sg);
637 }
638
639 if (length <= NVME_CTRL_PAGE_SIZE) {
640 iod->first_dma = dma_addr;
641 goto done;
642 }
643
644 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
645 if (nprps <= (256 / 8)) {
646 pool = dev->prp_small_pool;
647 iod->nr_allocations = 0;
648 } else {
649 pool = dev->prp_page_pool;
650 iod->nr_allocations = 1;
651 }
652
653 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
654 if (!prp_list) {
655 iod->nr_allocations = -1;
656 return BLK_STS_RESOURCE;
657 }
658 list[0] = prp_list;
659 iod->first_dma = prp_dma;
660 i = 0;
661 for (;;) {
662 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
663 __le64 *old_prp_list = prp_list;
664 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
665 if (!prp_list)
666 goto free_prps;
667 list[iod->nr_allocations++] = prp_list;
668 prp_list[0] = old_prp_list[i - 1];
669 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
670 i = 1;
671 }
672 prp_list[i++] = cpu_to_le64(dma_addr);
673 dma_len -= NVME_CTRL_PAGE_SIZE;
674 dma_addr += NVME_CTRL_PAGE_SIZE;
675 length -= NVME_CTRL_PAGE_SIZE;
676 if (length <= 0)
677 break;
678 if (dma_len > 0)
679 continue;
680 if (unlikely(dma_len < 0))
681 goto bad_sgl;
682 sg = sg_next(sg);
683 dma_addr = sg_dma_address(sg);
684 dma_len = sg_dma_len(sg);
685 }
686 done:
687 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
688 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
689 return BLK_STS_OK;
690 free_prps:
691 nvme_free_prps(dev, req);
692 return BLK_STS_RESOURCE;
693 bad_sgl:
694 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
695 "Invalid SGL for payload:%d nents:%d\n",
696 blk_rq_payload_bytes(req), iod->sgt.nents);
697 return BLK_STS_IOERR;
698 }
699
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)700 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
701 struct scatterlist *sg)
702 {
703 sge->addr = cpu_to_le64(sg_dma_address(sg));
704 sge->length = cpu_to_le32(sg_dma_len(sg));
705 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
706 }
707
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)708 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
709 dma_addr_t dma_addr, int entries)
710 {
711 sge->addr = cpu_to_le64(dma_addr);
712 if (entries < SGES_PER_PAGE) {
713 sge->length = cpu_to_le32(entries * sizeof(*sge));
714 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
715 } else {
716 sge->length = cpu_to_le32(PAGE_SIZE);
717 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
718 }
719 }
720
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)721 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
722 struct request *req, struct nvme_rw_command *cmd)
723 {
724 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
725 struct dma_pool *pool;
726 struct nvme_sgl_desc *sg_list;
727 struct scatterlist *sg = iod->sgt.sgl;
728 unsigned int entries = iod->sgt.nents;
729 dma_addr_t sgl_dma;
730 int i = 0;
731
732 /* setting the transfer type as SGL */
733 cmd->flags = NVME_CMD_SGL_METABUF;
734
735 if (entries == 1) {
736 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
737 return BLK_STS_OK;
738 }
739
740 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
741 pool = dev->prp_small_pool;
742 iod->nr_allocations = 0;
743 } else {
744 pool = dev->prp_page_pool;
745 iod->nr_allocations = 1;
746 }
747
748 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
749 if (!sg_list) {
750 iod->nr_allocations = -1;
751 return BLK_STS_RESOURCE;
752 }
753
754 nvme_pci_iod_list(req)[0] = sg_list;
755 iod->first_dma = sgl_dma;
756
757 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
758
759 do {
760 if (i == SGES_PER_PAGE) {
761 struct nvme_sgl_desc *old_sg_desc = sg_list;
762 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
763
764 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
765 if (!sg_list)
766 goto free_sgls;
767
768 i = 0;
769 nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
770 sg_list[i++] = *link;
771 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
772 }
773
774 nvme_pci_sgl_set_data(&sg_list[i++], sg);
775 sg = sg_next(sg);
776 } while (--entries > 0);
777
778 return BLK_STS_OK;
779 free_sgls:
780 nvme_free_sgls(dev, req);
781 return BLK_STS_RESOURCE;
782 }
783
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)784 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
785 struct request *req, struct nvme_rw_command *cmnd,
786 struct bio_vec *bv)
787 {
788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
790 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
791
792 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
793 if (dma_mapping_error(dev->dev, iod->first_dma))
794 return BLK_STS_RESOURCE;
795 iod->dma_len = bv->bv_len;
796
797 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
798 if (bv->bv_len > first_prp_len)
799 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
800 else
801 cmnd->dptr.prp2 = 0;
802 return BLK_STS_OK;
803 }
804
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)805 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
806 struct request *req, struct nvme_rw_command *cmnd,
807 struct bio_vec *bv)
808 {
809 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
810
811 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
812 if (dma_mapping_error(dev->dev, iod->first_dma))
813 return BLK_STS_RESOURCE;
814 iod->dma_len = bv->bv_len;
815
816 cmnd->flags = NVME_CMD_SGL_METABUF;
817 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
818 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
819 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
820 return BLK_STS_OK;
821 }
822
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)823 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
824 struct nvme_command *cmnd)
825 {
826 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827 blk_status_t ret = BLK_STS_RESOURCE;
828 int rc;
829
830 if (blk_rq_nr_phys_segments(req) == 1) {
831 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
832 struct bio_vec bv = req_bvec(req);
833
834 if (!is_pci_p2pdma_page(bv.bv_page)) {
835 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
836 return nvme_setup_prp_simple(dev, req,
837 &cmnd->rw, &bv);
838
839 if (nvmeq->qid && sgl_threshold &&
840 nvme_ctrl_sgl_supported(&dev->ctrl))
841 return nvme_setup_sgl_simple(dev, req,
842 &cmnd->rw, &bv);
843 }
844 }
845
846 iod->dma_len = 0;
847 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
848 if (!iod->sgt.sgl)
849 return BLK_STS_RESOURCE;
850 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
851 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
852 if (!iod->sgt.orig_nents)
853 goto out_free_sg;
854
855 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
856 DMA_ATTR_NO_WARN);
857 if (rc) {
858 if (rc == -EREMOTEIO)
859 ret = BLK_STS_TARGET;
860 goto out_free_sg;
861 }
862
863 iod->use_sgl = nvme_pci_use_sgls(dev, req);
864 if (iod->use_sgl)
865 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
866 else
867 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
868 if (ret != BLK_STS_OK)
869 goto out_unmap_sg;
870 return BLK_STS_OK;
871
872 out_unmap_sg:
873 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
874 out_free_sg:
875 mempool_free(iod->sgt.sgl, dev->iod_mempool);
876 return ret;
877 }
878
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)879 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
880 struct nvme_command *cmnd)
881 {
882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883
884 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
885 rq_dma_dir(req), 0);
886 if (dma_mapping_error(dev->dev, iod->meta_dma))
887 return BLK_STS_IOERR;
888 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
889 return BLK_STS_OK;
890 }
891
nvme_prep_rq(struct nvme_dev * dev,struct request * req)892 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
893 {
894 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
895 blk_status_t ret;
896
897 iod->aborted = false;
898 iod->nr_allocations = -1;
899 iod->sgt.nents = 0;
900
901 ret = nvme_setup_cmd(req->q->queuedata, req);
902 if (ret)
903 return ret;
904
905 if (blk_rq_nr_phys_segments(req)) {
906 ret = nvme_map_data(dev, req, &iod->cmd);
907 if (ret)
908 goto out_free_cmd;
909 }
910
911 if (blk_integrity_rq(req)) {
912 ret = nvme_map_metadata(dev, req, &iod->cmd);
913 if (ret)
914 goto out_unmap_data;
915 }
916
917 blk_mq_start_request(req);
918 return BLK_STS_OK;
919 out_unmap_data:
920 nvme_unmap_data(dev, req);
921 out_free_cmd:
922 nvme_cleanup_cmd(req);
923 return ret;
924 }
925
926 /*
927 * NOTE: ns is NULL when called on the admin queue.
928 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)929 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
930 const struct blk_mq_queue_data *bd)
931 {
932 struct nvme_queue *nvmeq = hctx->driver_data;
933 struct nvme_dev *dev = nvmeq->dev;
934 struct request *req = bd->rq;
935 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
936 blk_status_t ret;
937
938 /*
939 * We should not need to do this, but we're still using this to
940 * ensure we can drain requests on a dying queue.
941 */
942 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
943 return BLK_STS_IOERR;
944
945 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
946 return nvme_fail_nonready_command(&dev->ctrl, req);
947
948 ret = nvme_prep_rq(dev, req);
949 if (unlikely(ret))
950 return ret;
951 spin_lock(&nvmeq->sq_lock);
952 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
953 nvme_write_sq_db(nvmeq, bd->last);
954 spin_unlock(&nvmeq->sq_lock);
955 return BLK_STS_OK;
956 }
957
nvme_submit_cmds(struct nvme_queue * nvmeq,struct request ** rqlist)958 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
959 {
960 spin_lock(&nvmeq->sq_lock);
961 while (!rq_list_empty(*rqlist)) {
962 struct request *req = rq_list_pop(rqlist);
963 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
964
965 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
966 }
967 nvme_write_sq_db(nvmeq, true);
968 spin_unlock(&nvmeq->sq_lock);
969 }
970
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)971 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
972 {
973 /*
974 * We should not need to do this, but we're still using this to
975 * ensure we can drain requests on a dying queue.
976 */
977 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
978 return false;
979 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
980 return false;
981
982 req->mq_hctx->tags->rqs[req->tag] = req;
983 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
984 }
985
nvme_queue_rqs(struct request ** rqlist)986 static void nvme_queue_rqs(struct request **rqlist)
987 {
988 struct request *req, *next, *prev = NULL;
989 struct request *requeue_list = NULL;
990
991 rq_list_for_each_safe(rqlist, req, next) {
992 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
993
994 if (!nvme_prep_rq_batch(nvmeq, req)) {
995 /* detach 'req' and add to remainder list */
996 rq_list_move(rqlist, &requeue_list, req, prev);
997
998 req = prev;
999 if (!req)
1000 continue;
1001 }
1002
1003 if (!next || req->mq_hctx != next->mq_hctx) {
1004 /* detach rest of list, and submit */
1005 req->rq_next = NULL;
1006 nvme_submit_cmds(nvmeq, rqlist);
1007 *rqlist = next;
1008 prev = NULL;
1009 } else
1010 prev = req;
1011 }
1012
1013 *rqlist = requeue_list;
1014 }
1015
nvme_pci_unmap_rq(struct request * req)1016 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1017 {
1018 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1019 struct nvme_dev *dev = nvmeq->dev;
1020
1021 if (blk_integrity_rq(req)) {
1022 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1023
1024 dma_unmap_page(dev->dev, iod->meta_dma,
1025 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1026 }
1027
1028 if (blk_rq_nr_phys_segments(req))
1029 nvme_unmap_data(dev, req);
1030 }
1031
nvme_pci_complete_rq(struct request * req)1032 static void nvme_pci_complete_rq(struct request *req)
1033 {
1034 nvme_pci_unmap_rq(req);
1035 nvme_complete_rq(req);
1036 }
1037
nvme_pci_complete_batch(struct io_comp_batch * iob)1038 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1039 {
1040 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1041 }
1042
1043 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1044 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1045 {
1046 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1047
1048 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1049 }
1050
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1051 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1052 {
1053 u16 head = nvmeq->cq_head;
1054
1055 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1056 nvmeq->dbbuf_cq_ei))
1057 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1058 }
1059
nvme_queue_tagset(struct nvme_queue * nvmeq)1060 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1061 {
1062 if (!nvmeq->qid)
1063 return nvmeq->dev->admin_tagset.tags[0];
1064 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1065 }
1066
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1067 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1068 struct io_comp_batch *iob, u16 idx)
1069 {
1070 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1071 __u16 command_id = READ_ONCE(cqe->command_id);
1072 struct request *req;
1073
1074 /*
1075 * AEN requests are special as they don't time out and can
1076 * survive any kind of queue freeze and often don't respond to
1077 * aborts. We don't even bother to allocate a struct request
1078 * for them but rather special case them here.
