1 /*
2  * Copyright (c) 2003-2012 Broadcom Corporation
3  * All Rights Reserved
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the Broadcom
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/msi.h>
40 #include <linux/mm.h>
41 #include <linux/irq.h>
42 #include <linux/irqdesc.h>
43 #include <linux/console.h>
44 
45 #include <asm/io.h>
46 
47 #include <asm/netlogic/interrupt.h>
48 #include <asm/netlogic/haldefs.h>
49 #include <asm/netlogic/common.h>
50 #include <asm/netlogic/mips-extns.h>
51 
52 #include <asm/netlogic/xlp-hal/iomap.h>
53 #include <asm/netlogic/xlp-hal/xlp.h>
54 #include <asm/netlogic/xlp-hal/pic.h>
55 #include <asm/netlogic/xlp-hal/pcibus.h>
56 #include <asm/netlogic/xlp-hal/bridge.h>
57 
58 #define XLP_MSIVEC_PER_LINK	32
59 #define XLP_MSIXVEC_TOTAL	(cpu_is_xlp9xx() ? 128 : 32)
60 #define XLP_MSIXVEC_PER_LINK	(cpu_is_xlp9xx() ? 32 : 8)
61 
62 /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */
nlm_link_msiirq(int link,int msivec)63 static inline int nlm_link_msiirq(int link, int msivec)
64 {
65 	return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec;
66 }
67 
68 /* get the link MSI vector from irq number */
nlm_irq_msivec(int irq)69 static inline int nlm_irq_msivec(int irq)
70 {
71 	return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK;
72 }
73 
74 /* get the link from the irq number */
nlm_irq_msilink(int irq)75 static inline int nlm_irq_msilink(int irq)
76 {
77 	int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS;
78 
79 	return ((irq - NLM_MSI_VEC_BASE) % total_msivec) /
80 		XLP_MSIVEC_PER_LINK;
81 }
82 
83 /*
84  * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because
85  * there are only 32 PIC interrupts for MSI. We split them statically
86  * and use 8 MSI-X vectors per link - this keeps the allocation and
87  * lookup simple.
88  * On XLP 9xx, there are 32 vectors per link, and the interrupts are
89  * not routed thru PIC, so we can use all 128 MSI-X vectors.
90  */
nlm_link_msixirq(int link,int bit)91 static inline int nlm_link_msixirq(int link, int bit)
92 {
93 	return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit;
94 }
95 
96 /* get the link MSI vector from irq number */
nlm_irq_msixvec(int irq)97 static inline int nlm_irq_msixvec(int irq)
98 {
99 	return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL;
100 }
101 
102 /* get the link from MSIX vec */
nlm_irq_msixlink(int msixvec)103 static inline int nlm_irq_msixlink(int msixvec)
104 {
105 	return msixvec / XLP_MSIXVEC_PER_LINK;
106 }
107 
108 /*
109  * Per link MSI and MSI-X information, set as IRQ handler data for
110  * MSI and MSI-X interrupts.
111  */
112 struct xlp_msi_data {
113 	struct nlm_soc_info *node;
114 	uint64_t	lnkbase;
115 	uint32_t	msi_enabled_mask;
116 	uint32_t	msi_alloc_mask;
117 	uint32_t	msix_alloc_mask;
118 	spinlock_t	msi_lock;
119 };
120 
121 /*
122  * MSI Chip definitions
123  *
124  * On XLP, there is a PIC interrupt associated with each PCIe link on the
125  * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa
126  * per link and 128 overall.
