1 /*
2  * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3  * reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the NetLogic
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39 
40 #include <asm/mipsregs.h>
41 #include <asm/time.h>
42 
43 #include <asm/netlogic/common.h>
44 #include <asm/netlogic/haldefs.h>
45 #include <asm/netlogic/xlp-hal/iomap.h>
46 #include <asm/netlogic/xlp-hal/xlp.h>
47 #include <asm/netlogic/xlp-hal/bridge.h>
48 #include <asm/netlogic/xlp-hal/pic.h>
49 #include <asm/netlogic/xlp-hal/sys.h>
50 
51 /* Main initialization */
nlm_node_init(int node)52 void nlm_node_init(int node)
53 {
54 	struct nlm_soc_info *nodep;
55 
56 	nodep = nlm_get_node(node);
57 	if (node == 0)
58 		nodep->coremask = 1;	/* node 0, boot cpu */
59 	nodep->sysbase = nlm_get_sys_regbase(node);
60 	nodep->picbase = nlm_get_pic_regbase(node);
61 	nodep->ebase = read_c0_ebase() & MIPS_EBASE_BASE;
62 	if (cpu_is_xlp9xx())
63 		nodep->socbus = xlp9xx_get_socbus(node);
64 	else
65 		nodep->socbus = 0;
66 	spin_lock_init(&nodep->piclock);
67 }
68 
xlp9xx_irq_to_irt(int irq)69 static int xlp9xx_irq_to_irt(int irq)
70 {
71 	switch (irq) {
72 	case PIC_GPIO_IRQ:
73 		return 12;
74 	case PIC_I2C_0_IRQ:
75 		return 125;
76 	case PIC_I2C_1_IRQ:
77 		return 126;
78 	case PIC_I2C_2_IRQ:
79 		return 127;
80 	case PIC_I2C_3_IRQ:
81 		return 128;
82 	case PIC_9XX_XHCI_0_IRQ:
83 		return 114;
84 	case PIC_9XX_XHCI_1_IRQ:
85 		return 115;
86 	case PIC_9XX_XHCI_2_IRQ:
87 		return 116;
88 	case PIC_UART_0_IRQ:
89 		return 133;
90 	case PIC_UART_1_IRQ:
91 		return 134;
92 	case PIC_SATA_IRQ:
93 		return 143;
94 	case PIC_NAND_IRQ:
95 		return 151;
96 	case PIC_SPI_IRQ:
97 		return 152;
98 	case PIC_MMC_IRQ:
99 		return 153;
100 	case PIC_PCIE_LINK_LEGACY_IRQ(0):
101 	case PIC_PCIE_LINK_LEGACY_IRQ(1):
102 	case PIC_PCIE_LINK_LEGACY_IRQ(2):
103 	case PIC_PCIE_LINK_LEGACY_IRQ(3):
104 		return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
105 	}
106 	return -1;
107 }
108 
xlp_irq_to_irt(int irq)109 static int xlp_irq_to_irt(int irq)
110 {
111 	uint64_t pcibase;
112 	int devoff, irt;
113 
114 	devoff = 0;
115 	switch (irq) {
116 	case PIC_UART_0_IRQ:
117 		devoff = XLP_IO_UART0_OFFSET(0);
118 		break;
119 	case PIC_UART_1_IRQ:
120 		devoff = XLP_IO_UART1_OFFSET(0);
121 		break;
122 	case PIC_MMC_IRQ:
123 		devoff = XLP_IO_MMC_OFFSET(0);
124 		break;
125 	case PIC_I2C_0_IRQ:	/* I2C will be fixed up */
126 	case PIC_I2C_1_IRQ:
127 	case PIC_I2C_2_IRQ:
128 	case PIC_I2C_3_IRQ:
129 		if (cpu_is_xlpii())
130 			devoff = XLP2XX_IO_I2C_OFFSET(0);
131 		else
132 			devoff = XLP_IO_I2C0_OFFSET(0);
133 		break;
134 	case PIC_SATA_IRQ:
135 		devoff = XLP_IO_SATA_OFFSET(0);
136 		break;
137 	case PIC_GPIO_IRQ:
138 		devoff = XLP_IO_GPIO_OFFSET(0);
139 		break;
140 	case PIC_NAND_IRQ:
141 		devoff = XLP_IO_NAND_OFFSET(0);
142 		break;
143 	case PIC_SPI_IRQ:
144 		devoff = XLP_IO_SPI_OFFSET(0);
145 		break;
146 	default:
147 		if (cpu_is_xlpii()) {
148 			switch (irq) {
149 				/* XLP2XX has three XHCI USB controller */
150 			case PIC_2XX_XHCI_0_IRQ:
151 				devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
152 				break;
153 			case PIC_2XX_XHCI_1_IRQ:
154 				devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
155 				break;
156 			case PIC_2XX_XHCI_2_IRQ:
157 				devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
158 				break;
159 			}
160 		} else {
161 			switch (irq) {
162 			case PIC_EHCI_0_IRQ:
163 				devoff = XLP_IO_USB_EHCI0_OFFSET(0);
164 				break;
165 			case PIC_EHCI_1_IRQ:
166 				devoff = XLP_IO_USB_EHCI1_OFFSET(0);
167 				break;
168 			case PIC_OHCI_0_IRQ:
169 				devoff = XLP_IO_USB_OHCI0_OFFSET(0);
170 				break;
171 			case PIC_OHCI_1_IRQ:
172 				devoff = XLP_IO_USB_OHCI1_OFFSET(0);