1079 */
1080 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1081 nvme_complete_async_event(&nvmeq->dev->ctrl,
1082 cqe->status, &cqe->result);
1083 return;
1084 }
1085
1086 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1087 if (unlikely(!req)) {
1088 dev_warn(nvmeq->dev->ctrl.device,
1089 "invalid id %d completed on queue %d\n",
1090 command_id, le16_to_cpu(cqe->sq_id));
1091 return;
1092 }
1093
1094 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1095 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1096 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1097 nvme_pci_complete_batch))
1098 nvme_pci_complete_rq(req);
1099 }
1100
nvme_update_cq_head(struct nvme_queue * nvmeq)1101 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1102 {
1103 u32 tmp = nvmeq->cq_head + 1;
1104
1105 if (tmp == nvmeq->q_depth) {
1106 nvmeq->cq_head = 0;
1107 nvmeq->cq_phase ^= 1;
1108 } else {
1109 nvmeq->cq_head = tmp;
1110 }
1111 }
1112
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1113 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1114 struct io_comp_batch *iob)
1115 {
1116 int found = 0;
1117
1118 while (nvme_cqe_pending(nvmeq)) {
1119 found++;
1120 /*
1121 * load-load control dependency between phase and the rest of
1122 * the cqe requires a full read memory barrier
1123 */
1124 dma_rmb();
1125 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1126 nvme_update_cq_head(nvmeq);
1127 }
1128
1129 if (found)
1130 nvme_ring_cq_doorbell(nvmeq);
1131 return found;
1132 }
1133
nvme_irq(int irq,void * data)1134 static irqreturn_t nvme_irq(int irq, void *data)
1135 {
1136 struct nvme_queue *nvmeq = data;
1137 DEFINE_IO_COMP_BATCH(iob);
1138
1139 if (nvme_poll_cq(nvmeq, &iob)) {
1140 if (!rq_list_empty(iob.req_list))
1141 nvme_pci_complete_batch(&iob);
1142 return IRQ_HANDLED;
1143 }
1144 return IRQ_NONE;
1145 }
1146
nvme_irq_check(int irq,void * data)1147 static irqreturn_t nvme_irq_check(int irq, void *data)
1148 {
1149 struct nvme_queue *nvmeq = data;
1150
1151 if (nvme_cqe_pending(nvmeq))
1152 return IRQ_WAKE_THREAD;
1153 return IRQ_NONE;
1154 }
1155
1156 /*
1157 * Poll for completions for any interrupt driven queue
1158 * Can be called from any context.
1159 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1160 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1161 {
1162 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1163
1164 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1165
1166 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 nvme_poll_cq(nvmeq, NULL);
1168 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1169 }
1170
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1171 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1172 {
1173 struct nvme_queue *nvmeq = hctx->driver_data;
1174 bool found;
1175
1176 if (!nvme_cqe_pending(nvmeq))
1177 return 0;
1178
1179 spin_lock(&nvmeq->cq_poll_lock);
1180 found = nvme_poll_cq(nvmeq, iob);
1181 spin_unlock(&nvmeq->cq_poll_lock);
1182
1183 return found;
1184 }
1185
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1186 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1187 {
1188 struct nvme_dev *dev = to_nvme_dev(ctrl);
1189 struct nvme_queue *nvmeq = &dev->queues[0];
1190 struct nvme_command c = { };
1191
1192 c.common.opcode = nvme_admin_async_event;
1193 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1194
1195 spin_lock(&nvmeq->sq_lock);
1196 nvme_sq_copy_cmd(nvmeq, &c);
1197 nvme_write_sq_db(nvmeq, true);
1198 spin_unlock(&nvmeq->sq_lock);
1199 }
1200
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1201 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1202 {
1203 struct nvme_command c = { };
1204
1205 c.delete_queue.opcode = opcode;
1206 c.delete_queue.qid = cpu_to_le16(id);
1207
1208 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1209 }
1210
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1211 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1212 struct nvme_queue *nvmeq, s16 vector)
1213 {
1214 struct nvme_command c = { };
1215 int flags = NVME_QUEUE_PHYS_CONTIG;
1216
1217 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1218 flags |= NVME_CQ_IRQ_ENABLED;
1219
1220 /*
1221 * Note: we (ab)use the fact that the prp fields survive if no data
1222 * is attached to the request.
1223 */
1224 c.create_cq.opcode = nvme_admin_create_cq;
1225 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1226 c.create_cq.cqid = cpu_to_le16(qid);
1227 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1228 c.create_cq.cq_flags = cpu_to_le16(flags);
1229 c.create_cq.irq_vector = cpu_to_le16(vector);
1230
1231 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1232 }
1233
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1234 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1235 struct nvme_queue *nvmeq)
1236 {
1237 struct nvme_ctrl *ctrl = &dev->ctrl;
1238 struct nvme_command c = { };
1239 int flags = NVME_QUEUE_PHYS_CONTIG;
1240
1241 /*
1242 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1243 * set. Since URGENT priority is zeroes, it makes all queues
1244 * URGENT.
1245 */
1246 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1247 flags |= NVME_SQ_PRIO_MEDIUM;
1248
1249 /*
1250 * Note: we (ab)use the fact that the prp fields survive if no data
1251 * is attached to the request.
1252 */
1253 c.create_sq.opcode = nvme_admin_create_sq;
1254 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1255 c.create_sq.sqid = cpu_to_le16(qid);
1256 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1257 c.create_sq.sq_flags = cpu_to_le16(flags);
1258 c.create_sq.cqid = cpu_to_le16(qid);
1259
1260 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1261 }
1262
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1263 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1264 {
1265 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1266 }
1267
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1268 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1269 {
1270 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1271 }
1272
abort_endio(struct request * req,blk_status_t error)1273 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1274 {
1275 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1276
1277 dev_warn(nvmeq->dev->ctrl.device,
1278 "Abort status: 0x%x", nvme_req(req)->status);
1279 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1280 blk_mq_free_request(req);
1281 return RQ_END_IO_NONE;
1282 }
1283
nvme_should_reset(struct nvme_dev * dev,u32 csts)1284 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1285 {
1286 /* If true, indicates loss of adapter communication, possibly by a
1287 * NVMe Subsystem reset.
1288 */
1289 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1290
1291 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1292 switch (dev->ctrl.state) {
1293 case NVME_CTRL_RESETTING:
1294 case NVME_CTRL_CONNECTING:
1295 return false;
1296 default:
1297 break;
1298 }
1299
1300 /* We shouldn't reset unless the controller is on fatal error state
1301 * _or_ if we lost the communication with it.
1302 */
1303 if (!(csts & NVME_CSTS_CFS) && !nssro)
1304 return false;
1305
1306 return true;
1307 }
1308
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1309 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1310 {
1311 /* Read a config register to help see what died. */
1312 u16 pci_status;
1313 int result;
1314
1315 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1316 &pci_status);
1317 if (result == PCIBIOS_SUCCESSFUL)
1318 dev_warn(dev->ctrl.device,
1319 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1320 csts, pci_status);
1321 else
1322 dev_warn(dev->ctrl.device,
1323 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1324 csts, result);
1325
1326 if (csts != ~0)
1327 return;
1328
1329 dev_warn(dev->ctrl.device,
1330 "Does your device have a faulty power saving mode enabled?\n");
1331 dev_warn(dev->ctrl.device,
1332 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1333 }
1334
nvme_timeout(struct request * req)1335 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1336 {
1337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1338 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1339 struct nvme_dev *dev = nvmeq->dev;
1340 struct request *abort_req;
1341 struct nvme_command cmd = { };
1342 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1343
1344 /* If PCI error recovery process is happening, we cannot reset or
1345 * the recovery mechanism will surely fail.
1346 */
1347 mb();
1348 if (pci_channel_offline(to_pci_dev(dev->dev)))
1349 return BLK_EH_RESET_TIMER;
1350
1351 /*
1352 * Reset immediately if the controller is failed
1353 */
1354 if (nvme_should_reset(dev, csts)) {
1355 nvme_warn_reset(dev, csts);
1356 nvme_dev_disable(dev, false);
1357 nvme_reset_ctrl(&dev->ctrl);
1358 return BLK_EH_DONE;
1359 }
1360
1361 /*
1362 * Did we miss an interrupt?
1363 */
1364 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1365 nvme_poll(req->mq_hctx, NULL);
1366 else
1367 nvme_poll_irqdisable(nvmeq);
1368
1369 if (blk_mq_request_completed(req)) {
1370 dev_warn(dev->ctrl.device,
1371 "I/O %d QID %d timeout, completion polled\n",
1372 req->tag, nvmeq->qid);
1373 return BLK_EH_DONE;
1374 }
1375
1376 /*
1377 * Shutdown immediately if controller times out while starting. The
1378 * reset work will see the pci device disabled when it gets the forced
1379 * cancellation error. All outstanding requests are completed on
1380 * shutdown, so we return BLK_EH_DONE.
1381 */
1382 switch (dev->ctrl.state) {
1383 case NVME_CTRL_CONNECTING:
1384 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1385 fallthrough;
1386 case NVME_CTRL_DELETING:
1387 dev_warn_ratelimited(dev->ctrl.device,
1388 "I/O %d QID %d timeout, disable controller\n",
1389 req->tag, nvmeq->qid);
1390 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1391 nvme_dev_disable(dev, true);
1392 return BLK_EH_DONE;
1393 case NVME_CTRL_RESETTING:
1394 return BLK_EH_RESET_TIMER;
1395 default:
1396 break;
1397 }
1398
1399 /*
1400 * Shutdown the controller immediately and schedule a reset if the
1401 * command was already aborted once before and still hasn't been
1402 * returned to the driver, or if this is the admin queue.