127  *
128  * When a device connected to the link raises a MSI interrupt, we get a
129  * link interrupt and we then have to look at PCIE_MSI_STATUS register at
130  * the bridge to map it to the IRQ
131  */
xlp_msi_enable(struct irq_data * d)132 static void xlp_msi_enable(struct irq_data *d)
133 {
134 	struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
135 	unsigned long flags;
136 	int vec;
137 
138 	vec = nlm_irq_msivec(d->irq);
139 	spin_lock_irqsave(&md->msi_lock, flags);
140 	md->msi_enabled_mask |= 1u << vec;
141 	if (cpu_is_xlp9xx())
142 		nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
143 				md->msi_enabled_mask);
144 	else
145 		nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
146 	spin_unlock_irqrestore(&md->msi_lock, flags);
147 }
148 
xlp_msi_disable(struct irq_data * d)149 static void xlp_msi_disable(struct irq_data *d)
150 {
151 	struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
152 	unsigned long flags;
153 	int vec;
154 
155 	vec = nlm_irq_msivec(d->irq);
156 	spin_lock_irqsave(&md->msi_lock, flags);
157 	md->msi_enabled_mask &= ~(1u << vec);
158 	if (cpu_is_xlp9xx())
159 		nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
160 				md->msi_enabled_mask);
161 	else
162 		nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
163 	spin_unlock_irqrestore(&md->msi_lock, flags);
164 }
165 
xlp_msi_mask_ack(struct irq_data * d)166 static void xlp_msi_mask_ack(struct irq_data *d)
167 {
168 	struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
169 	int link, vec;
170 
171 	link = nlm_irq_msilink(d->irq);
172 	vec = nlm_irq_msivec(d->irq);
173 	xlp_msi_disable(d);
174 
175 	/* Ack MSI on bridge */
176 	if (cpu_is_xlp9xx())
177 		nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec);
178 	else
179 		nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec);
180 
181 }
182 
183 static struct irq_chip xlp_msi_chip = {
184 	.name		= "XLP-MSI",
185 	.irq_enable	= xlp_msi_enable,
186 	.irq_disable	= xlp_msi_disable,
187 	.irq_mask_ack	= xlp_msi_mask_ack,
188 	.irq_unmask	= xlp_msi_enable,
189 };
190 
191 /*
192  * XLP8XX/4XX/3XX/2XX:
193  * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X
194  * interrupts generated by the PIC and each of these correspond to a MSI-X
195  * vector (0-31) that can be assigned.
196  *
197  * We divide the MSI-X vectors to 8 per link and do a per-link allocation
198  *
199  * XLP9XX:
200  * 32 MSI-X vectors are available per link, and the interrupts are not routed
201  * thru the PIC. PIC ack not needed.
202  *
203  * Enable and disable done using standard MSI functions.
204  */
xlp_msix_mask_ack(struct irq_data * d)205 static void xlp_msix_mask_ack(struct irq_data *d)
206 {
207 	struct xlp_msi_data *md;
208 	int link, msixvec;
209 	uint32_t status_reg, bit;
210 
211 	msixvec = nlm_irq_msixvec(d->irq);
212 	link = nlm_irq_msixlink(msixvec);
213 	pci_msi_mask_irq(d);
214 	md = irq_data_get_irq_chip_data(d);
215 
216 	/* Ack MSI on bridge */
217 	if (cpu_is_xlp9xx()) {
218 		status_reg = PCIE_9XX_MSIX_STATUSX(link);
219 		bit = msixvec % XLP_MSIXVEC_PER_LINK;
220 	} else {
221 		status_reg = PCIE_MSIX_STATUS;
222 		bit = msixvec;
223 	}
224 	nlm_write_reg(md->lnkbase, status_reg, 1u << bit);
225 
226 	if (!cpu_is_xlp9xx())
227 		nlm_pic_ack(md->node->picbase,
228 				PIC_IRT_PCIE_MSIX_INDEX(msixvec));
229 }
230 
231 static struct irq_chip xlp_msix_chip = {
232 	.name		= "XLP-MSIX",
233 	.irq_enable	= pci_msi_unmask_irq,
234 	.irq_disable	= pci_msi_mask_irq,
235 	.irq_mask_ack	= xlp_msix_mask_ack,
236 	.irq_unmask	= pci_msi_unmask_irq,
237 };
238 
arch_teardown_msi_irq(unsigned int irq)239 void arch_teardown_msi_irq(unsigned int irq)
240 {
241 }
242 
243 /*
244  * Setup a PCIe link for MSI.  By default, the links are in
245  * legacy interrupt mode.  We will switch them to MSI mode
246  * at the first MSI request.