173 				break;
174 			case PIC_OHCI_2_IRQ:
175 				devoff = XLP_IO_USB_OHCI2_OFFSET(0);
176 				break;
177 			case PIC_OHCI_3_IRQ:
178 				devoff = XLP_IO_USB_OHCI3_OFFSET(0);
179 				break;
180 			}
181 		}
182 	}
183 
184 	if (devoff != 0) {
185 		uint32_t val;
186 
187 		pcibase = nlm_pcicfg_base(devoff);
188 		val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
189 		if (val == 0xffffffff) {
190 			irt = -1;
191 		} else {
192 			irt = val & 0xffff;
193 			/* HW weirdness, I2C IRT entry has to be fixed up */
194 			switch (irq) {
195 			case PIC_I2C_1_IRQ:
196 				irt = irt + 1; break;
197 			case PIC_I2C_2_IRQ:
198 				irt = irt + 2; break;
199 			case PIC_I2C_3_IRQ:
200 				irt = irt + 3; break;
201 			}
202 		}
203 	} else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
204 			irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
205 		/* HW bug, PCI IRT entries are bad on early silicon, fix */
206 		irt = PIC_IRT_PCIE_LINK_INDEX(irq -
207 					PIC_PCIE_LINK_LEGACY_IRQ_BASE);
208 	} else {
209 		irt = -1;
210 	}
211 	return irt;
212 }
213 
nlm_irq_to_irt(int irq)214 int nlm_irq_to_irt(int irq)
215 {
216 	/* return -2 for irqs without 1-1 mapping */
217 	if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
218 		return -2;
219 	if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
220 		return -2;
221 
222 	if (cpu_is_xlp9xx())
223 		return xlp9xx_irq_to_irt(irq);
224 	else
225 		return xlp_irq_to_irt(irq);
226 }
227 
nlm_xlp2_get_core_frequency(int node,int core)228 static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
229 {
230 	unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
231 	uint64_t num, sysbase, clockbase;
232 
233 	if (cpu_is_xlp9xx()) {
234 		clockbase = nlm_get_clock_regbase(node);
235 		ctrl_val0 = nlm_read_sys_reg(clockbase,
236 					SYS_9XX_CPU_PLL_CTRL0(core));
237 		ctrl_val1 = nlm_read_sys_reg(clockbase,
238 					SYS_9XX_CPU_PLL_CTRL1(core));
239 	} else {
240 		sysbase = nlm_get_node(node)->sysbase;
241 		ctrl_val0 = nlm_read_sys_reg(sysbase,
242 						SYS_CPU_PLL_CTRL0(core));
243 		ctrl_val1 = nlm_read_sys_reg(sysbase,
244 						SYS_CPU_PLL_CTRL1(core));
245 	}
246 
247 	/* Find PLL post divider value */
248 	switch ((ctrl_val0 >> 24) & 0x7) {
249 	case 1:
250 		pll_post_div = 2;
251 		break;
252 	case 3:
253 		pll_post_div = 4;
254 		break;
255 	case 7:
256 		pll_post_div = 8;
257 		break;
258 	case 6:
259 		pll_post_div = 16;
260 		break;
261 	case 0:
262 	default:
263 		pll_post_div = 1;
264 		break;
265 	}
266 
267 	num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
268 	denom = 3 * pll_post_div;
269 	do_div(num, denom);
270 
271 	return (unsigned int)num;
272 }
273 
nlm_xlp_get_core_frequency(int node,int core)274 static unsigned int nlm_xlp_get_core_frequency(int node, int core)
275 {
276 	unsigned int pll_divf, pll_divr, dfs_div, ext_div;
277 	unsigned int rstval, dfsval, denom;
278 	uint64_t num, sysbase;
279 
280 	sysbase = nlm_get_node(node)->sysbase;
281 	rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
282 	dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
283 	pll_divf = ((rstval >> 10) & 0x7f) + 1;
284 	pll_divr = ((rstval >> 8)  & 0x3) + 1;
285 	ext_div  = ((rstval >> 30) & 0x3) + 1;
286 	dfs_div  = ((dfsval >> (core * 4)) & 0xf) + 1;
287 
288 	num = 800000000ULL * pll_divf;
289 	denom = 3 * pll_divr * ext_div * dfs_div;
290 	do_div(num, denom);
291 
292 	return (unsigned int)num;
293 }
294 
nlm_get_core_frequency(int node,int core)295 unsigned int nlm_get_core_frequency(int node, int core)
296 {
297 	if (cpu_is_xlpii())
298 		return nlm_xlp2_get_core_frequency(node, core);
299 	else
300 		return nlm_xlp_get_core_frequency(node, core);
301 }
302 
303 /*
304  * Calculate PIC frequency from PLL registers.