1403 */
1404 if (!nvmeq->qid || iod->aborted) {
1405 dev_warn(dev->ctrl.device,
1406 "I/O %d QID %d timeout, reset controller\n",
1407 req->tag, nvmeq->qid);
1408 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1409 nvme_dev_disable(dev, false);
1410 nvme_reset_ctrl(&dev->ctrl);
1411
1412 return BLK_EH_DONE;
1413 }
1414
1415 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1416 atomic_inc(&dev->ctrl.abort_limit);
1417 return BLK_EH_RESET_TIMER;
1418 }
1419 iod->aborted = true;
1420
1421 cmd.abort.opcode = nvme_admin_abort_cmd;
1422 cmd.abort.cid = nvme_cid(req);
1423 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1424
1425 dev_warn(nvmeq->dev->ctrl.device,
1426 "I/O %d (%s) QID %d timeout, aborting\n",
1427 req->tag,
1428 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1429 nvmeq->qid);
1430
1431 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1432 BLK_MQ_REQ_NOWAIT);
1433 if (IS_ERR(abort_req)) {
1434 atomic_inc(&dev->ctrl.abort_limit);
1435 return BLK_EH_RESET_TIMER;
1436 }
1437 nvme_init_request(abort_req, &cmd);
1438
1439 abort_req->end_io = abort_endio;
1440 abort_req->end_io_data = NULL;
1441 blk_execute_rq_nowait(abort_req, false);
1442
1443 /*
1444 * The aborted req will be completed on receiving the abort req.
1445 * We enable the timer again. If hit twice, it'll cause a device reset,
1446 * as the device then is in a faulty state.
1447 */
1448 return BLK_EH_RESET_TIMER;
1449 }
1450
nvme_free_queue(struct nvme_queue * nvmeq)1451 static void nvme_free_queue(struct nvme_queue *nvmeq)
1452 {
1453 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1454 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1455 if (!nvmeq->sq_cmds)
1456 return;
1457
1458 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1459 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1460 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1461 } else {
1462 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1463 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1464 }
1465 }
1466
nvme_free_queues(struct nvme_dev * dev,int lowest)1467 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1468 {
1469 int i;
1470
1471 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1472 dev->ctrl.queue_count--;
1473 nvme_free_queue(&dev->queues[i]);
1474 }
1475 }
1476
1477 /**
1478 * nvme_suspend_queue - put queue into suspended state
1479 * @nvmeq: queue to suspend
1480 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1481 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1482 {
1483 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1484 return 1;
1485
1486 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1487 mb();
1488
1489 nvmeq->dev->online_queues--;
1490 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1491 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1492 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1493 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1494 return 0;
1495 }
1496
nvme_suspend_io_queues(struct nvme_dev * dev)1497 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1498 {
1499 int i;
1500
1501 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1502 nvme_suspend_queue(&dev->queues[i]);
1503 }
1504
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1505 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1506 {
1507 struct nvme_queue *nvmeq = &dev->queues[0];
1508
1509 if (shutdown)
1510 nvme_shutdown_ctrl(&dev->ctrl);
1511 else
1512 nvme_disable_ctrl(&dev->ctrl);
1513
1514 nvme_poll_irqdisable(nvmeq);
1515 }
1516
1517 /*
1518 * Called only on a device that has been disabled and after all other threads
1519 * that can check this device's completion queues have synced, except
1520 * nvme_poll(). This is the last chance for the driver to see a natural
1521 * completion before nvme_cancel_request() terminates all incomplete requests.
1522 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1523 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1524 {
1525 int i;
1526
1527 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1528 spin_lock(&dev->queues[i].cq_poll_lock);
1529 nvme_poll_cq(&dev->queues[i], NULL);
1530 spin_unlock(&dev->queues[i].cq_poll_lock);
1531 }
1532 }
1533
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1534 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1535 int entry_size)
1536 {
1537 int q_depth = dev->q_depth;
1538 unsigned q_size_aligned = roundup(q_depth * entry_size,
1539 NVME_CTRL_PAGE_SIZE);
1540
1541 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1542 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1543
1544 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1545 q_depth = div_u64(mem_per_q, entry_size);
1546
1547 /*
1548 * Ensure the reduced q_depth is above some threshold where it
1549 * would be better to map queues in system memory with the
1550 * original depth
1551 */
1552 if (q_depth < 64)
1553 return -ENOMEM;
1554 }
1555
1556 return q_depth;
1557 }
1558
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1559 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1560 int qid)
1561 {
1562 struct pci_dev *pdev = to_pci_dev(dev->dev);
1563
1564 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1565 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1566 if (nvmeq->sq_cmds) {
1567 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1568 nvmeq->sq_cmds);
1569 if (nvmeq->sq_dma_addr) {
1570 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1571 return 0;
1572 }
1573
1574 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1575 }
1576 }
1577
1578 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1579 &nvmeq->sq_dma_addr, GFP_KERNEL);
1580 if (!nvmeq->sq_cmds)
1581 return -ENOMEM;
1582 return 0;
1583 }
1584
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1585 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1586 {
1587 struct nvme_queue *nvmeq = &dev->queues[qid];
1588
1589 if (dev->ctrl.queue_count > qid)
1590 return 0;
1591
1592 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1593 nvmeq->q_depth = depth;
1594 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1595 &nvmeq->cq_dma_addr, GFP_KERNEL);
1596 if (!nvmeq->cqes)
1597 goto free_nvmeq;
1598
1599 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1600 goto free_cqdma;
1601
1602 nvmeq->dev = dev;
1603 spin_lock_init(&nvmeq->sq_lock);
1604 spin_lock_init(&nvmeq->cq_poll_lock);
1605 nvmeq->cq_head = 0;
1606 nvmeq->cq_phase = 1;
1607 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1608 nvmeq->qid = qid;
1609 dev->ctrl.queue_count++;
1610
1611 return 0;
1612
1613 free_cqdma:
1614 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1615 nvmeq->cq_dma_addr);
1616 free_nvmeq:
1617 return -ENOMEM;
1618 }
1619
queue_request_irq(struct nvme_queue * nvmeq)1620 static int queue_request_irq(struct nvme_queue *nvmeq)
1621 {
1622 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1623 int nr = nvmeq->dev->ctrl.instance;
1624
1625 if (use_threaded_interrupts) {
1626 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1627 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1628 } else {
1629 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1630 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1631 }
1632 }
1633
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1634 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1635 {
1636 struct nvme_dev *dev = nvmeq->dev;
1637
1638 nvmeq->sq_tail = 0;
1639 nvmeq->last_sq_tail = 0;
1640 nvmeq->cq_head = 0;
1641 nvmeq->cq_phase = 1;
1642 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1643 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1644 nvme_dbbuf_init(dev, nvmeq, qid);
1645 dev->online_queues++;
1646 wmb(); /* ensure the first interrupt sees the initialization */
1647 }
1648
1649 /*
1650 * Try getting shutdown_lock while setting up IO queues.
1651 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1652 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1653 {
1654 /*
1655 * Give up if the lock is being held by nvme_dev_disable.
1656 */
1657 if (!mutex_trylock(&dev->shutdown_lock))
1658 return -ENODEV;
1659
1660 /*
1661 * Controller is in wrong state, fail early.
1662 */
1663 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1664 mutex_unlock(&dev->shutdown_lock);
1665 return -ENODEV;
1666 }
1667
1668 return 0;
1669 }
1670
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1671 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1672 {
1673 struct nvme_dev *dev = nvmeq->dev;
1674 int result;
1675 u16 vector = 0;
1676
1677 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1678
1679 /*
1680 * A queue's vector matches the queue identifier unless the controller
1681 * has only one vector available.
1682 */
1683 if (!polled)
1684 vector = dev->num_vecs == 1 ? 0 : qid;
1685 else
1686 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1687
1688 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1689 if (result)
1690 return result;
1691
1692 result = adapter_alloc_sq(dev, qid, nvmeq);
1693 if (result < 0)
1694 return result;
1695 if (result)
1696 goto release_cq;
1697
1698 nvmeq->cq_vector = vector;
1699
1700 result = nvme_setup_io_queues_trylock(dev);
1701 if (result)
1702 return result;
1703 nvme_init_queue(nvmeq, qid);
1704 if (!polled) {
1705 result = queue_request_irq(nvmeq);
1706 if (result < 0)
1707 goto release_sq;
1708 }
1709
1710 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1711 mutex_unlock(&dev->shutdown_lock);
1712 return result;
1713
1714 release_sq:
1715 dev->online_queues--;
1716 mutex_unlock(&dev->shutdown_lock);
1717 adapter_delete_sq(dev, qid);
1718 release_cq:
1719 adapter_delete_cq(dev, qid);
1720 return result;
1721 }
1722
1723 static const struct blk_mq_ops nvme_mq_admin_ops = {
1724 .queue_rq = nvme_queue_rq,
1725 .complete = nvme_pci_complete_rq,
1726 .init_hctx = nvme_admin_init_hctx,
1727 .init_request = nvme_pci_init_request,
1728 .timeout = nvme_timeout,
1729 };
1730
1731 static const struct blk_mq_ops nvme_mq_ops = {
1732 .queue_rq = nvme_queue_rq,
1733 .queue_rqs = nvme_queue_rqs,
1734 .complete = nvme_pci_complete_rq,
1735 .commit_rqs = nvme_commit_rqs,
1736 .init_hctx = nvme_init_hctx,
1737 .init_request = nvme_pci_init_request,
1738 .map_queues = nvme_pci_map_queues,
1739 .timeout = nvme_timeout,
1740 .poll = nvme_poll,
1741 };
1742
nvme_dev_remove_admin(struct nvme_dev * dev)1743 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1744 {
1745 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1746 /*
1747 * If the controller was reset during removal, it's possible
1748 * user requests may be waiting on a stopped queue. Start the
1749 * queue to flush these to completion.