247  */
xlp_config_link_msi(uint64_t lnkbase,int lirq,uint64_t msiaddr)248 static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr)
249 {
250 	u32 val;
251 
252 	if (cpu_is_xlp9xx()) {
253 		val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
254 		if ((val & 0x200) == 0) {
255 			val |= 0x200;		/* MSI Interrupt enable */
256 			nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
257 		}
258 	} else {
259 		val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
260 		if ((val & 0x200) == 0) {
261 			val |= 0x200;
262 			nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
263 		}
264 	}
265 
266 	val = nlm_read_reg(lnkbase, 0x1);	/* CMD */
267 	if ((val & 0x0400) == 0) {
268 		val |= 0x0400;
269 		nlm_write_reg(lnkbase, 0x1, val);
270 	}
271 
272 	/* Update IRQ in the PCI irq reg */
273 	val = nlm_read_pci_reg(lnkbase, 0xf);
274 	val &= ~0x1fu;
275 	val |= (1 << 8) | lirq;
276 	nlm_write_pci_reg(lnkbase, 0xf, val);
277 
278 	/* MSI addr */
279 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32);
280 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff);
281 
282 	/* MSI cap for bridge */
283 	val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP);
284 	if ((val & (1 << 16)) == 0) {
285 		val |= 0xb << 16;		/* mmc32, msi enable */
286 		nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val);
287 	}
288 }
289 
290 /*
291  * Allocate a MSI vector on a link
292  */
xlp_setup_msi(uint64_t lnkbase,int node,int link,struct msi_desc * desc)293 static int xlp_setup_msi(uint64_t lnkbase, int node, int link,
294 	struct msi_desc *desc)
295 {
296 	struct xlp_msi_data *md;
297 	struct msi_msg msg;
298 	unsigned long flags;
299 	int msivec, irt, lirq, xirq, ret;
300 	uint64_t msiaddr;
301 
302 	/* Get MSI data for the link */
303 	lirq = PIC_PCIE_LINK_MSI_IRQ(link);
304 	xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
305 	md = irq_get_chip_data(xirq);
306 	msiaddr = MSI_LINK_ADDR(node, link);
307 
308 	spin_lock_irqsave(&md->msi_lock, flags);
309 	if (md->msi_alloc_mask == 0) {
310 		xlp_config_link_msi(lnkbase, lirq, msiaddr);
311 		/* switch the link IRQ to MSI range */
312 		if (cpu_is_xlp9xx())
313 			irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link);
314 		else
315 			irt = PIC_IRT_PCIE_LINK_INDEX(link);
316 		nlm_setup_pic_irq(node, lirq, lirq, irt);
317 		nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq,
318 				 node * nlm_threads_per_node(), 1 /*en */);
319 	}
320 
321 	/* allocate a MSI vec, and tell the bridge about it */
322 	msivec = fls(md->msi_alloc_mask);
323 	if (msivec == XLP_MSIVEC_PER_LINK) {
324 		spin_unlock_irqrestore(&md->msi_lock, flags);
325 		return -ENOMEM;
326 	}
327 	md->msi_alloc_mask |= (1u << msivec);
328 	spin_unlock_irqrestore(&md->msi_lock, flags);
329 
330 	msg.address_hi = msiaddr >> 32;
331 	msg.address_lo = msiaddr & 0xffffffff;
332 	msg.data = 0xc00 | msivec;
333 
334 	xirq = xirq + msivec;		/* msi mapped to global irq space */
335 	ret = irq_set_msi_desc(xirq, desc);
336 	if (ret < 0)
337 		return ret;
338 
339 	pci_write_msi_msg(xirq, &msg);
340 	return 0;
341 }
342 
343 /*
344  * Switch a link to MSI-X mode
345  */
xlp_config_link_msix(uint64_t lnkbase,int lirq,uint64_t msixaddr)346 static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr)
347 {
348 	u32 val;
349 
350 	val = nlm_read_reg(lnkbase, 0x2C);
351 	if ((val & 0x80000000U) == 0) {
352 		val |= 0x80000000U;
353 		nlm_write_reg(lnkbase, 0x2C, val);
354 	}
355 
356 	if (cpu_is_xlp9xx()) {