305  * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
306  * 		((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
307  */
nlm_xlp2_get_pic_frequency(int node)308 static unsigned int nlm_xlp2_get_pic_frequency(int node)
309 {
310 	u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
311 	u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
312 	u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
313 
314 	sysbase = nlm_get_node(node)->sysbase;
315 	clockbase = nlm_get_clock_regbase(node);
316 	cpu_xlp9xx = cpu_is_xlp9xx();
317 
318 	/* Find ref_clk_base */
319 	if (cpu_xlp9xx)
320 		ref_clk_select = (nlm_read_sys_reg(sysbase,
321 				SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
322 	else
323 		ref_clk_select = (nlm_read_sys_reg(sysbase,
324 					SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
325 	switch (ref_clk_select) {
326 	case 0:
327 		ref_clk = 200000000ULL;
328 		ref_div = 3;
329 		break;
330 	case 1:
331 		ref_clk = 100000000ULL;
332 		ref_div = 1;
333 		break;
334 	case 2:
335 		ref_clk = 125000000ULL;
336 		ref_div = 1;
337 		break;
338 	case 3:
339 		ref_clk = 400000000ULL;
340 		ref_div = 3;
341 		break;
342 	}
343 
344 	/* Find the clock source PLL device for PIC */
345 	if (cpu_xlp9xx) {
346 		reg_select = nlm_read_sys_reg(clockbase,
347 				SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
348 		switch (reg_select) {
349 		case 0:
350 			ctrl_val0 = nlm_read_sys_reg(clockbase,
351 					SYS_9XX_PLL_CTRL0);
352 			ctrl_val2 = nlm_read_sys_reg(clockbase,
353 					SYS_9XX_PLL_CTRL2);
354 			break;
355 		case 1:
356 			ctrl_val0 = nlm_read_sys_reg(clockbase,
357 					SYS_9XX_PLL_CTRL0_DEVX(0));
358 			ctrl_val2 = nlm_read_sys_reg(clockbase,
359 					SYS_9XX_PLL_CTRL2_DEVX(0));
360 			break;
361 		case 2:
362 			ctrl_val0 = nlm_read_sys_reg(clockbase,
363 					SYS_9XX_PLL_CTRL0_DEVX(1));
364 			ctrl_val2 = nlm_read_sys_reg(clockbase,
365 					SYS_9XX_PLL_CTRL2_DEVX(1));
366 			break;
367 		case 3:
368 			ctrl_val0 = nlm_read_sys_reg(clockbase,
369 					SYS_9XX_PLL_CTRL0_DEVX(2));
370 			ctrl_val2 = nlm_read_sys_reg(clockbase,
371 					SYS_9XX_PLL_CTRL2_DEVX(2));
372 			break;
373 		}
374 	} else {
375 		reg_select = (nlm_read_sys_reg(sysbase,
376 					SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
377 		switch (reg_select) {
378 		case 0:
379 			ctrl_val0 = nlm_read_sys_reg(sysbase,
380 					SYS_PLL_CTRL0);
381 			ctrl_val2 = nlm_read_sys_reg(sysbase,
382 					SYS_PLL_CTRL2);
383 			break;
384 		case 1:
385 			ctrl_val0 = nlm_read_sys_reg(sysbase,
386 					SYS_PLL_CTRL0_DEVX(0));
387 			ctrl_val2 = nlm_read_sys_reg(sysbase,
388 					SYS_PLL_CTRL2_DEVX(0));
389 			break;
390 		case 2:
391 			ctrl_val0 = nlm_read_sys_reg(sysbase,
392 					SYS_PLL_CTRL0_DEVX(1));
393 			ctrl_val2 = nlm_read_sys_reg(sysbase,
394 					SYS_PLL_CTRL2_DEVX(1));
395 			break;
396 		case 3:
397 			ctrl_val0 = nlm_read_sys_reg(sysbase,
398 					SYS_PLL_CTRL0_DEVX(2));
399 			ctrl_val2 = nlm_read_sys_reg(sysbase,
400 					SYS_PLL_CTRL2_DEVX(2));
401 			break;