1750 */
1751 nvme_start_admin_queue(&dev->ctrl);
1752 blk_mq_destroy_queue(dev->ctrl.admin_q);
1753 blk_mq_free_tag_set(&dev->admin_tagset);
1754 }
1755 }
1756
nvme_pci_alloc_admin_tag_set(struct nvme_dev * dev)1757 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1758 {
1759 struct blk_mq_tag_set *set = &dev->admin_tagset;
1760
1761 set->ops = &nvme_mq_admin_ops;
1762 set->nr_hw_queues = 1;
1763
1764 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1765 set->timeout = NVME_ADMIN_TIMEOUT;
1766 set->numa_node = dev->ctrl.numa_node;
1767 set->cmd_size = sizeof(struct nvme_iod);
1768 set->flags = BLK_MQ_F_NO_SCHED;
1769 set->driver_data = dev;
1770
1771 if (blk_mq_alloc_tag_set(set))
1772 return -ENOMEM;
1773 dev->ctrl.admin_tagset = set;
1774
1775 dev->ctrl.admin_q = blk_mq_init_queue(set);
1776 if (IS_ERR(dev->ctrl.admin_q)) {
1777 blk_mq_free_tag_set(set);
1778 dev->ctrl.admin_q = NULL;
1779 return -ENOMEM;
1780 }
1781 if (!blk_get_queue(dev->ctrl.admin_q)) {
1782 nvme_dev_remove_admin(dev);
1783 dev->ctrl.admin_q = NULL;
1784 return -ENODEV;
1785 }
1786 return 0;
1787 }
1788
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1789 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1790 {
1791 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1792 }
1793
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1794 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1795 {
1796 struct pci_dev *pdev = to_pci_dev(dev->dev);
1797
1798 if (size <= dev->bar_mapped_size)
1799 return 0;
1800 if (size > pci_resource_len(pdev, 0))
1801 return -ENOMEM;
1802 if (dev->bar)
1803 iounmap(dev->bar);
1804 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1805 if (!dev->bar) {
1806 dev->bar_mapped_size = 0;
1807 return -ENOMEM;
1808 }
1809 dev->bar_mapped_size = size;
1810 dev->dbs = dev->bar + NVME_REG_DBS;
1811
1812 return 0;
1813 }
1814
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1815 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1816 {
1817 int result;
1818 u32 aqa;
1819 struct nvme_queue *nvmeq;
1820
1821 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1822 if (result < 0)
1823 return result;
1824
1825 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1826 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1827
1828 if (dev->subsystem &&
1829 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1830 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1831
1832 result = nvme_disable_ctrl(&dev->ctrl);
1833 if (result < 0)
1834 return result;
1835
1836 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1837 if (result)
1838 return result;
1839
1840 dev->ctrl.numa_node = dev_to_node(dev->dev);
1841
1842 nvmeq = &dev->queues[0];
1843 aqa = nvmeq->q_depth - 1;
1844 aqa |= aqa << 16;
1845
1846 writel(aqa, dev->bar + NVME_REG_AQA);
1847 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1848 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1849
1850 result = nvme_enable_ctrl(&dev->ctrl);
1851 if (result)
1852 return result;
1853
1854 nvmeq->cq_vector = 0;
1855 nvme_init_queue(nvmeq, 0);
1856 result = queue_request_irq(nvmeq);
1857 if (result) {
1858 dev->online_queues--;
1859 return result;
1860 }
1861
1862 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1863 return result;
1864 }
1865
nvme_create_io_queues(struct nvme_dev * dev)1866 static int nvme_create_io_queues(struct nvme_dev *dev)
1867 {
1868 unsigned i, max, rw_queues;
1869 int ret = 0;
1870
1871 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1872 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1873 ret = -ENOMEM;
1874 break;
1875 }
1876 }
1877
1878 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1879 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1880 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1881 dev->io_queues[HCTX_TYPE_READ];
1882 } else {
1883 rw_queues = max;
1884 }
1885
1886 for (i = dev->online_queues; i <= max; i++) {
1887 bool polled = i > rw_queues;
1888
1889 ret = nvme_create_queue(&dev->queues[i], i, polled);
1890 if (ret)
1891 break;
1892 }
1893
1894 /*
1895 * Ignore failing Create SQ/CQ commands, we can continue with less
1896 * than the desired amount of queues, and even a controller without
1897 * I/O queues can still be used to issue admin commands. This might
1898 * be useful to upgrade a buggy firmware for example.
1899 */
1900 return ret >= 0 ? 0 : ret;
1901 }
1902
nvme_cmb_size_unit(struct nvme_dev * dev)1903 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1904 {
1905 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1906
1907 return 1ULL << (12 + 4 * szu);
1908 }
1909
nvme_cmb_size(struct nvme_dev * dev)1910 static u32 nvme_cmb_size(struct nvme_dev *dev)
1911 {
1912 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1913 }
1914
nvme_map_cmb(struct nvme_dev * dev)1915 static void nvme_map_cmb(struct nvme_dev *dev)
1916 {
1917 u64 size, offset;
1918 resource_size_t bar_size;
1919 struct pci_dev *pdev = to_pci_dev(dev->dev);
1920 int bar;
1921
1922 if (dev->cmb_size)
1923 return;
1924
1925 if (NVME_CAP_CMBS(dev->ctrl.cap))
1926 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1927
1928 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1929 if (!dev->cmbsz)
1930 return;
1931 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1932
1933 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1934 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1935 bar = NVME_CMB_BIR(dev->cmbloc);
1936 bar_size = pci_resource_len(pdev, bar);
1937
1938 if (offset > bar_size)
1939 return;
1940
1941 /*
1942 * Tell the controller about the host side address mapping the CMB,
1943 * and enable CMB decoding for the NVMe 1.4+ scheme:
1944 */
1945 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1946 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1947 (pci_bus_address(pdev, bar) + offset),
1948 dev->bar + NVME_REG_CMBMSC);
1949 }
1950
1951 /*
1952 * Controllers may support a CMB size larger than their BAR,
1953 * for example, due to being behind a bridge. Reduce the CMB to
1954 * the reported size of the BAR
1955 */
1956 if (size > bar_size - offset)
1957 size = bar_size - offset;
1958
1959 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1960 dev_warn(dev->ctrl.device,
1961 "failed to register the CMB\n");
1962 return;
1963 }
1964
1965 dev->cmb_size = size;
1966 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1967
1968 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1969 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1970 pci_p2pmem_publish(pdev, true);
1971 }
1972
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1973 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1974 {
1975 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1976 u64 dma_addr = dev->host_mem_descs_dma;
1977 struct nvme_command c = { };
1978 int ret;
1979
1980 c.features.opcode = nvme_admin_set_features;
1981 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1982 c.features.dword11 = cpu_to_le32(bits);
1983 c.features.dword12 = cpu_to_le32(host_mem_size);
1984 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1985 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1986 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1987
1988 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1989 if (ret) {
1990 dev_warn(dev->ctrl.device,
1991 "failed to set host mem (err %d, flags %#x).\n",
1992 ret, bits);
1993 } else
1994 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1995
1996 return ret;
1997 }
1998
nvme_free_host_mem(struct nvme_dev * dev)1999 static void nvme_free_host_mem(struct nvme_dev *dev)
2000 {
2001 int i;
2002
2003 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2004 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2005 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2006
2007 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2008 le64_to_cpu(desc->addr),
2009 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2010 }
2011
2012 kfree(dev->host_mem_desc_bufs);
2013 dev->host_mem_desc_bufs = NULL;
2014 dma_free_coherent(dev->dev,
2015 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2016 dev->host_mem_descs, dev->host_mem_descs_dma);
2017 dev->host_mem_descs = NULL;
2018 dev->nr_host_mem_descs = 0;
2019 }
2020
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2021 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2022 u32 chunk_size)
2023 {
2024 struct nvme_host_mem_buf_desc *descs;
2025 u32 max_entries, len;
2026 dma_addr_t descs_dma;
2027 int i = 0;
2028 void **bufs;
2029 u64 size, tmp;
2030
2031 tmp = (preferred + chunk_size - 1);
2032 do_div(tmp, chunk_size);
2033 max_entries = tmp;
2034
2035 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2036 max_entries = dev->ctrl.hmmaxd;
2037
2038 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2039 &descs_dma, GFP_KERNEL);
2040 if (!descs)
2041 goto out;
2042
2043 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2044 if (!bufs)
2045 goto out_free_descs;
2046
2047 for (size = 0; size < preferred && i < max_entries; size += len) {
2048 dma_addr_t dma_addr;
2049
2050 len = min_t(u64, chunk_size, preferred - size);
2051 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2052 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2053 if (!bufs[i])
2054 break;
2055
2056 descs[i].addr = cpu_to_le64(dma_addr);
2057 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2058 i++;
2059 }
2060
2061 if (!size)
2062 goto out_free_bufs;
2063
2064 dev->nr_host_mem_descs = i;
2065 dev->host_mem_size = size;
2066 dev->host_mem_descs = descs;
2067 dev->host_mem_descs_dma = descs_dma;
2068 dev->host_mem_desc_bufs = bufs;
2069 return 0;
2070
2071 out_free_bufs:
2072 while (--i >= 0) {
2073 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2074
2075 dma_free_attrs(dev->dev, size, bufs[i],
2076 le64_to_cpu(descs[i].addr),
2077 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2078 }
2079
2080 kfree(bufs);
2081 out_free_descs:
2082 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2083 descs_dma);
2084 out:
2085 dev->host_mem_descs = NULL;
2086 return -ENOMEM;
2087 }
2088
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2089 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2090 {
2091 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2092 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2093 u64 chunk_size;
2094
2095 /* start big and work our way down */
2096 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2097 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2098 if (!min || dev->host_mem_size >= min)
2099 return 0;
2100 nvme_free_host_mem(dev);
2101 }
2102 }
2103
2104 return -ENOMEM;
2105 }
2106
nvme_setup_host_mem(struct nvme_dev * dev)2107 static int nvme_setup_host_mem(struct nvme_dev *dev)
2108 {
2109 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2110 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2111 u64 min = (u64)dev->ctrl.hmmin * 4096;
2112 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2113 int ret;
2114
2115 preferred = min(preferred, max);
2116 if (min > max) {
2117 dev_warn(dev->ctrl.device,
2118 "min host memory (%lld MiB) above limit (%d MiB).\n",
2119 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2120 nvme_free_host_mem(dev);
2121 return 0;
2122 }
2123
2124 /*
2125 * If we already have a buffer allocated check if we can reuse it.