357 		val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
358 		if ((val & 0x200) == 0) {
359 			val |= 0x200;		/* MSI Interrupt enable */
360 			nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
361 		}
362 	} else {
363 		val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
364 		if ((val & 0x200) == 0) {
365 			val |= 0x200;		/* MSI Interrupt enable */
366 			nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
367 		}
368 	}
369 
370 	val = nlm_read_reg(lnkbase, 0x1);	/* CMD */
371 	if ((val & 0x0400) == 0) {
372 		val |= 0x0400;
373 		nlm_write_reg(lnkbase, 0x1, val);
374 	}
375 
376 	/* Update IRQ in the PCI irq reg */
377 	val = nlm_read_pci_reg(lnkbase, 0xf);
378 	val &= ~0x1fu;
379 	val |= (1 << 8) | lirq;
380 	nlm_write_pci_reg(lnkbase, 0xf, val);
381 
382 	if (cpu_is_xlp9xx()) {
383 		/* MSI-X addresses */
384 		nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE,
385 				msixaddr >> 8);
386 		nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT,
387 				(msixaddr + MSI_ADDR_SZ) >> 8);
388 	} else {
389 		/* MSI-X addresses */
390 		nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE,
391 				msixaddr >> 8);
392 		nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT,
393 				(msixaddr + MSI_ADDR_SZ) >> 8);
394 	}
395 }
396 
397 /*
398  *  Allocate a MSI-X vector
399  */
xlp_setup_msix(uint64_t lnkbase,int node,int link,struct msi_desc * desc)400 static int xlp_setup_msix(uint64_t lnkbase, int node, int link,
401 	struct msi_desc *desc)
402 {
403 	struct xlp_msi_data *md;
404 	struct msi_msg msg;
405 	unsigned long flags;
406 	int t, msixvec, lirq, xirq, ret;
407 	uint64_t msixaddr;
408 
409 	/* Get MSI data for the link */
410 	lirq = PIC_PCIE_MSIX_IRQ(link);
411 	xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
412 	md = irq_get_chip_data(xirq);
413 	msixaddr = MSIX_LINK_ADDR(node, link);
414 
415 	spin_lock_irqsave(&md->msi_lock, flags);
416 	/* switch the PCIe link to MSI-X mode at the first alloc */
417 	if (md->msix_alloc_mask == 0)
418 		xlp_config_link_msix(lnkbase, lirq, msixaddr);
419 
420 	/* allocate a MSI-X vec, and tell the bridge about it */
421 	t = fls(md->msix_alloc_mask);
422 	if (t == XLP_MSIXVEC_PER_LINK) {
423 		spin_unlock_irqrestore(&md->msi_lock, flags);
424 		return -ENOMEM;
425 	}
426 	md->msix_alloc_mask |= (1u << t);
427 	spin_unlock_irqrestore(&md->msi_lock, flags);
428 
429 	xirq += t;
430 	msixvec = nlm_irq_msixvec(xirq);
431 
432 	msg.address_hi = msixaddr >> 32;
433 	msg.address_lo = msixaddr & 0xffffffff;
434 	msg.data = 0xc00 | msixvec;
435 
436 	ret = irq_set_msi_desc(xirq, desc);
437 	if (ret < 0)
438 		return ret;
439 
440 	pci_write_msi_msg(xirq, &msg);
441 	return 0;
442 }
443 
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)444 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
445 {
446 	struct pci_dev *lnkdev;
447 	uint64_t lnkbase;
448 	int node, link, slot;
449 
450 	lnkdev = xlp_get_pcie_link(dev);
451 	if (lnkdev == NULL) {
452 		dev_err(&dev->dev, "Could not find bridge\n");
453 		return 1;
454 	}
455 	slot = PCI_SLOT(lnkdev->devfn);
456 	link = PCI_FUNC(lnkdev->devfn);
457 	node = slot / 8;
458 	lnkbase = nlm_get_pcie_base(node, link);
459 
460 	if (desc->msi_attrib.is_msix)
461 		return xlp_setup_msix(lnkbase, node, link, desc);
462 	else
463 		return xlp_setup_msi(lnkbase, node, link, desc);
464 }
465 
xlp_init_node_msi_irqs(int node,int link)466 void __init xlp_init_node_msi_irqs(int node, int link)
467 {
468 	struct nlm_soc_info *nodep;
469 	struct xlp_msi_data *md;