402 		}
403 	}
404 
405 	vco_post_div = (ctrl_val0 >> 5) & 0x7;
406 	pll_post_div = (ctrl_val0 >> 24) & 0x7;
407 	mdiv = ctrl_val2 & 0xff;
408 	fdiv = (ctrl_val2 >> 8) & 0x1fff;
409 
410 	/* Find PLL post divider value */
411 	switch (pll_post_div) {
412 	case 1:
413 		pll_post_div = 2;
414 		break;
415 	case 3:
416 		pll_post_div = 4;
417 		break;
418 	case 7:
419 		pll_post_div = 8;
420 		break;
421 	case 6:
422 		pll_post_div = 16;
423 		break;
424 	case 0:
425 	default:
426 		pll_post_div = 1;
427 		break;
428 	}
429 
430 	fdiv = fdiv/(1 << 13);
431 	pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
432 	pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
433 
434 	if (pll_out_freq_den > 0)
435 		do_div(pll_out_freq_num, pll_out_freq_den);
436 
437 	/* PIC post divider, which happens after PLL */
438 	if (cpu_xlp9xx)
439 		pic_div = nlm_read_sys_reg(clockbase,
440 				SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
441 	else
442 		pic_div = (nlm_read_sys_reg(sysbase,
443 					SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
444 	do_div(pll_out_freq_num, 1 << pic_div);
445 
446 	return pll_out_freq_num;
447 }
448 
nlm_get_pic_frequency(int node)449 unsigned int nlm_get_pic_frequency(int node)
450 {
451 	if (cpu_is_xlpii())
452 		return nlm_xlp2_get_pic_frequency(node);
453 	else
454 		return 133333333;
455 }
456 
nlm_get_cpu_frequency(void)457 unsigned int nlm_get_cpu_frequency(void)
458 {
459 	return nlm_get_core_frequency(0, 0);
460 }
461 
462 /*
463  * Fills upto 8 pairs of entries containing the DRAM map of a node
464  * if node < 0, get dram map for all nodes
465  */
nlm_get_dram_map(int node,uint64_t * dram_map,int nentries)466 int nlm_get_dram_map(int node, uint64_t *dram_map, int nentries)
467 {
468 	uint64_t bridgebase, base, lim;
469 	uint32_t val;
470 	unsigned int barreg, limreg, xlatreg;
471 	int i, n, rv;
472 
473 	/* Look only at mapping on Node 0, we don't handle crazy configs */
474 	bridgebase = nlm_get_bridge_regbase(0);
475 	rv = 0;
476 	for (i = 0; i < 8; i++) {
477 		if (rv + 1 >= nentries)
478 			break;
479 		if (cpu_is_xlp9xx()) {
480 			barreg = BRIDGE_9XX_DRAM_BAR(i);
481 			limreg = BRIDGE_9XX_DRAM_LIMIT(i);
482 			xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
483 		} else {
484 			barreg = BRIDGE_DRAM_BAR(i);
485 			limreg = BRIDGE_DRAM_LIMIT(i);
486 			xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
487 		}
488 		if (node >= 0) {
489 			/* node specified, get node mapping of BAR */
490 			val = nlm_read_bridge_reg(bridgebase, xlatreg);
491 			n = (val >> 1) & 0x3;
492 			if (n != node)
493 				continue;
494 		}
495 		val = nlm_read_bridge_reg(bridgebase, barreg);
496 		val = (val >>  12) & 0xfffff;
497 		base = (uint64_t) val << 20;
498 		val = nlm_read_bridge_reg(bridgebase, limreg);
499 		val = (val >>  12) & 0xfffff;
500 		if (val == 0)   /* BAR not used */
501 			continue;
502 		lim = ((uint64_t)val + 1) << 20;
503 		dram_map[rv] = base;
504 		dram_map[rv + 1] = lim;
505 		rv += 2;
506 	}
507 	return rv;
508 }
509