2126 */
2127 if (dev->host_mem_descs) {
2128 if (dev->host_mem_size >= min)
2129 enable_bits |= NVME_HOST_MEM_RETURN;
2130 else
2131 nvme_free_host_mem(dev);
2132 }
2133
2134 if (!dev->host_mem_descs) {
2135 if (nvme_alloc_host_mem(dev, min, preferred)) {
2136 dev_warn(dev->ctrl.device,
2137 "failed to allocate host memory buffer.\n");
2138 return 0; /* controller must work without HMB */
2139 }
2140
2141 dev_info(dev->ctrl.device,
2142 "allocated %lld MiB host memory buffer.\n",
2143 dev->host_mem_size >> ilog2(SZ_1M));
2144 }
2145
2146 ret = nvme_set_host_mem(dev, enable_bits);
2147 if (ret)
2148 nvme_free_host_mem(dev);
2149 return ret;
2150 }
2151
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2152 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2153 char *buf)
2154 {
2155 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2156
2157 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2158 ndev->cmbloc, ndev->cmbsz);
2159 }
2160 static DEVICE_ATTR_RO(cmb);
2161
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2162 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2163 char *buf)
2164 {
2165 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2166
2167 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2168 }
2169 static DEVICE_ATTR_RO(cmbloc);
2170
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2171 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2172 char *buf)
2173 {
2174 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2175
2176 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2177 }
2178 static DEVICE_ATTR_RO(cmbsz);
2179
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2180 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2181 char *buf)
2182 {
2183 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2184
2185 return sysfs_emit(buf, "%d\n", ndev->hmb);
2186 }
2187
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2188 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2189 const char *buf, size_t count)
2190 {
2191 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2192 bool new;
2193 int ret;
2194
2195 if (strtobool(buf, &new) < 0)
2196 return -EINVAL;
2197
2198 if (new == ndev->hmb)
2199 return count;
2200
2201 if (new) {
2202 ret = nvme_setup_host_mem(ndev);
2203 } else {
2204 ret = nvme_set_host_mem(ndev, 0);
2205 if (!ret)
2206 nvme_free_host_mem(ndev);
2207 }
2208
2209 if (ret < 0)
2210 return ret;
2211
2212 return count;
2213 }
2214 static DEVICE_ATTR_RW(hmb);
2215
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2216 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2217 struct attribute *a, int n)
2218 {
2219 struct nvme_ctrl *ctrl =
2220 dev_get_drvdata(container_of(kobj, struct device, kobj));
2221 struct nvme_dev *dev = to_nvme_dev(ctrl);
2222
2223 if (a == &dev_attr_cmb.attr ||
2224 a == &dev_attr_cmbloc.attr ||
2225 a == &dev_attr_cmbsz.attr) {
2226 if (!dev->cmbsz)
2227 return 0;
2228 }
2229 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2230 return 0;
2231
2232 return a->mode;
2233 }
2234
2235 static struct attribute *nvme_pci_attrs[] = {
2236 &dev_attr_cmb.attr,
2237 &dev_attr_cmbloc.attr,
2238 &dev_attr_cmbsz.attr,
2239 &dev_attr_hmb.attr,
2240 NULL,
2241 };
2242
2243 static const struct attribute_group nvme_pci_attr_group = {
2244 .attrs = nvme_pci_attrs,
2245 .is_visible = nvme_pci_attrs_are_visible,
2246 };
2247
2248 /*
2249 * nirqs is the number of interrupts available for write and read
2250 * queues. The core already reserved an interrupt for the admin queue.
2251 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2252 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2253 {
2254 struct nvme_dev *dev = affd->priv;
2255 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2256
2257 /*
2258 * If there is no interrupt available for queues, ensure that
2259 * the default queue is set to 1. The affinity set size is
2260 * also set to one, but the irq core ignores it for this case.
2261 *
2262 * If only one interrupt is available or 'write_queue' == 0, combine
2263 * write and read queues.
2264 *
2265 * If 'write_queues' > 0, ensure it leaves room for at least one read
2266 * queue.
2267 */
2268 if (!nrirqs) {
2269 nrirqs = 1;
2270 nr_read_queues = 0;
2271 } else if (nrirqs == 1 || !nr_write_queues) {
2272 nr_read_queues = 0;
2273 } else if (nr_write_queues >= nrirqs) {
2274 nr_read_queues = 1;
2275 } else {
2276 nr_read_queues = nrirqs - nr_write_queues;
2277 }
2278
2279 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2281 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2282 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2283 affd->nr_sets = nr_read_queues ? 2 : 1;
2284 }
2285
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2286 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2287 {
2288 struct pci_dev *pdev = to_pci_dev(dev->dev);
2289 struct irq_affinity affd = {
2290 .pre_vectors = 1,
2291 .calc_sets = nvme_calc_irq_sets,
2292 .priv = dev,
2293 };
2294 unsigned int irq_queues, poll_queues;
2295
2296 /*
2297 * Poll queues don't need interrupts, but we need at least one I/O queue
2298 * left over for non-polled I/O.
2299 */
2300 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2301 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2302
2303 /*
2304 * Initialize for the single interrupt case, will be updated in
2305 * nvme_calc_irq_sets().
2306 */
2307 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2308 dev->io_queues[HCTX_TYPE_READ] = 0;
2309
2310 /*
2311 * We need interrupts for the admin queue and each non-polled I/O queue,
2312 * but some Apple controllers require all queues to use the first
2313 * vector.
2314 */
2315 irq_queues = 1;
2316 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2317 irq_queues += (nr_io_queues - poll_queues);
2318 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2319 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2320 }
2321
nvme_disable_io_queues(struct nvme_dev * dev)2322 static void nvme_disable_io_queues(struct nvme_dev *dev)
2323 {
2324 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2325 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2326 }
2327
nvme_max_io_queues(struct nvme_dev * dev)2328 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2329 {
2330 /*
2331 * If tags are shared with admin queue (Apple bug), then
2332 * make sure we only use one IO queue.
2333 */
2334 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2335 return 1;
2336 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2337 }
2338
nvme_setup_io_queues(struct nvme_dev * dev)2339 static int nvme_setup_io_queues(struct nvme_dev *dev)
2340 {
2341 struct nvme_queue *adminq = &dev->queues[0];
2342 struct pci_dev *pdev = to_pci_dev(dev->dev);
2343 unsigned int nr_io_queues;
2344 unsigned long size;
2345 int result;
2346
2347 /*
2348 * Sample the module parameters once at reset time so that we have
2349 * stable values to work with.
2350 */
2351 dev->nr_write_queues = write_queues;
2352 dev->nr_poll_queues = poll_queues;
2353
2354 nr_io_queues = dev->nr_allocated_queues - 1;
2355 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2356 if (result < 0)
2357 return result;
2358
2359 if (nr_io_queues == 0)
2360 return 0;
2361
2362 /*
2363 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2364 * from set to unset. If there is a window to it is truely freed,
2365 * pci_free_irq_vectors() jumping into this window will crash.
2366 * And take lock to avoid racing with pci_free_irq_vectors() in
2367 * nvme_dev_disable() path.
2368 */
2369 result = nvme_setup_io_queues_trylock(dev);
2370 if (result)
2371 return result;
2372 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2373 pci_free_irq(pdev, 0, adminq);
2374
2375 if (dev->cmb_use_sqes) {
2376 result = nvme_cmb_qdepth(dev, nr_io_queues,
2377 sizeof(struct nvme_command));
2378 if (result > 0)
2379 dev->q_depth = result;
2380 else
2381 dev->cmb_use_sqes = false;
2382 }
2383
2384 do {
2385 size = db_bar_size(dev, nr_io_queues);
2386 result = nvme_remap_bar(dev, size);
2387 if (!result)
2388 break;
2389 if (!--nr_io_queues) {
2390 result = -ENOMEM;
2391 goto out_unlock;
2392 }
2393 } while (1);
2394 adminq->q_db = dev->dbs;
2395
2396 retry:
2397 /* Deregister the admin queue's interrupt */
2398 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2399 pci_free_irq(pdev, 0, adminq);
2400
2401 /*
2402 * If we enable msix early due to not intx, disable it again before
2403 * setting up the full range we need.
2404 */
2405 pci_free_irq_vectors(pdev);
2406
2407 result = nvme_setup_irqs(dev, nr_io_queues);
2408 if (result <= 0) {
2409 result = -EIO;
2410 goto out_unlock;
2411 }
2412
2413 dev->num_vecs = result;
2414 result = max(result - 1, 1);
2415 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2416
2417 /*
2418 * Should investigate if there's a performance win from allocating
2419 * more queues than interrupt vectors; it might allow the submission
2420 * path to scale better, even if the receive path is limited by the
2421 * number of interrupts.
2422 */
2423 result = queue_request_irq(adminq);
2424 if (result)
2425 goto out_unlock;
2426 set_bit(NVMEQ_ENABLED, &adminq->flags);
2427 mutex_unlock(&dev->shutdown_lock);
2428
2429 result = nvme_create_io_queues(dev);
2430 if (result || dev->online_queues < 2)
2431 return result;
2432
2433 if (dev->online_queues - 1 < dev->max_qid) {
2434 nr_io_queues = dev->online_queues - 1;
2435 nvme_disable_io_queues(dev);
2436 result = nvme_setup_io_queues_trylock(dev);
2437 if (result)
2438 return result;
2439 nvme_suspend_io_queues(dev);
2440 goto retry;
2441 }
2442 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2443 dev->io_queues[HCTX_TYPE_DEFAULT],
2444 dev->io_queues[HCTX_TYPE_READ],
2445 dev->io_queues[HCTX_TYPE_POLL]);
2446 return 0;
2447 out_unlock:
2448 mutex_unlock(&dev->shutdown_lock);
2449 return result;
2450 }
2451
nvme_del_queue_end(struct request * req,blk_status_t error)2452 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2453 blk_status_t error)
2454 {
2455 struct nvme_queue *nvmeq = req->end_io_data;
2456
2457 blk_mq_free_request(req);
2458 complete(&nvmeq->delete_done);
2459 return RQ_END_IO_NONE;
2460 }
2461
nvme_del_cq_end(struct request * req,blk_status_t error)2462 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2463 blk_status_t error)
2464 {
2465 struct nvme_queue *nvmeq = req->end_io_data;
2466
2467 if (error)
2468 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2469
2470 return nvme_del_queue_end(req, error);
2471 }
2472
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2473 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2474 {
2475 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2476 struct request *req;
2477 struct nvme_command cmd = { };
2478
2479 cmd.delete_queue.opcode = opcode;
2480 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2481
2482 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2483 if (IS_ERR(req))
2484 return PTR_ERR(req);
2485 nvme_init_request(req, &cmd);
2486
2487 if (opcode == nvme_admin_delete_cq)
2488 req->end_io = nvme_del_cq_end;
2489 else
2490 req->end_io = nvme_del_queue_end;
2491 req->end_io_data = nvmeq;
2492
2493 init_completion(&nvmeq->delete_done);
2494 blk_execute_rq_nowait(req, false);
2495 return 0;
2496 }
2497
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2498 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2499 {
2500 int nr_queues = dev->online_queues - 1, sent = 0;
2501 unsigned long timeout;
2502
2503 retry:
2504 timeout = NVME_ADMIN_TIMEOUT;
2505 while (nr_queues > 0) {
2506 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2507 break;
2508 nr_queues--;
2509 sent++;
2510 }
2511 while (sent) {
2512 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2513
2514 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2515 timeout);
2516 if (timeout == 0)
2517 return false;
2518
2519 sent--;
2520 if (nr_queues)
2521 goto retry;
2522 }
2523 return true;
2524 }
2525
nvme_pci_alloc_tag_set(struct nvme_dev * dev)2526 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2527 {
2528 struct blk_mq_tag_set * set = &dev->tagset;
2529 int ret;
2530
2531 set->ops = &nvme_mq_ops;
2532 set->nr_hw_queues = dev->online_queues - 1;
2533 set->nr_maps = 1;
2534 if (dev->io_queues[HCTX_TYPE_READ])
2535 set->nr_maps = 2;
2536 if (dev->io_queues[HCTX_TYPE_POLL])
2537 set->nr_maps = 3;
2538 set->timeout = NVME_IO_TIMEOUT;
2539 set->numa_node = dev->ctrl.numa_node;
2540 set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2541 set->cmd_size = sizeof(struct nvme_iod);
2542 set->flags = BLK_MQ_F_SHOULD_MERGE;
2543 set->driver_data = dev;
2544
2545 /*
2546 * Some Apple controllers requires tags to be unique
2547 * across admin and IO queue, so reserve the first 32
2548 * tags of the IO queue.