470 	int irq, i, irt, msixvec, val;
471 
472 	pr_info("[%d %d] Init node PCI IRT\n", node, link);
473 	nodep = nlm_get_node(node);
474 
475 	/* Alloc an MSI block for the link */
476 	md = kzalloc(sizeof(*md), GFP_KERNEL);
477 	spin_lock_init(&md->msi_lock);
478 	md->msi_enabled_mask = 0;
479 	md->msi_alloc_mask = 0;
480 	md->msix_alloc_mask = 0;
481 	md->node = nodep;
482 	md->lnkbase = nlm_get_pcie_base(node, link);
483 
484 	/* extended space for MSI interrupts */
485 	irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
486 	for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) {
487 		irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq);
488 		irq_set_chip_data(i, md);
489 	}
490 
491 	for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) {
492 		if (cpu_is_xlp9xx()) {
493 			val = ((node * nlm_threads_per_node()) << 7 |
494 				PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0);
495 			nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i +
496 					(link * XLP_MSIXVEC_PER_LINK)), val);
497 		} else {
498 			/* Initialize MSI-X irts to generate one interrupt
499 			 * per link
500 			 */
501 			msixvec = link * XLP_MSIXVEC_PER_LINK + i;
502 			irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec);
503 			nlm_pic_init_irt(nodep->picbase, irt,
504 					PIC_PCIE_MSIX_IRQ(link),
505 					node * nlm_threads_per_node(), 1);
506 		}
507 
508 		/* Initialize MSI-X extended irq space for the link  */
509 		irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i));
510 		irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq);
511 		irq_set_chip_data(irq, md);
512 	}
513 }
514 
nlm_dispatch_msi(int node,int lirq)515 void nlm_dispatch_msi(int node, int lirq)
516 {
517 	struct xlp_msi_data *md;
518 	int link, i, irqbase;
519 	u32 status;
520 
521 	link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE;
522 	irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
523 	md = irq_get_chip_data(irqbase);
524 	if (cpu_is_xlp9xx())
525 		status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) &
526 						md->msi_enabled_mask;
527 	else
528 		status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) &
529 						md->msi_enabled_mask;
530 	while (status) {
531 		i = __ffs(status);
532 		do_IRQ(irqbase + i);
533 		status &= status - 1;
534 	}
535 
536 	/* Ack at eirr and PIC */
537 	ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link));
538 	if (cpu_is_xlp9xx())
539 		nlm_pic_ack(md->node->picbase,
540 				PIC_9XX_IRT_PCIE_LINK_INDEX(link));
541 	else
542 		nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link));
543 }
544 
nlm_dispatch_msix(int node,int lirq)545 void nlm_dispatch_msix(int node, int lirq)
546 {
547 	struct xlp_msi_data *md;
548 	int link, i, irqbase;
549 	u32 status;
550 
551 	link = lirq - PIC_PCIE_MSIX_IRQ_BASE;
552 	irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
553 	md = irq_get_chip_data(irqbase);
554 	if (cpu_is_xlp9xx())
555 		status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link));
556 	else
557 		status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS);
558 
559 	/* narrow it down to the MSI-x vectors for our link */
560 	if (!cpu_is_xlp9xx())
561 		status = (status >> (link * XLP_MSIXVEC_PER_LINK)) &
562 			((1 << XLP_MSIXVEC_PER_LINK) - 1);
563 
564 	while (status) {
565 		i = __ffs(status);
566 		do_IRQ(irqbase + i);
567 		status &= status - 1;
568 	}
569 	/* Ack at eirr and PIC */
570 	ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link));
571 }
572