2549 */
2550 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2551 set->reserved_tags = NVME_AQ_DEPTH;
2552
2553 ret = blk_mq_alloc_tag_set(set);
2554 if (ret) {
2555 dev_warn(dev->ctrl.device,
2556 "IO queues tagset allocation failed %d\n", ret);
2557 return;
2558 }
2559 dev->ctrl.tagset = set;
2560 }
2561
nvme_pci_update_nr_queues(struct nvme_dev * dev)2562 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2563 {
2564 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2565 /* free previously allocated queues that are no longer usable */
2566 nvme_free_queues(dev, dev->online_queues);
2567 }
2568
nvme_pci_enable(struct nvme_dev * dev)2569 static int nvme_pci_enable(struct nvme_dev *dev)
2570 {
2571 int result = -ENOMEM;
2572 struct pci_dev *pdev = to_pci_dev(dev->dev);
2573 int dma_address_bits = 64;
2574
2575 if (pci_enable_device_mem(pdev))
2576 return result;
2577
2578 pci_set_master(pdev);
2579
2580 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2581 dma_address_bits = 48;
2582 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2583 goto disable;
2584
2585 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2586 result = -ENODEV;
2587 goto disable;
2588 }
2589
2590 /*
2591 * Some devices and/or platforms don't advertise or work with INTx
2592 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2593 * adjust this later.
2594 */
2595 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2596 if (result < 0)
2597 return result;
2598
2599 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2600
2601 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2602 io_queue_depth);
2603 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2604 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2605 dev->dbs = dev->bar + 4096;
2606
2607 /*
2608 * Some Apple controllers require a non-standard SQE size.
2609 * Interestingly they also seem to ignore the CC:IOSQES register
2610 * so we don't bother updating it here.
2611 */
2612 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2613 dev->io_sqes = 7;
2614 else
2615 dev->io_sqes = NVME_NVM_IOSQES;
2616
2617 /*
2618 * Temporary fix for the Apple controller found in the MacBook8,1 and
2619 * some MacBook7,1 to avoid controller resets and data loss.
2620 */
2621 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2622 dev->q_depth = 2;
2623 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2624 "set queue depth=%u to work around controller resets\n",
2625 dev->q_depth);
2626 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2627 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2628 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2629 dev->q_depth = 64;
2630 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2631 "set queue depth=%u\n", dev->q_depth);
2632 }
2633
2634 /*
2635 * Controllers with the shared tags quirk need the IO queue to be
2636 * big enough so that we get 32 tags for the admin queue
2637 */
2638 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2639 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2640 dev->q_depth = NVME_AQ_DEPTH + 2;
2641 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2642 dev->q_depth);
2643 }
2644
2645
2646 nvme_map_cmb(dev);
2647
2648 pci_enable_pcie_error_reporting(pdev);
2649 pci_save_state(pdev);
2650 return 0;
2651
2652 disable:
2653 pci_disable_device(pdev);
2654 return result;
2655 }
2656
nvme_dev_unmap(struct nvme_dev * dev)2657 static void nvme_dev_unmap(struct nvme_dev *dev)
2658 {
2659 if (dev->bar)
2660 iounmap(dev->bar);
2661 pci_release_mem_regions(to_pci_dev(dev->dev));
2662 }
2663
nvme_pci_disable(struct nvme_dev * dev)2664 static void nvme_pci_disable(struct nvme_dev *dev)
2665 {
2666 struct pci_dev *pdev = to_pci_dev(dev->dev);
2667
2668 pci_free_irq_vectors(pdev);
2669
2670 if (pci_is_enabled(pdev)) {
2671 pci_disable_pcie_error_reporting(pdev);
2672 pci_disable_device(pdev);
2673 }
2674 }
2675
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2676 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2677 {
2678 bool dead = true, freeze = false;
2679 struct pci_dev *pdev = to_pci_dev(dev->dev);
2680
2681 mutex_lock(&dev->shutdown_lock);
2682 if (pci_is_enabled(pdev)) {
2683 u32 csts;
2684
2685 if (pci_device_is_present(pdev))
2686 csts = readl(dev->bar + NVME_REG_CSTS);
2687 else
2688 csts = ~0;
2689
2690 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2691 dev->ctrl.state == NVME_CTRL_RESETTING) {
2692 freeze = true;
2693 nvme_start_freeze(&dev->ctrl);
2694 }
2695 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2696 pdev->error_state != pci_channel_io_normal);
2697 }
2698
2699 /*
2700 * Give the controller a chance to complete all entered requests if
2701 * doing a safe shutdown.
2702 */
2703 if (!dead && shutdown && freeze)
2704 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2705
2706 nvme_stop_queues(&dev->ctrl);
2707
2708 if (!dead && dev->ctrl.queue_count > 0) {
2709 nvme_disable_io_queues(dev);
2710 nvme_disable_admin_queue(dev, shutdown);
2711 }
2712 nvme_suspend_io_queues(dev);
2713 nvme_suspend_queue(&dev->queues[0]);
2714 nvme_pci_disable(dev);
2715 nvme_reap_pending_cqes(dev);
2716
2717 nvme_cancel_tagset(&dev->ctrl);
2718 nvme_cancel_admin_tagset(&dev->ctrl);
2719
2720 /*
2721 * The driver will not be starting up queues again if shutting down so
2722 * must flush all entered requests to their failed completion to avoid
2723 * deadlocking blk-mq hot-cpu notifier.
2724 */
2725 if (shutdown) {
2726 nvme_start_queues(&dev->ctrl);
2727 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2728 nvme_start_admin_queue(&dev->ctrl);
2729 }
2730 mutex_unlock(&dev->shutdown_lock);
2731 }
2732
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2733 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2734 {
2735 if (!nvme_wait_reset(&dev->ctrl))
2736 return -EBUSY;
2737 nvme_dev_disable(dev, shutdown);
2738 return 0;
2739 }
2740
nvme_setup_prp_pools(struct nvme_dev * dev)2741 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2742 {
2743 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2744 NVME_CTRL_PAGE_SIZE,
2745 NVME_CTRL_PAGE_SIZE, 0);
2746 if (!dev->prp_page_pool)
2747 return -ENOMEM;
2748
2749 /* Optimisation for I/Os between 4k and 128k */
2750 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2751 256, 256, 0);
2752 if (!dev->prp_small_pool) {
2753 dma_pool_destroy(dev->prp_page_pool);
2754 return -ENOMEM;
2755 }
2756 return 0;
2757 }
2758
nvme_release_prp_pools(struct nvme_dev * dev)2759 static void nvme_release_prp_pools(struct nvme_dev *dev)
2760 {
2761 dma_pool_destroy(dev->prp_page_pool);
2762 dma_pool_destroy(dev->prp_small_pool);
2763 }
2764
nvme_free_tagset(struct nvme_dev * dev)2765 static void nvme_free_tagset(struct nvme_dev *dev)
2766 {
2767 if (dev->tagset.tags)
2768 blk_mq_free_tag_set(&dev->tagset);
2769 dev->ctrl.tagset = NULL;
2770 }
2771
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2772 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2773 {
2774 struct nvme_dev *dev = to_nvme_dev(ctrl);
2775
2776 nvme_dbbuf_dma_free(dev);
2777 nvme_free_tagset(dev);
2778 if (dev->ctrl.admin_q)
2779 blk_put_queue(dev->ctrl.admin_q);
2780 free_opal_dev(dev->ctrl.opal_dev);
2781 mempool_destroy(dev->iod_mempool);
2782 put_device(dev->dev);
2783 kfree(dev->queues);
2784 kfree(dev);
2785 }
2786
nvme_remove_dead_ctrl(struct nvme_dev * dev)2787 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2788 {
2789 /*
2790 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2791 * may be holding this pci_dev's device lock.
2792 */
2793 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2794 nvme_get_ctrl(&dev->ctrl);
2795 nvme_dev_disable(dev, false);
2796 nvme_kill_queues(&dev->ctrl);
2797 if (!queue_work(nvme_wq, &dev->remove_work))
2798 nvme_put_ctrl(&dev->ctrl);
2799 }
2800
nvme_reset_work(struct work_struct * work)2801 static void nvme_reset_work(struct work_struct *work)
2802 {
2803 struct nvme_dev *dev =
2804 container_of(work, struct nvme_dev, ctrl.reset_work);
2805 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2806 int result;
2807
2808 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2809 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2810 dev->ctrl.state);
2811 result = -ENODEV;
2812 goto out;
2813 }
2814
2815 /*
2816 * If we're called to reset a live controller first shut it down before
2817 * moving on.
2818 */
2819 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2820 nvme_dev_disable(dev, false);
2821 nvme_sync_queues(&dev->ctrl);
2822
2823 mutex_lock(&dev->shutdown_lock);
2824 result = nvme_pci_enable(dev);
2825 if (result)
2826 goto out_unlock;
2827
2828 result = nvme_pci_configure_admin_queue(dev);
2829 if (result)
2830 goto out_unlock;
2831
2832 if (!dev->ctrl.admin_q) {
2833 result = nvme_pci_alloc_admin_tag_set(dev);
2834 if (result)
2835 goto out_unlock;
2836 } else {
2837 nvme_start_admin_queue(&dev->ctrl);
2838 }
2839
2840 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2841
2842 /*
2843 * Limit the max command size to prevent iod->sg allocations going
2844 * over a single page.
2845 */
2846 dev->ctrl.max_hw_sectors = min_t(u32,
2847 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2848 dev->ctrl.max_segments = NVME_MAX_SEGS;
2849
2850 /*
2851 * Don't limit the IOMMU merged segment size.
2852 */
2853 dma_set_max_seg_size(dev->dev, 0xffffffff);
2854
2855 mutex_unlock(&dev->shutdown_lock);
2856
2857 /*
2858 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2859 * initializing procedure here.
2860 */
2861 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2862 dev_warn(dev->ctrl.device,
2863 "failed to mark controller CONNECTING\n");
2864 result = -EBUSY;
2865 goto out;
2866 }
2867
2868 /*
2869 * We do not support an SGL for metadata (yet), so we are limited to a
2870 * single integrity segment for the separate metadata pointer.
2871 */
2872 dev->ctrl.max_integrity_segments = 1;
2873
2874 result = nvme_init_ctrl_finish(&dev->ctrl);
2875 if (result)
2876 goto out;
2877
2878 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2879 if (!dev->ctrl.opal_dev)
2880 dev->ctrl.opal_dev =
2881 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2882 else if (was_suspend)
2883 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2884 } else {
2885 free_opal_dev(dev->ctrl.opal_dev);
2886 dev->ctrl.opal_dev = NULL;
2887 }
2888
2889 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2890 result = nvme_dbbuf_dma_alloc(dev);
2891 if (result)
2892 dev_warn(dev->dev,
2893 "unable to allocate dma for dbbuf\n");
2894 }
2895
2896 if (dev->ctrl.hmpre) {
2897 result = nvme_setup_host_mem(dev);
2898 if (result < 0)
2899 goto out;
2900 }
2901
2902 result = nvme_setup_io_queues(dev);
2903 if (result)
2904 goto out;
2905
2906 /*
2907 * Keep the controller around but remove all namespaces if we don't have
2908 * any working I/O queue.
2909 */
2910 if (dev->online_queues < 2) {
2911 dev_warn(dev->ctrl.device, "IO queues not created\n");
2912 nvme_kill_queues(&dev->ctrl);
2913 nvme_remove_namespaces(&dev->ctrl);
2914 nvme_free_tagset(dev);
2915 } else {
2916 nvme_start_queues(&dev->ctrl);
2917 nvme_wait_freeze(&dev->ctrl);
2918 if (!dev->ctrl.tagset)
2919 nvme_pci_alloc_tag_set(dev);
2920 else
2921 nvme_pci_update_nr_queues(dev);
2922 nvme_dbbuf_set(dev);
2923 nvme_unfreeze(&dev->ctrl);
2924 }
2925
2926 /*
2927 * If only admin queue live, keep it to do further investigation or
2928 * recovery.
2929 */
2930 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2931 dev_warn(dev->ctrl.device,
2932 "failed to mark controller live state\n");
2933 result = -ENODEV;
2934 goto out;
2935 }
2936
2937 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2938 &nvme_pci_attr_group))
2939 dev->attrs_added = true;
2940
2941 nvme_start_ctrl(&dev->ctrl);
2942 return;
2943
2944 out_unlock:
2945 mutex_unlock(&dev->shutdown_lock);
2946 out:
2947 if (result)
2948 dev_warn(dev->ctrl.device,
2949 "Removing after probe failure status: %d\n", result);
2950 nvme_remove_dead_ctrl(dev);
2951 }
2952
nvme_remove_dead_ctrl_work(struct work_struct * work)2953 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2954 {
2955 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2956 struct pci_dev *pdev = to_pci_dev(dev->dev);
2957
2958 if (pci_get_drvdata(pdev))
2959 device_release_driver(&pdev->dev);
2960 nvme_put_ctrl(&dev->ctrl);
2961 }
2962
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2963 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2964 {
2965 *val = readl(to_nvme_dev(ctrl)->bar + off);
2966 return 0;
2967 }
2968
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2969 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2970 {
2971 writel(val, to_nvme_dev(ctrl)->bar + off);
2972 return 0;
2973 }
2974
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2975 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2976 {
2977 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2978 return 0;
2979 }
2980
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2981 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2982 {
2983 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2984
2985 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2986 }
2987
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)2988 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2989 {
2990 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2991 struct nvme_subsystem *subsys = ctrl->subsys;
2992
2993 dev_err(ctrl->device,
2994 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2995 pdev->vendor, pdev->device,
2996 nvme_strlen(subsys->model, sizeof(subsys->model)),
2997 subsys->model, nvme_strlen(subsys->firmware_rev,
2998 sizeof(subsys->firmware_rev)),
2999 subsys->firmware_rev);
3000 }
3001
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3002 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3003 {
3004 struct nvme_dev *dev = to_nvme_dev(ctrl);
3005
3006 return dma_pci_p2pdma_supported(dev->dev);
3007 }
3008
3009 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3010 .name = "pcie",
3011 .module = THIS_MODULE,
3012 .flags = NVME_F_METADATA_SUPPORTED,
3013 .reg_read32 = nvme_pci_reg_read32,
3014 .reg_write32 = nvme_pci_reg_write32,
3015 .reg_read64 = nvme_pci_reg_read64,
3016 .free_ctrl = nvme_pci_free_ctrl,
3017 .submit_async_event = nvme_pci_submit_async_event,
3018 .get_address = nvme_pci_get_address,
3019 .print_device_info = nvme_pci_print_device_info,
3020 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3021 };
3022
nvme_dev_map(struct nvme_dev * dev)3023 static int nvme_dev_map(struct nvme_dev *dev)
3024 {
3025 struct pci_dev *pdev = to_pci_dev(dev->dev);
3026
3027 if (pci_request_mem_regions(pdev, "nvme"))
3028 return -ENODEV;
3029
3030 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3031 goto release;
3032
3033 return 0;
3034 release:
3035 pci_release_mem_regions(pdev);
3036 return -ENODEV;
3037 }
3038
check_vendor_combination_bug(struct pci_dev * pdev)3039 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3040 {
3041 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3042 /*
3043 * Several Samsung devices seem to drop off the PCIe bus
3044 * randomly when APST is on and uses the deepest sleep state.
3045 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3046 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3047 * 950 PRO 256GB", but it seems to be restricted to two Dell
3048 * laptops.
3049 */
3050 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3051 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3052 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3053 return NVME_QUIRK_NO_DEEPEST_PS;
3054 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3055 /*
3056 * Samsung SSD 960 EVO drops off the PCIe bus after system
3057 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3058 * within few minutes after bootup on a Coffee Lake board -
3059 * ASUS PRIME Z370-A
3060 */
3061 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3062 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3063 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3064 return NVME_QUIRK_NO_APST;
3065 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3066 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3067 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3068 /*
3069 * Forcing to use host managed nvme power settings for
3070 * lowest idle power with quick resume latency on
3071 * Samsung and Toshiba SSDs based on suspend behavior
3072 * on Coffee Lake board for LENOVO C640
3073 */
3074 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3075 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3076 return NVME_QUIRK_SIMPLE_SUSPEND;
3077 }
3078
3079 return 0;
3080 }
3081
nvme_async_probe(void * data,async_cookie_t cookie)3082 static void nvme_async_probe(void *data, async_cookie_t cookie)
3083 {
3084 struct nvme_dev *dev = data;
3085
3086 flush_work(&dev->ctrl.reset_work);
3087 flush_work(&dev->ctrl.scan_work);
3088 nvme_put_ctrl(&dev->ctrl);
3089 }
3090
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3091 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3092 {
3093 int node, result = -ENOMEM;
3094 struct nvme_dev *dev;
3095 unsigned long quirks = id->driver_data;
3096 size_t alloc_size;
3097
3098 node = dev_to_node(&pdev->dev);
3099 if (node == NUMA_NO_NODE)
3100 set_dev_node(&pdev->dev, first_memory_node);
3101
3102 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3103 if (!dev)
3104 return -ENOMEM;
3105
3106 dev->nr_write_queues = write_queues;
3107 dev->nr_poll_queues = poll_queues;
3108 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3109 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3110 sizeof(struct nvme_queue), GFP_KERNEL, node);
3111 if (!dev->queues)
3112 goto free;
3113
3114 dev->dev = get_device(&pdev->dev);
3115 pci_set_drvdata(pdev, dev);
3116
3117 result = nvme_dev_map(dev);
3118 if (result)
3119 goto put_pci;
3120
3121 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3122 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3123 mutex_init(&dev->shutdown_lock);
3124
3125 result = nvme_setup_prp_pools(dev);
3126 if (result)
3127 goto unmap;
3128
3129 quirks |= check_vendor_combination_bug(pdev);
3130
3131 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3132 /*
3133 * Some systems use a bios work around to ask for D3 on
3134 * platforms that support kernel managed suspend.
3135 */
3136 dev_info(&pdev->dev,
3137 "platform quirk: setting simple suspend\n");
3138 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3139 }
3140
3141 /*
3142 * Double check that our mempool alloc size will cover the biggest
3143 * command we support.
3144 */
3145 alloc_size = nvme_pci_iod_alloc_size();
3146 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3147
3148 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3149 mempool_kfree,
3150 (void *) alloc_size,
3151 GFP_KERNEL, node);
3152 if (!dev->iod_mempool) {
3153 result = -ENOMEM;
3154 goto release_pools;
3155 }
3156
3157 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3158 quirks);
3159 if (result)
3160 goto release_mempool;
3161
3162 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3163
3164 nvme_reset_ctrl(&dev->ctrl);
3165 async_schedule(nvme_async_probe, dev);
3166
3167 return 0;
3168
3169 release_mempool:
3170 mempool_destroy(dev->iod_mempool);
3171 release_pools:
3172 nvme_release_prp_pools(dev);
3173 unmap:
3174 nvme_dev_unmap(dev);
3175 put_pci:
3176 put_device(dev->dev);
3177 free:
3178 kfree(dev->queues);
3179 kfree(dev);
3180 return result;
3181 }
3182
nvme_reset_prepare(struct pci_dev * pdev)3183 static void nvme_reset_prepare(struct pci_dev *pdev)
3184 {
3185 struct nvme_dev *dev = pci_get_drvdata(pdev);
3186
3187 /*
3188 * We don't need to check the return value from waiting for the reset
3189 * state as pci_dev device lock is held, making it impossible to race
3190 * with ->remove().
3191 */
3192 nvme_disable_prepare_reset(dev, false);
3193 nvme_sync_queues(&dev->ctrl);
3194 }
3195
nvme_reset_done(struct pci_dev * pdev)3196 static void nvme_reset_done(struct pci_dev *pdev)
3197 {
3198 struct nvme_dev *dev = pci_get_drvdata(pdev);
3199
3200 if (!nvme_try_sched_reset(&dev->ctrl))
3201 flush_work(&dev->ctrl.reset_work);
3202 }
3203
nvme_shutdown(struct pci_dev * pdev)3204 static void nvme_shutdown(struct pci_dev *pdev)
3205 {
3206 struct nvme_dev *dev = pci_get_drvdata(pdev);
3207
3208 nvme_disable_prepare_reset(dev, true);
3209 }
3210
nvme_remove_attrs(struct nvme_dev * dev)3211 static void nvme_remove_attrs(struct nvme_dev *dev)
3212 {
3213 if (dev->attrs_added)
3214 sysfs_remove_group(&dev->ctrl.device->kobj,
3215 &nvme_pci_attr_group);
3216 }
3217
3218 /*
3219 * The driver's remove may be called on a device in a partially initialized
3220 * state. This function must not have any dependencies on the device state in
3221 * order to proceed.
3222 */
nvme_remove(struct pci_dev * pdev)3223 static void nvme_remove(struct pci_dev *pdev)
3224 {
3225 struct nvme_dev *dev = pci_get_drvdata(pdev);
3226
3227 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3228 pci_set_drvdata(pdev, NULL);
3229
3230 if (!pci_device_is_present(pdev)) {
3231 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3232 nvme_dev_disable(dev, true);
3233 }
3234
3235 flush_work(&dev->ctrl.reset_work);
3236 nvme_stop_ctrl(&dev->ctrl);
3237 nvme_remove_namespaces(&dev->ctrl);
3238 nvme_dev_disable(dev, true);
3239 nvme_remove_attrs(dev);
3240 nvme_free_host_mem(dev);
3241 nvme_dev_remove_admin(dev);
3242 nvme_free_queues(dev, 0);
3243 nvme_release_prp_pools(dev);
3244 nvme_dev_unmap(dev);
3245 nvme_uninit_ctrl(&dev->ctrl);
3246 }
3247
3248 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3249 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3250 {
3251 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3252 }
3253
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3254 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3255 {
3256 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3257 }
3258
nvme_resume(struct device * dev)3259 static int nvme_resume(struct device *dev)
3260 {
3261 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3262 struct nvme_ctrl *ctrl = &ndev->ctrl;
3263
3264 if (ndev->last_ps == U32_MAX ||
3265 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3266 goto reset;
3267 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3268 goto reset;
3269
3270 return 0;
3271 reset:
3272 return nvme_try_sched_reset(ctrl);
3273 }
3274
nvme_suspend(struct device * dev)3275 static int nvme_suspend(struct device *dev)
3276 {
3277 struct pci_dev *pdev = to_pci_dev(dev);
3278 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3279 struct nvme_ctrl *ctrl = &ndev->ctrl;
3280 int ret = -EBUSY;
3281
3282 ndev->last_ps = U32_MAX;
3283
3284 /*
3285 * The platform does not remove power for a kernel managed suspend so
3286 * use host managed nvme power settings for lowest idle power if
3287 * possible. This should have quicker resume latency than a full device
3288 * shutdown. But if the firmware is involved after the suspend or the
3289 * device does not support any non-default power states, shut down the
3290 * device fully.
3291 *
3292 * If ASPM is not enabled for the device, shut down the device and allow
3293 * the PCI bus layer to put it into D3 in order to take the PCIe link
3294 * down, so as to allow the platform to achieve its minimum low-power
3295 * state (which may not be possible if the link is up).
3296 */
3297 if (pm_suspend_via_firmware() || !ctrl->npss ||
3298 !pcie_aspm_enabled(pdev) ||
3299 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3300 return nvme_disable_prepare_reset(ndev, true);
3301
3302 nvme_start_freeze(ctrl);
3303 nvme_wait_freeze(ctrl);
3304 nvme_sync_queues(ctrl);
3305
3306 if (ctrl->state != NVME_CTRL_LIVE)
3307 goto unfreeze;
3308
3309 /*
3310 * Host memory access may not be successful in a system suspend state,
3311 * but the specification allows the controller to access memory in a
3312 * non-operational power state.
3313 */
3314 if (ndev->hmb) {
3315 ret = nvme_set_host_mem(ndev, 0);
3316 if (ret < 0)
3317 goto unfreeze;
3318 }
3319
3320 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3321 if (ret < 0)
3322 goto unfreeze;
3323
3324 /*
3325 * A saved state prevents pci pm from generically controlling the
3326 * device's power. If we're using protocol specific settings, we don't
3327 * want pci interfering.
3328 */
3329 pci_save_state(pdev);
3330
3331 ret = nvme_set_power_state(ctrl, ctrl->npss);
3332 if (ret < 0)
3333 goto unfreeze;
3334
3335 if (ret) {
3336 /* discard the saved state */
3337 pci_load_saved_state(pdev, NULL);
3338
3339 /*
3340 * Clearing npss forces a controller reset on resume. The
3341 * correct value will be rediscovered then.
3342 */
3343 ret = nvme_disable_prepare_reset(ndev, true);
3344 ctrl->npss = 0;
3345 }
3346 unfreeze:
3347 nvme_unfreeze(ctrl);
3348 return ret;
3349 }
3350
nvme_simple_suspend(struct device * dev)3351 static int nvme_simple_suspend(struct device *dev)
3352 {
3353 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3354
3355 return nvme_disable_prepare_reset(ndev, true);
3356 }
3357
nvme_simple_resume(struct device * dev)3358 static int nvme_simple_resume(struct device *dev)
3359 {
3360 struct pci_dev *pdev = to_pci_dev(dev);
3361 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3362
3363 return nvme_try_sched_reset(&ndev->ctrl);
3364 }
3365
3366 static const struct dev_pm_ops nvme_dev_pm_ops = {
3367 .suspend = nvme_suspend,
3368 .resume = nvme_resume,
3369 .freeze = nvme_simple_suspend,
3370 .thaw = nvme_simple_resume,
3371 .poweroff = nvme_simple_suspend,
3372 .restore = nvme_simple_resume,
3373 };
3374 #endif /* CONFIG_PM_SLEEP */
3375
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3376 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3377 pci_channel_state_t state)
3378 {
3379 struct nvme_dev *dev = pci_get_drvdata(pdev);
3380
3381 /*
3382 * A frozen channel requires a reset. When detected, this method will
3383 * shutdown the controller to quiesce. The controller will be restarted
3384 * after the slot reset through driver's slot_reset callback.
3385 */
3386 switch (state) {
3387 case pci_channel_io_normal:
3388 return PCI_ERS_RESULT_CAN_RECOVER;
3389 case pci_channel_io_frozen:
3390 dev_warn(dev->ctrl.device,
3391 "frozen state error detected, reset controller\n");
3392 nvme_dev_disable(dev, false);
3393 return PCI_ERS_RESULT_NEED_RESET;
3394 case pci_channel_io_perm_failure:
3395 dev_warn(dev->ctrl.device,
3396 "failure state error detected, request disconnect\n");
3397 return PCI_ERS_RESULT_DISCONNECT;
3398 }
3399 return PCI_ERS_RESULT_NEED_RESET;
3400 }
3401
nvme_slot_reset(struct pci_dev * pdev)3402 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3403 {
3404 struct nvme_dev *dev = pci_get_drvdata(pdev);
3405
3406 dev_info(dev->ctrl.device, "restart after slot reset\n");
3407 pci_restore_state(pdev);
3408 nvme_reset_ctrl(&dev->ctrl);
3409 return PCI_ERS_RESULT_RECOVERED;
3410 }
3411
nvme_error_resume(struct pci_dev * pdev)3412 static void nvme_error_resume(struct pci_dev *pdev)
3413 {
3414 struct nvme_dev *dev = pci_get_drvdata(pdev);
3415
3416 flush_work(&dev->ctrl.reset_work);
3417 }
3418
3419 static const struct pci_error_handlers nvme_err_handler = {
3420 .error_detected = nvme_error_detected,
3421 .slot_reset = nvme_slot_reset,
3422 .resume = nvme_error_resume,
3423 .reset_prepare = nvme_reset_prepare,
3424 .reset_done = nvme_reset_done,
3425 };
3426
3427 static const struct pci_device_id nvme_id_table[] = {
3428 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3429 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3430 NVME_QUIRK_DEALLOCATE_ZEROES, },
3431 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3432 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3433 NVME_QUIRK_DEALLOCATE_ZEROES, },
3434 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3435 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3436 NVME_QUIRK_DEALLOCATE_ZEROES |
3437 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3438 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3439 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3440 NVME_QUIRK_DEALLOCATE_ZEROES, },
3441 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3442 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3443 NVME_QUIRK_MEDIUM_PRIO_SQ |
3444 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3445 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3447 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3448 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3449 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3450 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3451 NVME_QUIRK_BOGUS_NID, },
3452 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3453 .driver_data = NVME_QUIRK_BOGUS_NID, },
3454 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3455 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3456 NVME_QUIRK_BOGUS_NID, },
3457 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3458 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3459 NVME_QUIRK_NO_NS_DESC_LIST, },
3460 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3461 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3463 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3465 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3466 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3467 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3468 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3469 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3470 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3471 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3472 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3473 .driver_data = NVME_QUIRK_BOGUS_NID, },
3474 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3475 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3476 NVME_QUIRK_BOGUS_NID, },
3477 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3478 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3479 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3480 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3481 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3482 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3483 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3484 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3485 .driver_data = NVME_QUIRK_BOGUS_NID, },
3486 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3487 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3488 NVME_QUIRK_BOGUS_NID, },
3489 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3490 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3491 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3492 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3493 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3494 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3495 .driver_data = NVME_QUIRK_BOGUS_NID, },
3496 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3497 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3499 .driver_data = NVME_QUIRK_BOGUS_NID, },
3500 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3501 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3502 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3503 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3505 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3507 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3509 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3510 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3511 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3513 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3514 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3515 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3516 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3517 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3518 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3519 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3520 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3521 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3522 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3523 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3524 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3525 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3526 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3527 .driver_data = NVME_QUIRK_BOGUS_NID, },
3528 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3529 .driver_data = NVME_QUIRK_BOGUS_NID, },
3530 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3531 .driver_data = NVME_QUIRK_BOGUS_NID, },
3532 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3533 .driver_data = NVME_QUIRK_BOGUS_NID, },
3534 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3535 .driver_data = NVME_QUIRK_BOGUS_NID, },
3536 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3537 .driver_data = NVME_QUIRK_BOGUS_NID, },
3538 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3539 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3540 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3541 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3542 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3543 .driver_data = NVME_QUIRK_BOGUS_NID, },
3544 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3545 .driver_data = NVME_QUIRK_BOGUS_NID, },
3546 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3547 .driver_data = NVME_QUIRK_BOGUS_NID, },
3548 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3549 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3550 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3551 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3552 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3553 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3554 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3555 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3556 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3557 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3558 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3559 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3560 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3561 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3562 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3563 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3564 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3565 NVME_QUIRK_128_BYTES_SQES |
3566 NVME_QUIRK_SHARED_TAGS |
3567 NVME_QUIRK_SKIP_CID_GEN },
3568 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3569 { 0, }
3570 };
3571 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3572
3573 static struct pci_driver nvme_driver = {
3574 .name = "nvme",
3575 .id_table = nvme_id_table,
3576 .probe = nvme_probe,
3577 .remove = nvme_remove,
3578 .shutdown = nvme_shutdown,
3579 #ifdef CONFIG_PM_SLEEP
3580 .driver = {
3581 .pm = &nvme_dev_pm_ops,
3582 },
3583 #endif
3584 .sriov_configure = pci_sriov_configure_simple,
3585 .err_handler = &nvme_err_handler,
3586 };
3587
nvme_init(void)3588 static int __init nvme_init(void)
3589 {
3590 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3591 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3592 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3593 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3594 BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3595 S8_MAX);
3596
3597 return pci_register_driver(&nvme_driver);
3598 }
3599
nvme_exit(void)3600 static void __exit nvme_exit(void)
3601 {
3602 pci_unregister_driver(&nvme_driver);
3603 flush_workqueue(nvme_wq);
3604 }
3605
3606 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3607 MODULE_LICENSE("GPL");
3608 MODULE_VERSION("1.0");
3609 module_init(nvme_init);
3610 module_exit(nvme_exit);
3611